12 United States Patent

US007024662B2

(10) Patent No.: US 7,024,662 B2

Elvanoglu et al. 45) Date of Patent: Apr. 4, 2006
(54) EXECUTING DYNAMICALLY ASSIGNED 6,604,209 B1* 82003 Grucci et al. 714/38
FUNCTIONS WHILE PROVIDING SERVICES 2002/0133752 Al* 9/2002 Handoocoorerverrenrennan. 714/38
2003/0074423 Al* 4/2003 Mayberry et al. 709/219

(75)

(73)

(%)

(21)

(22)

(65)

(60)

(1)

(52)
(58)

(56)

Inventors:

Assignee:

Notice:

Appl. No.:

Filed:

Ferhan Elvanoglu, Redmond, WA
(US); Shaun D. Pierce, Sammamish,
WA (US)

Microsoft Corporation, Redmond, WA
(US)

Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35

U.S.C. 134(b) by 725 days.
10/062,045

Jan. 31, 2002

Prior Publication Data

US 2002/0184344 Al Dec. 5, 2002

Related U.S. Application Data
Provisional application No. 60/275,809, filed on Mar.

14, 2001.

Int. ClL.

GO6l 9/44 (2006.01)

GO6Ll 15/16 (2006.01)

HO4L 9/00 (2006.01)

US.CL ...l 717/127;713/154; 709/219
Field of Classification Search 717/124-130;

714/38; 709/219; 713/134

See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

5,778,227 A
0,044,224 A
0,199,081 Bl
6,330,610 Bl
0,351,843 B
0,490,721 B
0,542,845 B

OTHER PUBLICATTONS

Barish, Greg; Untangling the Web; Intelligent Enterprise;
Mar. 27, 2001, pp. 38-43.

Dix, Chris; Working With Soap, The Simple Object Access
Protocol; C/C++Users Journal, Jan. 2002; pp. 22-33.

He, Hao; and Wang, Raymond K.; A Role-Based Access
Control Model for XML Repositories; IEEE, 2000, pp.
138-145.

Jepsen, Tom; Soap Cleans up Interoperability Problems on
the Web; IT Pro; Jan.-Feb. 2001; pp. 52-53.

(Continued)

Primary Examiner—Kakali Chaki
Assistant Examiner—1Trenton J. Roche

(74) Attorney, Agent, or Firm—Workman Nydegger

(57) ABSTRACT

Methods, systems, and computer program products for
applying actions during server system processing. Func-
tional processing blocks where actions may be applied to a
service request are 1dentified. actions are dynamaically asso-
ciated with functional processing blocks. During execution
of a functional processing block, a check i1s performed to
determine whether an action 1s associated with the func-
tional processing block. If an action 1s associated with a
functional processing block, the action 1s applied during the
functional processing block’s execution. An evaluation may
be performed to determine 1f an action should be applied

before or after the functional processing block. The server
system may comprise an XML data repository, providing

et B L el gy Sy R o T P W R

bafare furclons $52h

|

* 7/1998 Jordan 707/103 R access to XML data, based on 1dentity information which is
¥ 3/2000 Radiaetal. 717/162 received with a client system request. A portion of the server
3/2001 Meyerzon et al. 715/513 system may be described in accordance with an XML
* 12/2001 Docter et al. 709/229 schema
1* 2/2002 Berkley et al. 717/128 '
1* 12/2002 Gorshkov et al. 717/130
*4/2003 Grucci et al. 702/122 40 Claims, 9 Drawing Sheets
HHE 5 ul::lgfa Haa ﬂ?st
“f T
aRer funcfions 1246 hefora fungtions 1222
BT e 120 |
" belore functions 1220 et furations 1249 |
F jﬂi
after functionz 134b before fun:tiuna 1338
ey | [ol 136
 before fenctions 1420 | ' afer fuctions 134a |
F 130
after functions 14dh before fun:tlnns 1422
ety um | [cryplegrply 14lg
" hefors fanotons 142 | aitr functions ke
I —
after func.tinna 154b befare fun:tlnns 1523
" sanke 150b | wmiee (0

aftar funclians 154n

US 7,024,662 B2

Page 2
OTHER PUBLICATIONS Soap Version 1.2 Part 2: Adjuncts; http:// www.w3.org/TR/
X Marks the Path; DNJ Online; http://www.dnjonline.com/ 2001/ WD-soap12-part2-20011002: Oct. 30, 2001; 43 pes.
ggtg:zlfaséessimlals/lss%_ essentials_ xpath.asp; Jan. 3, XML Path Language (XPATH) Version 1.0: http:/
, O PES- _ www.w3.0rg/ TR/1999/REC-xpath-19991116; Oct. 30,
Soap Version 1.2 Part 1: Messaging Framework; http:// 2001; 35 pgs

www.w3.0rg/ TR/2002/WD-soap12-part1-20011002; Nov.
30, 2001: 33 pgs. * cited by examiner

U.S. Patent

Response
(OUT)
1010

after functions

before functions

after functions

before functions

after functions

hefore functions

after functions

before functions

Apr. 4, 2006

Sheet 1 of 9

120¢

130¢

140¢

US 7,024,662 B2

Request

|
i

hefore functions

after functions

before functions

after functions

hefore functions

after functions

before tunctions

after functions

U.S. Patent Apr. 4, 2006 Sheet 2 of 9 US 7,024,662 B2

/200A
101K

<class xmins="x-schema:classSchema.xml™

<student studentiD="13429"> 220A(1)
204 A 220A~[<name>James Smlth<lname>\

<GPA>3.8<IGPA>
dstudent> \ 22041
2204.2

<[class>

FIG. 2A
2008(1)
<Schema xmins="urn:schemas-microsoft-com:xml-data" 2008(2)
e T TP s el

xmins:dt="urn.schemas-microsoft-com.datatypes™

2208(1)~ <AttributeType name="student!D’ dt:type='string’ required="yes'>
220B.1~ <ElementType name="name’ content="textOnly'/>

2208.2~ <ElementType name="GPA' content="textOnly" dt:type='float'/>
<ElementType name='student’ content="mixed"

<attribute type='studentiD'/> |

<clement type="name'> - 2208()

<glement type='GPA'D |
<[ElementType> \22032

<ElementType name='class’ content="eltOnly">
vl

2008

2208

<element type='student'/>

</ElementType>
</Schema>

FIG. 2B

U.S. Patent Apr. 4, 2006 Sheet 3 of 9 US 7,024,662 B2

300A
s

<contact category="husiness">
320A——<name>Smith</name>

<numbers>
JNA <home>801-555-1234</home> —— 340A.1
WA <oell>801-555-4321</cell> ~— 340A.2

<Inumbers>
———<Jcontact>

FIG, 3A

3008
a

[descendant::contact{name="Smith"}/child::numbers/child:.”

3018 3208 3408 3408."

