12 United States Patent

Hendel et al.

US007028056B1

US 7,028,056 B1
Apr. 11, 2006

(10) Patent No.:
45) Date of Patent:

(54) METHOD AND ARRANGEMENTS FOR
GENERATING DEBUGGING INFORMATION
FOLLOWING SOFTWARE FAILURES

(75) Inventors: Matthew D. Hendel, Seattle, WA (US);
Kent Forschmiedt, Shoreline, WA (US)

(73) Assignee: Microsoft Corporation, Redmond, WA
(US)

Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35

U.S.C. 154(b) by 0 days.

(*) Notice:

(21) Appl. No.: 09/549,814

(22) Filed: Apr. 14, 2000
(51) Imt. CL.
GO6F 17/30 (2006.01)
(52) US.CL ... 707/202; 7077/204; 707/206
(58) Field of Classification Search 707/202,

707/204, 205, 206, 1, 200; 714/45, 4, 15
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
5,603,033 A * 2/1997 Joanninoo...... 717/124
6,430,707 B1* 8/2002 Matthews et al. 714/37
6,601,188 Bl * 7/2003 Wildingocevevenenen.n. 714/15
6,615,364 B1* 9/2003 Nagasuka et al. 714/5
6,633,876 B1* 10/2003 Heatliec.coveenenenen.n. 707/10
6,681,348 B1* 1/2004 Vachon 714/45
6,898,737 B1* 5/2005 Goeller et al. 714/39
6,952,793 Bl * 10/2005 Nagasuka et al. 714/5

100
N

OTHER PUBLICATTIONS

Ancona et al. Implementing the essence of reflection: a
reflective run-time environment, Proceeding of the 2004
ACM symposium on Applied computing, pp. 1503-1507.%

* cited by examiner

Primary Examiner—IJean M. Corrielus

Assistant Examiner—Baoquoc N. To
(74) Attorney, Agent, or Firm—ILee & Hayes, PLLC

(57) ABSTRACT

Methods and arrangements are provided that substantially
reduce the requisite amount of data required to conduct
postmortem analysis following a computer failure. The
methods and arrangements can be advantageously config-
ured to allow for rapid online user support for a variety of
users, computing devices, operating systems, applications,
and the like. One method includes determining when to
generate a dump file, and generating a dump file by gath-
ering thread, callstack and thread context information for the
running thread, process identifying information associated
with the running thread, and information identifying the
reason for generating the dump file. The resulting dump file
1s then stored to a storage medium and accessed during
subsequent analysis. The dump file can be a kernel mini-
dump f{ile that 1s associated with an operating system pro-
gram failure, in which case the runming thread 1s the single
thread that was running when the failure occurred. The
kernel minidump file would include the kernel callstack and
the process 1dentifying mformation that would identity the
process that initiated the single thread. The method 1s further
applicable to non-operating system programs, wherein a
user minmidump file 1s generated by also gathering callstack
information for all running threads, thread context informa-
tion for all running threads, and a listing of all loaded
modules for the faulting non-operating system program.

36 Claims, 6 Drawing Sheets

102
Allocats Buffer
I 104

‘ Reserve Space On Thea Disk Drive For The File I

, 106
Upon Exception, Write Processor Context Of The Crashing
Frocess To The Buffer
108

i Write Thread Information For The Thread That Was Executing
When The Exception Occurred To The Buffer
110

| Write The Process Information For The Process That Owns
The Crashing Thread To The Buffer

[112
Write The Kernel Stack For The Crashing Thread Te The Buffer }

114
‘ WriteThe List Of Drivers To The Buffer I
116

‘ Write Information About The Cause Of The Crash To The Buffer I
118

Write The Buffer To Disk As a Kernel Minidump File I
120

FUpnn Reboot, The Kermel Minidump File is transferred ta a user-
specified diractory

US 7,028,056 B1

Sheet 1 of 6

Apr. 11, 2006

U.S. Patent

8¢ LE 9¢ GE
1eoQqAs N\ N\ N\ TN
swelboid PIEORASA Bleq sainpolN | sweibold | walsAs
uoneolddy, /} 'ﬁﬂt’ - - weibolid 18410 uoneoiddy | Bunesado
: N ot ﬂUﬂﬂuﬂﬂu O Ot .
0C MIOMJSN
D\ —Ammaq apiyy | HUePOW
nﬂw -
= — S |\ wm ..
> kS iy | ®%jeq wesboig
, a0epB| soepaU| 90BlIaJU| DOBLIBU| 2oB8U] /
/ _ oman || og teuss aALQ aALI XS] aAl(] — m
1S AIOMION A . leando y onjaubey || ysiqg pieH LS sa|npowy
ealy |e007 T ~ N - T N 7 7 ~— / weibold oyijo)
nq Wworek 9¢ sweiboid
QuelIS uonesyddy
ez <

/

l8)depy
O2DIA

/

ww.l\

e T I L T T e S Sy U USRI YUy RSy SR SN Sy Sy ol U S GRSy oy S ap g gy gy g Sy g qp gy gy e e ——— e Y Y IT I A e e E T T Y SR Y RN A F BY BT TR TN BT NE _RE NE N1 BB BN BE RV JE R NE NA NL BL BL SR BA BJ LB LE &L B0 L Bl

yun Buissseonoig

)
m
k
_
m
|
_
m
_
m
’
’
'
’
)
]
]
I
_
;
i
]
i
m
1
'
I
i
i
i
'
b
'
i
'
:
'
m
I
]
i
!
'
m
!
'
i
i
i
‘

LR A N AT BE NELCER RY N RE NI EL REL RE BRI NE BE _RE_BRE SR NE _BE BE _BE N BRE BRI BRI BRI _RE |

mhmzm»w Bunelsdo
/|
NVY)
9c
sOlg
y;
NOY)

I A T SR O PR T TR FF 0 TN AF FY FE IR EF TN XK A% TR SN BN NI NE _NR_FE_NE _ER_LR]
s

U.S. Patent Apr. 11, 2006 Sheet 2 of 6 US 7,028,056 B1

100\

102
Allocate Buffer
104
Reserve Space On The Disk Drive For The File
106
Upon Exception, Write Processor Context Of The Crashing
Process To The Buffer
- — - ~ 108
Write Thread Information For The Thread That Was Executing
When The Exception Occurred To The Buffer
110
Write The Process Information For The Process That Owns
The Crashing Thread To The Buffer
(. _ 112
Write The Kernel Stack For The Crashing Thread To The Buffer
—_— 114
WriteThe List Of Drivers To The Buffer

116

Write Information About The Cause Of The Crash To The Buffer
118

Write The Buffer To Disk As a Kernel Minidump File

120

Upon Reboot, The Kernel Minidump File is transferred to a user-
specified directory

.

