12 United States Patent

Hinton et al.

US007020307B2

(10) Patent No.: US 7,020,307 B2
45) Date of Patent: Mar. 28, 2006

(54) ROCK FRAGMENTATION ANALYSIS

(75)

(73)
(%)

(21)

(22)

(65)

(1)
(52)

(58)

(56)

EP

SYSTEM

Inventors: Eric Herbert Hinton, Lively (CA);
Mario Paventi, Sudbury (CA); Peter
Saturley, Ottawa (CA); Rodney David
Hale, St. John’s (CA); George K. L.
Mann, St. John’s (CA)

Assignee: Inco Limited, Toronto (CA)

Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 1534(b) by 762 days.

Appl. No.: 10/077,101

Filed: Feb. 135, 2002

Prior Publication Data

US 2003/0156739 Al Aug. 21, 2003

Int. CIL.

GO6K 9/00 (2006.01)

US.CL ..., 382/109; 382/181; 382/29%;
356/241.1

Field of Classification Search 382/109,

382/181, 298, 274, 281; 356/241.1;, 73/152.01;

See application file

348/85
for complete search history.

References Cited

U.S. PATENT DOCUMENTS

3,922,206 A * 11/1975 Thackray 205/120

4,868,883 A * 9/1989 Chenccovvvvvvenninnnn.n.. 382/109

4,899,277 A * 2/1990 Iizuka et al. 702/6

4918,739 A * 4/1990 Lorente et al. 382/109

5,692,029 A * 11/1997 Husseiny et al. 378/88

5,844,800 A 12/1998 Brandt et al. 364/468.03
(Continued)

FOREIGN PA

0379017

ENT DOCUMENTS
1/1990

CAMERA

0 TOP | & [BOTIOM

ﬁ ENCLOSURE /ﬁ(
LIGHT LIGHT
16/;'{* \

OTHER PUBLICATTIONS

Nyberg L. et al., “lTecchnological and Methodological
Advances 1n Measurement”, vol. 3—pp. 293-302; 1983.

(Continued)

Primary Examiner—Barry Choobin
(74) Attorney, Agent, or Firm—Edward A. Steen

(57) ABSTRACT

A rock fragmentation analysis system 1s provided for ana-
lyzing blasted rock (or other fragmented particles) to assess
quality of a blast for eflicient processing of subsequent
operations 1n a mine, a quarry, etc. The system includes a
hardware system and an i1mage processing system. The
hardware system includes a camera and a lighting system.
The lighting system illuminates an area of the mine, quarry,
etc. where a load haul dump (LHD) vehicle passes through.
Once the LHD vehicle passes through the illuminated area,
the camera provides video signals of scoop-top view 1mages
of the LHD vehicle to the image processing system via
known communication means, such as hard-wired and wire-
less. The 1image processing system receives the video sig-
nals, captures the scoop-top view i1mages, evaluates the
images for subsequent fragmentation analysis, and performs
the rock fragmentation analysis. The 1mage processing sys-
tem performs these functions using several software mod-
ules. Two such software modules are the Fragmentation
Scanning (FragScan™) and the Fragmentation Analysis
(FragAnalysis™) software modules. The FragScan software
module scans the video signals until 1t captures a valid image
for analysis by the FragAnalysis software module. Once the
FragScan triggers on the image, a raw 1mage and other
details corresponding to the captured image are bullered for
subsequent rock fragmentation analysis by the FragAnalysis
software module. The rock {ragmentation analysis 1s
designed to estimate the major diameter of each rock visible
in the 1image. The overall size distribution of the rocks 1n the
image 1s output by the FragAnalysis soitware module, and
the corresponding mnput image and the binary blob 1mage,
1.€., the processed 1mage, are stored by the image processing
system.

24 Claims, 5 Drawing Sheets

CAMERA \
FIELDOF + \
VEW \

DIRECTION OF LHD TRAVEL

Y S

A FO)

\

US 7,020,307 B2

Page 2
U.S. PATENT DOCUMENTS OTHER PUBLICATTONS

5,924,575 A 7/1999 Gigliotti, Ir. et al. 209/580 Molineros J. et al., “Real-Time Tracking of Multiple Objects

6,068,394 A * 5/2000 Dublin, Jr. ...cccceeennnee 702/43 Using Fiducials for Augmented Reality”, vol. 7, No. 6, pp.

6,133,995 A * 10/2000 Kubotacovvvevvenvnnnns 356/73 495-506; Dec. 2001.

6,205,687 Bl 3/2001 Rocke ..oovvvvvvvinninnnnnnnnn, 37/348 Pamanen P. et al., “In the Limﬁ':ligh'[”j vol. 7, No. 3, Pp-

6,853,448 B1* 2/2005 Lenz et al. 356/241.1 30-32; 1995.
2001/0036294 Al1* 11/2001 Keskes et al. 382/109 A. Ord, Real-Time Image Analysfs Of Size and Skape
2002/0047058 Al1* 4/2002 Verhoff et al. 241/26 Distributions Of Rock Fragme}gtgj p. 28-31, The Auslmm
2002/0159617 Al™ 10/2002 Hu ...ovvvvvviviiiiniiinnn.ns 382/109 RBulletin and Proceedingsj vol. 294, No. 1, Feb. 1989 (Nos_
2003/0156739 Al1l* &/2003 Hinton et al. 382/109 1988 paper—ﬁixplo ’88)
2003/0165256 Al* 9/2003 QGinkel et al. 382/109 U. Kemeny, et al, Analysfs OfROCk Fragmentation Using
2003/0179907 Al* 9/2003 Bouts et al. 382/109 Digital Image Processing, pp. 1144-1160 ASCE Journal of
2003/0223620 Al* 12/2003 Anxionnaz et al. 382/109 Geotechnical Engineering, vol. 119, No. 7. Taul. 1993
2004/0136047 Al1* 7/2004 Whitehead et al. 359/296
2005/0023124 Al1* 2/2005 Karpetsky et al. 201/25 * cited by examiner

U.S. Patent Mar. 28, 2006 Sheet 1 of 5 US 7,020,307 B2

10
FRAG SCAN 2%\
|
|
RAW IMAGE "
14
FRAG ANALYSIS o8
116
)
25 RESULTS.
PROCESSED IMAGE,
o4 | BINARY BLOB IMAGE [~—232
FIG. 1
'8\;\
2 LIGHT l LGHT —=20
|- T T T T tT———= == |
CAMERA : ! T(I}P :
] I
FIELD OF 1 —— — —|eyetoetpe|— ~ —
VIEW 1 |
, BOTTOM |
I |]
________ l_ o mmm mm ma mm— —
LIGHT l LIGHT
/1 x
DIRECTION —
OF LHD | BUCKET
TRAVEL 24

U.S. Patent Mar. 28, 2006 Sheet 2 of 5 US 7,020,307 B2

CAMERA

&
ENCLOSURE

16 /A
/ \
/ \
/ \
/ \
/ \
CAMERA ‘
! \
EDOE \ DIRECTION OF LHD TRAVEL
VEW \ ~
o
FIG. 3 \
2
50
“NDMARKER D MARKER ID MARKER DMARKER DIRECTION MARKER
(ALWAYS RED) (BLACK ORWHITE} (BLACK ORWHITE) (BLACK ORWHITE) (ALWAYS BLACK)
52a 52¢ b2¢ 52 02l
50h 504 9 5N 5
DIRECTION MARKER 1D MARKER D MARKER DMARKER END MARKER

(ALWAYS WHITE) (BLACKORWHITE) (BLACK OR WHITE) (BLACKORWHITE) (ALWAYS RED)

FIG. 4A

U.S. Patent Mar. 28, 2006 Sheet 3 of 5 US 7,020,307 B2

22

o0

|
BUCKET

24

ORIENTATION = 1 ORIENTATION = 2
FIG. 4B FIG. 4C
TOP WIDTH
[I
LEFTMASK RIGHTMASK
' i
E TOP D
EDGE

BOTTOM WIDTH
FIG. 8

US 7,020,307 B2

Sheet 4 of 5

o e EEY

L T e,

PEee o

AL

DL

Mar. 28, 2006

U.S. Patent

U.S. Patent Mar. 28, 2006 Sheet 5 of 5 US 7,020,307 B2

PERCENT VOLUME PASSING (IMAGE 26-07)

100
-
» —ﬁ
e e
VOLUME 40

N
G _
0 50 100 150 200
MAJOR DIA (CM)

— — —-MANUAL ——AUTOMATED
FIG. 7

Uus 7,020,307 B2

1

ROCK FRAGMENTATION ANALYSIS
SYSTEM

TECHNICAL FIELD

The 1nstant invention relates to fragmentation analysis in
general and, more particularly, to a rock fragmentation

analysis system for analyzing blasted rock.

