US007028116B2
12 United States Patent (10) Patent No.: US 7,028,116 B2
Shah 45) Date of Patent: Apr. 11, 2006

(54) ENHANCEMENT OF TRANSACTION ORDER (56) References Cited

QUEUE |

U.S. PATENT DOCUMENTS

(75) Inventor: Paras A. Shah, Houston, TX (US) 5,996,036 A * 11/1999 Kelly .oovveveveeerererennnn, 710/110
6,032,231 A * 2/2000 Gujralcccovuuenn..... 711/145
(73) Assignee: Hewlett-Packard Development 6,175,889 B1* 1/2001 Olarigcccooveveennnn... 710/309
Company, L.P., Houston, TX (US) 6,477,610 B1* 11/2002 Willenborg 710/310
2002/0083247 Al* 6/2002 Shahccoeeeeeenennn.. 710/112

(*) Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35

U.S.C. 154(b) by 553 days. Primary Examiner—Rehana Perveen
Assistant Examiner—Cliftord Knoll

* cited by examiner

(21) Appl. No.: 09/779,424

57 ABSTRACT
(22) Filed: Feb. 8, 2001 &7

A technique for an enhanced transaction order queue 1s

(63) Prior Publication Data disclosed. A transaction order queue 1s used to prioritize
US 2002/0108004 A1 Aug. 8, 2002 transactions flowing through a bridge. The present technique
enhances the transaction order queue by providing logic
(51) Int. CL. within a module, facilitating the enqueuing of a plurality of
GO6F 13/00 (2006.01) transaction entries within a single device and ensures that
PCI/PCI-X ordering rules are not violated. The technique
(52) U.S. Clo oo, 710/112; 711/145 also provides that the logic device within the PCI-X bridges
and buses selects and enqueues a single transaction entry
(58) Field of Classification Search 710/268, irom simultaneous multiple transaction entries.
710/310, 305-309, 313, 112-114; 711/145
See application file for complete search history. 27 Claims, 4 Drawing Sheets

31

m

Combinational 'Oﬁ‘giﬂ%r
Encoda Logic Transacton
Order Queue

¢ & & & 8 & (0 & 0
.

3 T 3T T Sy |

U.S. Patent Apr. 11, 2006 Sheet 1 of 4 US 7,028,116 B2

F\G. |

10

[S

-
~ - . &
- -
r
® 1."" :: [[- ‘
" [J »

s B ieie Suifut = -,

- “\ ' S\J\I \TCH o
CP‘C [) 3 : C. A Cr E "
(P;.CELE!"\&TO.‘ e - - \acc.i-'_ LEﬁﬁTﬂR} \
= St g

| ¥ ; r]‘ E\;

Ipm;*c:* 1 176 1o PCI-X¥T i PE anmx

U.S. Patent Apr. 11, 2006 Sheet 2 of 4 US 7,028,116 B2

FIG. A

U.S. Patent Apr. 11, 2006 Sheet 3 of 4 US 7,028,116 B2

Dacognt

1o mBwiat muﬂ[

X
OROCAING
L O G

U.S. Patent Apr. 11, 2006 Sheet 4 of 4 US 7,028,116 B2

T\G. 4

Posted Wnte
ntry Present?

Yes

Dequeue posted
wrnte entry and
send to TOQ

o6

Dequeue read

comp. enuy (lowesl |
huffer frst) anad
send to TOQ

alayed / Sph
Request Entry
Present?

NO é Q\
é' - —Yes5—

Y

Dequeue delayed/
split request entry
(lowest bufter first)

\ andsendto 170Q

Us 7,028,116 B2

1

ENHANCEMENT OF TRANSACTION ORDER
QULEUE

FIELD OF THE INVENTION

The present invention relates generally to an enhancement
ol a transaction order queue. Particularly, the present inven-

tion facilitates the queueing of many transaction entries
within a single device and ensures that PCI/PCI-X ordering,
rules are not violated.

BACKGROUND OF THE RELATED ART

This section 1s mtended to mtroduce the reader to various
aspects of art, which may be related to various aspects of the
present 1nvention, which are described and/or claimed
below. This discussion 1s believed to be helpiul 1n providing,
the reader with background information to facilitate a better
understanding of the various aspects of the present inven-
tion. Accordingly, it should be understood that these state-
ments are to be read in this light, and not as admissions of
prior art.

A conventional computer system typically includes one or
more central processing units (CPUs) and one or more
memory subsystems. Computer systems also typically
include peripheral devices for inputting and outputting data.
Some common peripheral devices include, for example,
monitors, keyboards, printers, modems, hard disk drives,
floppy disk drives, and network controllers. The various
components of a computer system communicate and transier
data using various buses and other communication channels
that interconnect the respective communicating compo-
nents.

