12 United States Patent

US007032079B1

(10) Patent No.: US 7,032,079 B1

Bauman et al. 45) Date of Patent: Apr. 18, 2006
(54) SYSTEM AND METHOD FOR 6,622,214 B1* 9/2003 Vogt et al. 711/141
ACCELERATING READ REQUESTS WITHIN 2002/0087807 Al* 7/2002 Gharachorloo et al. 711/141
A MULTIPROCESSOR SYSTEM 2002/0087811 Al* 7/2002 Khare et al. 711/146
2002/0124145 Al1* 9/2002 Armulhli et al. 711/146
(75) Inventors: Mitchell A. Bauman, Circle Pine, MN ¥ cited by examiner
(US); R. Lee Gilbertson, Minneapolis, y
MN (US); Jerome G. Carlin, St. Paul, Primary Examiner—Woo H. Choi
MN (US) (74) Attorney, Agent, or Firm—Beth L. McMahon; Charles
A. Johnson; Mark T. Starr
(73) Assignee: Unisys Corporation, Blue Bell, PA
(US) (57) ABSTRACT
(*) Notice: Subject to any disclaimer, the term of this
%atsel(ljt 118 SZXIt:)enlzl 6d3 8; ?ldjusted under 33 A system and method for managing memory data within a
it (b) by AYs. data processing system 1s disclosed. A main memory 1is
(21) Appl. No.: 10/318,678 provided to store data signals. When the main memory
ppl- O i receives a request to read data signals, the main memory
1.1, etermines whether an updated copy ol the requeste ta
(22) Filed: Dec. 13, 2002 determines wheth pdated copy of the requested da
signals may be stored within some other storage device
(51) Int. Cl. within the system. If so, the maiI} memory 1ssues a snoop
GOGF 12/00 (2006.01) request to this other storage device to cause any updated
(52) US.Cle oo 711/141; 711/146; 711/147 €0y of the requested data to be returned to the mam
(58) Field of Classification Search 711/141 memory. In addition, the main memory reads the requested
711/144 146. 1 47" data signals from its data store. This data will be used to
See application file for complete search hi; toryj satisly the read request 1 an updated copy of the data signals
' 1s not returned to the main memory in response to the snoop
: request. Otherwise, the updated copy 1s provided to fulfill
(56) References Cited 1 P Py 15 P

5,887,138 A ¥

U.S. PATENT DOCUMENTS
3/1999 Hagersten et al. 709/215

TRANSACTION TRACKER QUEUE (TTQ) 210

STORAGE QUEUE
STATE MACHINE
STATE MACRHINE 1
206 : RESPCONSE OUT QUEUE

STATE MACHINE m
SNOOP REQUEST
QUT QUEUE

RESPONSE
QUTPUT
QUEUE

REQUEST
INPUT
QUEUE

RESPONSE

INPUT |

REQUEST
CUTPUT
QUEUE

204 UNIT

the request.

21 Claims, 3 Drawing Sheets

103

MAIN STORAGE ADDRESS

214

DATA STORE

215

101

ADDRESS
DIRECTORY
STATE CALCULATION
LOGIC EI DATA

220

RESPONSE
CAM

RESPONSE
QUTPUT

REQUEST
OUTPUT

RESPONSE
INPUT

——————————————— — g s [e e e] e —— — ittt st —
ol i A A R s - E e i ISt pin R
SNOOP SNOOP SNOOP SNOOP
REQUEST RESFONSE pequesT RESPONSE REQUEST RESPONSE prquEST RESPONSE

US 7,032,079 B1

Sheet 1 of 3

Apr. 18, 2006

U.S. Patent

5S4 1NAOK
Ofi

Z

Z O 0O W

A XxQowwwm—2Z20Q

001

L Ol4
alll g450) Yq0l Vil
HCLL A¢H1 acli Hell
HOLL HBO| 1801 1011 aott 80l g80} q011
ayil V0!
L =17’ Jct Vill
9041 0801 4801 3011 0L} 2801} V801 V0Ll
dHOVYO JHOVO
1aA3 I"AdIHL 1dAF 1-AdIHL
dd TI0H41INOD 3 T1IOHINQD
400N JOVH01S JAON dOVd01S
S S W S— —t—— e —————
“ISNOJS3Y 183NDIY - 3ISNOJSIH \ “ISNOJSHI 1$3NDIY ISNOLSIY -
dOONS dOONS | 1s3godf%o S__ doons _ | _ 1S3N03d
d.01 V.01
N 3NITIHOWO 30¥1S N 3NIM IHOVO
 LINM3HOVD | 3LVLS b INIT IHOVD
_ oisvivd (N\eggy LINN 3OVHOLS NIV 01— Awowowa

S31NA0K
O/l

o xrogowwmwwm-—2Z20 Z00ul

US 7,032,079 B1

Sheet 2 of 3

Apr. 18, 2006

U.S. Patent

ISNOESTY 1S3NOIX . ISNOJS I 153NDIY
OON Soons 3snods:y usanonw € Ol4 s S0 3snogs: LsInom
A R R R _N~geor veob—"_ | | o 1)

3N3NO

3N3ND 3N3N0 3nand
LGN 1N41Nna 303N0 T 1NdN) 1Nd1N0 3n3ND e
1SNOQSTY s3n03 | | 1ndino PebnN 3SNOdSY 1530034 || 10dn0 || e3nnm
JOONS ISNOdS3H JOONS ERORRER

A0
4SNOdS 3
dOONS

AVO
dSNO4S 3
dOONS

Y101

dvie '\J’
4052 _
D0 T 104735

01901123738
001 0¢C
V1Y J190T IN3N0 LNO
NOILYTINOTVO 31VLS 1S3INDIH dOONS

AH0O103NIQ W INIHOYIW ALV LS

SS34AaV
3N3IN0C LNO ISNO4SIY . 302
L ANIHOVIN JLVLS
0 INIHOVW JiV1S

LOL
GlLe

3N3N0 JFOVHOLS

J401S Y1vd
17434

tz: _wa SNthtm:m_:omm_xoékzo;o,qmzék
3OVHOLS NIV _

SS340QV

140]

U.S. Patent Apr. 18, 2006 Sheet 3 of 3 US 7,032,079 B1

300

A REQUESTER ISSUES A REQUEST TO A FIRST STORAGE DEVICE FOR DATA SIGNALS.
302

RETRIEVE THE REQUESTED DATA SIGNALS AND ASSOCIATED STATE INFORMATION.

304

TEMPORARILY STORE A PROVISIONAL RESPONSE INCLUDING THE DATA SIGNALS
RETRIEVED FROM THE FIRST STORAGE DEVICE.

306

ISSUE A SNOOP REQUEST TO OBTAIN THE REQUESTED ACCESS RIGHTS FOR | AND,
IF NECESSARY, AN UPDATED COPY OF, THE REQUESTED DATA SIGNALS FROM
AN ADDITIONAL STORAGE DEVICE WITHIN THE SYSTEM.

308

THE ADDITIONAL STORAGE DEVICE ISSUES A SNOOP RESPONSE INCLUDING A RESPONSE
TYPE TO THE FIRST STORAGE DEVICE.