FIG. 3B

U.S. Patent

Apr. 4, 2006 Sheet 4 of 9

400A
Y

401A— Root
420A—— Envelope

420A.1~ Header
420A.2~ Boay

FIG. 4A

4008
’/

4018 — Request

4208—— Envelope
4208.1~ Header

4208.2~ Body
440B—— Additional Information

FIG. 4B

4000
/

401C—Response
4200 —— Envelope
420C.1~ Header

420C.2~ Body
4400 —— Additional Information

FIG. 4C

US 7,024,662 B2

U.S. Patent Apr. 4, 2006 Sheet 5 of 9 US 7,024,662 B2

500
Server ~— 501 '/

Status —~ 520
t alarms —520.1
timers —920.2
Service {mylnbox} — 540
E ServiceConfiguration ~—540.1
systemDocymant —~—540.2
Message ——540.3
request —~540.3.1

Envelope ~540.3.1.1

Header——540.3.1.1.1
Body ——940.3.1.1.2
Additional Information ~540.3.1.2

response —~540.3.2
Envelope ~-540.3.2.4

Header—~—540.3.2.1.1
Body ~—540.3.2.1.2
Additional Information ~—540.3.2.2

Service (myCalendar) ——560

FIG, 3

U.S. Patent Apr. 4, 2006 Sheet 6 of 9 US 7,024,662 B2

Action Association List ——600

20— Layer 1. hefore —620.1
620.1.1~ xPathA actionA

after —620.2
620.2.4~ xPathB actionB
620.2.2~ xPathC action(

640—— Layer 2. before ——640.1

after ——640.2

U.S. Patent Apr. 4, 2006 Sheet 7 of 9 US 7,024,662 B2

Define One or More
Processing Steps

112

I
|
I
I
l
I
|
I
|
I
: Detine Functions
| 714
I
I
|
!
I
|
l
|
|
|
I
I
)

Describe Portion of
server System

716

ldentify
1)

Assigh Functions
122

I

I

|

)

|

I

I

|

I

: Evaluate Before/After

: 124

|

: Associate
l 720
L

FIG. 7A

U.S. Patent Apr. 4, 2006 Sheet 8 of 9 US 7,024,662 B2

Evaluate Whether
Function Assigned

134

Execute Function
142

Terminate Further
Processing on Error

144

US 7,024,662 B2

m| SWY400ud | SWYdo0da | 989 yiva [IS8.53InQON |9EBSWYNOONA [G€8 WILSAS
ki A LU e NYHO0Nd [WYN9O0Y ¥IHLO| NOILYOITddY | ONILYA3dO
auvoaAzy O
43L0dW0? ¥310dK0) — A
= 58 Emg_@_ ‘_.
WOMLIN @ ————— -
LTl . _ —— |
= _ I
g 198 _ J0V4YILNI| | 30V44AINI| | 30waN | {30Y4Y3LNI
% N 1 Lo, eTIE Il A4
@ WNOMLIN YI¥V V901 JLALER 1Y0ILdO | [ASIQ DILINOV vm_g Q4vh
7 L£8 531NN
_ i ret Gi8 AYH904d ¥IHLO
_ -
S | | SN8 WILSAS 963 SWy¥90¥d | | ;
= § 9l “ i NOLLYO4dY | |
! _ -
w _ 88 WALSAS | |
A _ o | P | ||
LINN 578 _
40LINOH " INISSI00Y4 LTINS "
8 8018 _
— _
w —m—— | 78 (NOY) _ |
028 bl ASONIN W3LSAS |

U.S. Patent

US 7,024,662 B2

1

EXECUTING DYNAMICALLY ASSIGNED
FUNCTIONS WHILE PROVIDING SERVICES

CROSS-REFERENCE TO RELATED
APPLICATIONS

The present application claims priority from co-pending

U.S. provisional application Ser. No. 60/2775,809, filed Mar.
14, 2001 and entitled “Identity-Based Service Communica-
tion Using XML Messaging Interfaces™, which provisional
application 1s incorporated herein by reference 1n 1ts entirety.

BACKGROUND OF THE INVENTION

1. The Field of the Invention

The present invention relates to the field of computer
services. Specifically, the present mvention relates to meth-
ods, systems, and computer program products for applying
one or more functions during processing that may occur 1n
a server providing one or more services.

2. Background and Related Art

Typically, before being deployed 1n a live system, services
undergo significant testing to uncover programming €rrors
and to evaluate performance. While useful, such testing
often 1s able only to estimate full-scale use. As a result,
certain program errors or performance problems may go
undetected 1n development or testing environments. Finding,
these latent problems usually involves monitoring the opera-
tion of a service in one form or another. Furthermore,
independent of programming errors or unexpected pertor-
mance considerations, monitoring a service may be helpiul
in uncovering hardware failures and system attacks.

However, monitoring services for purposes of debugging,
performance, hardware problems, system attacks, and the
like, often involves various complex issues. For example,
services by nature tend to be accessed by large numbers of
clients. The shear volume of transactions can make moni-
toring services a significant exercise. Moreover, monitoring,
itsell may introduce some amount of processing overhead.
While the overhead for a single transaction i1s relatively
small, the aggregate overhead for a large number of trans-
actions may result 1 unacceptable levels of performance
and skew any conclusions that are reached from the moni-
toring.

As a general rule, discovering problems through moni-
toring 1s an 1terative process. For example, as noted above,
it may be impractical to produce all possible monitoring
information at all times, either due to the amount of moni-
toring information that will be produced or due to the
negative ellect that such monitoring may have on overall
system performance. Therefore, monitoring often begins by
detecting some type of high-level irregularity. Once discov-
ered, the high-level irregularity may lead to more specific
monitoring of increasingly specific processing or function-
ality until the problem’s cause 1s discovered and corrected.
After a particular problem 1s corrected, monitoring often
returns back to the high-level system view.

In some systems, the 1terative process of moving back and
forth between high-level system momitoring and relatively
lower level monitoring of specific service processing or
functionality may require shutting services and/or servers
down and restarting them. Furthermore, certain monitoring
tools may require significant expertise to use, including
programming skills. For many, the level of skill required
may reduce the effectiveness of a particular momitoring tool
or prevent its use all together. Also, monitoring tools are
often specific to the environment in which they run, requir-

10

15

20

25

30

35

40

45

50

55

60

65

2

ing administrators of heterogeneous systems to use difierent
monitoring tools for each distinct system. Accordingly,
methods, systems, and computer program products are
desired for dynamically applying a function during any of
various processing steps that may occur in providing a
service to a client system.

"y

BRIEF SUMMARY OF THE INVENTION

The present invention extends to methods, systems and
computer products for dynamically executing one or more
functions at any of one or more processing steps that may
occur 1n providing a service to a client system. In one
embodiment, executing the one or more functions during
identified processing steps provides significant flexibility for
dynamically monitoring the operation of the service being
analyzed. By 1dentifying particular processing steps that are
executed during operation of the service, specific functions
may be designated for execution when the processing steps

occur. These specific functions are dynamically associated
with the processing steps so that the type and extent of
monitoring can be adjusted quickly to allow for rapid and
cilicient problem diagnosis.

As a processing step executes, a check 1s performed to
determine 1f an operation or action 1s associated with the
processing step. This may include evaluating whether an
associated operation should be performed before the pro-
cessing step or after the processing step. Then, for process-
ing steps with an associated operation, the operation 1is
applied 1n conjunction with the execution of the processing
step. Typically, the processing steps are related to processing
requests from clients systems that are directed to a service.
In these circumstances, request for the service 1s received, a
response to the request 1s generated, and the response 1s sent
to the client.