BACKGROUND ART

Fragmentation analysis of blasted rock 1s an important
process control activity, particularly 1n underground mining,
for optimizing productivity and cost. Fragmentation analysis
includes the estimation of mean particle size and the size
distribution related to percent passing 1 a sieve analysis.
With the advancement of camera and 1maging technology,
the use of photographic based 1mage analysis systems has
become a convenient and better alternative to traditional
sieving of rock blasts. As a result, mining industries have
recently taken an imitiative to implement automated image
analysis systems for rock fragmentation analysis.

An automated 1mage analysis system has the capacity to
monitor the blasted material quality continuously as opposed
to only sampling data analysis as 1n the case of traditional
sieving. However, automated image analysis processing
requires the images to be taken under controlled lighting
conditions to produce more consistent results. Further, com-
mercially available fragmentation soiftware packages are
only able to produce fragmentation distribution curves from
single digital, print photographs, 35-mm slides or video-
tapes. For each 1image, a scale needs to be selected and
defined to create a net. Established algorithms are then used
on the net to generate a cumulative fragmentation distribu-
tion curve. A major drawback of these available software
packages 1s that they can only analyze one 1mage at a time.
Determination of fragmentation, however, generally
requires analysis of many images.

Accordingly, there 1s a need for a rock fragmentation
system capable of processing multiple digital photographs of
fragment material, e.g., rock piles, within a file directory,
generating a fragmentation distribution for each digital
photograph, and a total fragmentation distribution based on
all the digital photographs.

SUMMARY OF THE INVENTION

There 1s provided a rock fragmentation analysis system
for analyzing blasted rock (or other fragmented particles) to
assess quality of a blast for efficient processing of subse-
quent operations 1 a mine, a quarry, etc. The system
includes a hardware system and an 1image processing sys-
tem. The hardware system includes a camera and a lighting
system. The lighting system 1lluminates an area of the mine,
quarry, etc. where a load haul dump (LHD) vehicle passes
through. Once the LHD vehicle passes through the 1llumi-
nated area, the camera provides video signals of scoop-top
view 1mages of the LHD vehicle to the image processing,
system via known commumnication means, such as hard-
wired and wireless. Each LHD rock scoop 1s tagged using a
bar code to identify the rock scoops as they travel through
the camera’s field of view.

The 1image processing system 1s preferably a computer or
a server which receives the video signals, captures the
scoop-top view 1mages, evaluates the images for subsequent
fragmentation analysis, and performs the rock fragmentation
analysis. The image processing system performs these func-

10

15

20

25

30

35

40

45

50

55

60

65

2

tions using several software modules having a set of 1nstruc-
tions which are executed by one or more processors of the
image processing system. Two such soiftware modules are
the Fragmentation Scanning (FragScan™) and the Fragmen-
tation Analysis (FragAnalysis™) software modules.

The FragScan software module scans the video signals
until 1t captures a valid image for analysis by the FragA-
nalysis software module. Once the FragScan triggers on the
image, a raw 1mage and other details corresponding to the
captured 1mage are buflered for subsequent analysis by the
Frag Analysis software module. FragAnalysis 1s designed to
retrieve saved raw i1mages and perform a complete rock
fragmentation analysis of the image. The rock fragmentation
analysis 1s designed to estimate the major diameter of each
rock visible in the image. Preferably, the overall size distri-
bution of the rocks in the image 1s output by the FragA-
nalysis software module as a text file, and the corresponding
input 1mage and the binary blob 1mage, 1.e., the processed
image, are stored 1n a compressed format, such as 1n the jpeg
format.

The rock fragmentation analysis system 1s designed to
operate on-line, 1.e., while the mine, quarry, etc. 1s fully
functional. Preferably, the two or more processors provided
within the image processing system distribute the processing
load of the 1mage processing system.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a schematic block diagram representation of an

embodiment of a rock fragmentation analysis system of the
invention.

FIG. 2 1s a schematic plan view representation of a
mounting arrangement for a camera and a lighting system of
the rock fragmentation analysis system of FIG. 1 for scan-
ning a bucket of a load haul dump (LHD) vehicle.

FIG. 3 1s a schematic elevation view representation of the
mounting arrangement for the camera and the lighting
system of the rock fragmentation analysis system of FIG. 1.

FIG. 4A 1s a schematic representation of a sample tag for
attaching to a rock scoop of the LHD vehicle.

FIGS. 4B and 4C illustrate the orientation of the tag
according to different directional paths of the LHD vehicle.

FIG. § 1s an onginal image showing rock fragments as
captured by an 1mage processing system of the rock frag-
mentation analysis system from a video feed.

FIG. 6 15 an associated image of the original image shown
by FIG. § where the rock fragments have been segmented by
the 1mage processing system.

FIG. 7 1s a chart showing the volume distribution curves
calculated from manually tracing the rock fragments of FIG.
5 according to the prior art and from analyzing the seg-
mented rock fragments according to the invention.

FIG. 8 shows the main features to be extracted from a
bucket 1image to construct a region of interest (ROI) image.

PREFERRED EMBODIMENT OF THE
INVENTION

Referring to FIG. 1, there 1s shown a schematic block
diagram representation of an embodiment of a rock frag-
mentation analysis system of the invention. The mvention 1s
described herein in the context of analyzing rock scoops
loaded on load haul dump (LHD) vehicles for removing
blasted rock from within a mine tunnel. It 1s contemplated
that the system of the mmvention may also be used in
analyzing scoops ol blasted rock obtained from other

Uus 7,020,307 B2

3

enclosed environments, such as a tunnel, cave, building, etc.,
or overhead (1.e., external) surface environments, such as a
rocky terrain.

The rock fragmentation system designated generally by
reference numeral 10 typically includes a hardware system
12 and an 1mage processing system 14. The hardware system
12 includes at least one camera 16 and a lighting system 18
having a plurality of lighting fixtures 20 (see FIG. 2). The
lighting fixtures 20 are preferably four 3500-watt quartz-
halogen tlood lights. The camera 16 1s set to view the top
surface of the rock scoop. Preferably, the camera 16 1s a
CCD color video camera equipped with a wide angle lens
that yields a 4.25 meter (14 1t) field of view at a distance of
2.43 meters (8 1t).

The lighting system 18 i1lluminates an area of the mine,
quarry, etc. where a LHD vehicle 22 (see FIG. 3) passes
through. Once the LHD vehicle 22 passes through the
illuminated area, the camera 16 provides video signals of
scoop-top view 1mages of blasted rock within a bucket 24
(see FIG. 2) of the LHD vehicle 22 to the image processing
system 14 via known communication means, such as hard-
wired and wireless. It 1s preferable to set up the hardware
system 12 at a location 1n the mine where the LHD vehicle
speed and dust conditions are minimum for a capturing good
quality video 1mages.