U.S. Patent Apr. 11, 2006 Sheet 3 of 6 US 7,028,056 B1

200
™ (stat_ >

Gather Information About The Callstack For All Running 202
Threads
204
Gather The Exception Information That Caused The Fault, |F
ANY, And Thread Context Of The Fault
206
Gather A Listing Of All Loaded Modules For The Faulting
Application
208
Gather The Processor Context For ALL Threads
210

Write The Gathered Information From

U.S. Patent Apr. 11, 2006 Sheet 4 of 6 US 7,028,056 B1

300
N\

Excel Outlook IE
Number of threads 10 14 12 B
Largest Stack size in KB 2 2 8
Total Stack Size in KB 5 5 17
Number of Modules 56 79 82

Size of Mini-dump File in KB 38 50 61

U.S. Patent

402

408

410(a)

410(b)

404

410(c)

412(a)

412(b)

406

412(c)

Apr. 11, 2006 Sheet 5 of 6

US 7,028,056 B1

[_

MINI-DUMP_ HEADER
Signature
Version
DirectoryRva
NumberOf Directories

Directory [O]
DirectoryType = MINIDUMP_MACHINEINFO
DataRva
DataSize

Directory [1]
DirectoryType = MINIDUMP_ EXCEPTION

DataRva
DataSize

Directory [NumberOfDirectories — 1}
DataType = MINIDUMP_THREAD _LIST
DataRva
DataSize

Data[0] (MINIDUMP MACHINEINFQ)
MachineType
MachineMode

Data[1] (MINIDUMP_EXCEPTION]
ExceptionCode
ExceptionFlags

Data [NumberOfDirectories — 1J(MINIDUMP THREAD LIST)

NumberOf Threads

Threads [O]
Threadld
SuspendCount
PriorityClass

(g.

400
[

U.S. Patent Apr. 11, 2006 Sheet 6 of 6 US 7,028,056 B1

Kernel Device
Driver

User Memory

User Code User Thread

1to 1

Kernel Context

UUser Context

1 to 1

Kernel Stack

User Stack

US 7,028,056 Bl

1

METHOD AND ARRANGEMENTS FOR
GENERATING DEBUGGING INFORMATION
FOLLOWING SOFTWARE FAILURES

TECHNICAL FIELD

This invention relates to computers and software, and

more particularly to methods and arrangements for efli-
ciently generating debugging information following a sofit-
ware lailure.

BACKGROUND OF THE INVENTION

Computer failures can generally be traced to either hard-
ware or software problems. This Background section dis-
cusses those failures that can be 1dentified through a careful
examination of the data stored by the computer at the time
of failure.

When an operating system or application program crashes
it 1s useful, 1f possible, to save information about the reasons
for the crash and the state of the system when it crashed for
later reference. Conventional techniques for collecting such
POSTMORTEM INFORMATION (or DUMP INFORMA -
TION) require an enormous amount of data be stored. For
example, when an operating system (OS) crashes, the com-
mon technique of collecting postmortem information 1s to
save the entire contents of the computer’s RAM to perma-
nent storage (e.g., disk, tape, floppy, etc.).

As computer’s memory sizes and the amount of data
assoclated with the OS continues to increase, the time it
takes to store this postmortem information upon failure 1s
correspondingly increased. Indeed, many users simply don’t
have time to generate postmortem information, and instead
opt to manually reboot the computer, losing all postmortem
debugging data. Consequently, problems may or may not be
reported, and those that are reported would lack the critical
data necessary to debug the problem. This means that a
random, yet commonly occurring problem may not get the
attention required. For example, consider the eflort required
to generate a complete postmortem debug information file
for a large file server with 64 gigabytes of system memory.
It would likely take the system many hours to store all of this
postmortem mnformation, 11 enough disk space could even be
found to store 1t on. And 1f data was finally stored to
memory, 1t would very ditlicult to move later. Even with
very fast networks, it would require hours to copy a 64 GB
file over a network connection. Even a conventional per-
sonal computer (PC) having only 64 megabytes of system
memory could still take an inordinate amount of time to
complete a full postmortem dump.

To avoid such delays, some operating systems are con-
figured to output only that portion of the system memory that
1s allocated for use by the operating system kernel. While
this tends to reduce the amount of data generated, even the
resulting postmortem dump file 1s quite large. For example,
when configured to save only the kernel portion of the
system memory, the postmortem files for the Microsoit
Windows 2000 kernel range 1n size from 32 megabytes to 8
gigabytes 1 size. For reference, a 32-megabyte file would
take about 3 hours to transfer over a 28.8K Baud modem
connection.

This same problem occurs with non-operating system
programs, also called user-mode programs. As with OS
components, the main problem with user-mode post-mortem
debug data 1s that it 1s typically quite large and 1t takes a long
time to generate. User-mode dump files for Windows 2000
are typically 350 to 100 megabytes 1n size. As we discussed

10

15

20

25

30

35

40

45

50

55

60

65

2

above, with files this large 1s 1t very diflicult to transmiut files
of this size back to the computer or operating system vendor
for analysis.

Consequently, the above stated problems and conven-
tional solutions hamper the desire of many users and manu-
facturers for improved online support of the OS and appli-
cations. Here, for example, it would be unacceptable and
potentially expensive for a user having a 28.8K Baud
modem to transmit a 64 MB memory dump file to the
manufacturer for postmortem analysis (1t would take more
than 5 hours).

As such, there 1s a need for improved methods and
arrangements that substantially reduce the requisite amount
of data required to conduct a significant postmortem analysis
following an operating system or application failure. Pret-
erably, the methods and arrangements will be advanta-
geously configured to allow for online user support for a
variety of users, computing devices, operating systems,
applications, and the like.