310
WAS UPDATED DATA RETURNED WITH THE SNOOP RESPONSE?
YES | NO
311 318
ROUTE SNOOP RESPONSE TO THE PORT
ROUTE SNOOP RESPONSE TO THE PORT
ASSOCIATED WITH THE REQUESTER, ASSOCIATED WITH THE REQUESTER

312 ALONG WITH AN INDICATION TO

e EASE THE SNOOP RESPONSE 0 RELEASE THE PROVISIONAL RESPONSE
THE REQUESTER TO THE REQUESTER

314 320

STORE THE UPDATED COPY OF THE RELEASE THE PROVISIONAL RESPONSE
DATA SIGNALS AND UPDATED STATE TO THE REQUESTER.
INFORMATION TO THE FIRST STORAGE

DEVICE. 322
316 STORE UPDATED STATE INFORMATION

ISSUE AN ADDITIONAL COMPLETION FOR TTHHEEREIESUTEgggEgg% g{ﬁgéts TO
STATUS TO THE REQUESTER. '
FIG. 3

us 7,032,079 Bl

1

SYSTEM AND METHOD FOR
ACCELERATING READ REQUESTS WITHIN
A MULTIPROCESSOR SYSTEM

FIELD OF THE INVENTION

The present invention relates generally to shared memory

multiprocessor systems, and more particularly to a system
and method for providing memory data to a requester 1n an
accelerated manner 1 a multiprocessor system.

BACKGROUND OF THE INVENTION

In many multiprocessor systems, all of the processors
access a common memory, referred to as the main memory.
Typically, the main memory 1s not capable of supplying data
and 1nstructions to multiple processors at adequate speeds.
To compensate for the speed deficiencies of main memory,
caches are usually incorporated. Caches are small high-
speed memories located between main memory and a pro-
cessor, and that are updated to contain memory data that was
recently requested by the processor. The processor can
generally obtain a copy of memory data much more quickly
from 1ts cache than from the main memory.

In multiprocessor systems, multiple copies of a particular
data 1tem may reside within multiple caches at any given
time. Because of this, a memory coherency protocol must be
used to ensure that all processors within the system operate
from the same, most recent, copy of the memory data. This
type of protocol allows data to be shared among many
devices for read-only purposes. Before a device can modily
the data, 1t must gain exclusive access to the data. In this
case, all other cached copies of the data are marked as
unusable, or “mnvalidated”. After a device gains exclusive
access to data, the device may, but 1s not required to, modity
the data. When a device relinquishes exclusive access rights,
any updated copy of the data must be stored back to the main
memory, or provided to another cache within the system.

In a multiprocessor system of the type discussed above,
gaining access to data may be time-consuming. First a
requester such as an instruction processor or I/O module
makes a request for the data from 1ts associated caches. I a
cache miss occurs, the request must be forwarded to the
main memory. The main memory then determines whether
it has the most recent copy of the requested data. In some
cases, another cache 1n the system may store another, more
recent copy of the data. The main memory therefore makes
a request to this other cache to prompt return of any such
copy. It the cache has such a copy, 1t may be forwarded to
the requester. If, however, the cache does not have an
updated copy, the main memory must again be accessed to
obtain the data that will be returned to the requester. Thus,
when a cache memory that may have an updated data copy
1s Tound to not store such a copy after all, two references to
main memory are required to satisly the request. This adds
latency to the request path, and decreases overall system
throughput.

What 1s needed, therefore, 1s an improved system and
method for returning data to a requester 1n an accelerated
mannet.

SUMMARY OF THE INVENTION

The current invention provides a system and method for
managing memory data. A main memory 1s provided to store
data signals. Multiple additional storage devices such as
cache memories are coupled to the main memory to store

10

15

20

25

30

35

40

45

50

55

60

65

2

data signals retrieved from the main memory. When a
processor requires access to data signals, 1t first makes a
request to one or more of 1ts cache memories. If none of
these cache memories stores the requested data signals, the
request 1s forwarded to the main memory.

When the main memory receives a read request, a refer-
ence 1s made to a directory within the main memory. The
directory 1s a storage device that stores state and location
information for each addressable unit of data signals stored
within the main memory. In the current embodiment, an
addressable unit of data signals 1s referred to as a “cache
line”, wherein each cache line includes 128 bytes of data
signals. In an alternative embodiment, any other cache line
s1ze may be utilized.

If the directory indicates that one of the cache memories
may store an updated copy of the requested data signals, a
snoop request 1s 1ssued to that cache to cause any updated
copy to be returned to the main memory. In addition to
issuing this snoop request, the main memory reads the
requested data signals from its data store. These signals,
which are temporarily stored within a storage device within
memory, will be used to satisiy the read request 1f an updated
copy ol the data signals 1s not returned to the main memory.
If the updated copy of the data signals 1s returned to the main
memory, however, this updated copy 1s provided to satisiy
the read request and the temporarily stored copy 1s dis-
carded.

The current invention provides a mechanism for allowing,
a read request to be satisfied after a snoop request has been
completed without having to first read the requested data
signals from the data store. This 1s true regardless of whether
an updated data copy was returned to main memory 1in
response to the snoop request. This reduces response time,
and increases system throughput.

In one embodiment of the invention, a data processing
system 15 disclosed. The data processing system includes a
main memory, a requester coupled to the main memory to
make a request for data signals stored in the main memory,
and at least one storage device coupled to the main memory.
The system further includes a circuit to temporarily butler
the data signals after the data signals are retrieved from the
main memory. The circuit determines whether any of the at
least one storage device stores an updated copy of the data
signals, and 1f so, the circuit obtains and provides the
updated copy to the requester. Otherwise the data signals
retrieved from the main memory are returned to the
requester.

According to another embodiment, the invention com-
prises a data processing system including a requester
coupled to a first storage device. The system further includes
a second storage device coupled to the first storage device to
store data signals that were retrieved from the first storage
device 1n response to a request by the requester. A circuit
coupled to the second storage device determines 1f an
updated copy of the stored data signals exists within the data
processing system, and 1f so, provides the updated copy to
the requester. Otherwise, the circuit provides the stored data
signals to the requester.

In yet another embodiment, a method of managing data
signals stored within a storage device of a data processing
system 1s disclosed. The method comprises making a request
for ones of the data signals, retrieving the requested data
signals from the storage device, and temporarily storing the
requested data signals. The method further includes deter-
mining whether an updated copy of the requested data
signals exists, and 1n response to the request, providing the

us 7,032,079 Bl

3

updated copy 1f the updated copy exists, otherwise, provid-
ing the requested data signals that were temporarily stored.

According to still another aspect of the invention, a data
processing system 1s disclosed comprising a main memory
to store data signals, multiple cache memories coupled to the
main memory to store any of the data signals retrieved from
the main memory, and a requester coupled to the main
memory to request ones of the data signals. The mvention
turther comprises a storage device coupled to the main
memory, wherein the requested data signals are retrieved
from the main memory and stored in the storage device. A
snoop request circuit 1s coupled to the main memory to make
a request to one of the multiple cache memories to return any
updated copy of the requested data signals. A response
circuit 1s coupled to the storage device to provide to the
requester any returned updated copy of the requested data
signals. If no updated copy i1s returned, the circuit instead
provides the requested data signals stored by the storage
device.

Also disclosed 1s a data processing system comprising
data storage means for storing data signals, requesting
means for making a request to cause ones of the data signals
to be retrieved from the data storage means, builer means for
storing the retrieved data signals, means for retrieving any
valid modified copy of the retrieved data signals, and
response output means for providing the valid modified copy
to the requesting means. If the valid modified copy does not
exist, the response output means provides the retrieved data
signals stored by buller means to the requesting means.

Other scopes and aspects of the current invention will
become apparent from the following description and accom-
panying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FI1G. 1 1s a block diagram of an exemplary data processing,
system that may employ the current invention.