With reference to FIGS. 2 and 3, there are shown plan and
clevational views, respectively, of a preferred mounting
arrangement for the camera 16 and the lighting fixtures 20
of the lighting system 18. The lighting fixtures 20 are located
at the corners of a square 1.5 meters (5 feet) on each side.
The camera 16 1s located 1n the center of the square. The
viewing window of a camera enclosure 17 which encloses
the camera 16 1s in the same horizontal plane as the lighting
fixtures 20.

The distance between the top of the bucket 24 and the
camera 16 should be a mimimum of 2.4 meters (8 feet) 1n the
vertical direction. The camera 16 1s mounted along the
centerline of the drift. The sides of the square defined by the
lighting fixtures 20 are parallel to the edges of the bucket 24
as the bucket 24 travels beneath the camera 16. The long axis
of the field of view of the camera 16 1s perpendicular to the
direction of travel of the LHD vehicle 22. This 1s achieved
by having the bottom of the camera 16 face the direction of
approach of the LHD vehicle 22 when the LHD vehicle 22
1s mounted on the mine back.

The 1image processing system 14 1s preferably a computer
or a server having a central processing unit (CPU) which
receives the video signals from the hardware system 12 via
a communication channel, captures the multiple scoop-top
view 1mages, evaluates the images for subsequent fragmen-
tation analysis, and performs the rock fragmentation analy-
s1s for generating a fragmentation distribution for each
image, and/or a total fragmentation distribution based on
two or more, e.g., all of the images, of the 1images of
fragmented particles, 1.e., muck piles, produced with blast
specific conditions. The 1mage processing system 14 per-
forms these and other functions using several software
modules having a set of instructions which are executed by
one or more processors, such as the CPU, of the image
processing system 14. Two such software modules are the
Fragmentation Scanning (FragScan) 26 and the Fragmenta-

tion Analysis (FragAnalysis) 28 software modules.

The FragScan software module 26 1s preferably activated
by an operator via a graphical user interface (GUI) for
scanning the video signals until one or more valid images for
analysis are captured by the image processing system 14.
Once the FragScan software module 26 triggers on the

5

10

15

20

25

30

35

40

45

50

55

60

65

4

image, a raw 1mage 30 and other details corresponding to the
captured 1mage, such as an identifier value for i1dentitying
the rock scoop as described below with reference to FIG.
4A, are stored within an i1mage database for subsequent
analysis by the FragAnalysis software module 28. Portions
of each raw 1mage 30 may be edited to avoid taking into
account background and foreground features, e.g., sky and
ground, that might be interpreted by the 1mage processing
system 14 as fines, 1.e., indistinguishable particles.

The FragScan software module 26 1s further able to
automatically detect a white rectangular scale from the raw
image 30 to provide a length scale for automatic scaling
during 1mage analysis as described below. The length scale
converts pixel data into length measurements. The FragScan
software module 26 also allows one to use a user-defined
fixed default value for scaling, rather than automatic scaling.

With reference to FIG. 4A, each LHD rock scoop 1s
tagged using an 1dentification tag 50 representing a bar code
having a unique value to enable the FragScan software
module 26 to 1dentily the rock scoops as they travel via the
LHD vehicles 22 through the camera’s field of view. The tag
50 1s also used by the FragScan software module 26 to
determine the orientation of the LHD wvehicle 22, 1.e., to
determine which end of the LHD vehicle 22 1s the bucket-
end with respect to an ore pass or a dump site. The
information obtained from the tag 50 1s encoded and stored
within a file corresponding to the rock scoop 1mage of the
rock scoop for later identification and analysis by the
FragAnalysis software module 28.

The location of the ore pass or the dump site relative to the
camera 16 1s specified 1n setup or mitiation files within the
image processing system 14. For example, 1f the dump site
1s above the camera’s field of view a dump site ornientation
value 1n the FragScan soitware module 26 1s set to one, and
il 1t 1s below the camera’s field of view, the dump site
orientation value 1s set to two (see Table 1). The system 10
needs to know the dump site orientation value 1n order to
determine 11 the rock scoop 1s on 1ts way to or from the ore
pass or the dump site. A LHD vehicle 22 approaching the ore
pass or the dump site 1s assumed to have a tull bucket of
muck or rocks. Accordingly, the FragScan software module
26 1s able to select an appropriate 1mage of the vehicle’s
bucket 24 to send to the FragAnalysis software module 28.

As shown by the exemplary tag of FIG. 4A, the tag 50
attached to each rock scoop includes a series of markers 52
that indicate various pieces ol information to the FragScan
software module 26. End markers 52a and 32; are red so
t_ley are quickly i1dentified by image analysis algorithms of
the 1mage processing system 14. All of the other markers
52b—i are either black or white to indicate a bit value of
either zero or one. The direction markers 5254, 52i are fixed,
1.€., either black or white, for all tags 50 so that the direction
in which the tag 50 can be read can be determined, in order
to determine the orientation of the rock scoop. As shown by
FIGS. 4B and 4C, the system 10 assigns a value of one or
two for the rock scoop ornientation value (see Table 1), based
on the orientation of the white direction marker. For
example, FIGS. 4B and 4C 1illustrate the orientation of the
white direction marker on the left hand-side when facing the
front of the LHD vehicle 22. ID markers 52¢—/# make up a
binary number that 1s read with the least significant bit being
the one adjacent to the start marker. In FIG. 4A, the tag 50
is a six bit number with a value of 2°42°42°=37.

A “trip wire” or scanning soitware module of the Frag-
Scan soltware module 26 detects the entry and exit of an
object, such as the LHD vehicle 22 and a maintenance
worker, from the camera’s field of view. The *“trip wire”

Uus 7,020,307 B2

S

soltware module takes two narrow bands of pixels at the top
and bottom of the camera’s field of view, and calculates the
standard deviation of the intensity of the red channel pixels
within the two narrow bands of pixels. The calculated
standard deviation 1s then compared to a standard deviation
of an 1mage that 1s known not to have an object therein, e.g.,
a blank image. It has been demonstrated that 1f the standard
deviation 1s greater than the standard deviation of the image
that 1s known not to have an object therein, then an object
has entered the camera’s field of view.

The object that entered the camera’s field of view could
be one of the following:

1. An LHD vehicle 22 in forward gear entering from the
top of the camera’s field of view.

2. An LHD vehicle 22 1n forward gear entering from the
bottom of the camera’s field of view.

3. An LHD vehicle 22 1n reverse gear entering from the
top of the camera’s field of view.

4. An LHD vehicle 22 1n reverse gear entering from the
bottom of the camera’s field of view.

5. Other (such as a maintenance worker).

If the top and bottom regions of the camera’s field of view
are designated as regions or masks A and B, then the order
in which these regions are tripped indicates the direction of
motion of the object; and 1f the object has an identification
tag 50 on it, then one can determine the object’s orientation
as well. Whenever an object enters the camera’s field of
view, the first “trip wire” that it triggers 1s denoted as trip 1
and the second as trip 2. Therefore, the sequence of events
1s the following for an object entering the camera’s field of
view: (1) trip 1 1s set; (2) trip 2 1s set; (3) trip 1 15 cleared;
and (4) trip 2 1s cleared.

An 1mage 1s recorded by the camera 16 when trip 2 1s set;
the 1image 1s designated as the “forward” image. This 1s the
image that will be passed to the FragAnalysis software
module 28, 1t 1t 1s determined that the LHD vehicle 22 1is
moving forward, 1.¢., a path orientation value 1n the initia-
tion file 1s assigned a value of one. An 1mage 1s also recorded
when trip 1 clears; the 1mage 1s designated as the “reverse”
image. This 1s the image that will be passed to the FragA-
nalysis software module 28, 11 1t 1s determined that the LHD
vehicle 22 1s 1n reverse, 1.¢., the directional path orientation
value 1n the mnitiation file 1s assigned a value of two (see
Table 1). In either case, the unused 1mage 1s discarded.