SUMMARY OF THE INVENTION

Improved methods and arrangements are provided that
substantially reduce the requisite amount of data required to
conduct postmortem analysis following an operating system
or application failure. The methods and arrangements can be
advantageously configured to allow for rapid online user
support for a variety of users, computing devices, operating,
systems, applications, and the like. The methods can be
applied to either operating system failures or application
program failures.

The various methods and arrangements address the gen-
eration of failure information when failures occur at either
the operating system level (KERNEL-MODE) or i tradi-
tional user program (USER-MODE). For example, when a

[1

failure occurs to a program executing in USER-MODE a
USER-MODE MINIDUMP or USER MINIDUMP can be

generated. Similarly, when a failure occurs 1n kernel-mode
a KERNEL-MODE MINIDUMP or KERNEL MINIDUMP

can be generated.

The above stated needs and others are met by a method
that includes determining when to generate a dump file, and
generating a dump file by gathering the thread, thread
context and callstack for the thread that caused the failure;
also included 1n the dump are the process containing the
failing thread and the reason for the crash (e.g., mvalid
memory reference). The resulting dump file can then be
stored to a storage medium and accessed for subsequent
analysis. In certain implementations the dump file also
includes information about multiple threads, multiple pro-
cesses or portions of data for the failing process. When
configured as a kernel miidump, the list of device drivers
for the system 1s included.

To further support a kernel minidump, the method may
also mclude allocating a buller space 1n memory during an
initialization process, and reserving space on a storage
medium drive suitable for writing the contents of the builer.
The method then includes generating the kernel mimidump
file by mitially storing the list of device drivers, crashing
process and thread, as well as the thread-context for the
thread and the callstack associated with the thread. Addi-
tionally, the kernel minidump contains information identi-
tying the reason for generating the crash. The method further
includes copying the kernel memory dump file from the
bufler space to the storage medium as a kernel minidump. In
still other implementations, the method includes, upon re-
initialization, accessing the kernel minidump on the storage

US 7,028,056 Bl

3

medium and using at least a portion of 1t to further under-
stand the failure that occurred.

The method 1s also applicable to non-operating system
programs. Here, for example, a user minidump {ile 1s gen-
erated by gathering the following information at the time of
a failure: the list of threads running at the time of the crash;
the thread-context and callstack for each running thread; the
l1st of modules loaded at the time of the crash; the reason for
the crash; and, selected regions of the process’s memory that
relate to the cause of the crash.

The above stated needs and others are met by an arrange-
ment having a system coupled to memory and at least one
data storage device. The operating system 1s configured to
determine when to generate a dump file while running
computer instructions, and generate the dump file 1n the
memory by gathering callstack information for at least one
running thread, thread context information about the at least
one running thread, process 1dentifying information associ-
ated with the at least one running thread, and information
identifying the reason for generating the dump file.

Methods for use in communicating between a client
process and a server process 1n a distributed processing,
system are also provided. Here, for example, the methods
can be used to provide application-programming interfaces
(APIs) or like capability when writing and reading dump

files.

For a write dump operation, such methods include having
the client process 1ssue a write dump {file call having a
plurality of call parameters including a process handle, a
process 1dentifier, a handle to a file where dump file 1nfor-
mation 1s to be written, and a dump type identifier. The
server process recerves this write dump file call and parses
the call to retrieve the parameters, and then 1n response,
issues a write dump file call acknowledgment providing a
true-false indication.

For a read dump operation, such methods include having
the client process 1ssue a read dump file call having a
plurality of call parameters including a header of a dump file
and a data type identifier of data to read from a dump f{ile,
having the server process receiving the read dump file call
and parsing the call to retrieve the parameters, and then
having the server process 1ssue a read dump file call
acknowledgment providing a true-false indication and a
plurality of call return parameters imncluding a pointer to a
beginning of a dump stream, and a stream size identifying,
the size of the dump stream. The plurality of call return
parameters may also include a pointer to a dump file
directory.

BRIEF DESCRIPTION OF THE DRAWINGS

A more complete understanding of the various methods
and arrangements of the present imnvention may be had by
reference to the following detailed description when taken in
conjunction with the accompanying drawings wherein:

FIG. 1 1s a block diagram depicting an exemplary com-
puter system suitable for use 1n generating a dump file.

FIG. 2 1s a flow-chart depicting a kernel minidump
process lor use 1 generating postmortem debug information
ol an operating sytem failure as might be experienced from
time to time in the computer system of FIG. 1.

FIG. 3 1s a flow-chart depicting a user minidump process
for use 1n generating user postmortem debug information of
a computer application failure, for example, as might be
experienced from time to time in the computer system of

FIG. 1.

5

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 4 1s a table depicting experimental results for user
minidump files associated with different applications, as
generated, for example, using the user minidump process of
FIG. 3.

FIG. 5 1s an illustrative representation of an exemplary
user-mode minidump {ile having a plurality of directories,
for example, as generated using the user-mode minidump
process of FIG. 3.

FIG. 6 1s a block diagram depicting features of an
exemplary operating system suitable for use in a user-mode
minidump process or a kernel-mode minmidump process.

DETAILED DESCRIPTION

As shown 1n FIG. 1, computer 20 includes one or more
processors or processing units 21, a system memory 22, and
a bus 23 that couples various system components including
the system memory 22 to processors 21. Bus 23 represents
one or more of any of several types of bus structures,
including a memory bus or memory controller, a peripheral
bus, an accelerated graphics port, and a processor or local
bus using any of a variety of bus architectures.

The system memory includes read only memory (ROM)
24 and random access memory (RAM) 25. A basic mput/
output system (BIOS) 26, containing the basic routines that
help to transier information between elements within com-
puter 20, such as during start-up, 1s stored in ROM 24.

Computer 20 further includes a hard disk drive 27 for
reading from and writing to a hard disk, not shown, a
magnetic disk drive 28 for reading from and writing to a
removable magnetic disk 29, and an optical disk drive 30 for
reading from or writing to a removable optical disk 31 such
as a CD ROM, DVD ROM or other optical media. The hard
disk drive 27, magnetic disk drive 28 and optical disk drive
30 are each connected to bus 23 by applicable interfaces 32,
33 and 34, respectively.