The response and request may be organized hierarchically
within a network message. One popular hierarchical orga-
nization uses eXtensible Markup Language (“XML”) for-
matted data, with network messages being based on Simple
Object Access Protocol (“SOAP”). Although binary data 1s
contrary to the XML standard, the invention may include
binary data within the hierarchical organization. For
example, 1t may be desirable to attach certain debugging or
diagnostic information to a request or response, and a binary
format may be a convenient representation for that infor-
mation.

Functions associated with processing steps may be pre-
defined or custom, depending on monitoring needs or wants.
Predefined functions are advantageous because certain
operations or actions are likely to be commonly used 1n
many monitoring scenarios and therefore predefined func-
tions may provide enhanced value. By allowing for custom
functions, individual monitoring circumstances may be
addressed 1n a meaningful way. Describing at least a portion
of the server system in terms of a lhierarchical organization
may add to the flexibility of custom functions and provide a
mechanism for writing monitoring functions that are usetul
across multiple operating platforms. Here again, an organi-
zation based on XML may be desirable given the popularity
and flexibility of the language.

I'ypical operations for functions may include a logging
function and a filtering function. In general, logging func-
tions write certain mformation to a log of some sort for
analysis. Filtering functions may be used to end processing
of a request and send a response to the requesting client.

US 7,024,662 B2

3

Among other things, logging and filtering may be useful 1n
monitoring error conditions that occur while processing a
client’s request.

Additional features and advantages of the mvention will
be set forth 1n the description which follows, and 1n part wall
be obvious from the description, or may be learned by the
practice of the mvention. The features and advantages of the
invention may be realized and obtained by means of the
instruments and combinations particularly pointed out 1n the
appended claims. These and other features of the present
invention will become more fully apparent from the follow-
ing description and appended claims, or may be learned by
the practice of the invention as set forth hereinaftter.

BRIEF DESCRIPTION OF THE DRAWINGS

In order to describe the manner 1n which the above-recited
and other advantages and features of the invention can be
obtained, a more particular description of the invention
briefly described above will be rendered by reference to
specific embodiments thereof which are illustrated 1n the
appended drawings. Understanding that these drawings
depict only typical embodiments of the invention and are not
therefore to be considered as limiting 1ts scope, the invention
will be described and explained with additional specificity
and detail through the use of the accompanying drawings 1n
which:

FIG. 1 1s a block diagram of an example server system
embodiment that operates 1n accordance with the present
imnvention;

FIG. 2A shows an example XML document correspond-
ing to the example XML schema of FIG. 2B;

FIG. 2B illustrates an example XML schema correspond-
ing to the example XML document of FIG. 2A;

FIG. 3A shows an example XML document correspond-
ing to the example xPath statement of FIG. 3B;

FIG. 3B illustrates an example xPath statement corre-
sponding to the example XML document of FIG. 3A;

FIG. 4A depicts the hierarchy of an example SOAP
message;

FIG. 4B shows the request portion of an overall example
hierarchy illustrated 1n FIG. 5;

FI1G. 4C shows the response portion of an overall example
hierarchy illustrated in FIG. 5;

FIG. 5 shows a more complete portion of a hierarchal
organization for message processing corresponding to the
example server system embodiment of FIG. 1;

FIG. 6 1llustrates an example organization for assigning
functions to processing steps in accordance with the present
invention;

FIGS. 7A-7B show a flowchart of a method for executing
one or more functions at any of one or ore processing steps
in accordance with the present imvention; and

FIG. 8 illustrates an exemplary system that provides a
suitable operating environment for the present invention.

DETAILED DESCRIPTION OF TH.
PREFERRED EMBODIMENTS

L1

The present invention extends to methods, systems, and
computer program products for applying one or more opera-
tions or actions during the processing that may occur in a
server providing one or more services. Through the 1denti-
fication of discrete processing steps that are executed while
a service operates, specilic operations may be executed
along with each processing step. These operations are
dynamically associated with the processing steps such that

10

15

20

25

30

35

40

45

50

55

60

65

4

as a processing step executes, a check 1s performed to
determine if any operations exists for the processing step.
For processing steps that include an operation, the operation
1s applied during execution of the processing step.

Embodiments within the scope of the present invention
may comprise one or more special purpose and/or one or
more general purpose computers including various com-
puter hardware, as discussed 1n greater detail below.
Embodiments within the scope of the present invention also
include computer-readable media for carrying or having
computer-executable instructions or data structures stored
thereon. Such computer-readable media can be any available
media that can be accessed by a general purpose or special
purpose computer. By way of example, and not limitation,
such computer-readable media can comprise physical stor-
age media such as RAM, ROM, EEPROM, CD-ROM or
other optical disc storage, magnetic disk storage or other
magnetic storage devices, or any other medium which can be
used to carry or store desired program code means in the
form of computer-executable mstructions or data structures
and which can be accessed by a general purpose or special
purpose computer. When information 1s transierred or pro-
vided over a network or another communications connection
(either hardwired, wireless, or a combination of hardwired
or wireless) to a computer, the computer properly views the
connection as a computer-readable medium. Thus, any such
connection 1s properly termed a computer-readable medium.
Combinations of the above should also be included within
the scope of computer-readable media. Computer-execut-
able instructions comprise, for example, instructions and
data which cause a general purpose computer, special pur-
pose computer, or special purpose processing device to
perform a certain function or group of functions.

FIG. 1 shows a block diagram of an example server
system that operates in accordance with the present mnven-
tion. The server system uses several distinct processing
layers 1n processing a request 101a from a client, including
a parse layer, a security layer, a cryptography layer and a
service layer. Each of these layers 1s divided into a request
processing component and a response processing Compo-
nent. There are corresponding response and request compo-
nents for each layer. Note, however, that the present inven-
tion 1s not necessarily limited to any particular process
layering or component division.

On the request 101a, an mmcoming request first passes
through parse component 120a. For example, parse compo-
nent 120a may be used to parse a request 101¢a that includes
XML data, such as the XML document 200A shown 1n FIG.
2A. By way of background, XML 1s a markup language that
provides for data typing and namespaces. For XML docu-
ment 200A, the default namespace 1s “x-schema:classSche-
ma.xml” 201A(1). This mnforms the parser to validate the
document against the schema “x-schema” at the URL
“classSchema.xml.”

FIG. 2B shows the entire schema for the document of
FIG. 2A. The top level of the schema 1s <Schema></
Schema> element pair 200B that contains the declaration of
the schema namespace and, 1n this case, the declaration of
the “datatypes” namespace as well. The first, “xmlns="“um:
schemas-microsoft-com:xml-data”,” 200B(1) indicates that
this XML document 1s an XML Schema. The second,
“xmlns:dt="urn:schemas-microsoft-com:datatypes™,” 2008
(2) allows for typing element and attribute content by using
a “dt” prefix on the type attribute within their ElementType
and AttributeType declarations.