One of the important factors in the performance of a
computer system 1s the speed at which the CPU operates.
Generally, the faster the CPU operates, the faster the com-
puter system can complete a designated task. Another
method of increasing the speed of a computer is using
multiple CPUs, commonly known as multiprocessing. With
multiple CPUs, tasks may be executed substantially in
parallel as opposed to sequentially.

However, the addition of a faster CPU or additional CPUs
can result in different increases in performance among
different computer systems. Although it 1s the CPU that
executes the algorithms required for performing a desig-
nated task, in many cases, 1t i1s the peripherals that are
responsible for providing data to the CPU and storing or
outputting the processed data from the CPU. When a CPU
attempts to read or write to a peripheral, the CPU often “sets
aside” the algorithm which it 1s currently executing and
diverts to executing the read/write transaction, (also referred
to as an 1nput/output transaction or an I/O transaction) for
the peripheral. As can be appreciated by those skilled in the
art, the length of time that the CPU 1s diverted 1s typically
dependent on the efliciency of the I/O transaction.

Although a faster CPU may accelerate the execution of an
algorithm, a slow or inethicient I/O {transaction process
associated therewith can create a bottleneck 1n the overall
performance of the computer system. As the CPU becomes
faster, the amount of time it expends executing algorithms
becomes less of a limiting factor compared to the time
expended 1n performing an I/O transaction. Accordingly, the
improvement in the performance of the computer system
that could theoretically result from the use of a faster CPU
or the addition of another CPU may become substantially
curtailed by the bottleneck created by the I/O transactions.
Moreover, it can be readily appreciated that any perfor-

10

15

20

25

30

35

40

45

50

55

60

65

2

mance degradation due to such I/O bottlenecks 1n a single
computer system may have a stifling affect on the overall
performance of a computer network in which the computer
system 1s disposed.

As the CPUs have increased in speed, the logic control-
ling the transactions has evolved to accommodate the I/0
transactions. Such logic, usually referred to as a “bridge,” 1s
typically an application specific itegrated circuit (ASIC).
For example, Peripheral Component Interconnect (PCI)
logic was 1nstilled within buses and bridges to govern
transactions between a peripheral device and the CPU.

Today, PCI logic has evolved into the Peripheral Com-
ponent Interconnect Extended (PCI-X) to form the architec-
tural backbone of the computer system. PCI-X logic has
features that improve upon the efliciency of communication
between peripheral devices and the CPU. For instance,
PCI-X technology increases bus capacity to more than eight

times the conventional PCI bus bandwidth. For example, a
133 MB/s system with a 32 bit PCI bus running at 33 MHz

1s 1creased to a 1066 MB/s system with the 64 bit PCI bus
running at 133 MHz. An additional feature of the new PCI-X
logic 1s that 1t can provide backward compatibility. Back-
ward compatibility refers to a feature where PCI enabled
logic devices may be operable with systems incorporating
PCI-X logic. However, the bus enabling the PCI device will
operate at the slower PCI speed even though PCI-X devices
may be located on the same bus.

As PCI-X logic 1s incorporated into the next generation of
buses and bridges, 1t becomes important to handle transac-
tions eiliciently. Generally, peripheral devices initiating
transactions will target the PCI-X bridge or a host bridge. As
a transaction 1s 1nitiated, a bufler 1s allocated within the
bridge. The bridge stores the information about the transac-
tion, such as 1ts starting address, length and so on. Thus, the
PCI-X bndge stores the transaction and replies to the
requesting agent according to priority.

Transaction order queues (TOQ) may be utilized to pri-
oritize transactions flowing through a bridge. Generally,
TOQs process large quantities of transactions, typically
greater than twenty; however only one entry can be
enqueued 1 a particular clock cycle. This limitation 1s
problematic in applications in which multiple transactions
may be recerved 1n a single clock cycle. There are applica-
tions when a requestor may request multiple unrelated
transactions 1n a single clock cycle. In these situations, the
enhancement described below maintains transaction order-
ing while allowing multiple transaction entries to be stored.

The present invention may be directed to one or more of
the problems set forth above.

SUMMARY OF THE INVENTION

Certain aspects commensurate in scope with the originally
claimed 1nvention are set forth below. It should be under-
stood that these aspects are presented merely to provide the
reader with a brief summary of certain forms the invention
might take and that these aspects are not intended to limat the
scope of the invention. Indeed, the mvention may encom-
pass a variety ol aspects that may not be set forth below.