The drives and their associated computer-readable media
provide nonvolatile storage of computer readable mnstruc-
tions, data structures, program modules and other data for
computer 20. Although the exemplary environment
described herein employs a hard disk, a removable magnetic
disk 29 and a removable optical disk 31, it should be
appreciated by those skilled 1n the art that other types of
computer readable media which can store data that 1is
accessible by a computer, such as magnetic cassettes, flash
memory cards, digital video disks, random access memories
(RAMs) read only memories (ROM), and the like, may also
be used 1n the exemplary operating environment.

A number of program modules may be stored on the hard
disk, magnetic disk 29, optical disk 31, ROM 24, or RAM
25, including an operating system 35, one or more applica-
tion programs 36, other program modules 37, and program
data 38. A user may enter commands and information into
computer 20 through mnput devices such as keyboard 40 and
pointing device 42. Other input devices (not shown) may
include a microphone, joystick, game pad, satellite dish,
scanner, or the like. These and other input devices are
connected to the processing unit 21 through an interface 46
that 1s coupled to bus 23.

A monitor 47 or other type of display device 1s also
connected to bus 23 via an 1nterface, such as a video adapter
48. In addition to the monitor, personal computers typically
include other peripheral output devices (not shown) such as
speakers and printers.

Computer 20 can operate in a networked environment
using logical connections to one or more remote computers,
such as a remote computer 50. Remote computer 50 may be

US 7,028,056 Bl

S

another personal computer, a server, a router, a network PC,
a peer device or other common network node, and typically
includes many or all of the elements described above
relative to computer 20. The logical connections depicted in
FIG. 2 include a local area network (LAN) 51 and a wide
area network (WAN) 52. Such networking environments are
commonplace in oflices, enterprise-wide computer net-
works, intranets, and the Internet.

When used in a LAN networking environment, computer
20 1s connected to the local network 51 through a network
interface or adapter 156. When used 1n a WAN networking
environment, computer 20 typically includes a modem 54 or
other means for establishing communications over the wide
area network 52, such as the Internet. Modem 54, which may
be internal or external, 1s connected to bus 23 via interface
46. In a networked environment, program modules depicted
relative to the personal computer 20, or portions thereof,
may be stored in the remote memory storage device. It will
be appreciated that the network connections shown are
exemplary and other means of establishing a communica-
tions link between the computers may be used.

FIG. 6 depicts a simplified model of an Operating System.
At the top of the diagram 1s the operating system’s KER-
NEL. The kernel runs 1t’s own code and the code from any
number of KERNEL DEVICE DRIVERS. Note that the
arrow connecting the kernel to the device drivers 1s labeled
“1 to N”. This means that there can be many device drivers
for every kernel. The kernel runs any number of PRO-
CESSES. Each process contains a kernel portion and user
portion. The kernel portion of a process 1s accessible only by
the kernel and 1t’s device drivers. The user portion 1s to both
the user-mode process and kernel-mode portion of the
pProcess.

The process’s code 1s executed either by the kernel
(KERNEL CODE) or by the process itselt (USER CODE).
Processes can accomplish several tasks at once. Each of
these tasks 1s a THREAD. A thread, like a process, contains
both a user-mode portion, and a private kernel-mode por-
tion. Each thread contains one THREAD CONTEXT. A
thread context specifies exactly what a thread 1s doing at any
specific moment. The thread context contains one CALL-
STACK. Thus, there 1s a kernel-mode only callstack and a
user-mode callstack.

A flow-chart depicting an exemplary kernel-mode mini-
dump process 100 for use in generating data suitable for
conducting a postmortem analysis of a computer failure 1s
provided i FIG. 2.

As discussed below, kernel-mode mimdump process 100
generates a very compact representation of the running
system 1nformation in the event of a system failure. The
resulting kernel mimdump file 1s capable of being created
and written to disk very quickly, as well as quickly trans-
ported, for example, via e-mail over the Internet or other
communication resource. Despite its relatively small size,
the kernel minidump file contains enough information to
allow a developer or product support engineer to signifi-
cantly reproduce the computing environment and otherwise
debug the faulting driver or operating system failure.

One advantage of kernel minidump process 100 1s that it
1s capable of directly addressing the reliability and stability
of the operating system, since all system failures can be
logged and sent to the manufacturer for analysis. Thus, for
example, as a result of kernel minmidump process 100, both
device driver developers and operating system developers
can easily diagnose and quickly respond to user issues that
usually only occur in the field. Furthermore, since the
resulting kernel minmidump file 1s significantly compact

5

10

15

20

25

30

35

40

45

50

55

60

65

6

enough 1t can also be added to a database of problems
requiring further analysis or comparison.

In addition to traditional operating systems, 1t should be
noted that kernel minidump process 100 1s also a particularly
desirable feature for enterprise-level operating systems,
especially those operating systems that use a large number
of third party drivers or have high reliability requirements.

Unlike previous solutions, kernel minidump process 100
1s preferably designed to generate as minimal amount of
information as necessary to meaningtully debug the failure.
Thus, 1n accordance with certain exemplary implementa-
tions, kernel minidump process 100 generates a kernel
minidump {ile essentially containing the processor informa-
tion for the crashing processor, the thread for the crashing
process, the process information for the crashing process,
the callstack for the crashing thread, a list of device drivers
loaded at the time of the crash including the location within
the system where they are loaded and the version of the
device that was loaded, and the specific cause for the crash.

In this example, kernel minidump process 100 does not
store the actual code (i.e., executable instructions) for the
running operating system or any of the loaded dnivers.
Instead, kernel minidump process 100 stores version infor-
mation about the operating system and each driver that was
loaded, and the virtual address where the driver was loaded.
Then, during the subsequent analysis/debugging stage, the
analyst can locate the proper driver version and load it into
memory for debugging purposes at that time.

By not saving code, therefore, kernel minidump process
100 1s able to generate a much more compact kernel mini-
dump file. By way of example, in certain exemplary imple-
mentations the kernel minidump file for Microsolt® Win-
dows® 2000 1s only 64 KB, still contains suilicient
information to locate the crashing driver, generate a sym-
bolic callstack for the driver and locate the source code line
and file where the driver failed.

In accordance with still further features, a user may also
access certain local variables and information about the
cause ol the crash. These may be helptul to online or
telephone support personnel or processes.

In step 102 of FIG. 2, at initialization/boot time, a kernel
minidump bufler capable of holding the required kernel
minidump information 1s allocated along with a kernel
minidump file that 1s large enough to hold the kernel
minidump information. For example, in the Windows®
2000 example, the kernel minidump file 1s allocated from the
paging file. Also in step 102, a list of raw disk sectors that
form the kernel minidump file 1s obtained.