FIG. 2 1s a block diagram of the current invention.

FIG. 3 1s a flow chart of one embodiment of a method
according to the current invention.

DETAILED DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a block diagram of an exemplary data processing
system that may usefully employ the current invention. The
system 1ncludes a Main Storage Unit (MSU) 100 that
provides the main memory for the system. Although the
system of FIG. 1 includes only a single MSU 100, multiple
MSUs may be provided, each being mapped to a portion of
the system address space 1n a manner largely beyond the
scope of the current application. MSU 100 may include
Random Access Memory (RAM), Read-Only Memory

(ROM), and/or any other type of memory known 1n the art.

In one embodiment, MSU 1s a directory-based storage
unit that may be similar to the system described in com-
monly-assigned U.S. patent application Ser. No. 09/001,598
filed Dec. 31, 1997 entitled “Directory Based Cache Coher-
ency System Supporting Multiple Instruction Processor and
Input/Output Caches”, incorporated herein by reference. In
this embodiment, MSU 1includes both a directory 101 and a
data store 103. Data store 103 stores the data, including the
instructions and operands, which may be referenced by any
of the processors within the system. Directory 101 stores
information that indicates where the latest copy of these data
signals resides within the system to ensure that every
processor 1s operating from this copy. As was discussed

10

15

20

25

30

35

40

45

50

55

60

65

4

above, this 1s necessary since data from data store 103 may
be copied into any of the various cache memories within the
system.

In the current embodiment, directory 101 includes a
directory entry for each 128-byte cache line. Other embodi-
ments may utilize cache lines of different sizes. The cache
lines are shown within data store 103 as “cache line 17
through “cache line N”. The respectively associated entries
within directory 101 are shown as “cache line 1 state”
through “cache line N state”.

MSU 1s coupled to one or more processing nodes shown
as processing node 1 105 A through processing node N 105B.
More or fewer processing nodes and memory ports may be
included within the system. Each processing node 1s con-
nected to a different memory port shown as port 1 107A
through port N 107B, respectively, via dedicated high-speed
interfaces 109A through 109B (shown dashed). Fach of
these interfaces has four sets of signals, including request,
response, snoop request, and snoop response signals. The
use of these signals will be discussed below.

Each processing node may also be coupled to an I/O
complex, shown as I/O complexes 111A and 111B. Each of
these I/O complexes contains one or more industry-standard
or proprietary I/O modules that communicate with storage
medium such as disk tape subsystems and communication
equipment.

Each processing node includes a Storage Node Controller
(SNC) shown as SNCs 102A and 102B for processing nodes
1 and N, respectively. Each SNC includes logic that inter-
faces with a respective high-speed MSU interface 109A or
1098, and further includes logic to interface to a respective
one of processor buses 104 A and 104B. Each SNC includes
a respective ownership cache and all supporting logic. This
cache may be a Third-Level Cache (TLC), a Fourth-Level

Cache (4LC), or some other type of cache memory. In the
embodiment shown, these caches are TL.Cs 106 A and 106B.

The ownership caches are discussed further below.

As noted above, each of SNCs 102A and 102B 1s coupled
to a respective processor bus 104A and 104B. These pro-
cessor buses can utilize any type of bus protocol. Each
processor bus interfaces to multiple local cache memories.
In the current embodiment, the local cache memories are
shown as Second-Level Caches (SLCs) 108A—108H. In
another embodiment, these local caches may be Third-Level

Caches.

Each SLC 108 1s coupled to a respective one of the
Instruction Processors (IPs) 110A—110H over a respective
interface 112A—112H. For example, SLC 108 A 1s coupled to
IP 110A via interface 112A, SLC 108B 1s coupled to IP 110B
via mterface 112B, and so on. The IP may be any type of
processor such as a 2200™ processor commercially avail-
able from Unisys Corporation, a processor commercially
available from Intel Corporation, or any other processor
known 1n the art. Each IP may include one or more on-board
caches. In the current embodiment, each IP may include a
First-Level Cache (FLC). Preferably, each IP resides on a
single Application Specific Integrated Circuit (ASIC) device
with a respective SLC 108. Alternatively, an IP may be
coupled to a respective SLC over an external interface.

In general, the caches within the processing nodes are
ownership caches. As such, each cache maintains informa-
tion that describes the state of each of the cache lines
resident within the cache. A cache line may be 1n at least one
of four mutually exclusive states, including a modified,
exclusive, shared, or invalid state. These states are some-

us 7,032,079 Bl

S

times said to mmplement a “MESI” protocol. These states
indicate the types of access rights that are associated with the
cache line data.

When a cache line 1s stored in the modified state, the
cache line copy has been modified, and 1s therefore the most
up-to-copy of the cache line that resides within the system.
All other copies of this cache line are said to be “stale”, or
outdated, and cannot be used, either for read-only or read/
write purposes. At any given time, only one cache may store
a copy of a particular cache line in the modified state. The
cache that stores such a copy 1s said to “own’” the cache line.
I another processor requires use of the cache line, 1t must
obtain the updated copy. Until another cache obtains the
updated copy, the modified cache line copy may be used for
read and/or write purposes by one or more processor asso-
ciated with the cache that stores the cache line.

When a cache line i1s retained in the exclusive state, the
cache stores the latest cache line copy. Until this cache line
1s modified, the MSU also stores the latest copy of this data.
At any given time, only one cache may store a valid copy of
the cache line 1n the exclusive state. This cache line may be
used for read and/or write purposes, and 1s said to be owned
by the cache.

A cache line may further be stored within a cache in a
shared state. In this case, the cache line 1s used for read-only
purposes. The cache line may be stored 1n multiple caches
within the system in the shared state. If another cache
requests exclusive access to the cache line, all copies of that
cache line that exist in the shared state must be “invali-
dated”, or marked as unusable.

Finally, a cache line may reside within a cache 1n an
invalid state. In this case, the cache line has been marked as
unusable, and can not be used for read or write purposes. I
a cache requires the use of an invalid cache line, 1t must
obtain a valid copy from another memory within the system.

The manner in which memory requests are processed
within the system can best be understood by example.
Assume IP 110A requires read/write access to a cache line.
IP 110A first attempts to retrieve the cache line from 1ts
internal cache(s) such as its FLC. If the cache line 1s not
resident within the FLLC, a request 1s sent to the respective
SLC 108A. If the requested cache line 1s likewise not
resident within the SLC, the SLC i1ssues a request on the
processor bus 104A. In one embodiment of the invention,
cach SLC implements a bus snoop protocol to momitor the
processor bus for such requests. When the request 1s
“snooped” by the SLCs 108B-108D, any SLC that retains
the data in the requested state will return the data on
processor bus 104A. Similarly, SNC 102A is snooping the
bus for such requests. If TLC 106A stores the most recent
copy of the cache line 1n the desired state, the cache line will
be returned to the SLC 108A to be forwarded to IP 110A.

In some 1instances, data requested by IP 110A is not
resident in the requested state within any of the cache
memories associated with its processor bus 104A. In that
case, SNC 102A uses the request signals of interface 109A
to forward the request to MSU 100. The request signals
include a cache line address, a requester 1dentifier to indicate
which processing node or I/O module provided the request,
and a transaction identifier for tracking multiple requests
from a single node. I the request 1s of a type that includes
data, the write data will also be provided by the request
signals. The request signals further include a request type to
indicate whether the processing node is requesting the cache
line 1n the exclusive state so that read and write operations
may be performed, or whether the cache line 1s requested in
the shared state for read-only purposes. The various request

10

15

20

25

30

35

40

45

50

55

60

65

6

types are discussed below. Finally, the request signals fur-
ther provide a destination node identifier that 1s generated by
SNC 102A by mapping the request address into the system
address space. In an embodiment such as that mentioned
above wherein MSU 100 1s comprised of multiple memory
units, this identifier indicates which of these units 1s to
receive the request.