In accordance with one aspect of the present invention,
there 1s provided a method whereby a transaction order
queue 1s used to prioritize transactions flowing through a
bridge. The method manages a combinational decode and
ordering logic device, which selects a single transaction
entry to send to the main transaction order queue. Due to the
ordering rules, posted write transactions are selected first, 1f
present. After posted writes, either delayed/split transactions

Us 7,028,116 B2

3

or read completions transaction entries may be sent to the
TOQ. In this particular embodiment, the combinational
decode and ordering logic device operates to prioritize read
completion transactions before delayed/split transactions.
Entries for read completions transactions are selected and
then delayed/split transactions after processing posted write
transactions. Furthermore, the present technique enqueues
one transaction entry into the TOQ per clock cycle.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other advantages of the invention will
become apparent upon reading the following detailed
description and upon reference to the drawings 1n which:

FIG. 1 1llustrates a diagram of an exemplary computer
system 1n accordance with the present invention;

FIG. 2 1llustrates a logic diagram of an enhancement to a
transaction order queue;

FIG. 3 illustrates elements representative of the combi-
national encode device with respect to the enhancement of
the transaction order queue; and

FIG. 4 1llustrates a flowchart representing the steps for
processing transaction entries i1n a transaction order queue
utilizing an exemplary techmque.

DESCRIPTION OF SPECIFIC EMBODIMENTS

One or more specific embodiments of the present inven-
tion will be described below. In an eflort to provide a concise
description of these embodiments, not all features of an
actual implementation are described 1n the specification. It
should be appreciated that 1n the development of any such
actual 1mplementation, as 1 any engineering or design
project, numerous 1mplementation-specific decisions must
be made to achieve the developers’ specific goals, such as
compliance with system-related and business-related con-
straints, which may vary from one implementation to
another. Moreover, 1t should be appreciated that such a
development effort might be complex and time consuming,
but would nevertheless be a routine undertaking of design,
fabrication, and manufacture for those of ordinary skill
having the benefit of this disclosure.

Turning now to the drawings, and referring 1mtially to
FIG. 1, a multiprocessor computer system, for example a
Proliant 8500 PCI-X from Compaq Computer Corporation,
1s 1llustrated and designated by the reference numeral 10. In
this embodiment of the system 10, multiple processors 12
control many of the functions of the system 10. The pro-
cessors 12 may be, for example, Pentium, Pentium Pro,
Pentium II Xeon (Slot-2), or Pentium III processors avail-
able from Intel Corporation. However, 1t should be under-
stood that the number and type of processors are not critical
to the techmique described herein and are merely being
provided by way of example.

Typically, processors 12 are coupled to a processor bus
14. As instructions are sent and received by the processors
12, the processor bus 14 transmits the instructions and data
between the 1individual processors 12 and a switch 16. The
switch 16 directs signals between the processor bus 14,
cache accelerator 18, and a memory controller 20. A cross-
bar switch 16 1s shown 1n this embodiment, however, it
should be noted that any suitable type of switch may be used.
When the data 1s retrieved from the memory 22, the mstruc-
tions are sent via the memory controller 20. The memory
controller 20 may be of any type suitable for such a system,
such as a Profusion memory controller. It should be under-
stood that the number and type of memory, switches,

10

15

20

25

30

35

40

45

50

55

60

65

4

memory controllers, and cache accelerators are not critical to
the technique described herein, and are merely being pro-
vided by way of example.

The memory 22 1n the system 10 1s generally divided into
groups ol bytes called cachelines. Bytes in a cacheline may
comprise several variable values. Cachelines 1n the memory
22 are moved to a cache for use by the processors 12 when
the processors 12 request data stored in that particular
cacheline.

The switch 16 1s also coupled to an I/O bus 24. As
mentioned above, the switch 16 directs data to and from the
processors 12 through the processor bus 14, and either the
cache accelerator 18 or the memory 22 though the use of the
memory controller 20. In addition, data may be sent through
the I/0 bus 24 to multiple PCI-X bridges 26 A—D. The /O
bus 24, 1n this embodiment, 1s shown coupled to PCI-X
bridges 26 A-D. Further, each PCI-X bndge 26 A-D 1s
coupled to multiple PCI-X buses 28 A-D. Finally, each
PCI-X bus 28 A-D terminates at a series of slots or I/O
interfaces 30 A-D.

The PCI-X bridges 26 A—D contain logic that processes
input/output transactions. Generally, ASICs are the imple-
mentation of the PCI-X bridges 26 A—D. The PCI-X bridges
26 A—D may include address and data buflers, as well as
arbitration and bus master control logic for the PCI-X buses
28 A-D. The PCI-X bridges 26 A-D may also include
miscellaneous logic, such as counters and timers as conven-
tionally present in personal computer systems, an interrupt
controller for both the PCI and I/O buses, and power
management logic.