“ElementType™ assigns a type and conditions to an ele-
ment, and what, 1 any, child elements it can contain;

US 7,024,662 B2

S

“AttnibuteType” assigns a type and conditions to an
attribute; “attribute” declares that a previously defined
attribute type can appear within the scope of the named
ElementType element; and “element” declares that a previ-
ously defined element type can appear within the scope of
the named FlementType element. The content of the schema
begins with the AttributeType and ElementType declarations
of the mnermost elements, namely:

<AttributeType name = ‘studentID’ dt:type = ‘string’ 220B(1);
required = ‘yes’/>

<ElementType name = ‘name’ content = ‘textOnly’/> 200B.1; and
<ElementType name = ‘GPA’ content = ‘textOnly’ 200B.2.

dt:type = “float’/>

The next Flementlype declaration 1s followed by its
attribute and child elements. When an element has attributes
or child elements, they are 1n 1ts ElementIype declaration.
They also are previously declared 1in their own ElementType
or AttributeType declaration. In particular,

<ElementType name = ‘student’ content = ‘mixed’ > 220B;
<attribute type = ‘studentID’/> 220B(1)';
<element type = ‘name’/> 220B.1";
<element type = ‘GPA’/> 220B.2'; and

</ElementType> 220B.

The process 1s continued throughout the rest of the schema
until every element and attribute has been declared:

<ElementType name = ‘class’ content = ‘eltOnly’> 201B;
<element type = ‘student’/> ;
</ElementType> 201B.

Notice that the reference numbers for the XML document
shown 1 FIG. 2A correspond to the schema declarations 1n

FIG. 2B. Specifically,

<class xmlns = “x-schema:classSchema.xml*> 201A;
<student studentID = 13429 220A;
<name>James Smith</name: 220A.1;
<(GPA>3.8</GPA> 220A.2;
</student> 220A;
</class> 201A.

The example XML document 300A i FIG. 3A will be
used in conjunction with the xPath statement 300B shown in
FIG. 3B. In general, xPath uses abstract document relation-
ships 1n 1dentifying parts of a document. For example, the
xPath statement 300B locates Smith’s numbers within the
XML document 300A. Similar to FIGS. 2A and 2B, notice
that the reference numbers for the XML document 300A of
FIG. 3A correspond to xPath statement 300B of FIG. 3B.

Specifically, the *“/descendant::contact” portion 301B of
the xPath statement 300B maps to descendants of the
<contact> </contact> tag pair 301 A. The “[name="Smith]”
portion 320B selects the “<name>Smith</name>" 320A
contact entry, and the */child::numbers” portion 340B

selects the <numbers></numbers>children of contact 301 A.
“/chuld::*” 1dentifies the specific children (i.e.,

“<home>801-555-1234</home>"" 340A.1 and “<cell>801-

5

10

15

20

25

30

35

40

45

50

55

60

65

6

555-4321</cell>" 340A.2) that are of interest. (The star or
asterisk 1s a wildcard indicating that all children are of
interest.)

Referring back to FIG. 1, parse component 120a includes
before functions 122a that are executed prior to parse
component 120a and after functions 124q that are executed
alter parse component 120a. Path 120¢ shows that process-
ing may proceed to parse 12056 on the response side follow-
ing the operation of parse component 120a. Proceeding to
parse 1205 tollowing parse 120a may be the result of a parse
error or may be dictated by before functions 122a or after
functions 124a, in which case 1t makes little sense to
continue on to security 130a. For example, after at least
some parsing, aiter functions 124a may be able to determine
that some problem exists with the request 101a. After
functions 124a may determine that request 101a 1s part of a
denial of service attack or that request 101a includes content
or originates from a source that 1s blocked for some reason,
such as mappropriate material or spam.

Parse component 120a may indicate that processing
should continue with security component 130a. Security
component 130a determines the i1dentity associated with the
request 101a. In one embodiment, this mnvolves determining
an application identifier, a user i1dentifier, and a platform
identifier for request 101a, because the service layer pro-
vides storage and access to data that 1s 1dentity specific. For
example, a user may access the service layer for email,
calendar 1tems, contacts, etc., using both a PC and a hand-
held device. The security layer, and security component
130a, determines the appropriate i1dentity so that data and
operations are appropriate to the device being used for
access. Similarly, different users may be allowed different
access to the same data. For example, an owner might be
able to add, delete, and modity data, whereas a delegate may
only have read privileges. The type of access permitted 1s
controlled by role list database that contains various rules for
determining access rights. Nevertheless, as noted the present
invention does not necessarily require a security layer, and
if one 1s present, 1t need not operate as security component
130a. A failure 1n the security layer may result in proceeding
along path 130¢ or assigning default access privileges.

It may seem somewhat redundant to allow for both after
functions 124a 1n parse component 120aq and before func-
tions 132a 1n security component 130a. However, because
processing may proceed along path 120c¢, functions 132a
will not necessarily be invoked for a request 101a. Further,
associating functions closely with a particular layer provides
for greater clarity as to when the function will be executed.
A similar analysis holds true for after functions 1346 of
security component 1305 and before functions 122b of parse
component 1205. It should be emphasized, nevertheless, that
the present invention does not necessarily require the spe-
cific association of functions with processing steps that 1s
shown 1n FIG. 1. Therefore, the assignment of functions to
processing steps should be interpreted broadly to cover a
wide range of function associations. From security compo-
nent 130a, processing proceeds to either security component
13056 or to cryptography component 140aq.

Similar to other components, cryptography component
140a 1includes before functions 142aq and after functions
144a. Cryptography component 140q 1s responsible for any
decryption that 1s needed for request 101a. In one embodi-
ment, request 101a 1s a Simple Object Access Protocol
(“SOAP”) request, conforming to the hierarchy 400A 1llus-
trated in FIG. 4A. Basically, a SOAP message includes an
envelope 420A with a header 420A.1 and a body 420A.2,
where the envelope 420A 1s at the root level 401A.

US 7,024,662 B2

7

FIG. 4B shows the request portion and FIG. 4C shows the
response portion ol an overall example hierarchy 1llustrated
in FIG. 5. Here too, references have been selected so that
corresponding portions are FIGS. 4A, 4B, and 4C are
similarly numbered. The example hierarchy illustrated 1n
FIG. 5§ will be described 1n greater detail below. It should be
noted that 1n FIG. 4B, envelope 420B 1s at the request level
401B (rather than the root level) and that the request level
401B includes additional information 440B. Envelope 4208
continues to include header 420B.1 and body 420B.2. Like-
wise, 1n FIG. 4C, envelope 420C 1s at the response level
401C (rather than the root level) and the response level 401C
includes additional information 440C. Envelope 420C con-
tinues to include header 420C.1 and body 420C.2.

Adding the request level 401B and the response level
401C removes ambiguity from the single root level 401A
that 1s 1llustrated 1n FIG. 4A. As a result, 1t 1s clear whether
a locator statement such as an xPath statement references a
request 101a or response 1015 (both of FIG. 1), without the
need to determine the processing context ol the xPath
statement. The additional information 440B and 440C may
be used to store information that may be helpful 1n moni-
toring a service. The additional information may comprise
binary data, including a data structure or data object. For
example, additional information 440C may contain a
detailed error chain. The present mmvention 1s not limited to
any particular type or format of additional information.