After receiving the request, MSU 100 determines the
location and state of the most recent copy of the cache line
using the cache line state information stored within its
directory 101. In the current embodiment, directory 101
indicates that a cache line 1s 1n one of a number of prede-
termined states that include, but are not limited to, the
following:

MSU Own;

Exclusive; and
Shared.

MSU Own State

All cache lines in the MSU are placed 1in the MSU own
state alter system initialization and before any cache lines
have been copied 1nto one of the system caches. This state
indicates that the MSU has the most recent copy of the cache
line. Since only the MSU 1is considered to have a valid copy
of any cache line that 1s 1n the MSU own state, an error
occurs 1f any SNC 102A issues a request to write to a cache
line that 1s 1n this state.

Exclusive State

This state 1s described above in reference to the MESI
protocol. When MSU 100 grants a copy of a cache line to a
processing node for read and/or write purposes, directory
101 records the processing node’s identity, and indicates the
cache line 1s held 1n the exclusive state. Once a cache line
1s granted in an exclusive state, the copy retained by the
MSU may not be provided to another processing node. If the
MSU receives another request for the cache line while 1t 1s
in this state, the MSU must retrieve the cache line copy from
the owner by 1ssuing a snoop request, as will be discussed
below.

Shared State

This state 1s described above in regards to the MESI
protocol. In this state, the cache line may reside within one,
several, or all of the caches in the system at once for
read-only purposes. The MSU 1s still considered to have a
valid copy of the cache line, which may be provided to
another cache for read-only purposes. Directory 101 records
which one or more of the processing nodes have a valid copy
of the cache line.

Returning to the current example, 11 the cache line 1s
resident within MSU 100 in the MSU own state, MSU
provides this data directly to processing node 1 105A over
the response lines of mtertace 109A. These lines include
data signals, the original requester 1d, the transaction 1d, and
a response type. The transaction 1d 1s the same as that
included with the original request, and 1s used by the SNC
102 A to match the request to the response. The response type
indicates whether the cache line i1s being provided in the
exclusive or the shared state. The MSU delivers the cache
line 1n the state that was indicated on the request lines,
which, in the current example, 1s the exclusive state. MSU
turther updates directory 101 to record that processing node
1 105A retains the cache line copy in the exclusive state.

The foregoing discussion assumes the cache line 1s avail-
able within MSU 100 in a state that allows its immediate
return to the requester. Assume, instead, that the cache line
state information stored within directory 101 indicates that

us 7,032,079 Bl

7

the cache line 1s retained 1n the exclusive state by processing,
node N 105B. The MSU 1s therefore not able to provide the
cache line directly to processing node 1 105A, but instead
must 1ssue a snoop request to node N to prompt the return
of any updated cache line data to MSU 100.

A snoop request 1s 1ssued to processing node 105B from
port N 107B across the snoop request lines of interface
109B. These signals include a cache line address, a snoop
type, a source and destination 1dentifier, and a transaction
tracking identifier. The snoop type indicates the type of
snoop request being 1ssued, the destination 1dentifier indi-
cates the processing node that 1s to receive the request, and
the transaction tracking identifier 1s an identifier generated
within MSU 100 that 1s used to later match a snoop response
to the snoop request.

Upon receiving the snoop request, directory state infor-
mation stored within TLC 106B 1s used to determine
whether any of the SLCs 108E—108H has a copy of the data.
If not, SNC 102B may return the cache line directly to MSU
100. This return of ownership and data 1s 1ssued across the
snoop response lines of iterface 109B. The snoop response
lines 1nclude cache data signals, response type signals, and
the transaction-tracking 1d that was provided with the snoop
request. If, however, any of the SLCs 108E—108H retains a
copy of the cache line, SNC 102B 1ssues a request to each
of the SLCs 108E—108H via bus 104B requesting return of
ownership and any modified data. This request 1s snooped by
SL.Cs 108E—108H such that any of these SLCs having a
valid data copy will invalidate that copy, and will further
invalidate any copy stored by the associated FLC. IT any one
of these SLCs had acquired exclusive ownership of, and
subsequently modified, the data, that modified copy 1s
returned to SNC 102B during a “write back™ operation. IT
the data 1s not modified, only ownership 1s returned. SNC
1028 then returns ownership and, 1f necessary, modified
data to MSU 100 using a snoop response, as discussed
above.

After the snoop response 1s forwarded to MSU 100, MSU
routes any returned data from port N 107B to port 1 107A
via a port-to-port interface (not shown 1n FIG. 1). The data,
which 1s modified, and 1s therefore the most up-to-date copy
of the cache line, 1s provided to processing node 1 wvia
interface 109A. If data 1s not returned with the snoop
response, the data 1s obtaimned from data store 103 and
provided to processing node 1 105A.

When SNC 102A recerves the cache line data, 1t provides
this data 1n the exclusive state to requesting IP 110A via SLC
108A so that execution may continue. IP 110A and SLC
108A now own this cache line. State information within
TLC 106A records that processing node 1035A retains a copy
of this cache line in the exclusive state.

As 1s apparent from the foregoing discussion, obtaining
requested data may be time-consuming. In the foregoing
example, IP 110A 1ssues a request for an exclusive copy of
data that 1s resident in SNC 102B or one of the associated
SLCs 108E—108H. This request 1s fulfilled by invalidating
the copies of data stored within processing node N 105B,
then transferring the data from processing node N 105B to
processing node 105A. The time required to complete these
operations may be significant, especially during times when
system 1nterfaces are experiencing heavy traflic. The time
required to fulfill the request 1s even greater in those
instances wherein the snoop response does not include data.
As discussed above, 1n these cases, another reference to data
store 103 must be made to obtain the data.

According to the current invention, a system and method
1s provided that eliminates the need to make a reference to

10

15

20

25

30

35

40

45

50

55

60

65

8

data store 103 when a snoop response 1s returned to the MSU
without data. A read butler 1s provided to temporarily store
a cache line that 1s read from data store 103 during the 1nitial
reference. The read buller stores data for any request that
will require a snoop request to complete. If the snoop request
1s returned without modified data, the buflered data may be
returned directly to the requester, making the additional
reference to data store 103 unnecessary. The details associ-
ated with the current system and method will be discussed
below 1n reference to the following figures.

FIG. 2 1s a more detailed view of MSU 100. As discussed
above, each processing node 105 1s coupled to the MSU via
a high-speed interface (shown dashed). Interface 109 A con-
nects processing node 1, 105A, to port 1, 107A of MSU 100.
Similarly, interface 109B couples processing node N, 105B,
to port N, 107B, of the MSU. Each of these interfaces
includes request, response, snoop request and snoop
response lines, as discussed above.

Each of the ports includes a respective request input
queue. A request from a processing node 1s provided across
interface 109 and 1s stored within the request input queue of
the respective port. For example, a request that 1s provided
by processing node 105A over interface 109A will be stored
temporarily in request mput queue 200A of port 1, 107A.
Similar queues are included within each port. Each request
input queue 1s capable of storing multiple requests that are
waiting to be processed by MSU 100.