Generally, a transaction 1s itiated by a requester, e.g., a
peripheral device, via the I/O interface 30 A—D. The trans-
action 1s then sent to one of the PCI-X buses 28 A-D
depending on the peripheral device utilized and the location
of the I/O interface 30 A-D. The transaction 1s then directed
towards the PCI-X bridge 26 A-D. Logic devices within the
bridge 26 A-D generally allocate a bufler where data
returned from the memory 22 may be stored. Once the bufler
1s allocated, the transaction request 1s directed towards the
processor 12 and then to the memory 22. Once the requested
data 1s returned from the memory 22, the data 1s stored
within the respective bridge 26 A-D. The logic device
within the bridge 26 A-D operates to read and deliver the
data to the requesting peripheral device. As mentioned
above, 1 the transaction 1s conducted through a peripheral
device that 1s not PCI-X enabled, the PCI-X buses 28 A-D
and the PCI-X bridges 26 A-D administer the transaction
request using PCI specifications. Tape drives, CD-ROM
devices, or other peripheral devices may be connected to the

slots or I/O iterfaces 30 A-D.

As mentioned above, the bridge 26 A—D may be an ASIC
chip that contains logic that operates many of the functions
described here. For instance, logic programmed within the
ASIC chip controls the bufler read function. Furthermore,
the ASIC chip may also contain logic specitying ordering
rules, bufler allocation, specifying transaction type, and
logic for receiving and delivering data.

The bridge 26 A—D may receive multiple simultaneous
transactions which requires the modifying of a transaction
order queue. Typically, only one entry can be enqueued 1n a
particular clock cycle. It should be noted that although a
single transaction 1s mitiated, the transaction 1s divided into
separate entries to facilitate the data retrieval and delivery
process. For example, a read completion transaction may be
divided into multiple entries which are transmitted to the
TOQ creating the a scenario where multiple entries may be
received by the TOQ 1n a single clock cycle. Further,

Us 7,028,116 B2

S

multiple entries may also be received 1n a single clock cycle
when transactions runming at a frequency normal to the
processor bus enters the slower runnming bridge 26 A-D
simultaneously.

FIG. 2 1illustrates a system diagram depicting the logic
governing an example of the enhanced transaction order
queue (10Q) 31 that 1s included within the bridge 26 A-D.
In this particular embodiment, transaction entries 32 may be
directed to the enhanced transaction order queue 31, where
the entries 32 are {first recerved by a combinational encode
logic device 34. The combinational encode device 34 directs
the transaction entries 32 toward a plurality of registers 36.
A more detailed description of the combinational encode
device 34 will be discussed below. The registers 36 may be
ol any type suitable for storing multiple transaction entries
32. It should be noted that these registers 36 do not maintain
ordering information, but rather store the transaction entry
32 being mitiated, for example, a read completion, posted
write, or delayed/split transaction.

The combinational decode and ordering device 38
receives the entries 32 from the registers 36 and prioritizes
the entries 32 according to PCI-X specifications. As
described 1n greater detail below, the combinational decode
and ordering device 38 delivers the entries 32 according to
priority via a logic device 40 for enqueuing to the “original”™
transaction order queue 42. Generally, a transaction order
queue 1s 1implemented within the bridge, thus the present
invention 1s an enhancement to that transaction order queue.
Therefore, the transaction order queue 42 1s referred to as the
“original” transaction order queue.

A single entry 32 from the registers 36 1s delivered to the
logic device 40 every clock cycle. Once the transaction order
queue 42 processes the transaction entry 32, 1t delivers the
prioritized entry 32 to the dequeue logic device 44. The
dequeue logic device 44 delivers the requested information
to the bufler 36 as output 46. Thus, the ordering rules are
maintained and the PCI-X transaction 1s completed within
the transaction order queue.

It should be noted that the combinational encode device
34 and the combinational decode and ordering device 38
may be fabricated as part of the application specific inte-
grated circuit that functions 1n concert with the enhanced
transaction order queue 31. It should also be noted that the
transaction entry 32 1s transmitted from the builer 36 con-
taining information regarding the type of transaction and the
location at which the transaction 1s located within the bufler
36. Generally, a transaction entry contains five bits of data
which i1dentifies the transaction. Specifically, two bits refer
to the type of transaction and the three additional bits
identify the location of the transaction data within the bufler
36.