Next, in step 104 space for the disk drivers is reserved on
the disk drive where the kernel minidump file will be stored.

In step 106, when the computer system fails, the processor
context of the crashing processor 1s gathered from the
system and written to the kernel mimdump bufler. In step
108, the thread information for the thread that was executing
when the failure occurred 1s gathered from the system and
written to the kernel minidump bufler. Similarly, 1n step 110,
the process information for the process that owns the crash-
ing thread (above) i1s gathered from the system and written
to the kernel minidump bufler.

In step 112, the kernel stack for the crashing thread 1s
gathered from the system and written to the kernel mini-
dump bufiler.

In Step 114 the list of kernel-mode components, such as,
the kernel, device drivers and hardware abstraction layers
(HALs) that were loaded when the computer failure
occurred and their respective load-addresses and appropriate

US 7,028,056 Bl

7

version information (e.g., a checksum, timestamp, and
image size) 1s gathered from the system and written to the
kernel mimidump bufler.

In step 116, specific information about the cause of the
crash 1s gathered from the system and also written to the
kernel minidump bufler. In Windows® 2000, for example,
this information i1s provided as the BugCheckCode along
with the four BugCheck words associated with the failure.

In step 118, the kernel minidump mformation from steps
106 through 116 transierred or otherwise copied from the
kernel minidump bufler to disk. Since the file system 1s
never invoked, faults in the file-system can be caught. In
certain i1mplementations, the resulting kernel minidump
information 1s stored in an indexed table.

Next, 1in step 120, when the computer system 1s rebooted,
the kernel minidump file 1s transferred from it’s temporary
location, where 1t was written to by fault-handling code 1n
step 118, to a more permanent location, for example, 1n a
user-specified directory containing a list of kernel minidump
files. These files can then be accessed, forwarded or other-
wise handled as necessary to study the failure.

Those skilled in the art will recognize that the various
steps 1n kernel minidump process 100 can be rearranged or
reconfigured 1n many ways, as required to meet the needs of
a given computing system environment.

One of the interesting aspects about the resulting kernel
mimdump file 1s what information can be left out. Thus, 1n
the example above, no code for running components 1s saved
(1.e., executable instructions), no dynamically allocated
memory 1s saved, and no initialized or uninitialized data 1s
saved. Also, no imformation about threads, processes or
processors except the crashing thread, process and processor
1s saved 1n the example above. While certain information
may be necessary for other implementations, in the above
example (FIG. 2) this appears to signmificantly mimimize the
amount of information required.

Kernel minidump process 100 1s essentially directed
towards system crashes. Thus, there remains a need for
similar processes for non-system failures, 1.e., user applica-
tion failures.

Conventional postmortem debug information collection
techniques tend to store all user-accessible memory for an
application, including code for all user-mode shared librar-
1ies, dynamically allocated memory, and all stack data, upon
the occurrence of a failure. This produces very large dump
files, of which only a portion may be required to subse-
quently analyze the failure.

With this 1n mind, FIG. 3 depicts a user minidump process
200 for use 1n generating significantly smaller user-mode
dump {files containing selected information that 1s suitable
for conducting postmortem analysis of an application fail-
ure.

In step 202, user minidump process 200 gathers informa-
tion about the callstack for all running threads. In step 204,
the exception information that caused the fault, 11 any, and
thread context of the fault 1s gathered. A list of all loaded
modules for the faulting application 1s gathered in step 206.
In step 208, the processor context for all threads 1s gathered.
In some configurations of minidump process 200, additional
information about the crash 1s also saved at this point. In step
210 the results of steps 202 through 208 are written to disk.

In accordance with certain implementations, for example,
user minidump process 200 does not require instrumentation
of the application, hooking of system application program-
ming interface (API) calls, or either local or remote sym-
bolic information to be available. Instead, the resulting user
mimdump file can be generated by the client application

10

15

20

25

30

35

40

45

50

55

60

65

8

simply using only information readily available through
standard debugging APIs, such as, for example, Win32 APIs.

The current implementation of the Dr. Watson tool 1n
Windows® 2000, for example, saves data for the entire
process’s address space. While this tends to guarantee full
postmortem analysis of the application, huge dump files are
often created (e.g., 50 MB or more).

In contrast, using user minidump process 200, 1n the event
that Microsoft® Internet Explorer (IE) crashes, mstead of a
Dr. Watson dialog coming up, IE can 1tself catch the error
and write a user minidump file to disk. Since the user
minidump {file size 1s relatively small (about 60 KB for IE),
it takes only a second or two to write the user minidump file
to disk. When IE restarts, 1t could then note that a user
minidump file was written. Here, for example, IE may then
access a remote bug database that identifies that the problem
experienced was a bug that has since been fixed 1n a Service
Pack release of IE. The user could then be prompted to
upgrade IE to fix the problem. In another illustrative sce-
nario, assume Microsoft® Excel crashes on a user’s
machine. As with the IE scenario, with user minidump
process 200 Excel can catch the exception and write a user
minidump {file to disk. Here, the user may be notified that
there was a program error and that the use minidump file
should be mailed to the developer. The minidump file can
then be e-mailed to developer where 1t can be forwarded to
the development team responsible for the code 1n Excel.
Using standard debuggmg tools like Visual Studio, the
development team 1s able to walk the callstack, view param-
eters to functions, view local variables, and view the exact
line and file where the failure occurred. Using this informa-
tion the development team will likely be able to fix an
obscure program error that otherwise would not have been
reproducible.

In certain implementations of Windows® 2000, for
example, two additional functions in the form of APIs are
added to the DBGHELP system DLL. The first API 1s a write
user minidump API (WriteMiniDump), and the second API
1s a read user minidump API (ReadMiniDump). These
functions are configured to allow an arbitrary application to
write and read a user minidump file. Experiments suggest
that a user mimidump file of approximately 100 KB would be
able to walk the callstack of all threads, read any active local
variables, view parameters to functions, and view source
code for the faulting application. Moreover, existing user-
mode debugging tools, such as, Visual Studio and the like,
can be easily debug a user minidump file. Furthermore, since
the user minidump file format 1s completely specified and
public, various developers can write custom applications to
process the user minmidump file as necessary.