The request input queues may each provide a stored
request to select logic 202. Select logic includes logic that
selects one of the pending requests based on a rotational
fairness algorithm. The selected request 1s then stored within
Transaction Tracker Queue (T'TQ) 204. In one embodiment,
a new request may be stored within TTQ 204 each clock
cycle.

The TTQ 204 includes multiple state machines 206 shown
as state machine 0 through state machine m. A state machine
1s provided for each request that may be stored within TT(Q
204. When a new request 1s stored within TTQ 204, the
respective state machine 1s activated to track processing
activities and to control the use of these TTQ queues for that
request. Processing activities are tracked using a unique
TTQ 1dentifier generated by TTQ 204 and assigned to the
request. This TTQ 1dentifier 1s used to track the request as
long as 1t 1s stored within the TTQ 204, as will be discussed
below.

Each state machine 1s coupled to several queues, shown as
storage queue 210, response out queue 212, and snoop
request out queue 214. Upon activation of a state machine
for a request, the state machine logic generates a request
entry within storage queue 210 that includes a request
address, a request type, and any data provided with the
request. The storage queue processes these request entries in
a First-In, First-Out (FIFO) manner. When a request gains
priority, the request address and any data are provided to
data store 103 on lines 214 and 215, respectively. Also at this
time, the request address 1s provided on lines 216 to direc-
tory 101.

When a request 1s provided to data store 103, a full cache
line of data will be read from, or written to, data store based
on the request type. In the mean time, the address on lines
216 reads the cache line state information for the addressed
cache line from directory 101. This information 1s provided
to state calculation logic 220 on lines 221, which forwards
that information to TTQ 204 on lines 223 for use 1n fulfilling
the request.

In addition to being forwarded to TTQ 204, the cache line
state mnformation 1s further used by state calculation logic

us 7,032,079 Bl

9

220 to determine the next state for the cache line. This next
state 1s based, 1n part, on the request type provided by TTQ
204 on lines 218, on existing state information stored within
directory 101, and, in some instances, on a response type
that 1s provided with a snoop response, as will be discussed
below. State calculation logic 220 then writes the updated
cache line state back to directory 101 on lines 219. It may
be noted that while the state calculation logic 220 1s shown
to interface with directory 101 via separate uni-directional
lines 221 and 219 to emphasize the read-modify-write nature
of the operation performed by this logic, this logic may also
be implemented using a single bi-directional interface. The
calculation of cache line state information by state calcula-
tion logic 220 1s largely beyond the scope of the current
invention. Details associated with state calculation are pro-
vided in commonly assigned U.S. patent application entitled
“System and Method for Providing Speculative Ownership
of Cached Data Based on History Tracking”, Ser. No.
10/304,919 filed on Nov. 26, 2002.

TTQ 204 uses the state information provided on lines 223
in conjunction with the request type of the current request to
determine whether an MSU-1nitiated snoop request 1s nec-
essary to fulfill the current request. In some cases, the
request may be fulfilled without 1ssuing additional snoop
requests. This 1s the case, for example, when the request 1s
a type that stores data to data store 103. In this instance, a
response 1s provided to the requesting processing node
indicating that the operation 1s completed. In another sce-
nario, an additional snoop request 1s unnecessary when a
requested cache line 1s to be returned 1n the shared state, and
the cache line state information 1ndicates the cache line 1s in
the MSU own or the shared state. In another case, a response
may be returned to the requesting processing node without
1ssuing a snoop request when a cache line 1s to be returned
in the exclusive state, and the MSU owns the cache line. In
still another scenario, the requested cache line may be
returned 11 the directory state indicates that the cache line 1s
already owned by the requesting processing node. This latter
situation may occur, for example, 1f the requesting node had
previously obtained the cache line 1n the exclusive state, had
never modified 1t, but instead had invalidated 1t without
notitying the MSU.

When 1t 1s determined that a response may be returned to
the requesting processing node without issuing a snoop
request, TTQ generates the response using the cache line
state information. As discussed above, this response includes
the original transaction 1dentifier provided with the request,
any requested data, and a response type. If data is returned,
this response type indicates whether the data 1s being
provided 1 a shared or exclusive state. This response 1s
stored within response out queue 212, and will be transferred
to the appropriate port so that it may be forwarded to the
processing node that mitiated the request. In the current
example, the response 1s transferred to response output
queue 222A of port 1 107A. This response 1s then forwarded
to processing node 1, 105A, when 1t gains priority.

After a response has been queued within the appropnate
one of the response output queues and subsequently released
to the corresponding interface 109, and further after any
memory updates have occurred, the respective one of state
machines 206 indicates that the request processing 1s com-
pleted. The request 1s removed from TTQ 204 such that
another request may be received 1n 1ts place.

The foregoing scenarios relate to situations in which
requests can be fulfilled without 1ssuing snoop requests. In
other cases, a snoop request must be i1ssued to another
processing node before a response may be 1ssued to the

10

15

20

25

30

35

40

45

50

55

60

65

10

original requester. This occurs, for example, when the MSU
cannot return the cache line in the required state. For
example, 1f the request type 1ndicates, or 1f state calculation
logic 220 determines, that the cache line should be returned
in the exclusive state, and 11 the only valid copy of the cache
line resides within another processing node, an MSU-1nit1-
ated snoop request must be generated. This request 1s 1ssued
to mvalidate the cache line copy residing within that other
processing node, and to prompt the return of any modified
data.

If a snoop request 1s necessary, T1Q 204 generates the
request, which 1s stored within snoop request out queue 214.
This request includes the TTQ i1dentifier generated by TTQ
204, a snoop request type, and an address. The request 1s
transferred to the snoop request output queue(s) of the
appropriate port(s) based on the processing node(s) that have
a copy of the requested cache line. In the current example,
it will be assumed that processing node N 105B owns the
requested cache line. The snoop request 1s therefore trans-
terred to snoop request output queue 2248 of port N 107B.
A similar snoop request output queue 1s provided for each of
the other ports. This snoop request is transierred to SNC
102B to be processed in the manner discussed above.

According to the current invention, when a snoop request
1s transterred to the snoop request output queue 2248, snoop
request output queue generates an entry within the associ-
ated port snoop response CAM 242B. A similar port snoop
response CAM 242 A 1s provided for port 1 107A. Additional
ports will include similar CAMs. The entry within the port
snoop response CAM 1includes the TTQ 1dentifier generated
by TTQ 204. Use of this identifier will be discussed further
below.

Sometime after the snoop request 1s stored within snoop
request output queue 224B, 1t will be 1ssued to the associated
processing node N 105B. This snoop request includes the
requester 1dentifier that was provided with the original
request and that indicates the processing node or I/O module
that imitiated the request. The snoop request also includes the
transaction identifier included with the original request.

Approximately around the time TTQ i1mtiates the snoop
request, TTQ 204 provides the cache line data that was
obtained from data store 103 to the port that 1s associated
with the requesting processing node. This data 1s stored
within a provisional read bufler for this port. For example,
port 1, 107A, included read bufler 240A, and port 2, 1078,
includes read bufler 240B. In the current example, data read
from data store 103 will be stored within read bufler 240A
for requesting processing node 105A. The requester 1dent-
fier, transaction 1dentifier, and response type information are
also stored within this read bufler along with the data. This
packet of information comprises a provisional response that
may be used to provide a response to processing node 105A.
The type of snoop response that 1s received from processing
node 105B will determine whether this provisional response
will be released to the requester, as will be discussed below.