FIG. 3 illustrates the elements operating to process the
transaction entries 32 within logic device 34. The combina-
tional encode logic device 34 primarily functions to manage
the registers that store the transaction entries 32 efliciently.
Combinational encode logic device 34 includes a series of
multiplexers 35 A—D, which are adapted to recerve multiple
simultaneous transaction entries 32. In the present embodi-
ment, multiplexers 35 A-D are configured to preserve trans-
action entries 32 that are saved within the register 36.
However, 11 the register 36 1s available, then a new entry 32
1s transmitted to the register 36 via the multiplexer 35 A-D.
For example, 1f the register 36 1s holding an entry 32 for a
particular clock cycle, then the multiplexer 35 A-D will
output the same value for the particular entry 32 until the
register 36 1s cleared and that particular entry 32 1s sent to
the combinational decode and ordering logic device 38.

10

15

20

25

30

35

40

45

50

55

60

65

6

Thus, the multiplexer 35 A-D 1s adapted to facilitate the
input of a new transaction entry 32 or permitting the register
36 to retain the current entry 32 until it 1s transmuitted into the
combinational decode and ordering logic device 38. It
should be understood that the combinational encode logic 34
does not prioritize the transaction entries; rather 1t functions
to prevent the registers 36 from overtlowing. Thus, the
transactions are not prioritized but rather collected and
distributed 1n an eflicient manner. Although, the present
invention illustrates one method of encoding entries, alter-
native logic may be utilized to produce similar results. For
example, additional logic gates such as AND gates are
generally implemented along with multiplexers to encode
the transaction entries 32.

FIG. 4 illustrates a flowchart of the steps taken within the
combinational decode and ordering logic device reterenced
by numeral 38 in FIG. 2. The primary purpose for the
combinational decode and ordering logic device 38 1s to
select a single transaction entry 32 from the registers 36 to
send to the transaction order queue as referenced by 42 1n
FIG. 2. Due to PCI-X ordering rules, posted write transac-
tions are selected first to be enqueued. Thus, once the
registers 36 store the transaction entry, 1t 1s prioritized
accordingly by the combinational decode and ordering
device 38, which orders the entries 32 according to PCI-X
specifications. Once the entries 32 are prioritized, the com-
binational decode and ordering device 38 forwards the
transaction entry 32 to the logic device 40 for enqueuing into
the TOQ 42. The logic device 38 determines if a posted write
entry 1s present (block 50). Thus, 1f the entry 32 1s deter-
mined to be a posted write transaction, then the entry 32 1s
sent to the original transaction order queue (block 352).
However, 11 the transaction entry 32 1s determined not to be
a posted write transaction, then the combinational decode
and ordering device 38 determines whether the transaction
entry 1s a read completion (block 54). If the combinational
decode and ordering device 38 determines that the transac-
tion entry 1s a read completion, then the transaction entry 1s
transmitted to the transaction order queue 42 (block 56).
Once the specific transaction entry 32 1s enqueued according
to priority, the registers 36 are cleared of the corresponding
entry. It should be noted that for read completion transac-
tions, the entry 32 may include additional bits that are
required to store and retrieve data from the cachelines. I the
transaction 1s determined not to be a read completion, then
the combinational decode and ordering device 38 determines
whether the transaction entry i1s a delayed/split transaction
request (block 58). If the transaction 1s a delayed/split
transaction request, then the transaction entry is transmitted
into the transaction order queue 42 (block 60). However, 1f
the transaction 1s not a delayed/split transaction request then
no entry 1s sent to the TOQ (block 62).

Although, a specific ordering pattern 1s illustrated by the
flowchart in FIG. 3, 1t should be known that various diflerent
ordering mechanisms may be adapted for any purpose
necessary 1n the system 10. For example, the one clock cycle
may also be adjusted according to PCI-X specifications
necessary to achieve an eflicient transaction order queue.
Also, the logic devices in the enhanced feature may be
configured to incorporate additional features to create a
more eflicient transaction order queue. Further, additional
logic devices including logic to dequeue multiple transaction
entries within one clock cycle, may be adapted.

While the invention may be susceptible to various modi-
fications and alternative forms, specific embodiments have
been shown by way of example 1n the drawings and have
been described in detail herein. However, 1t should be

Us 7,028,116 B2

7

understood that the invention 1s not intended to be limited to
the particular forms disclosed. Rather, the mvention 1s to
cover all modifications, equivalents, and alternatives falling
within the spirit and scope of the invention as defined by the
following appended claims.