TABLE 1

Dump site, rock scoop, and directional path of LHD vehicle orientation
values for determining condition of the LHD vehicle and action to be
taken by the system of the invention.

Rock

Dump Site Scoop Directional

Orien- Orien- Path

tation tation Orientation Condition Action

1 1 1 Approaching dump site Process
in forward gear--bucket First
should be full. image

1 1 2 Leaving dump site 1n Do
reverse gear--bucket nothing
should be empty.

1 2 1 Approaching dump site Process
in reverse gear--bucket Second
should be full. Image

1 2 2 Leaving dump site 1n Do
forward gear--bucket nothing
should be empty.

2 1 1 Leaving dump site 1n Do
forward gear--bucket nothing

should be empty.

5

10

15

20

25

30

35

40

45

50

55

60

65

6

TABLE 1-continued

Dump site, rock scoop, and directional path of LHD wvehicle orientation
values for determining condition of the LHD vehicle and action to be
taken by the system of the invention.

Rock

Dump Site Scoop Directional

Orlen- Orien- Path

tation tation Orientation Condition Action

2 1 2 Approaching dump site Process
should be full. Second

Image

2 2 1 Leaving dump site in Do
reverse gear--bucket nothing
should be empty.

2 2 2 Approaching dump site Process
in forward gear--bucket First
should be full. Image

Between the time trip 1 1s set and trip 2 1s cleared, the
FragScan software module 26 looks for an 1dentification tag
50 1n the 1mage. If a tag 50 1s not found within a predeter-
mined time-out period, the object that has entered the

camera’s field of view 1s assumed to be something other than
a LHD vehicle 22.

If a tag 50 1s found within the predetermined time-out
period by emphasizing features on the video image that
match the red markers of the tag 50, e.g., markers 52a and
527 of the tag 50 shown by FIG. 4A, by a Tag Pre-process
soltware module of the FragScan soiftware module 26, a Tag
Position soitware module of the FragScan soitware module
26 then determines whether the video 1mage contains a tag
50, and 11 so, the locations of 1ts red markers. It 1s contem-
plated that only the portion of the video image where the tag
50 should be located 1s examined to speed up 1mage pro-
cessing of the video image.

The features on the video image that match the red
markets are emphasized by the Pre-process software module
by extracting the red and green channels from the video
image; creating an error image by subtracting the green
channel from the red channel, such that the bright areas of
the error 1mage are those with the strongest red component;
calculating a histogram of the error image (which 1s gray-
scale) containing the number of pixels at each intensity
level; and determining whether the number of pixels at the
intensity level corresponding to the intensity level of pixels
of the red markers 1s approximately equal to a predetermined
number of pixels, 1.e., the actual number of pixels which
make up the red markers.

As mentioned above, the Tag Position software module of
the FragScan software module 26 then determines 1f the
video 1mage contains a tag 50, and 11 so, the location of its
red markers by calculating the areas, convex perimeters, and
compactness of all the blobs in the processed video 1image
(FIG. 6 1illustrates a processed video image) using blob
analysis routines as known 1n the art; excluding any blobs
that fall outside predetermined limits as set 1n an 1nitiation
file; calculating the x and y coordinates of all remaining
blobs; finding the pair of blobs whose separation distance 1s
closest to that of the end markers; copying the x-y coordi-
nates of the two blobs, 1.¢., x1, y1 coordinates of the first
blob, and x2, y2 coordinates of the second blob, and
outputting a bit having a value of one, 1.e., the video 1image
contains a tag 50, 1f a separation error of the two blobs 1s less
than the maximum value specified 1n the mitiation file; and
otherwise, returning a bit having a value of zero, 1.e., the
video 1mage does not contain a tag 50.

Uus 7,020,307 B2

7

If a tag 50 1s determined to be contained by the video
image, a Tag Value software module of the FragScan soft-
ware module 26 determines the value of the tag 50 by
calculating the equation of a line passing through x1, y1 and
x2, y2; dividing the line up into segments equal to the
number of bits 1n the tag 50 as indicated 1n the 1mitiation file;
determining the mean value of the pixels at the end of each
line segment, where the number of pixels used to calculate
the mean value 1s determined by a marker radius parameter
which indicates the radius or distance of each marker and 1s
stored 1n the mitiation file; determining the mean value and
the distance or range of the first and last bits 1n the tag 50
which are either black and white, where 11 the distance 1s less
than a set value, the 1mage 1s assumed not to be a tag and an
error 1s returned; and 1t the distance 1s greater than the set
value, determining the tag orientation and value.

The FragAnalysis software module 28 1s designed to
retrieve saved raw 1mages other information obtained by the
FragScan soitware module 26 and perform a complete rock
fragmentation analysis of the image upon opeming the saved
raw 1mages via the GUI, and output results 32 (see FI1G. 1).
It 1s contemplated that the FragAnalysis software module 28
may be programmed to execute and terminate automatically
without operator itervention.

The rock fragmentation analysis performed by the FragA-
nalysis software module 28 1s designed to estimate the major
diameter of each rock visible in the image. Preferably, the
rock measurements, the overall size distribution of the rocks
in the 1mage, a name of the image, the time of scan, the LHD
number, and camera number are output by the FragAnalysis
software module 28 as one or more text files, and the
corresponding nput 1image as shown by FIG. 5 and desig-
nated generally by reference numeral 55, and the blob
image, 1.e., the processed image as shown by FIG. 6 and
designated generally by reference numeral 60, are saved 1n
a compressed format, such as 1n the jpeg format.

Once the analysis 1s completed for a set of input 1mages,
1.€., a bucket image as shown by FIG. 5 and 1ts background
image, the mput images are transferred to an output direc-
tory. The analysis then repeats, preferably automatically, for
cach set of mput 1images found in an mput directory.

In case of a fatal error, the analysis terminates and the
time of occurrence of the fatal error 1s noted 1n a log file. In
case of a functional error, the FragAnalysis software module
28 returns without further processing the set of input images.
The two 1nput 1mages and the error file are then transferred
to the output directory and analysis continues for a subse-
quent set of 1input 1mages.

Once the FragAnalysis software module 28 1s initiated, it
automatically allocates all the memory bullers necessary for
image processing and reads all pre-set or predetermined
variables 1n the mitiation file. The operator can change the
pre-set variables using the GUI and save them 1in the
initiation file for future use by the system 10. The system 10
deallocates all the buflers 1n case of a fatal error when
executing the FragAnalysis software module 28.

Once the operator 1mtiates rock fragmentation analysis,
¢.g., by clicking on a start soit button from a process menu
in the GUI, the following functions are executed by an
exemplary FragAnalysis software module 28.

1. All of the images having extensions *.tif, *.bmp and *
1pg are retrieved from the mput directory and stored 1n a file
array. The following image processing functions are per-
formed for each image retrieved from the mput directory.

2. Import the color image and split into three RGB (Red,
Green and Blue) channels. Produce the intensity (gray scale)
image.

10

15

20

25

30

35

40

45

50

55

60

65

8

3. Select a region of mterest (ROI) window from the
image by performing an ROI_Detection() function as
described 1n detail below.

4. If auto-scaling option 1s enabled, then perform
AutoScale() function as described 1n detail below to gen-
erate the conversion parameter length to pixel ratio (LPR).
If auto-scaling 1s disabled, then read the default LPR value
from the 1nitiation file.