FIG. 4 1s a table 300 listing experimental results associ-
ated with user minidump process 200 as applied to certain
applications during a failure. Here, user minidump files were
created for Microsofi® Excel 2000, Outlook® 2000 and IF
5.0, using an x86 PC. As can be seen, the size of the resulting,
user minidump files for each of these applications 1s fairly
small, ranging from 38 KB to 61 KB. Consequently, such
user minidump files can be quickly saved and easily trans-
ported.

As shown 1n greater detail below, 1n certain implementa-
tions two system API calls have been added to DBGHELP
of Windows® 2000, one to write a user minidump file and
one to read a user minidump {file. Any application, including
postmortem tools, debuggers or the application itself will be
able to write a user minidump file at any time. In this
manner, an application 1s explicitly allowed to write a user
minidump file even when there 1s not an exception or failure.

US 7,028,056 Bl

BOOL
WINAPI
WriteMiniDump(
IN HANDLE hProcess,
IN DWORD Processld,
IN HANDLE hFile,
IN MINIDUMP__ TYPE DumpType,
IN PMINIDUMP_EXCEPTION__INFORMATION ExceptionParam,
IN PMINIDUMP__ USER__STREAM_ INFORMATION UserStream,
IN PMINIDUMP__CALLBACK__INFORMATION CallbackParam

);

The WrnteMiniDump API writes a user-mode minidump
to the file specified by hFile. The parameter hProcess 1s a
process handle with full read and query permissions. Pro-
cessld 1s a process 1dentifier for the process. The hFile
parameter 1s a handle to a file where the user minidump
information 1s written. Dumplype 1s used to identily the
type ol dump to generate. In other words, different types of
mimdumps supporting different feature sets can be sup-
ported. The ExceptionParam 1s an optional pointer to a
structure describing the exception in the client that caused
the mini-dump to be generated. 11 this parameter 1s NULL,

no exception mnformation will be written to the minidump
file. The UserStream 1s an optional pointer to an array of
USER_DATA_ENTRY structures. A user data entry 1s
optional user information that 1s written to the dump file. The
content of the user imformation i1s arbitrary and 1s never
interpreted by the WriteMiniDump routine. UserStream
should be NULL 1f there 1s no optional user information.
CallbackParam 1s an optional pointer to a user minidump
callback data pointer and routine that WriteMiniDump can
callback with extended information about the dump. The
callback allows the caller of WriteMiniDump to completely
control the granularity of information written to a user
mimdump file. If this pointer 1s NULL, no callbacks are
performed.

The return values of the WriteMiniDump API are TRU.
(1) upon success, and FALSE (0) upon failure.

The ReadMimiDump API 1s:

(L]

BOOL
WINAPI
ReadMinidumpStream (
IN PVOID BaseOfDump,
IN ULONG StreamNumber,
OUT PMINIDUMP _DIRECTORY * Dir, OPTIONAL
OUT PVOID * StreamPointer, OPTIONAL
OUT ULONG * StreamSize OPTIONAL

);

The ReadMiniDump API reads a field from a user-mode
mimdump. Since the user minidump {file specification 1s well
defined (e.g., see FIG. 5 below) the ReadMiniDump API can
be considered strictly a convenience.

Here, BaseOfDump i1s the header of the mapped user
mimdump file, StreamNumber 1s the type of data to read
from the mini-dump file, and Dir, on return, contains a
pointer to the user minidump directory of type Data’lype file
format. StreamPointer, on return, contains a pointer to the
beginning of the mini-dump stream of type Datalype. The
type of data that this points to depends on the type of data
requested in the DataType parameter. StreamSize, on return,
contains the size of the stream.

10

15

20

25

30

35

40

45

50

55

60

65

10

The return values of the ReadMiniDump API are simply;
TRUE (1) upon success, and FALSE (0) upon failure.

With this exemplary implementation 1n mind, a format for
a user minidump file will now be described with reference
to FIG. 5. The user minidump file 400 includes a header
section 402, a directory section 404 and a data section 406.
These sections are mmdexed using RELATIVE VIRTUAL
ADDRESSES (RVAs), which describe the location of a data
member within a file. An RVA 1s an offset from the beginning
of a file. In FIG. 5, RVA 408 points to the first directory in
section 404, and RVAs 410(a—c) point to respective data
412(a—c) 1n section 406.

Since 1t 1s important for a user minidump file from one
computer architecture to be readable on a computer of a
different architecture, all structures i user minidump file
400 are therefore of the same size, regardless of the com-
puter system they are generated on.

As shown in FIG. 5, the user minidump {file format is
similar to the Portable Executable image file format 1n that
it specifies a set of directories that then point to the data (e.g.,
see Microsoft Portable Executable Common Object File
Format Specification Revision 6.0: Visual C++ Business
Unit, Microsoft Corporation, February 1999). Each direc-
tory entry in section 404 specifies the data type, the size of
the data and an RVA 410 to where 1n the user minidump file
400 the data 1s located. In this example, only one directory
ol a specific type 1s allowed per file.

Those skilled in the art will recognize that the above
described methods and arrangements are flexible 1n that a
variety of operating systems and applications can be sup-
ported. The amount of resulting kernel minidump informa-
tion or user mimdump information can be increased or
decreased as needed. For example, 1n certain implementa-
tions, the user minidump file can be reduced even further to
only include the faulting thread, faulting thread’s callstack
and context, module list, and reason for the crash. This can
turther reduce the user minidump file to several dozen bytes.

Additionally, 1n certain implementations, information can
be added to the user minidump file to make 1t more usable
by debuggers. One limitation of the user minidump process
as described above 1s that 1t does not store any global
variables or dynamically allocated memory. If needed, how-
ever, global vanables could be saved by adding global data
from the faulting process or, more sophisticatedly, by adding
only selected regions of global data. These selected regions
of global data can be selected by a custom-written applica-
tion that has knowledge about where certain data 1s stored in
the specific application. Also, selected data pages from the
process could also be stored as needed to view active heap
variables. The user minidump file format of FIG. 5 has the
built-in flexibility to add these data while maintaiming com-
patibility with previous versions.