What 1s claimed 1s:

1. A method for storing transaction entries 1n a transaction
order queue, comprising the acts of:

a) temporarily storing a plurality of transaction entries;

b) prioritizing each of the plurality of temporarily stored

transaction entries according to a bus standard, wherein

prioritizing comprises the acts of:

determining whether a posted write transaction entry 1s
present;

enqueuing the posted write transaction entry into the
transaction order queue, if the posted write transac-
tion entry 1s present;

determining whether a read completion transaction
entry 1s present, 1f the posted write transaction entry
1s not present;

enqueuing the read completion transaction entry into
the transaction order queue, if the read completion
transaction entry 1s present;

determining whether a delayed/split transaction entry 1s
present, 11 the read completion transaction entry 1s
not present; and

enqueuing the delayed/split transaction entry into the
transaction order queue;

¢) selecting one of the plurality of temporarly stored

transaction entries; and

d) enqueuing the selected one of the plurality of tempo-

rarily stored transaction entries into one of a plurality of
storage locations 1n the transaction order queue accord-
ing to an associated priority.

2. The method as recited 1n claim 1, wherein act (a)
comprises the act of temporarily storing a plurality of
transaction entries 1n a bank of registers.

3. The method as recited 1n claim 1, wherein the plurality
of transaction entries are temporarily stored simultaneously.

4. The method as recited 1n claim 1, wherein acts (¢) and
(d) comprise the acts of

determining whether a posted write transaction entry 1s

present;

if the posted write transaction entry 1s present, then

enqueuing the posted write transaction entry into the
transaction order queue,

if the posted write transaction entry 1s not present, then

determining whether a read completion transaction
entry 1s present;

if the read completion transaction entry 1s present, then

enqueuing the read completion transaction entry into
the transaction order queue;

if the read completion transaction entry 1s not present,

then determining whether a delayed/split transaction
entry 1s present; and

i the delayed/split transaction entry 1s present, then

enqueuing delayed/split transaction entry into the trans-
action order queue.

5. The method as 1 claim 1, comprising the act of
enqueuing each of the plurality of transaction entries into the
transaction order queue one at a time during successive
clock cycles.

6. A method of manufacturing a computer system for
storing transaction entries in a transaction order queue
comprising the acts of:

providing a temporary storage space for temporarily stor-

ing a plurality of transaction entries;

10

15

20

25

30

35

40

45

50

55

60

65

8

providing logic to prioritize each of the plurality of

transaction entries according to a bus standard, wherein

providing logic to prioritize comprises providing logic

to:

determine whether a posted write transaction entry 1s
present;

enqueue the posted write transaction entry into the
transaction order queue, 1f the posted write transac-
tion entry 1s present;

determine whether a read completion transaction entry

1s present, 1f the posted write transaction entry 1s not
present;

enqueue the read completion transaction entry into the
transaction order queue, 1f the read completion trans-
action entry 1s present;

determine whether a delayed/split transaction entry is
present, 1f the read completion transaction entry is
not present; and

enqueue the delayed/split transaction entry into the
transaction order queue;

providing logic to select one of the plurality of tempo-
rarily stored transaction entries; and

providing a transaction order queue comprising a plurality
of storage locations, wherein each of the plurality of
storage locations 1s configured to receive the selected
one of the plurality of temporarily stored transaction
entries according to an associated priority determined
by the prioritization logic.

7. The method as recited in claim 6, wherein the act of
providing temporary storage space for temporarily storing a
plurality of transaction entries comprises the act of provid-
ing a plurality of registers.

8. The method as recited 1n claim 7, wherein the act of
providing logic to select one of the plurality of temporarily
stored transaction entries comprises the act of providing
logic for:

determining whether a posted write transaction entry 1s

present;

i the posted write transaction entry i1s present, then
enqueuing the posted write transaction entry into the
transaction order queue;

i1 the posted write transaction entry 1s not present, then
determining whether the transaction 1s a read comple-
tion transaction entry;

i1 the read completion transaction entry 1s present, then
enqueuing the read completion transaction entry into
the transaction order queue;

if the read completion transaction entry i1s not present,
then determiming whether a delayed/split transaction
entry 1s present; and

i the delayed/split transaction entry 1s present, then
enqueuing the delayed/split transaction entry into the
transaction order queue.

9. An system for providing multiple simultaneous trans-
action entries to a transaction order queue comprising:

means for temporarily storing simultaneously a plurality
of transaction entries simultaneously;

means for prioritizing each of the plurality of transaction
entries according to a bus standard, wherein means for
prioritizing comprises:
means for determining whether a posted write transac-
tion entry 1s present;
means for enqueuing the posted write transaction entry
into the transaction order queue, if the posted write
transaction entry 1s present;

Us 7,028,116 B2

9

means for determining whether a read completion
transaction entry 1s present, 1f the posted write trans-
action entry 1s not present;

means for enqueuing the read completion transaction
entry into the transaction order queue, if the read
completion transaction entry 1s present;

means for determining whether a delayed/split trans-
action entry 1s present, if the read completion trans-
action entry 1s not present; and
means for enqueuing the delayed/split transaction

entry 1nto the transaction order queue;
means for selecting one of the plurality of temporarily
stored transaction entries; and

means for enqueuing the selected one of the plurality of
temporarily stored transaction entries in one of a plu-
rality of storage locations of a transaction order queue
according to an associated priority determined by the
prioritization means.