5. Perform a segmentation process for the ROI area of the
image to generate a segmented gray scale (see FIG. 6) for
fragmentation analysis. The processing 1s performed using
two functions as follows:

BlobSeparation() function as described i detail below
separates all brightly visible blobs 1n the image and stores
the segmented blobs, such as blobs 62 and 64 in FIG. 6, in
a separate 1image buller.

EdgeSeparation() function as described in detail below
determines the rock edges (boundaries) of rocks found 1n the
non-segmented area during the BlobSeparation process. The
blob 1mage produced atfter BlobSeparation 1s then combined
with the edge image produced after EdgeSeparation to
produce the final Blob Image of the rock image. The Blob
Image 15 save 1 a Blob Image file and includes three gray
levels. Black represents the background, white represents
the segmented blobs, and gray represents the fines (see FIG.
6).

6. Perform AnalysisResults() function as described in
detail below to produce the major and minor diameters of
cach blob and the cumulative volume distribution of the

blobs found 1n the Blob Image file to produce the fragmen-
tation results which are written into the selected output
directory.

7. If the process 1s stopped during processing, terminate
the analysis execution, deallocate all buflers, and return to an
idle condition. Otherwise, repeat steps 2 through 6 for the
next image found 1n the input directory.

The FragAnalysis software module 28 further performs
the BlobValidity() function to test whether the bucket image
that has been taken for analysis from the mmput directory 1s
a correct picture, 1.¢., test the validity of the captured bucket
image. The inputs of the BlobValidity() function are the
bucket intensity and green images, and the output 1s whether
the bucket 1image 1s valid.

The following functions are performed by an exemplary
BlobValidity() function:

1. Generate and edge 1mage corresponding to the input
bucket 1ntensity image.

2. Calculate the average edge intensity value of the edge
1mage.

3. If the average edge intensity value i1s less than the
pre-set minimum edge value, return an error code for low
contrast, 1.e., nvalid bucket 1mage.

4. BExtract green image ol the RGB color image.

5. Using stochastic edge filter, generate a vertical edge
image of the green channel.

6. Thin the edges to skeleton

7. Remove all short lines.

8. Mask top and bottom 60 rows of the edge image.

9. Find the longest 20 vertical lines after determining the
vertical lines.

10. Count the number of pairs of parallel lines.

11. If the image contains two or more pairs of parallel
lines, the function returns an error code indicating a non-
bucket 1mage.

12. If the 1mage contains either one or no pairs of parallel
lines, the 1mage 1s returned to be a valid bucket image.

Uus 7,020,307 B2

9

As idicated above, the FragAnalysis software module 28
performs the ROI_Detection() function which receives as
inputs the bucket intensity image and the background inten-
sity 1mage and outputs the ROI image. The following
functions are performed by an exemplary ROI_Detection()
function:

1. First check whether the gray level bucket intensity
image and gray level background intensity image are non-
empty.

2. Subtract the gray level background image from the gray
level bucket image and obtain a subtracted image as shown
by FIG. 8.

3. Obtain an edge 1mage corresponding to the subtracted
1mage.

4. Check the mean edge intensity. If the mean edge
intensity 1s below a predetermined value, return an error
code for invalid bucket image. Otherwise, proceed to the
next step.

5. Find mean (Meanl) and standard deviation (Sigma?2) of
the left portion (designated left mask in FIG. 8) of the
subtracted 1mage (FIG. 8).

6. Find mean (Mean2) and standard deviation (Sigma?2) of
the right portion (designated right mask in FIG. 8) of the
subtracted 1mage.

7. Compute Mean=minimum(Meanl,
Sigma=maximum(Sigma 1, Sigma2).

Search Left and Right Edges
8. Define a range for binarizing the subtracted image

(FIG. 8) as threshold_lower_limit=maximum(10, Mean—S-
igma) and threshold_upper_limit =Mean+20.

Mean2) and

Begin a For-Loop:

9. Begin a for-loop for varying the binarizing threshold
from threshold lower_limit to threshold _upper limit by
steps of 10.

9.1 Binarize the subtracted image above the defined
threshold and obtain a binary image.

9.2 Fill holes that exist in the blobs of the binary image.

9.3 Isolate all blobs having a width greater than a prede-
termined number of pixels, e.g., 100 pixels.

9.4 Isolate all blobs having Feret_Elongation greater than
a predetermined value, e.g., five.

9.5 Delete all other narrow blobs.

9.6 Using a Laplacian filter, obtain the edge image.

9.7 Perform Hough transform for the left masked portion
of the edge 1image and determine the best straight line. The
Hough transform function returns the maximum pixel count,
slope and intercept for the best line. Define CountLeft=pixel
count.

9.8 Similarly perform Hough transform for the nght
masked portion of the edge image and determine the best
straight line. Define CountRight=pixel count.

9.9 Compute top width and bottom width (see FIG. 8)
corresponding to the above constructed two lines.

9.10 Reset a Flag=1.

9.11 Compare the two lines against Max_ Width (default
4°70), Min_Width (default 300), Max_Total (default 800),
Min_Total (default 695) and CountTh (default 100).

It (Top Width>Max_Width OR Top Width<Min_Width)
OR

If (Bottom = Width>Max_Width
Width<Min_Width) OR

If (Top Width+Bottom Width>Max_Total OR Top Width+
Bottom Width<Min_Total) OR

If (CountLeft<CountTh OR CountRight<CountTh), then
Flag=0.

OR Bottom

10

15

20

25

30

35

40

45

50

55

60

65

10

9.13 If the test 1s successiul (and Flag=1), return the
coordinates of the two lines for ROI Image and go to step 17.

9.14 If the test 1s unsuccessiul and Flag=0, then check the
following conditions for an invalid image.

9.15 Check the 1mage validity.

If (Flag=0) AND 1t (CountLelt>CountTh And
CountRight>CountTh), break the loop and return the error
code for an mvalid bucket image and terminate the ROI_De-
tection. If not continue the for-loop.

9.16 Based on the maximum CountLeft and CountRight,
retain the best Lelt and Right lines for sub-level testing.

9.17 It (Flag=0), then increment the Binarizing threshold
by 10 units and continue the for-loop.

End of For-Loop.

10. If Flag=0, then use sub-level testing based on the best
left and right lines detected in the above for-loop.

11. Recompute Top Width and Bottom Width based on the
best detected left and right lines.

12. Reset Flag=1.

13. It (Top Width>Max_Width OR Top
Width<Min_Width) OR
If (Bottom Width>Max—Width OR Bottom
Width<Min_Width) OR
If (Top Width+Bottom Width>Max_Total OR Top Width+
Bottom

Width<Min_Total), then Flag=0.

14. If the test 1s successtul, return the two lines for ROI
Image and go to step 17. If unsuccessiul, proceed to the
second level of line detection.

15. Instead of using subtracted image in step 35, use the
bucket intensity image and repeat steps S through 14. If valid
lines are detected and Flag=1, go to step 17. If unsuccessiul,
proceed to the next step.

16. If Flag=0, then select the best line detected 1n step 9
and estimate the second line keeping a distance equal to the
average width of Max_Width and Min_Width and go to step
17.

1”7. Begin construction of ROI 1mage by first making a
blank white 1mage. Then darken the areas outside of the two
detected lines.

Obtain Accurate Leit and Right Borders with over Flown
Rock Boundaries

10. Binarize the subtracted image above a threshold equal
to (Mean minus 10).

11. Extract all the blobs touching the two detected lines
from the binarized image.

12. Extract the overtflown blobs touching the two detected
lines 1n the above binary image.

13. If the two lines have been estimated from step 16, then
overlay all overtlown blobs to the ROI 1mage. Otherwise,
delete all the blobs having compactness greater than a
predetermined value, e.g., 2.5, and roughness greater than a
predetermined value, e.g., 1.5.