Returning now to FIG. 1, the body of a SOAP request 1s
encrypted, so cryptography component 140a performs the
necessary decryption. Those of skill in the art will recognize
that there 1s not much value to parsing an encrypted SOAP
body. Therefore, parse 120aq may be limited 1nitially to those
portions ol request 101a that are not encrypted. Then,
tollowing cryptography 140q, parse component 120a may
continue with the decrypted portions of request 101a. At this
point, 1t 1s worth noting that the tlow from layer to layer need
not be strictly sequential to fall within the scope of the
present invention. A cryptography failure will result in
proceeding with processing along path 140c.

Following cryptography 140a, processing proceeds to
service 150a and before functions 152a and after functions
154a. Service 150a represents the processing that carries out
the methods that may be included with request 101a. For
example, request 101a may attempt to query, msert, replace,
update or delete data maintained by service 150q, such as
email, calendar items, contacts, spreadsheet, word process-
ing documents, or the like. Although described as a data
store that 1s manipulated with XML, the present invention 1s
not necessarily limited to any particular type or service, or
any particular access mechanism for 1dentity-specific data.

Turning next to the processing for response 1015, service
component 1505 prepares an appropriate response to the
methods that may be included with request 101a. For
example a response may include data that 1s queried or
indicate whether an insert, update, replace, or delete opera-
tion was successiul or failed. Failures may include error
codes of some sort, with more substantial debugging or error
information 1n the response’s additional information 440C
(FIG. 4C). Service component 1505 includes before func-
tions 1525 and aiter functions 1545. Notice that the ordering
of the before functions and after functions on the response
side 1s opposite the ordering on the request side because the
flow from layer to layer 1s reversed.

Cryptography component 1406 follows service compo-
nent 15056 or path 140¢ from cryptography 140a. As 1ndi-
cated earlier, the body of a SOAP message 1s encrypted. For
response 1015, the cryptography layer, and cryptography

10

15

20

25

30

35

40

45

50

55

60

65

8

component 1405 1n particular, performs the encryption. Note
that service component 1505 and cryptography component
1405 essentially perform analogous or complementary func-
tionality for the corresponding service component 150q and
cryptography component 140a of the respective layers.

The present invention, however, does not necessary
require analogous or complementary functionality imn each
layer. For example, there 1s no analogous or complementary
functionality provided by security 1306. Nevertheless, 1t
may still be desirable to allow for before functions 1326 and
alter functions 1345, whether processing flowed from cryp-
tography component 1406 or from security component 130a
through processing path 130c.

Like security component 13056, there 1s no analogous or
complementary function of parse component 120a to be
performed by parse component 1205. Still, before functions
12256 and after functions 1245 may provide desirable func-
tionality in some circumstances. Both parse component
1206 and security component 13056 may simply pass what-
ever 1s present 1 response 1015 to the next level.

At this stage, it may be worth 1dentifying some types of
functions that may be applicable to each processing layer.
Two examples of commonly applicable functions are log-
ging and filtering. Logging 1s generally associated with
monitoring, although not exclusively so. For performance,
debugging, identifying hardware problems, detecting system
attacks, and the like, logging may provide valuable infor-
mation for each layer (both prior to and following execution
of the layer). Filtering relates to terminating further process-
ing, usually with respect to a request. Filtering might include
detecting a denial of service attack or other type of attack,
preventing access to certain content, such as pornographic
material, stopping spam or other unsolicited 1nteraction, or
the like.

FIG. 5 shows a more complete portion of a hierarchal
organization for message processing corresponding to the
example server system embodiment of FIG. 1. Server 501
identifies at least one server that 1s responsible for providing
one or more services. Note that server 501 provides services
for messages directed to mylnbox (540), messages directed
to myCalendar (560), and messages directed to other ser-
vices. In some circumstances 1t may be desirable for a single
server to provide multiple services whereas 1n other circum-
stances 1t may be desirable for a server to provide only one
service. In addition, a single server may be made up of
multiple computers and multiple servers may be used to
provide a single service. The present mvention does not
require any particular hardware configurations and each of
the foregoing examples, including combinations thereof, 1s
an example of a server system and should be included within
the scope of the present mnvention.

Server 501 includes various status indicators 520, includ-
ing alarms 520.1 and timers 520.2. These status indicators
may be used by any of the processing layers shown in FIG.
1. Within myInbox 340, service configuration 520.3 and
system document 520.4 contain configuration information,
security information, identity information, and other data
that may be necessary or useful a service. As noted earlier,
for a particular message, such as message 540.3, request
540.3.1, with envelope 540.3.1.1, header 540.3.1.1.1, body
540.3.1.1.2, and additional information 540.3.1.2, and
response 540.3.2, with envelope 540.3.2.1, header
540.3.2.1.1, body 540.3.2.1.2, and additional information
540.3.2.2, correspond to FIGS. 4B and 4C, respectively.
FIG. 5 1s one example of describing at least a portion of a
server system in accordance with an XML schema. How-
ever, 1t should be emphasized that many other hierarchical

US 7,024,662 B2

9

arrangements are possible and that the present invention 1s
not limited to any particular description.

FI1G. 6 1llustrates an action association list 600 for assign-
ing functions to processing steps in accordance with the
present invention. Action association list 600 identifies a
layer 1 620 processing step, a layer 2 640 processing step,
and other layer processing steps. Layer 1 620 processing
step specifies whether a particular action should be executed
betore 620.1 layer 1 or after 620.2 layer 1. Prior to execution
of layer 1, 1f xPathA 620.1.1 1s present in the XML hierarchy
500 shown 1 FIG. 5, actionA 1s applied. Similarly, after
execution of layer 1, 11 xPathB 620.2.1 1s present in the XML
hierarchy 500, actionB 1s applied, and 11 xPathC 620.2.2 1s
present 1n the XML hierarchy 3500, actionC 1s applied.
Depending on how actionb i1s defined, 1t 1s possible for
xPathC to either be 1gnored or processed. Although no
details are shown, before 640.1 and after 640.2 of layer 2
640 operate 1n an analogous fashion.

The present invention also may be described in terms of
methods comprising functional steps and/or non-functional
acts. The following 1s a description of acts and steps that
may be performed 1n practicing the present invention. Usu-
ally, functional steps describe the invention in terms of
results that are accomplished, whereas non-functional acts
describe more specific actions for achieving a particular
result. Although the functional steps and non-functional acts
may be described or claimed 1n a particular order, the present
invention 1s not necessarily limited to any particular order-
ing or combination of the acts and/or steps.

FIGS. 7A and 7B are a flow diagram that describe various
acts and steps for methods according to the present mnven-
tion. A step for i1dentitying (710) one or more functional
processing blocks where one or more operations or actions
may be applied to one or more requests directed to one or
more services may include acts of: defining (712) one or
more processing steps within a server system that provides
one or more services; defining (714) one or more functions
that may be executed at any of the one or more processing,
steps; and describing (716) at least a portion of the server
system 1n accordance with an XML schema. An act of
defining (714) one or more functions should be interpreted
broadly to include selecting a predefined function or creating
a new lfunction.