Although some preferred embodiments of the various
methods and arrangements of the present invention have
been 1illustrated 1n the accompanying Drawings and
described 1n the foregoing Detailed Description, 1t will be
understood that the invention 1s not limited to the exemplary
embodiments disclosed, but 1s capable of numerous rear-
rangements, modifications and substitutions without depart-
ing from the spirit of the mvention as set forth and defined
by the following claims.

The mvention claimed 1s:

1. A method for generating a dump file the method
comprising;

a. generating a minidump files that does not include all

volatile system memory containing at least:
1. thread information for at least one running thread,

US 7,028,056 Bl

11

11. context information for the thread,

111. callstack information for the thread,

1v. processing information for a process i which the
thread 1s running, and

v. information 1dentifying a reason comprising one of
the following reasons: callstack fault, processor
fault, and application program fault, for generating
the minidump file;

b. storing the minidump file to a storage medium;

c. allocating a bufler space 1n memory during an initial-
1zation process, wherein the bufler space 1s suitable for
storing the gathered information; and

d. reserving space on the storage medium suitable for
writing the content of the bufler space;

wherein generating the minidump file further includes
initially storing the thread information, the context
information, the callstack information, the process
information, and the information identifying the reason
for generating the minmidump file to the bufler space,
and then copying the minidump file from the bufler
space to the storage medium and further comprising
upon re-1nitialization, after having stored the miidump
file to the storage medium, accessing the minidump file
on the storage medium and using at least a portion of
the minidump file to further understand an exception
that was at least one reason for generating the mini-
dump file.

2. The method as recited 1n claim 1, further comprising

determining when to generate the minidump file.

3. The method as recited 1n claim 1, wherein generating
the minidump {ile further includes gathering processor infor-
mation about at least one processor.

4. The method as recited 1n claim 2, wherein determining
when to generate the mimdump {file further includes deter-
mimng that an exception has occurred.

5. The method as recited 1n claim 1, wherein the mini-
dump file does not include data stored 1n global mnitialized
memory.

6. The method as recited in claam 1, wherein the mini-
dump file does not include data stored in uninitialized
memory.

7. The method as recited 1n claim 1, wherein the mini-
dump file does not include executable instructions used by
a processor to execute a program.

8. The method as recited 1n claim 1, wherein the mini-
dump file 1s a kernel mimdump file associated with an
operating system and the at least one runming 1s the single
thread which encountered an exception.

9. The method as recited 1n claim 8, wherein the callstack
information includes kernel stack information.

10. The method as recited 1n claim 1, wherein the process
information identifies a process that imtiated the thread.

11. The method as recited in claim 1, wherein the mini-
dump file 1s a user minidump file associated with at least one
non-operating system program.

12. The method as recited in claim 1, wherein generating
the minidump file further includes gathering callstack infor-
mation for all running threads.

13. The method as recited in claim 12, wherein the
callstack information includes a user callstack.

14. The method as recited in claim 1, wherein generating
the mimidump file further includes gathering processor con-
text information for all running threads.

15. The method as recited in claim 1, wherein generating
the minidump file further includes gathering a listing of
loaded modules for a faulting application program.

5

10

15

20

25

30

35

40

45

50

55

60

65

12

16. The method as recited 1in claim 1, wherein the mini-
dump file 1s a directory indexed file that uses relative virtual
addresses (RVAs).

17. The method as recited 1n claim 1, further comprising
providing the mimdump file to at least one external device.

18. The method as recited in claim 1, upon system
re-initialization, transferring the mimdump file from the
storage medium to at least one external device.

19. The method as recited 1n claim 1, herein generating
the minidump file further includes gathering a list of loaded
modules.

20. A computer-readable medium having computer-ex-
ecutable 1nstructions for causing at least one processor to
perform acts comprising:

gathering mimidump file information that node not includ-

ing all volatile system memory but does include at least
thread information for at least one runmng thread,
context information for the thread, callstack informa-
tion for the thread, process information for the process
which the thread i1s running, and information 1dentify-
ing a reason comprising one of the following reasons:
callstack fault, processor fault, and application program
fault, for generating the minidump file;

allocating a bufler space in memory during an initializa-

tion process, wherein the bufler space 1s suitable for
storing the minidump {file information; and

reserving space on a storage medium drive suitable for

writing the contents of the buifler space;

wherein generating the minidump file further including

storing the dump file to a storage medium;

wherein generating the minidump {file further includes

iitially storing the thread information, the context
information, the callstack information, the process
information, and the information identifying the reason
for generating the minmidump file to the bufller space,
and then copying file from the bufler space to the
storage medium; and upon reinitialization after having,
stored the minidump file to the storage medium, access-
ing the minidump file on the storage medium and using
at least a portion of the mimidump file to turther
understand an exception that was at least one reason for
generating the minidump file.

21. The computer-readable medium as recited 1n claim 20,
wherein gathering the minidump file information further
includes gathering processor information about at least one
Processor.

22. The computer-readable medium as recited in claim 20,
having further computer-executable mstructions for causing,
the at least one processor to perform acts comprising deter-
mining when to generate the mmidump f{ile.

23. The computer-readable medium as recited in claim 20,
wherein the minmidump file does not include data stored in
global mitialized memory.

24. The computer-readable medium as recited 1n claim 20,
wherein the minmidump file does not include data stored in
umnitialized memory.

25. The computer-readable medium as recited claim 23
wherein the mimidump file does not include executable
instructions used by the at least one processor to execute a
program.

26. The computer-readable medium as recited in claim 23,
wherein the mimdump {file 1s a kernel minidump file asso-
ciated with an operating system and the at least one running
thread 1s the single thread which encountered an exception.

277. The computer-readable medium as recited in claim 20,
wherein the callstack information includes kernel stack
information.

US 7,028,056 Bl

13

28. The computer-readable medium as recited 1n claim 20,
wherein the process information identifies a process that
initiated the thread.

29. The computer-readable medium as recited 1n claim 20,
wherein the minidump {ile 1s a user minidump {ile associated
with at least one non-operating system program.

30. The computer-readable medium as recited 1n claim 20,
wherein gathering the minidump file mformation further
includes gathering callstack information for all running
threads.

31. The computer-readable medium as recited 1n claim 30,
wherein the callstack information includes a user callstack.

32. The computer-readable medium as recited 1n claim 20,
wherein gathering the minidump file information further
includes gathering processor context information for all
running threads.