14. Overlay (Binary OR) the selected overflown blobs to
ROI 1mage.

Construction of the Bottom Border

10. Select a rectangular window at the bottom portion of
the subtracted image, as shown in FIG. 8.

11. Compute mean (Mean) and standard deviation
(S1gma) of the pixel intensity within the selected window of
the subtracted image.

12. Binarize the subtracted 1mage above a threshold given
by maximum (Mean minus Sigma+3, 10).

13. Darken the left and right areas of the binarized image
from the detected left and right lines, respectively.

Uus 7,020,307 B2

11

14. Further darken the top portion, 1.e., a predetermined
number of rows, e.g., 300 rows, 1n the 1image.

15. Invert the 1image to obtain a single blob that corre-
sponds to the lower portion of the bucket image.

16. Remove any smaller blobs remained aiter inverting
the 1image and keep the blob having Feret X width greater
than (bottom width minus 50).

17. Obtain an edge 1mage to represent the bottom border.

18. Perform Hough transform on the above edge image
twice to obtain Left V and Right V edge lines as shown in
FIG. 8.

19. Fill all the holes above the two detected V lines.

20. Draw the two V lines on the existing ROI_Image and
darken the area below the V lines.

21. Draw two V lines on the image and obtain all the blobs
over-hanging from the two-bottom V edges.

22. If the over-hanging blobs have compactness less than
a predetermined value, e.g., three, and roughness below a

predetermined value, e.g., 1.2, overlay on the constructed
ROI Image.

Construction of the Top Line

10. Obtain the coordinates of the intersecting points A, B
and C as shown 1n FIG. 8.

11. Obtain the horizontal edge image corresponding to the
intensity bucket image.

12. Select a window from the top area of the edge 1image.
13. Perform the Hough transform to obtain the top line.

14. Draw the obtained top line on the ROI_Image and
darken the area above the top line.

15. Calculate distance between B and C and assign
BC=Bucket Front Width.

16. Calculate width and height of the ROI_Image and
assign to Bucket Width=Feret X and
Bucket Length=Feret_Y.

17. If Feret Y<Min Width, then return the error code for
an invalid 1mage.

18. Otherwise return the ROI_Image for subsequent
1mage processing.

As indicated above, the FragAnalysis software module 28
performs the BlobSeparation() function. Due to speckles
and other rough textures of rock surfaces, an edge detection
algorithm tends to produce fault edges which result in an
disintegration of the rock surfaces in the blob 1mage. As
edge detection 1s based on neighborhood pixel intensity
differences, the available algorithms are sensitive to high
frequency noise and require 1mage preprocessing for noise
removal. The disintegration due to noise and sharp internal
edges usually results 1n an underestimate of the rock sizes.

Alternatively, the gray image can be binarized to 1solate
brightly shown rock surfaces. Binarizing above a given
threshold limit will automatically remove the effects of noise
that are visible 1n the bright regions of the image. Binarizing,
has the disadvantage of 1solating low intensity rock surfaces.

In most cases, the larger rocks appear brighter than small
rocks and therefore the binarizing principle can be etlec-
tively used to 1solate bigger blobs 1n the 1mage. As binariz-
ing 1s based on an 1ntensity threshold, the binarizing method
1s unable to detect the dark or less bright rocks that are
closely located with brightly visible rocks. Also, very small
rocks that are clustered together are unable to separate from
this function. Therefore, the BlobSeparation function, which
has as mputs the gray scale bucket intensity image and the
ROI_Image produced by the RIO_Detection function() and
outputs a BigBlob_Image (1.e., a binary image), 1s designed
to produce larger blobs and also to 1solate brightly visible

10

15

20

25

30

35

40

45

50

55

60

65

12

rocks in the image. The following functions are performed
by an exemplary BlobSeparation() function:

1. Inmitialize size limits for blobs based on ROI dimen-
$1011S.

2. Darken the outside area of the ROI in the bucket
intensity image.

3. Calculate mean (Mean) and standard deviation (Sigma)
ol the bucket area.

4. Create Empty images for creating blob 1mages and call
them Blob_Imagel, Blob_Image2 and Blob_limage3.

Progressive Delineation of Blobs

Begin a for-loop
5. Begin a for-loop by varying the threshold from Mean
minus Sigma minus 15 to Mean+Sigma+135 1n steps of 5.

5.1 Obtain a binary image of the bucket intensity image
using the threshold step.

5.2 Mask-out the area outside the ROI.

5.3 Fill the dark patches having a size smaller than
shadowsizel (default 1s 60). Then, darken an area
corresponding to the shadow area in the bucket inten-
sity 1mage and call 1t Binarized_Imagel.

5.4 Fill the dark patches having a feret diameter smaller
than shadowsize2 (default 1s 20). Then, darken an area
corresponding to the shadow area in the bucket inten-
sity 1mage and call 1t Binarized_Image?2.

5.5 Create three different watershed lines for three cases
as follows:

Case a: Binarized_Imagel and set the minimum variation
of the watershed to 2. Overlay the watershed lines on
Binarized_Imagel and call 1t Blobl.

Case b: Use Binarized Imagel and set the minimum
variation of the watershed to 1. Overlay the watershed
lines and Binarized_Imagel and call 1t Blob2.

Case c: Use Binarized_Image2 and set the minimum
variation of the watershed to 1. Overlay the watershed
lines on Binarized Image2 and call it Blob3.

5.6 For each case 1n step 5.4 perform the following;:

1. Keep the blobs satistying all the conditions given below
and delete the blobs where one or more of the condi-

tions fail.
Compactness<Compactness_threshold (Default value 1s
2)
Roughness<Roughness_threshold (Default 1s 1.2)
Fraction of watershed lines on the

perimeter<Fraction_threshold

(Defaults: 0.45 for case a, 0.3 for case b, and 0.2 for
case C).

2. Isolate blobs touching front and side edges of the
bucket (i.e., borders in the ROI Image) for removing
any bucket edge eflects. Delete the blobs having
edges falling 70% outside their X and Y dimensions.

5.7 Perform the following operations:
For case a, Blobl OR Blob_ImagellBlob_Imagel,

for case b, Blob2 OR Blob_Image2IBlob_Image2, and
for case ¢, Blob3 OR Blob_Image3IBlob Image3.
5.8 Increment Binarizing threshold and repeat step 3.

End of For-Loop.
1. Clean unwanted lines from all three blob 1mages in the
previous step.

2. Remove small blobs from all three Blob images (for
Blob_Imagel, the major diameter threshold limit 1s 20 and
for other two blob 1mages, the threshold limit 1s 50).

Making the Combined Big Blob Image from Three Blob
Images

Uus 7,020,307 B2

13

1. Consider each blob in Blob_Image3 and overlay on
Blob_Image2, only if the overlap area of the blob 1n Blo-
b_Image3 on separated blobs 1n Blob_Image2 is less than
85% of 1ts area.

2. Reconstruct edges of the overlaid blobs.

3. Select all the blobs 1n the combined blob 1mageand
overlay them 1n Blob_Imagel.

4. Reconstruct all edges of the overlaid blobs. Name the
final blob 1mage and BigBlob_Image.

Removal of Bucket Edge Eflects

1. Consider BigBlob_Image and extract all the blobs
touching top and bottom edge of the ROI_Image.

2. Leave all the blobs extending beyond the front edge of
the bucket.

3. Delete blobs that are inline with bucket edges and
update BigBlob_Image.

4. Again consider BigBlob_Image and extract blobs
touching the side edges and top left and right corners of the
ROI_Image.