Sometime after the snoop request 1s 1ssued to processing
node N 105B, processing node N will return a snoop
response to snoop response mput queue 226B of port N
107B. The original requester and transaction identifiers are
returned 1n the snoop response along with a response type,
as will be discussed turther below. This snoop response will
be presented by the snoop response mput queue to port
snoop response CAM 242B.

In this exemplary embodiment, port snoop response CAM
2428 i1s a content addressable memory, although other types
of storage addresses may be used for this purpose. The
transaction 1dentifier returned in the snoop response 1s used

us 7,032,079 Bl

11

to address port snoop response CAM 242B to obtain the
entry that was associated with the snoop request. As noted
above, this CAM entry stores the TTQ 1dentifier assigned to
the original request. This TTQ 1dentifier 1s routed along with
the snoop response to the port associated with the original
requester, as 1s determined by the requester i1dentifier
returned with the snoop response. Recall that this snoop
response includes the requester and transaction i1dentifiers,
response type, and the response data.

In the current example, the requester identifier will 1ndi-
cate that processing node 1, 105A is the original requester.
Therefore, snoop response mput queue 2268 will route the
snoop response along with the TTQ 1dentifier to port 1 107A
on lines 244B. After the snoop response 1s received by port
1 107 A, Xbar logic 246 A routes the response to the response
output queue 222A. Response output queue 222A deter-
mines from the snoop response whether data was returned
with that response. I so, response output queue 222A will
propagate the response to processing node 105A. The TTQ
identifier provided with the snoop response 1s used to locate
an entry stored within read bufler 240A having the same
TTQ 1dentifier. This entry stores the provisional response
containing the cache line data previously retrieved from data
store 103. The provisional response 1s discarded in this case,
since data provided with the snoop response was returned to
the requester. If, however, data 1s not returned with the snoop
response, response output queue 222A enables the release of
the provisional response to the requester. Use of this provi-
sional response eliminates the need to retrieve the response
data from data store 103, thereby accelerating response
completion.

As noted above, each response includes a response type.
Among other things, the response type indicates whether
cache line data that 1s being returned to the requester 1s being
provided 1n the shared or the exclusive state. If the provi-
sional response 1s released to the requester, the response type
included with the provisional response 1s provided to the
requester to indicate this cache line state. If, however, the
snoop response 1s released to the requester, the response type
included with this snoop response 1s used to indicate to the
requester the state of the returned cache line.

A response type that 1s included with the provisional
response 1s generated by response out queue 212 based on
the request type and on the cache line state imformation
stored within the directory and forwarded to TT(Q 204 on
lines 223 by state calculation logic 220. In contrast, a
response type included with the snoop response may be
based not only on the request type and the cache line state
information, but may further be determined by decisional
logic within a processing node such as processing node
105B. For example, 1n some instances, when a snoop request
1s 1ssued to facilitate the return of a cache line, the previous
owner of a requested cache line 1s allowed to determine
whether to retain a shared copy of the cache line, or to
instead invalidate all of its retained copies. If the former
action 1s taken, modified data provided with the snoop
response must be forwarded to the requester in the shared
state, otherwise, the data may be provided to the requester 1n
the shared or exclusive state. The response type returned
with the snoop response will indicate which of these actions
1s being taken. This response type will be routed along with
the snoop response to the port associated with the requester,
and will be released to the requester by the response output
queue 222A if the snoop response includes modified data.
Otherwise, the response type included with the provisional
response 1s released to the requester, as noted 1n the fore-
going paragraph. More details associated with the genera-

10

15

20

25

30

35

40

45

50

55

60

65

12

tion of a response type 1n conjunction with the determination
of a next cache line state are provided in commonly-
assigned U.S. patent application entitled *“System and
Method for Providing Speculative Ownership of Cached
Data Based on History Tracking™, referenced above.

Returning to the current example, at approximately the
same time snoop response mmput queue 226B provides the
snoop response on lines 2448 to port 1 107A, the snoop
response 1s also provided to select logic 228. Select logic
228 sclects one of the pending responses for presentation to
TTQ 204 using a rotational fairness algorithm. The selected
snoop response will be assigned to the state machine that 1s
still processing the 1nitial request using the TTQ i1dentifier
that was included with the snoop request and returned with
the snoop response. In response, the state machine generates
a request entry within storage queue 210. This request,
which will be processed on a FIFO basis as discussed above,

will store any updated data that was provided with the snoop
response to data store 103.

After updated data 1s stored to data store, an additional
‘completion’ response 1s 1ssued to the original requester. The
completion response 1s provided to notily the requester that
the modified data has been successiully stored within the
MSU, and the requester may therefore discontinue the
tracking of the request. Until the requester receives this
completion response, the requester must track the request.
This ensures that the updated data 1s successiully written to
data store 103. It may be noted that the requester 1s notified
of the need to track the updated data by the response type
provided with the iitial response. In cases where unmodi-
fied data 1s returned with the mitial response, this additional
completion response 1s not needed, and the requester can
cease request tracking upon receipt of this initial response.

Processing of this request will also cause cache line state
information to be read from directory 101 onto lines 221. As
discussed above, state calculation logic 220 uses the current
cache line state information as well as the request type and
the snoop response type provided by TTQ 204 on lines 218
to update the cache line state information. Details associated
with the updating of the state information are largely beyond
the scope of the current imnvention, and are provided 1n the
commonly assigned application entitled “Directory Based
Cache Coherency System Supporting Multiple Instruction
Processor and Input/Output Caches” referenced above.

After the modified data has been stored to data store 103,
the cache line state information has been updated, and the
additional Completlon response 1s 1ssued to the requester, the
original request 1s removed from TTQ 204. This allows TT(Q
204 to recerve another request from one of the ports based
on the fairness algorithm practiced by select logic 202.

The current mnvention provides a mechanism for acceler-
ating the return of data to the requester. In prior art systems,
if data 1s not returned with the snoop response, a second
reference must be made to data store 103 before the response
can be provided to the requester. The current system allows
a response to be returned to a requester without this addi-
tional data store reference, regardless of whether a snoop
response returns data. In most cases, this response can be

provided even belore the previous owner’s snoop response
1s forwarded to TTQ 204.

In the current embodiment, the i1ssuance of a response by
one of the response output queues 222 must be timed to
avoid “conflicts”. In this context, contlicts are situations that
involve operations to the same cache line that, 1f completed
in an incorrect time order, may result in the loss of data

us 7,032,079 Bl

13

updates. The various types of conflict situations that must be
handled by the current invention are discussed in turn in the
tollowing paragraphs.

A first type of contlict situation may best be considered by
returning to the previous example. Assume that SNC 102B
of processing node N 105B 1s returning a cache line includ-
ing updated data to MSU 100. This will be accomplished
using a port memory write (PMW) request. Further assume
that after the processing node i1ssues the PMW request, a
snoop request 1s received for the same cache line. Since the
SNC 102B has already returned updated cache line data and
ownership rights with the previously 1ssued PMW request,
the SNC will generate a snoop response that does not include
data.

As discussed above, when a snoop request does not
include data, a response 1s generally 1ssued using cache line
data stored within read bufter 240A. However, in this
situation, the data stored within read bufter 240A 1s not the
most recent copy, since the most up-to-date data copy 1s in
the process of being returned to the MSU as the result of the
PMW request. Some mechanism 1s therefore needed to
ensure that the PMW request 1s processed by TTQ 204
betore the snoop response 1s processed so that a current copy
of cache line data 1s returned with the response to processing
node 105A.