It should be noted that the terms such as “service,”
“processing step,” “functional processing block,” “opera-
tion,”*“function,” and “action” should be interpreted broadly
to encompass a wide variety of computer processing. Often,
the term “service” 1s used as a generic reference for some
type ol computer resource. For example, an embodiment of
the present invention 1s described in the context of an overall
service that provides access to 1dentity-based data, with one
or more individual services within the overall service being
dedicated to particular types of data, such as email, contacts,
calendar, tasks, documents, etc. As used in this application,
therefore, “service” 1s not necessarily limited to any par-
ticular type of computing resource, and any service specifi-
cally 1dentified should be interpreted merely as an example.

Similarly, the terms “processing step,” “functional pro-
cessing block,” “operation,” “function,” and “action” are
often used as generic references for some division or group-
ing of one or more computer mstructions that accomplish a
particular task. With reference to the service that provides
access to 1dentity-based data, “processing steps” and “func-
tional blocks” generally are associated with the parsing,
security, cryptography, and service operations, whereas
“operations,” “functions,” and “actions” generally are asso-
ciated with logging and filtering. Nevertheless, each of the

10

15

20

25

30

35

40

45

50

55

60

65

10

foregoing terms 1s used throughout the application 1n a
generic sense. The general associations identified above,
therefore, should not necessarily be interpreted as limiting
any of these terms to the specific examples used merely 1n
describing an embodiment of the present invention. As such,
“processing step,” “functional processing block,” “opera-
tion,” “function,” and *““action” should not be limited to any
particular division or grouping of computer instructions, and
any more specific description should be understood simply
to represent an example.

A step for dynamically associating (720) at least one
operation or action for at least one of the one or more
functional processing blocks may include acts of: assigning
(722) at least one function to at least one of one or more
processing steps; and an act of evaluating (724) whether the
at least one dynamically assigned function should be
executed either before or after the at least one of the one or
more processing steps. A step for checking (730) whether or
not any action has been associated with a particular func-
tional processing block during execution of the particular
functional processing block may include acts of: receiving
(732) a request for one or more services Irom a client
system; and evaluating (734) whether or not any function
has been assigned to a processing step.

A step for applying (740) one or more associated opera-
tions or actions during execution of any function processing
block with one or more associated actions may 1nclude acts
of: executing (742) at least one assigned function at each
processing step that has at least one assigned function; and
terminating (744) any Ifurther processing on a request
received from a client system. A step for responding (750)
to a client system based on a request for one or more services
from a client system may include acts of: generating (752)
a response; and sending (754) the response to the client
system.

Having now described the principles of the present inven-
tion 1n detail, 1t 1s noted that the precise hardware configu-
ration that implements the above-described features 1s not
important to the present invention. For example, it 1s not
important to the principles of the present invention where
the various components of FIG. 1 are implemented.

Nevertheless, for the sake of completeness, FIG. 8 and the
following discussion are intended to provide a brief, general
description of a suitable computing environment in which
the invention may be implemented. Although not required,
the mvention will be described in the general context of
computer-executable instructions, such as program modules,
being executed by computers i network environments.
Generally, program modules include routines, programs,
objects, components, data structures, etc. that perform par-
ticular tasks or implement particular abstract data types.
Computer-executable 1nstructions, associated data struc-
tures, and program modules represent examples of the
program code means for executing steps of the methods
disclosed herein. The particular sequence of such executable
instructions or associated data structures represents
examples of corresponding acts for implementing the func-
tions described 1n such steps.

Those skilled 1n the art will appreciate that the imnvention
may be practiced 1n network computing environments with
many types of computer system configurations, mncluding
personal computers, hand-held devices, multi-processor sys-
tems, microprocessor-based or programmable consumer
clectronics, network PCs, minicomputers, mainirame com-
puters, and the like. The mvention may also be practiced in
distributed computing environments where tasks are per-
formed by local and remote processing devices that are

US 7,024,662 B2

11

linked (either by hardwired links, wireless links, or by a
combination of hardwired or wireless links) through a
communications network. In a distributed computing envi-
ronment, program modules may be located 1n both local and
remote memory storage devices.

With reference to FIG. 8, an exemplary system for imple-
menting the invention includes a general purpose computing,
device 1 the form of a conventional computer 820, includ-
ing a processing unit 821, a system memory 822, and a
system bus 823 that couples various system components
including the system memory 822 to the processing unit 821.
The system bus 823 may be any of several types of bus
structures including a memory bus or memory controller, a
peripheral bus, and a local bus using any of a variety of bus
architectures. The system memory includes read only
memory (ROM) 824 and random access memory (RAM)
825. A basic input/output system (BIOS) 826, containing the
basic routines that help transfer mformation between ele-
ments within the computer 820, such as during start-up, may
be stored 1n ROM 824.

The computer 820 may also include a magnetic hard disk
drive 827 for reading from and writing to a magnetic hard
disk 839, a magnetic disk drive 828 for reading from or
writing to a removable magnetic disk 829, and an optical
disc drive 830 for reading from or writing to removable
optical disc 831 such as a CD-ROM or other optical media.
The magnetic hard disk drive 827, magnetic disk drive 828,
and optical disc drive 830 are connected to the system bus
823 by a hard disk drnive interface 832, a magnetic disk
drive-interface 833, and an optical drive interface 834,
respectively. The drives and their associated computer-
readable media provide nonvolatile storage of computer-
executable instructions, data structures, program modules
and other data for the computer 820. Although the exem-
plary environment described herein employs a magnetic
hard disk 839, a removable magnetic disk 829 and a remov-
able optical disc 831, other types of computer readable
media for storing data can be used, including magnetic
cassettes, flash memory cards, digital versatile discs, Ber-
noulli cartridges, RAMs, ROMs, and the like.

Program code means comprising one or more program
modules may be stored on the hard disk 839, magnetic disk
829, optical disc 831, ROM 824 or RAM 825, including an
operating system 835, one or more application programs
836, other program modules 837, and program data 838. A
user may enter commands and information into the com-
puter 820 through keyboard 840, pointing device 842, or
other input devices (not shown), such as a microphone, joy
stick, game pad, satellite dish, scanner, or the like. These and
other mput devices are olten connected to the processing
unit 821 through a serial port interface 846 coupled to
system bus 823. Alternatively, the mput devices may be
connected by other interfaces, such as a parallel port, a game
port or a umversal serial bus (USB). A monitor 847 or
another display device 1s also connected to system bus 823
via an interface, such as video adapter 848. In addition to the
monitor, personal computers typically include other periph-
eral output devices (not shown), such as speakers and
printers.

The computer 820 may operate in a networked environ-
ment using logical connections to one or more remote
computers, such as remote computers 849a and 8495.
Remote computers 849a and 8495 may each be another
personal computer, a server, a router, a network PC, a peer
device or other common network node, and typically include
many or all of the elements described above relative to the
computer 820, although only memory storage devices 850a

10

15

20

25

30

35

40

45

50

55

60

65

12

and 85056 and their associated application programs 836q
and 8366 have been illustrated n FIG. 1. The logical
connections depicted 1n FIG. 1 iclude a local area network
(LAN) 851 and a wide area network (WAN) 852 that are
presented here by way of example and not limitation. Such
networking environments are commonplace in oflice-wide
or enterprise-wide computer networks, intranets and the
Internet.