5. Leave all the blobs that are extending beyond the side
edges of the bucket.

6. Delete blobs that are inline with the bucket side edges.

As indicated above, the FragAnalysis software module 28
performs the EdgeSeparation() function. This function has
two main parts. In the first part, 1t performs an edge detection
algorithm to find all edges 1n the bucket image. With further
image enhancements, a blob 1image 1s obtained. The unseg-
mented area 1s assumed to be fines 1n the bucket content. In
the second part, the blob 1mage obtained from the Blob-
Separation() function 1s combined to produce the final blob
image ol the bucket content. The mputs of the EdgeSepa-
ration function are the ROI_Image, the filtered RGB 1mages
of the bucket color image, and the BigBlob_Image and the

output 1s a three gray level Blob_Image. The following
functions are performed by an exemplary EdgeSeparation()
function:

1. Define two edge thresholding values as threshold_low
and threshold_high.

2. Set the edge threshold limits to a first set of values
(defaults, threshold low=20 and threshold_high=23).

3. Using the three RGB bucket images and the first set of
edge thresholding values, perform an Edge RGB() function
as described in detail below. This function returns an edge
image corresponding to the bucket image.

4. Using the ROI_Image, select the edges i the ROI
region and call Edge Imagel.

5. Delete all open ended edge lines using a
LineBlanking() function and save to a diflerent image
builer.

6. Include blobs having compactness greater than a
threshold value (default 2.5).

7. Copy Edge_Imagel to a temporary buller and darken
all the included blobs.

8. Extend the open-ended lines in the temporary bufler by
3 pixels.

9. Copy the included blobs to the temporary bufler and
rename 1t as Edge Imagel.

10. Check occurrence of any unacceptable larger blobs.

11. Using blob-by-blob analysis, remove all the edges
other than the main border of the blob.

12. Recalculate compactness and copy unsegmented area
to a temporary buller.

13. Perform watershed MIL operatlon on the unseg-
mented area in the temporary builler.

14. Select watershed lines only if they occupy less than
30% of the perimeter of a given blob having a compactness
less than the threshold compactness value.

5

10

15

20

25

30

35

40

45

50

55

60

65

14

15. Recalculate the compactness and copy segmented

blobs back to Edge Imagel.
16. Extract blobs touching the edges of the ROI_Image.
1'7. Delete blobs that are aligned with bucket edges.

18. Copy the unsegmented area to Edge Imagel and
assign a gray scale 200.

19. Rename the image Blobl.

20. Assign the second edge threshold values (defaults,
threshold_low=235 and threshold_high=30) and repeat steps

3 through 17 and rename the final 1mage as Blob2.

Produce Final Edge-Based Image

1. Select all valid blobs from Blob2 and copy to a
temporary buflerl .

2. Binarize Blob2 exactly at gray level 200 to obtain the
unsegmented area 1mage.

3. Obtain all valid blobs from Blobl and copy to a
temporary builer2.

tTer2 that fall into the

4. Obtain all blobs 1n temporary bu
unsegmented area of Blob2.

5. Copy those blobs to temporary builerl.

6. Again assign gray level 200 for the unsegmented area
and copy to Edge Image.

Combine BigBlob Image and Edge Image

1. Select all valid blobs from Edge_Image and copy to a
temporary builer.

2. Select blobs that have a major diameter greater than 80
from the Edge Image.

3. Overlay the selected big blobs on BigBlob_Image only
if a given selected blob does not overlap more than 85% of
its area on the segmented blobs 1n the BigBlob_Image.

4. Reconstruct edges of the overlaid blobs and copy all
blobs to the final Blob_Image.

5. Select an unsegmented region of the Blob_image from

the Edge Image.

6. Overlay the selected area back on Blob_Image.

The Edge RGB() function performed by the FragAnaly-
s1s software module 28 uses three edge 1mages produced
from red, green and blue channels and returns an edge image
for the EdgeSeparation() function. The following functions

are performed by the Edge RGB() function:

1. Using the filtered bucket red image, perform an func-
tion EdgeDetect() function as described in detail
below. The output edge 1mage 1s called EdgeR_Image.

2. Smmilarly using the bucket green and blue images,
perform the function EdgeDetect() to obtain .

EdgeG_Image
and EdgeB_Image.

3. Using an OR operation combine all three edge 1images
and obtain a single image call Edge Image.

4. Perform the thinning operation.

5. Obtain the shadow area from the bucket intensity image
and overlay on the Edge Image.
The Edge Detect() function performed by the FragA-
nalysis software module 28 uses hysteresm thresholding.
The function takes a filtered gray scale image and returns a
binary edge image. The following functions are performed

by the Edge_Detect() function:

1. Create four edge convolution masks to produce edges
in four directions (zero, 45, 90 and 135 degrees).

2. Convolve each mask with a gray input image and
produce four edge matrices, namely, Edge0, Edgeds,
Edge90 and Edge 135.

3. Create four empty 1mage buflers for registering edges.

Uus 7,020,307 B2

15
Perform Hysteresis Thresholding

Repeat the following steps 4 through 7 for each Edge matrix
produced 1n step 3.

4. Binarize the edges having an intensity greater than
threshold_high and copy them to four allocated empty
buflers.

5. Delete all the edges having an intensity lower than the
threshold_low from the edge matrix.

6. If an edge’s pixel values lie between threshold_low and
threshold_high, then check the neighborhood pixels con-
nected 1n the edge direction. I the neighborhood pixels have
any edges greater than threshold_high, binarize and copy to
the corresponding edge image buliler.

Directional Thinning

7. Select the highest edge intensity perpendicular to the
selected direction and delete all other pixels until the thick-
ness of the edge becomes a single pixel wide.

8. Copy all the edges to a single image and return as the
output binary edge 1mage.

The AnalysisResults() function performed by the FragA-
nalysis software module 28 1s the final function performed
to produce the measurements of the rock sizes and their
volume distribution. The function takes the Blob_Image
produced from the EdgeSeparation() function. The white
regions (pixel value 255) represents the segmented rock
surfaces and gray scale (pixel value 200) represents the fines
in the bucket 24. Dark pixels (pixel value 0) represent the
background or dark shadows in the bucket image. All the
s1zes are preferably measured 1in centimeters.

The mputs to the AnalysisResults() function are the
Blob_Image, the Bucket Front Width_returned from the
ROI_Detection() function, and the actual bucket width
obtained from the imitiation file. The outputs are the raw
measurements of rocks 1 (cm), volume distribution (cubic
cm) and percentage of passing versus major diameter of the
rocks (e.g., as shown by FIG. 7) and the binary blob image.

The AnalysisResults() function uses the following
assumptions:

a. For scaling assume the distance between bottom left
and bottom right corners of the ROI_Image 1s equal to the
actual width of the bucket 24.

b. For volume measurements assume the 3-D shape of a
blob as ellipsoidal having the major and minor diameters
respectively equal to the maximum and minimum {feret
diameters of the segmented blob.

c. For fines, assume the unsegmented area has a depth
equal to the minimum feret diameter obtained from the blob
analysis. If the minimum feret diameter 1s greater than the
maximum depth (default 90 cm), then take the maximum
depth.

d. Assume the volume of the total fines belong to the
lowest size range in the volume distribution.

The following functions are performed by the Analysis-
Results() function:

1. Calculate the LPR (length to pixel ratio) in cm/pixel.
[LPR=Bucket actual width/Bucket Front Width of the ROI-
_Image.

2. Take all the valid blobs (gray scale 2335) from the
Blob_Image and copy to a temporary buifer.

3. Perform blob calculations and produce feature arrays
for maximum feret diameter, and minimum feret diameter.

4. Convert the diameters to cm using the LPR and assign
them to different user arrays.

5. Assuming an ellipsoidal shape, produce an array for
volume (volume=4.1888xmajor_diameterxminor_diam-

eter”).