In the foregoing embodiment, this conflict situation 1s
addressed by using the SNC to throttle the return of snoop
responses. In the current example, SNC 102B tracks that an
outstanding PMW request has been 1ssued to MSU 100 for
a particular cache line. If SNC 102B receives any subse-
quent snoop request for this same cache line, the SNC will
not immediately 1ssue the snoop response. Instead, SNC
1028 will wait until 1t has received an acknowledgement
from MSU 100 that the PMW request has been completed
successiully. When received, this acknowledgment waill
release the SNC 102B to 1ssue a snoop response that does
not iclude data. It may be noted that this acknowledgment
1s similar to the additional completion response that is
returned to the requester following the modification of cache
line data within data store 103, as discussed above.

While SNC 102B 1s waiting for the acknowledgement, the
PMW request 1s processed as follows. The request 1is
received within request input queue 200B of port N 107B.
It will be provided to select logic 202, and will enter TTQ
204 1n the manner discussed above so that a state machine
1s activated for the PMW request. When 1t enters TTQ 204,
the cache line address provided with the request will be
compared to the cache line address associated with every
other pending request stored within the TTQ. If two requests
are associated with the same cache line, a potential contlict
situation exists which must be resolved.

In the current example, a contlict will be detected between
the address associated with the PMW request and the entry
associated with the original read request. In response to this
contlict detection, the state machine processing the original
request will set a state bit indicating the existence of the
PMW request. The state machine will set an 1indicator that
causes response out queue 212 to remove the data entry from
read bufler 240A. This entry contains outdated cache line
data that must not be returned with the response. The state
machine 1indicator will also cause response out queue 212 to
update the corresponding entry within port snoop response
CAM 242B so that the entry indicates that there 1s no longer
any provisional data entry available within read butler 240A.
This will inhibit any port-to-port response acceleration when
the eventual response without data 1s provided by SNC 102B
to the MSU. The appropriate entries in the read bufller 222A

10

15

20

25

30

35

40

45

50

55

60

65

14

and response CAM 242B are identified using the TTQ
identifier stored with each entry.

In a manner similar to that described above, the state
machine that 1s assigned to the PMW request will generate
a request within storage queue 210. When the request 1s
processed, the updated data will be written to the data store.
Additionally, state information for the cache line will be read
from directory 101 and provided to state calculation logic
220. The state calculation logic utilizes the snoop response
type, the original request type, and the current state data to
generate a next state for the cache line. This updated state
information will be stored back to directory 101 on lines
219.

After the PMW request has been completed, a PMW
response 1s entered into response out queue 212. This
completion response 1s transierred to response output queue
2228, and will be routed to SNC 102B. This response
provides an acknowledgement to SNC 102B indicating that
the PMW operation has been completed. This acknowledge-
ment releases the SNC to process the snoop request. SNC
102B generates a snoop response that does not include data.
The response indicates that the requested cache line 1s no
longer held by the SNC. This response 1s provided on lines
1098 to snoop response input queue 226B, and 1s presented
to port snoop response CAM 242B. Because the response
CAM entry has been updated to indicate no provisional data
1s available 1n an output port, no accelerated port-to-port
response 1s provided to processing node 105A.

The snoop response 1s provided on lines 250B to TTQ
204. The TTQ 1dentifier provided with the snoop response
will be used to match this response to the state machine that
1s processing the original read request. As noted above, this
state machine includes an indicator that was activated to
record the existence of the previous contlict, and to indicate
that read bufiler 240A no longer stores cache line data to
complete the response. The state machine therefore gener-
ates a request within storage queue 210 to read the cache line
data from data store 103. When this request 1s processed, the
most recent copy of the cache line data will be retrieved
from data store 103 and used by TTQ 204 to generate a
response 1n response out queue 212 1n the manner discussed
above. This response will be forwarded to response output
queue 222A so that 1t may be transierred to processing node
105 A 1n the manner discussed above. State calculation logic
220 will also update the cache line state information, 1f
necessary, based on the snoop response type.

The foregoing paragraphs describe one mechanism for
handling conftlicts between a PMW request and a previously
received read request. In another embodiment of the inven-
tion, detection of this type of conflict will cause the state
machine processing the read request to transier updated data
that 1s provided with the PMW request to read bufiler 240A.
The PMW request 1s then completed by storing the updated
data to data store 103 1n the manner described above. The
PMW response 1s 1ssued to SNC 102B so that the SNC can
respond to the snoop request. SNC 102B generates a snoop
response without data, which 1s returned to snoop response
input queue 2268 via itertace 109B. Snoop response 1nput
queue 2268 forwards the snoop response and the TTQ
identifier retrieved from port snoop response CAM 242B to
response output queue 222A on lines 244B. Response output
queue 222A 1s able to release a response to processing node
105A using the updated data, response type, and 1D fields
stored within read builer 240A.

In the alternative embodiment, the snoop response will
also be routed from snoop response input queue on lines
250B to TTQ 204, where 1t will be used to generate a request

us 7,032,079 Bl

15

within storage queue 210. Although this request will not
result in the updating of data within data store 103, 1t may
result 1n the updating of the cache line state stored within
directory 101. When the request 1s selected from storage
queue 210 for processing, the cache line address will be
provided from storage queue 210 to directory 101. State
information for the cache line 1s read onto lines 221, and 1s
provided to state calculation logic 220 so that the cache line
state can be updated 1n the manner discussed above. It may
be noted that the newly generated cache line state waill
correspond to the state that 1s indicated by the response type
that was provided 1n the response to processing node 105A.
For example, 1I a response type indicates the data was
provided 1n the exclusive state, the new state information
that 1s being stored within directory 101 will likewise
indicate the cache line 1s now 1n the exclusive state, and so
on.

The above description discusses one type of contlict that
occurs between a pending read request that has already been
presented to data store 103 and a subsequently receirved
PMW request. A related conflict may be detected between a
pending read request that has not yet been presented to data
store 103 and a subsequently received PMW request. This
contlict will be detected by comparing the cache line address
provided with the PMW request to the addresses associated
with all other requests that are pending within TTQ 204.
When the conflict 1s detected, the read request will be
“deferred”, meaning that processing of this request will be
temporarily delayed until after the PMW request 1s com-
pleted such that the updated data 1s written to data store 103.
The read request can then be processed. When this occurs,
the most recent cache line copy i1s read from data store 103.
This data 1s used to generate a response without the need to
1ssue a snoop request. This response will be generated within
response out queue 212, and will be directed to response
output queue 222 A so that 1t can be transierred to processing
node 105A in the manner described above.

Yet another type of conflict must be addressed within the
context of the current invention. Assume that as a result of
an original read request 1ssued by processing node 105A, a
snoop request 1s 1ssued to processing node 150B. In response
to the snoop request, processing node 105B returns a snoop
response that includes updated data. This snoop response 1s
transferred from snoop response input queue 226B to
response output queue 222A, and 1s forwarded to processing
node 105A. Within processing node 105A, the cache line
will be forwarded to a requesting IP 110, which may modity,

then flush, the cache line back to the MSU using a PMW
request.

While the cache line data 1s being modified within pro-
cessing node 105A, the snoop response that 1s stored within
snoop response mput queue 2268 may be forwarded to TTQ
204. The snoop response will be matched with the state
machine processing the original request using the TTQ
identifier. This snoop response may be forwarded to TTQ

204 before, or after, TTQ 204 recerves the PMW request
from processing node 105A.