10. The system as 1n claim 9, wherein the means for
temporarily storing a plurality of transaction entries com-
prises a bank of registers.

11. The system as in claim 9, wherein the means for
selecting one of the plurality of temporanly stored transac-
tion entries comprises:

means for determining whether a posted write transaction
entry 1s present;

means for enqueuing the posted write transaction entry
into the transaction order queue 1f the posted write
transaction entry 1s present;

means for determining whether a read completion trans-
action entry 1s present, 1f the posted write transaction
entry 1s not present;

means for enqueuing the read completion transaction
entry into the transaction order queue 1f the read
completion transaction entry 1s present;

means for determining whether a delayed/split transaction
entry 1s present, 1f the read completion transaction entry
1s not present; and

means for enqueuing the delayed/split transaction entry
into the transaction order queue 1f the delayed/split
transaction entry 1s present.

12. A system for providing multiple simultaneous trans-
action entries to a transaction order queue comprising:

a temporary memory storage adapted to store a plurality
of transaction entries; and

logic adapted for selecting and ordering the plurality of
transaction entries in the transaction order queue
according to a bus standard from the temporary
memory storage for processing, wherein the transaction
order queue comprises:

a plurality of storage locations;

logic adapted for determining whether a posted write
transaction entry 1s present;

logic adapted for enqueuing the posted write transac-
tion entry into the transaction order queue, if the
posted write transaction entry 1s present;

logic adapted for determining whether a read comple-
tion transaction entry is present, 1f the posted write
transaction entry 1s not present;

logic adapted for enqueuing the read completion trans-
action entry into the transaction order queue, if the
read completion transaction entry 1s present;

logic adapted for determiming whether a delayed/split
transaction entry 1s present, 1f the read completion
transaction entry 1s not present; and

5

10

15

20

25

30

35

40

45

50

55

60

65

10

logic adapted for enqueuing the delayed/split transac-
tion entry into the transaction order queue 1if the
delayed/split transaction entry 1s present.
13. The system as 1n claim 12, wherein the temporary
memory storage comprises a bank of registers.
14. The system as 1n claim 12, wherein the logic com-
Prises:
logic adapted for determiming whether a posted write
transaction entry 1s present;
logic adapted for enqueuing the posted write transaction

entry mnto the transaction order queue if the posted
write transaction entry 1s present;

logic adapted for determining whether a read completion
transaction entry 1s present, 1f the posted write trans-
action entry 1s not present;

logic adapted for enqueuing the read completion transac-
tion entry into the transaction order queue 1if the read
completion transaction entry is present;

logic adapted for determining whether a delayed/split
transaction entry 1s present, 1f the read completion
transaction entry 1s not present; and

logic adapted for enqueuing the delayed/split transaction
entry into transaction order queue 1f the delayed/split
transaction entry 1s present.

15. The method as i1n claim 12, wherein each of the
plurality of transaction entries 1s enqueued 1nto the transac-
tion order queue one at a time during successive clock
cycles.

16. A processing system comprising:

a first logic device;

a plurality of registers being configured to receive a
plurality of transaction entries from the first logic
device;

a second logic device adapted to receive the transaction
entries from the plurality of registers and being pro-

grammed to prioritize transaction entries according to
PCI-X specifications;

a third logic device adapted to select the transaction
entries from the plurality of registers according to an
associated priority; and

a transaction order queue comprising a plurality of storage
locations, wherein the third logic device 1s configured
to enqueue the transaction entries into the transaction
order queue according to the associated priority, each of
the plurality of storage locations being configured to
receive and enqueue the selected transaction entries.

17. The processing system as in claim 16, wherein the first
logic device receives transaction entries from an input
source.

18. The processing system as in claim 16, wherein the
plurality of registers store the plurality of transaction entries
received from the first logic device.

19. The processing system as in claim 16, wherein the
second logic device selects a single entry to send to the
transaction order queue.