When used in a LAN networking environment, the com-
puter 820 1s connected to the local network 831 through a
network interface or adapter 853. When used in a WAN
networking environment, the computer 820 may include a
modem 854, a wireless link, or other means for establishing
communications over the wide area network 852, such as the
Internet. The modem 834, which may be internal or external,
1s connected to the system bus 823 wvia the senal port
interface 846. In a networked environment, program mod-
ules depicted relative to the computer 820, or portions
thereol, may be stored 1in the remote memory storage device.
It will be appreciated that the network connections shown
are exemplary and other means of establishing communica-
tions over wide area network 852 may be used.

The present invention may be embodied 1n other specific
forms without departing from 1ts spirit or essential charac-
teristics. The described embodiments are to be considered in
all respects only as 1llustrative and not restrictive. The scope
of the invention 1s, therefore, indicated by the appended
claims rather than by the foregoing description. All changes
which come within the meaning and range of equivalency of
the claims are to be embraced within their scope.

What 1s claimed 1s:

1. In a server system providing one or more services, a
method of dynamically executing one or more filtering
functions at any ol one or more processing steps that may
occur 1n providing the one or more services to one or more
client systems, the method comprising:

an act of defining one or more processing steps that are

performed by a server system 1n providing one or more
services 1n response to a request, the one or more
processing steps being defined within a plurality of
processing layers of the server, the plurality of process-
ing layers including at least a parsing layer;

an act of dynamically assigning at least one filtering

function to at least one of the one or more processing,
steps, wherein the filtering function 1s configured to
terminate further processing based on content in the
request;

at each processing step that 1s processed, an act of

dynamically evaluating whether or not any filtering
function has been assigned; and

at each processing step that 1s processed and has at least

one assigned filtering function, an act of executing the
at least one assigned filtering function by terminating
further processing when the request contains particular
content.

2. A method as recited 1n claim 1, further comprising an
act of evaluating whether the at least one dynamically
assigned filtering function should be executed either belore
or after the at least one of the one or more processing steps.

3. A method as recited 1n claim 1, wherein the one or more
processing steps enable processing requests from client
systems, the method further comprising:

an act of recerving the request for the one or more services

from the client system:;

based on the request for to one or more services, an act of

generating a response; and

an act of sending the response to the client system.

US 7,024,662 B2

13

4. A method as recited 1in claim 3, wherein the request and
the response comprise data organized hierarchically within
a network message.

5. A method as recited in claim 4, wherein the hierarchi-
cally organized data comprises extensible Markup Language
(“XML”) formatted data, and wherein the network message
comprises a Simple Object Access Protocol (“SOAP”) net-
work message.

6. A method as recited 1n claim 5, wherein the hierarchi-
cally organized data comprises binary data.

7. A method as recited 1n claim 1, further comprising an
act of defining one or more {filtering functions that may be
executed at any of the one or more defined processing steps.

8. A method as recited in claim 1, wherein the server
system comprises an eXtensible Markup Language
(“XML”) data repository providing access to XML data
based on identity information that 1s received with the
request from a client system for the one or more services
provided by the server system.

9. A method as recited in claim 1, wherein the method
turther comprises an act of describing at least a portion of
the server system 1n accordance wit an eXtensible Markup
Language (“XML”) schema.

10. A method as recited 1n claim 9, wherein the plurality
of layers further comprise a security layer, a cryptography
layer, and a service layer.

11. A method as recited in claim 10, wherein the at least
one {iltering function comprises terminating further process-
ing when the request contains at least one of spam, porno-
graphic material, or unsolicited content.

12. A method as recited in claim 1, wherein executing the
assigned function detects filtering condition in a request
received from a client system, the method further compris-
ng:

an act of terminating any further processing on the

request; and

an act ol generating a response that includes information

about the filtering condition.

13. A method as recited in claim 1, further comprising an
act of dynamically unassigning the at least one filtering
function from the at least one of the one or more processing
steps.

14. In a saver system for providing one or more services
to one or more client systems, wherein the server system
comprises one or more functional processing blocks, a
method of dynamically applying one or more filtering
actions while executing any of the one or more functional
processing blocks, the method comprising:

within a server system providing one or more services 1n
response to a client request, a step for identifying one
or more functional processing blocks where one or
more filtering actions may be applied to one or more
requests directed to the one or more services, wherein
the functional processing blocks are 1dentified within a
plurality of processing layers of the server, the plurality
of processing layers including at least a parsing layer;

for at least one of the one or more functional processing
blocks, a step for dynamically associating at least one
filtering action, the filtering action configured to termi-
nate further processing based on content 1n the request;

a step for checking whether or not any filtering action has
been associated with a particular functional processing
block during execution of the particular functional
processing block; and

during execution of any functional processing block with
one or more associated actions, a step for applying the

5

10

15

20

25

30

35

40

45

50

55

60

65

14

one or more associated filtering actions by terminating,
further processing when the request contains particular
content.

15. A method as recited 1n claim 14, wherein the step for
dynamically associating at least one filtering action com-
prises an act of evaluating whether the at least one dynami-
cally associated filtering action should be applied before or
alter the at least one of the one or more functional processing
blocks.

16. A method as recited 1n claim 14, further comprising a
step for responding to a client system based on the request
for the one or more services from the client system.

17. A method as recited 1n claim 14, wherein the request
and a response to the client system comprise data organized
hierarchically within a network message, the hierarchically
organized data comprising eXtensible Markup Language
(“XML”) formatted data, and the network message com-
prising a Simple Object Access Protocol (“SOAP”) network
message.

18. A method as recited 1n claim 14, wherein the sewer
system comprises data that can be manipulated wit eXten-
sible Markup Language (“XML”"), and wherein access to the
data 1s governed by the identity of the requestor.

19. A method as recited 1n claim 14, wherein the server
system comprises a plurality of processing layers, and
wherein the plurality of layers comprise at least one of a
security layer, a cryptography layer, and a service layer, and
wherein the at least one filtering action comprises terminat-
ing further processing when the request contains at least one
of spam, pornographic material, or unsolicited content.

20. A method as recited 1n claim 14, further comprising a
step for dynamically disassociating the at least one filtering
action from the at least one of the one or more functional
processing blocks.

21. A computer program product for use in a server
system providing one or more services, the computer pro-
gram product implementing a method of dynamically
executing one or more filtering functions at any of one or
more processing steps that may occur 1 providing the one
Or more services to one or more client systems, wherein the
computer program product comprises one or more coms-
puter-readable media candying computer executable 1nstruc-
tions for implementing the method, wherein the one or more
computer-readable media are physical storage media, and
wherein the method comprises acts of:

defining one or more processing steps that are performed

by a server system in providing one or more services in
response to a request, the one or more processing steps
being defined within a plurality of processing layers of
the server, the plurality of processing layers including
at least a parsing layer;

dynamically assigning at least one filtering function to at

least one of the one or more processing steps, wherein
the filtering function 1s configured to terminate further
processing based on content 1n the request;

at each processing step that 1s processed, dynamically

evaluating whether or not any filtering function has
been assigned; and

at each processing step that 1s processed and has at least

one assigned filtering function, executing the at least
one assigned function by terminating further process-
ing when the request contains particular content.