Although TTQ may receive the PMW request and snoop
response in any order, the snoop response cannot be pre-
sented to data store 103 after the PMW request 1s processed
or the most recent copy of the data will be overwritten. To
prevent this situation, TTQ 204 detects that the snoop
response and PMW request are directed to the same cache
line address. In response, TTQ discards the snoop response,
and the state machine that 1s processing this response 1s
considered available to accept another request. The PMW

10

15

20

25

30

35

40

45

50

55

60

65

16

request 1s processed so that the most recent copy of the cache
line data 1s stored to data store 103.

FIG. 3 1s a flow chart of one embodiment of a method
according to the current invention. The method 1s initiated
when a requester 1ssues a request for data signals to a first
storage device such as MSU 100 (300). This causes the first
storage device to retrieve data signals and state information
describing those data signals (302). A provisional response
including the retrieved data signals 1s stored temporarily
(304). The provisional response may be stored 1n any storage
device including a memory bufler such as read bufler 240A
or 240B. Based on the state information retrieved with the
data signals, a snoop request 1s 1ssued to obtain access rights
for, and 1 necessary, an updated copy of, the requested data
signals from an additional storage device within the data
processing system (306). This additional storage device may
be a cache memory, for example.

Eventually, the additional storage device will provide a
snoop response to the first storage device 1n response to the
snoop request (308). The snoop response will contain a
response type indicating the type of access rights being
returned for the requested data. It will be determined
whether updated data 1s provided with this response (310).
If so, the snoop response including the updated data and the
response type 1s routed to a port of the first storage device
that 1s associated with the orniginal requester (311). The
snoop response 1s then released to the requester and the
provisional response 1s discarded (312). In addition, an
updated copy of the data and state information for the
updated data 1s stored within the first storage device (314).
An additional completion status 1s 1ssued to the requester so
that the requester can discontinue request processing (316).
The request processing 1s then considered complete (317).

Returning to decision step 310, if the snoop response does
not include updated data, the snoop response 1s routed to the
port associated with the original requester along with an
indication to trigger the release of the provisional response
to the requester (318). The provisional response 1s released
to the requester (320), and updated state information 1s
stored within the first storage device (322). Request pro-
cessing 1s then considered complete (317).

The current invention provides a mechanism for returning,
data that 1s shared between multiple processors to a
requester 1n an expedited manner. The invention eliminates
the need to access data store 103 aifter the snoop response 1s
received, thereby reducing overall response times. It will be
understood that the embodiments and formats described
above are merely exemplary and many other alternative
embodiments are possible. The scope of the invention 1is
therefore indicated only by the claims that follow rather than
by the foregoing description.

What 1s claimed 1s:

1. A data processing system, comprising:

a main memory;

a requester coupled to the main memory to make a request

for data signals stored in the main memory;

at least one storage device coupled to the main memory;

a circuit in the main memory to temporarily bufler the

data signals after the data signals are retrieved from the
main memory but before it 1s determined whether an
updated copy of the data signals exists, the circuit to
issue a request from the main memory to determine
whether any of the at least one storage device stores the
updated copy of the data signals, and if so, to obtain and
provide the updated copy to the requester, otherwise to
return the data signals that were buflered to the
requester.

us 7,032,079 Bl

17

2. The system of claim 1, wherein the circuit includes
logic to provide access rights for the data signals to the
requester.

3. The system of claim 2, wherein the access rights are
selected from a set of access rights consisting of exclusive
access rights and shared access rights.

4. The system of claim 2, wherein at least one additional
requester 1s coupled to the main memory, and wherein the
circuit 1mcludes a snoop request circuit to 1ssue a snoop
request to one or more of the additional requesters, the snoop
request requesting return of the access rights for the data
signals.

5. The system of claim 4, wherein the snoop request
turther requests the return of any updated copy of the data
signals.

6. The system of claim 5, wherein the circuit includes a
snoop response circuit to receive any updated copy of the
data signals from any of the one or more additional request-
ers.

7. The system of claim 4, and further including a storage
device coupled to the circuit to store directory signals
describing the data signals.

8. The system of claim 7, wherein the circuit includes
logic to determine, based the directory signals, which of the
access rights to request from the one or more additional
requesters.

9. The system of claim 7, wherein the circuit includes
logic to determine, based on the directory signals, which of
the one or more additional requesters are to be 1ssued one of
the snoop requests.

10. A method of managing data signals stored within a
storage device of a data processing system, comprising;:

a.) making a request for ones of the data signals;

b.) retrieving the requested data signals from the storage
device belore it 1s determined whether an updated copy
of the data signals exists;

c.) temporarily retaining the requested data signals within
the storage device;

d.) 1ssuing a snoop request from the storage device to
determine whether an updated copy of the requested
data signals exists; and

¢.) 1n response to the request for the data signals, provid-
ing the updated copy if the updated copy exists, oth-
erwise, providing the requested data signals that were
temporarily stored.

11. The method of claim 10, wherein one or more addi-
tional storage devices are coupled to the storage device, and
wherein step d.) includes 1ssuing a snoop request to at least
one of the additional storage devices that may store the
updated copy.

12. The method of claim 11, wherein the snoop request
includes a request to return access rights for the requested
data signals.

13. The method of claim 12, and further including deter-
mimng, based on a request type provided with the request
for the data signals, which of the access rights are to be
requested for return.

14. The method of claim 13, and further including:

obtaining state information for the requested data signals;
and

determining, based on the state information, which of the
access rights are to be requested for return.

15. The method of claim 12, and further including:

retaining, by the at least one of the additional storage
devices, shared access rights to the requested data
signals;

10

15

20

25

30

35

40

45

50

55

60

65

18

returning an updated copy of the requested data signals to
the storage device; and

providing the updated copy along with shared access
rights 1n response to the request.

16. The method of claim 12, and further including:

invalidating, by the at least one of the additional storage
devices, all copies of the requested data signals;

returning an updated copy of the requested data signals to
the storage device; and

providing the updated copy along with predetermined
access rights 1n response to the request.

17. The method of claim 16, and further including

obtaining state information for the requested data signals;
and

determining, based on the state information, the prede-
termined access rights to provide with the updated
COpY.
18. The method of claim 15 or 16, and further including
storing the updated copy to the storage device.

19. The method of claim 18, and further including:
generating state information for the updated copy; and

storing the state information for the updated copy 1n the
storage device.

20. A data processing system, comprising;
a main memory to store data signals;

multiple cache memories coupled to the main memory to
store any ol the data signals retrieved from the main
memory;

a requester coupled to the main memory to request ones
of the data signals;

a storage device within the main memory, wherein the
requested data signals are retrieved from the main
memory and stored in the storage device before 1t 1s
determined whether an updated copy of the requested
data signals 1s stored in any of the multiple cache
memories:

a snoop request circuit coupled to the storage device to
make a request from the main memory to an 1dentified
one of the multiple cache memories to return any
updated copy of the requested data signals; and

a response circuit coupled to the storage device to provide
to the requester any returned updated copy of the
requested data signals, or 1 no updated copy 1s
returned, to mnstead provide the requested data signals
stored by the storage device.

21. A data processing system, comprising;
data storage means for storing data signals;

requesting means for making a request to cause ones of
the data signals to be retrieved from the data storage
means before 1t has been determined whether a valid
modified copy of the data signals exists;

bu

er means 1n the data storage means for storing the
retrieved data signals;

means for 1ssuing a request from the data storage means
to retrieve the valid modified copy of the retrieved data
signals; and

response output means for providing the valid modified
copy to the requesting means, and, if the valid modified
copy does not exist, for providing the retrieved data
signals stored by the bufler means to the requesting,
means.

	Front Page
	Drawings
	Specification
	Claims