20. The processing system as in claim 19, wherein the
second logic device comprises:

logic adapted for determiming whether a posted write
transaction entry 1s present;

logic adapted for enqueuing the posted write transaction
entry mnto the transaction order queue if the posted
write transaction entry 1s present;

logic adapted for determining whether a read completion
transaction entry is present, 1f the posted write trans-
action entry 1s not present;

Us 7,028,116 B2

11

logic adapted for enqueuing the read completion transac-
tion entry into the transaction order queue if the read
completion transaction entry is present;

logic adapted for determining whether a delayed/split

transaction entry 1s present, 1f the read completion
transaction entry 1s not present; and

logic adapted for enqueuing the delayed/split transaction

entry into the transaction order queue 1if the delayed/
split transaction entry 1s present.

21. The processing system as in claim 16, wherein the
transaction order queue enqueues one transaction entry per
clock cycle.

22. A computer system comprising:

at least one processor;

a memory device operatively coupled to the at least one

processor; and

a transaction order queue circuit configured to process

transactions ifrom the memory device, the transaction
order queue circuit being adapted to encode a plurality
of simultaneously received transaction entries accord-
ing to an associated priority, and comprising a trans-
action order queue comprising a plurality of storage
locations, wherein each of the plurality of storage
locations 1s configured to store one of the transactions
from the memory device, 1n an order according to the
associated priority, and wherein the transaction order
queue Comprises:
logic adapted for determining whether a posted write
transaction entry 1s present;
logic adapted for enqueuing the posted write transac-
tion entry into the transaction order queue, if the
posted write transaction entry 1s present;
logic adapted for determining whether a read comple-
tion transaction entry is present, 1 the posted write
transaction entry 1s not present;
logic adapted for enqueuing the read completion trans-
action entry into the transaction order queue, if the
read completion transaction entry 1s present;
logic adapted for determiming whether a delayed/split
transaction entry 1s present, 1f the read completion
transaction entry 1s not present; and
logic adapted for enqueuing the delayed/split transac-
tion entry into the transaction order queue 1if the
delayed/split transaction entry 1s present.

23. The system as 1n claim 22, wherein the computer
system comprises network capabilities.

24. A method for storing transaction entries 1n a transac-
tion order queue, comprising the acts of:

a) temporarily storing a plurality of simultaneously

recerved transaction entries; and

b) delivering the plurality of transaction entries to a

transaction order queue one at a time, wherein each of
the plurality of transaction entries 1s stored 1n a respec-
tive one ol a plurality of storage locations in the

10

15

20

25

30

35

40

45

50

12

transaction order queue, 1n an order according to an

associated priority, and wherein delivering the plurality

of transaction entries comprises the acts of:

determining whether a posted write transaction entry 1s
present;

enqueuing the posted write transaction entry into the
transaction order queue, i the posted write transac-
tion entry 1s present;

determining whether a read completion transaction
entry 1s present, 11 the posted write transaction entry
1S not present;

enqueuing the read completion transaction entry into
the transaction order queue, i the read completion
transaction entry 1s present;

determining whether a delayed/split transaction entry 1s
present, 1f the read completion transaction entry 1s
not present; and

enqueuing the delayed/split transaction entry into the
transaction order queue.

25. The method as in claim 24, wherein the plurality of
simultaneous transaction entries 1s stored i a bank of
registers.

26. A method for storing transaction entries 1n a transac-
tion order queue, comprising the acts of:

a) temporarily storing a plurality of simultaneously

recelved transaction entries;

b) prioritizing each of the temporarily stored transaction

entries, comprising the acts of:

determining whether a posted write transaction entry 1s
present;

enqueuing the posted write transaction entry into the
transaction order queue, i the posted write transac-
tion entry 1s present;

determining whether a read completion transaction
entry 1s present, 11 the posted write transaction entry
1S not present;

enqueuing the read completion transaction entry into
the transaction order queue, i the read completion
transaction entry 1s present;

determining whether a delayed/split transaction entry 1s
present, 1f the read completion transaction entry 1s
not present; and

enqueuing the delayed/split transaction entry into the
transaction order queue; and

¢) transmitting the stored transaction entries to the trans-

action order queue according to priority, wherein each
of the stored transaction entries 1s transmitted to a
respective one of a plurality of storage locations 1n the
transaction order queue.

27. The method as 1n claim 26, wherein the plurality of
transaction entries are stored simultancously 1 a bank of
registers.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 7,028,116 B2 Page 1 of 1
APPLICATION NO. :09/779424

DATED : April 11, 2006

INVENTOR(S) : Paras A. Shah

It is certified that error appears in the above-identified patent and that said Letters Patent Is
hereby corrected as shown below:

In column 7, line 41, in Claim 4, after “of” insert -- ; --.

Signed and Sealed this

Twenty-sixth Day of May, 2009

), . (.20

JOHN DOLL
Acting Director of the United States Patent and Trademark Olffice

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