22. A computer program product as recited in claim 21,
the method further comprising an act of evaluating whether
the at least one dynamically assigned filtering function
should be executed either before or after the at least one of
the one or more processing steps.

US 7,024,662 B2

15

23. A computer program product as recited 1n claim 21,
wherein the one or more processing steps enable processing
requests from client systems, the method further comprising
acts of:

receiving the request for the one or more services from the

client system;

based on the request for the one or more services, gen-

erating a response; and

sending the response to the client system.

24. A computer program product as recited in claim 23,
wherein the request and the response comprise data orga-
nized hierarchically within a network message.

25. A computer program product as recited in claim 24,
wherein the hierarchically organized data comprises eXten-
sible Markup Language (“XML”) formatted data, and
wherein the network message comprises a Simple Object
Access Protocol (“SOAP”) network message.

26. A computer program product as recited in claim 21,
wherein the server system comprises an eXtensible Markup
Language (“XML”) data repository providing access to
XML data based on identity information that 1s receirved
with the request from a client system for the one or more
services provided by the server system.

27. A computer program product as recited in claim 21,
wherein the plurality of layers further comprise at least a
security layer, a cryptography layer, and a service layer.

28. A computer program product as recited 1n claim 21,
wherein the at least one function comprises terminating
turther processing when the request contains at least one of
spam, pornographic material, or unsolicited content.

29. A computer program product as recited in claim 21,
wherein executing the assigned function detects filtering
condition 1n the request received from a client system, the
method further comprising acts of:

terminating any further processing on the request; and

generating a response that includes information about the

filtering condition.

30. A computer program product as recited in claim 21,
the method further comprising an act of dynamically unas-
signing the at least one filtering function from the at least
one of the one or more processing steps.

31. A computer program product for use 1 a server
system that provides one or more services to one or more
client systems, wherein the server system comprises one or
more functional processing blocks, the computer program
product implementing a method of dynamically applying
one or more liltering actions while executing any of the one
or more functional processing blocks, wherein the computer
program product comprising one or more computer-readable
media crying computer executable instructions for imple-
menting the method, wherein the one or more computer-
readable media are physical storage media, and wherein the
method comprises steps for:

within a server system providing one or more services,

identifying one or more functional processing blocks
where one or more filtering actions may be applied to
one or more requests directed to the one or more
services, wherein the functional processing blocks are
identified within a plurality of processing layers of the

10

15

20

25

30

35

40

45

50

55

16

server, the plurality of processing layers including at
least a parsing layer, the filtering action configured to
terminate further processing based on content in the
one or more requests;

for at least one of the one or more functional processing

blocks, dynamically associating at least one filtering
action;

checking whether or not any filtering action has been

associated with a particular functional processing block
during execution of the particular functional processing
block; and

during execution of any functional processing block with

one or more associated actions, applying the one or
more associated filtering actions by terminating further
processing when the one or more requests contains
particular content.

32. A computer program product as recited 1n claim 31,
wherein the step for dynamically associating at least one
filtering action comprises an act of evaluating whether the at
least one dynamically associated filtering action should be
applied before or after the at least one of the one or more
functional processing blocks.

33. A computer program product as recited 1n claim 31,
wherein the request and a response to the client system
comprise data organized hierarchically within a network
message, the hierarchically organized data comprising
eXtensible Markup Language (“XML”’) formatted data, and
the network message comprising a Simple Object Access
Protocol (“SOAP”) network message.

34. A computer program product as recited 1n claim 31,
wherein the sever system comprises data that can be
mampulated with extensible Markup Language (“XML”),
and wherein access to the data 1s governed by the identity of
the requestor.

35. A computer program product as recited 1n claim 31,
wherein the server system comprises a plurality of process-
ing layers, and wherein the plurality of layers comprise at
least one of a security layer, a cryptography layer, and a
service layer, and wherein the at least one filtering action
comprises terminating further processing when a request
contains at least one of spam, pornographic material, or
unsolicited contend.

36. A computer program product as recited in claim 31,
the method further comprising a step for dynamically dis-
associating the at least one filtering action from the at least
one of the one or more functional processing blocks.

37. A method as recited 1n claim 1, wherein the parsing
layer comprises means for determining that there are errors
with the request.

38. A method as recited 1n claim 1, wherein the at least one
filtering function, which 1s associated with at least one of the
plurality of layers 1s redundant with another filtering func-
tion associated with a diflerent one of the plurality of layers.

39. A method as recited 1n claim 1, wherein the at least one
filtering function 1s predefined.

40. A method as recited 1n claim 1, wherein the at least one

filtering 1s a custom function.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. 0 7,024,662 B2 Page 1 of 2
APPLICATION NO. : 10/062045

DATED . April 4, 2006

INVENTOR(S) . Ferhan Elvanoglu et al.

It Is certified that error appears in the above-identified patent and that said Letters Patent i1s hereby corrected as shown below:

On the title page, item (56), under ~“Other Publications™, m column 2, line 4, delete “C/C++Users™ and
insert -- C/C++ Users --, therefor.

On the title page, item (56), under ~“Other Publications™, in column 2, line 3, delete “Wang™ and insert
-- Wong --, therefor.

On the title page, item (37), under “Abstract”, in column 2, line 4, delete “actions™ and insert
-- Actions --, therefor.

On page 2, item (56), under “Other Publications™, in column 1, line 2, delete “1ss25 essentials™ and
insert -- 15525 essentials --, theretor.

On page 2, item (56), under “Other Publications™, in column 1, line 6, delete “2001:” and insert
-- 20013 --, theretor.

In column 9, line 15, delete “actionb” and insert -- actionB --, theretor.

In column 9, line(s) 4546, delete ““operation,”“function,”” and 1nsert -- “operation,” “function,” --,
therefor.

In column 12, line 65, in Claim 3, after “request for” delete “to” and insert -- the --, therefor.
In column 13, line 5, m Claim 3. delete “extensible” and insert -- eXtensible --, therefor.

In column 13, Iine 22, m Claim 9, delete “wit™ and insert -- with --, therefor.

In column 13, Iine 44, m Claim 14, delete “saver” and 1nsert -- server --, therefor.

In column 14, line 20, in Claim 18, delete “sewer™ and insert -- server --, theretor.

In column 14, line 21, in Claim 18, delete “wit” and insert -- with --, therefor.

In column 14, line 42, m Claim 21, delete “candying™ and insert -- carrying --, therefor.

In column 15, line 32, in Claim 29, after ““detects™ insert -- a --.

In column 135, line 50, in Claim 31, delete “crying” and insert -- carrying --, therefor.

CERTIFICATE OF CORRECTION (continued) Page 2 of 2
U.S. Pat. No. 7,024,662 B2

In column 16, line 31, m Claim 34, delete “sever” and insert -- server --, theretor.
In column 16, line 32, in Claim 34, delete “extensible” and insert -- eXtensible --, therefor.
In column 16, line 42, m Claim 35, delete “contend™ and insert -- content --, theretfor.

In column 16, line 57, m Claim 40, after “filtering™” insert -- function --.

Signed and Sealed this

Thirtieth Day of March, 2010

Lo ST s

David J. Kappos
Director of the United States Patent and Trademark Office

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