33. The computer-readable medium as recited 1n claim 20,
wherein gathering the minidump file mformation further
includes gathering a listing of all loaded modules for the
faulting application program.

34. The computer-readable medium as recited 1n claim 20,
wherein the minidump file 1s a directory indexed file that
uses relative virtual addresses (RVAs).

35. The computer-readable medium as recited 1n claim 20,
having further computer-executable instructions for causing,
the at least one processor to perform acts comprising pro-
viding the minidump file to at least one external device.

36. The computer-readable medium as recited 1n claim 20,
having further computer-executable 1nstructions for causing
the at least one processor to perform acts comprising, upon
system re-initialization, transferring the minidump file from
the storage medium to at least one external device.

37. The computer-readable medium as recited 1n claim 20,
wherein gathering the minidump file mformation further
includes gathering a list of loaded modules.

38. An apparatus comprising:

memory;

a data storage drive configured to write data files to at

least one data storage medium;

at least one processor operatively coupled to the memory

and the data storage drive and configured to:
a. generating a minmidump file that does not include all
volatile system memory containing at least:
1. thread information for at least one runmng thread,
11. context information for the thread,
111. callstack information for the thread,
1v. process mnformation for the process in which the
thread 1s running; and
v. information identifying a reason comprising one
of the following reasons: callstack fault, processor
fault, and application program fault, for generat-
ing the mimdump file, and
b. store the miidump file to the storage medium;
wherein the at least one processor 1s Turther configured to:
allocating a bufler space in the memory during an
initialization process; and reserve space on the storage
medium drive suitable for writing the contents of the
builer space.

39. The apparatus as recited in claim 38, wherein the at
least one processor 1s further configured to determine when
to generate the mimidump file.

10

15

20

25

30

35

40

45

50

55

60

14

40. The apparatus as recited 1n claim 38, wherein the at
least one processor 1s further configured to gather processor
information about the at least one processor and include the
processor information in the minidump file.

41. The apparatus as recited in claim 39, wherein the at
least one processor 1s her configured to determining when to
generate the minidump file based on an exception.

42. The apparatus as recited i claim 38, wherein the
minidump file does not mclude data stored i global 1nitial-
1zed memory.

43. The apparatus as recited i claim 38, wherein the
minidump {file does not include data stored in uninitialized
memory.

44. The apparatus as recited claim 38 wherein the mini-
dump file does not include executable nstructions used by
the at least one processor to execute a program.

45. The apparatus as recited 1n claim 38, wherein the
minidump file 1s a kernel minidump file associated with an
operating system and the at least one runming thread 1s the
single thread which encountered an exception.

46. The apparatus as recited 1n claim 38, wherein the
callstack information includes kernel stack information.

47. The apparatus as recited in claim 38, wherein the
process 1nformation identifies a process that initiated the

thread.

48. The apparatus as recited i claim 38, wherein the
minidump file 1s a user minmidump file associated with at least
one non-operating system program.

49. The apparatus as recited in claim 38, wherein the at
least one processor 1s further configured to gather callstack
information for all running threads as part of the minmidump

file.

50. The apparatus as recited i claim 49, wherein the
callstack information includes a user callstack.

51. The apparatus as recited 1n claim 38, wherein the at
least one processor 1s configured to gather processor context
information for all running threads as part of the minidump

file.

52. The apparatus as recited 1n claim 38, wherein the at
least one processor 1s configured to gather a listing of all
loaded modules for a faulting application program as part of
the mimidump f{ile.

53. The apparatus as recited 1n claim 38, wherein the

minidump file 1s a directory indexed file that uses relative
virtual addresses (RVAs).

54. The apparatus as recited in claim 38, wherein the at
least one processor 1s further configured to provide the
minidump {ile to at least one external device.

55. The apparatus as recited in claim 38, wherein the at
least one processor 1s further configured to, upon system
re-initialization, transterring the mimdump file from the
storage medium to at least one external device.

56. The apparatus as recited in claim 38, wherein the at
least one processor 1s further configured to gather a list of
loaded modules as part of the minidump file.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. . 7,028.056 Bl Page 1 of 2
APPLICATION NO. :09/549814

DATED : April 11, 2006

INVENTOR(S) . Hendel et al.

It Is certified that error appears in the above-identified patent and that said Letters Patent i1s hereby corrected as shown below:

On the title page, in Item (54), in “"Title”, in column 1, line 1, delete " METHOD™ and 1nsert
-- METHODS --, theretor.

In column 1, line 1, delete "METHOD™ and insert -- METHODS --, theretor.
In column 3, line 61, delete “sytem™ and 1nsert -- system --, theretor.
In column 7, line 10, after “116” mnsert -- 1s --.

In column 9, line 1, above

BOOL
“"WINAPI 7.
insert -- The WriteMimmiDump API 1s: --.
In column 11, Iine 48, in Claim 8, after “running” insert -- thread --.
In column 12, Iine 9, in Claim 19, delete “herein”™ and insert -- wherein --, theretor.
In column 12, line 57, in Claim 23, after “recited” insert -- 1n --.

In column 12, Iine 57, in Claim 23, after “claim 23" insert -- , --.

In column 12, Iine 61, mn Claim 26, after “claim™ delete 23" and insert -- 20 --, therefor.

Signed and Sealed this

Ei1ghteenth Day of May, 2010

Lo ST s

David J. Kappos
Director of the United States Patent and Trademark Office

CERTIFICATE OF CORRECTION (continued) Page 2 of 2
U.S. Pat. No. 7,028,056 B1

ee 23

In column 13, line 58, in Claim 38, after “space™ delete ~.” and insert -- ;
wherein at least one processor 1s further configured to:

generate the minidump file by imitially storing the thread
information, the context information, the callstack information, the
process information, and the information 1dentifying the reason for
generating the dump file to the butter space, and then copying the
minidump file from the bufter space to the storage;
wherein the at least one processor 1s further configured to:

upon re-1nitialization after having stored the minidump file to the
storage medium, access the minidump file on the storage medium and
usc at least a portion of the minidump file to further understand an
exception that was at least one reason for generating the minidump file. --, therefor.

In column 14, Iine 6, in Claim 41, delete “her” and msert -- further --, theretor.
In column 14, line 13, in Claim 44, after “recited” insert -- 1in --.

In column 14, line 13, in Claim 44, after “claim 38" insert -- , --.

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