5

10

15

20

25

30

35

40

45

50

55

60

65

16

6. Sort the blob sizes according to the major diameter and
then write the major diameter and 1ts corresponding minor
diameter and volume to a text file.

7. Using a suitable step size (default 1s 5 cm) create
several bins based on major diameter and assign them to a
new user array.

8. Add all the numerical values of volumes 1n a given bin
and then write to a volume distribution array.

9. Binarize the Blob_Image at the intensity equal to 200
for generating an 1mage having fines.

10. Perform blob calculation on the fine image and
produce features, mimmum feret diameter and pixel area.

11. Using the LPR, convert above features to real units.

12. For each blob take the depth=minimum (90, minimum
feret diameter in cm).

13. Calculate the volume of each blob by taking
volume=areaxdepth.

14. Sum all the area values 1n the array and add them to
the lowest bin 1n the volume distribution.

15. Based on the grand total of the volume distribution,
produce the percentage volume distribution.

16. Write major diameter, volume distribution and per-
centage volume to a text file.

The FragAnalysis software module 28 further performs a
Background_Validate Image() function to check a received
image from the FragScan software module 26 to determine
if the received image 1s suitable for transformation into a
background image. The Background_ Validate Image()
function returns a boolean true variable 1f the image 1is
suitable for a background 1image and a boolean false variable
if the 1mage 1s not suitable for a background image.

The Background_Validate Image() function preferably
receives a 640x480 RGB color image of a candidate image
for a background 1mage. The Background_Validate Image(
) function converts the RGB image mto HLS and then
extracts out the hue channel. The sigma in the hue channel
1s computed for each of 16 horizontal bars (eight in the top
4 of the 1image and another eight in the bottom 4 of the
image). The function then performs several checks on this
data and determines 11 the 1mage 1s suitable for a background
image or not. Images which contain pieces of LHD or other
equipment with a yellow color produce a reject condition.

To convert the RGB mput image to a HLS 1mage and
extract out the hue channel the following functions are
performed by an exemplary Background_Validate Image()
function:

1. Clear the mask image to all black.

2. Create white (solid, filled) rectangles on mask 1mage
which are full width (480 pixels) and 19 pixels in height and
1 pixel vertical separation between them. Create eight 1n the
top 14 of the image starting from the y-coordinate position==8
and eight in the bottom 14 of the image starting at y-coor-
dinate position=320. (The middle 54 of the image 1is
ignored.)

3. Using the binary mask image and the hue channel,
perform a blob analysis and compute the sigma for each
rectangle. This should produce 16 results. (IT thus data 1s
plotted on a graph, the ideal background image should
produce a bell shaped curve. Any deviation from this curve
1s an indicator of an object in the 1mage.)

4. Compute the average value for the entire data set.

5. Compute the average value of this data for the left,
center and right portions of this graph. The left value 1s the
average of the first four points, the center value 1s the
average of the middle four points, and the right value 1s the
average of the last four points.

Uus 7,020,307 B2

17

6. Normalize the left, center and right averages via the
center value.

7. Calculate the slope between the left and right average
points. Slope=(avg_right minus avg_lett)/12.

8. If the absolute value of the normalized left or right
values exceeds the threshold (normally set to 1.1), then
return false (not a suitable background image).

9. If the absolute value of the slope 1s greater than the
threshold (normally 0.01) then return false (not a suitable
background 1mage).

10. I the average hue (computed in step 5) 1s greater than
the threshold (normally set to 70), then return false (not a
suitable background image).

11. If we reach this point, return true (a suitable back-
ground 1mage).

The AutoScale() function 1s performed by the FragA-
nalysis software module 28 to locate two parallel side edges
of a rectangular white scale positioned 1n the camera’s
image view. The pixel distance measured between the two
parallel edges 1s used to obtain the conversion parameter
LPR 1n cm/pixels. Accuracy up to a pixel 1s obtained when
tracing the scale’s edges. The straight scale edges are
obtained by using the Hough transformation method. Hough
transformation can be used to determine the best straight line
passing through maximum number of non-zero pixels 1 a
binary 1image.

Preferably the AutoScale() function 1s set to repeat a
maximum of three times until a valid scale 1s found. During,
cach cycle, the function searches for a valid scale. The
function returns a predetermined value, e.g., 99999, when
the AutoScale fails to find a valid scale.

An exemplary AutoScale() function performs the follow-
ing functions:

AutoScale Preprocessing

1. Extract the saturation image channel from the HLS
color mput 1image. Compute the mean saturation intensity
and 1ts standard deviation.

2. Compute the Binarizing Threshold as follows: Mean+
Standard deviation+threshold adjustment.

3. Using the threshold obtained binary saturation image,
perform a blob analysis and remove the following blobs:
remove all blobs having smaller diameters (e.g., less than 10
pixel); remove blobs if the height (ferret v diameter) or
width (ferretxdiameter) 1s greater than the maximum pixel
limit; remove compacted blobs (e.g., below compactness 2);
remove blobs having larger area (e.g., area greater than
2000); remove all blobs if they are connected to the ROI
boundaries.

4. Store the cleaned 1mage in a binary image bu

e

Cr.

AutoScaleVerticalEdges
1. Find vertical edges of the cleaned binary image.

2. Delete edges having greater width than height.
3. Store the vertical edge 1image in an 1mage builer.

4. It the resultant edge 1mage 1s empty and has no edges,
then return a fail value, e.g., 99999,

AutoScaleHorizontalEdges
1. Find horizontal edges of the cleaned binary image.
2. Delete edges having greater height than width.
3. Store the horizontal edge 1mage 1n an 1mage buliler.

4. It the resultant edge image 1s empty and has no edges,
then return a fail value, e.g., 99999,

AutoScaleVerticalTwolLines
1. Using Hough-transform determine the best fitting two
vertical lines 1n the vertical edge 1mage.

10

15

20

25

30

35

40

45

50

55

60

65

18

2. For each line, select the longest edge in the vertical
edge 1mage. Therefore, the final vertical edge image will
have only two vertical edge segments corresponding to each
vertical line and are expected to represent the two vertical
sides of the scale.

3. Determine the centers of the two vertical edges.

4. Based on the maximum pixel limit determine, a bound-
ing box isolating the two vertical edges.

5. Select all horizontal edges falling within the selected
bounding box.

6. Perform the following test:

6.1 The horizontal distance between the two centers of the
two vertical edges 1s within a predetermined range of
distance.

6.2 The vertical distance between the two centers of the
two vertical edges 1s within a predetermined tolerance.

6.3 At least one horizontal edge should exist within the
bounding box.

7. If the test 1s true then assign Boolean vanables find-

_horizontal scale “true” and find vertical scale “false”.

8. If the test 1s false then assign find_horizontal_scale
“false” and find vertical scale “true” and exit the function.

9. If find_horizontal scale 1s true, then perform
AutoScaleHoirzScale:

9.1 Based on the bounding box, narrow the search space
for two vertical lines. Then using the narrowed dimen-
sion recalculate the best two vertical straight lines.
Store the coordinates of the two vertical lines to deter-
mine the scale.

9.2 Select the horizontal edges falling within the two lines
and also within the bounding box.

9.3 Search for horizontal edges and 11 there are no edges
found then assign find_horizontal_scale “false” and
find vertical scale “true”.

9.4 11 horizontal edges are found then perform the Hough
transform and determine the best fitting horizontal line.
Store the coordinates of the line.

9.5 Calculate the coordinates of the intersecting points
between horizontal line and two vertical lines.

9.6 Obtain pixel distance between two 1ntersecting points.

9.7 Using the true length of the scale, determine the LPR
(true distance 1n cm/pixel length).

10. If find_vertical scale 1s true, then perform AutoScale-
HorizontalLLines. This function performs the Hough trans-
form to determine the best two horizontal lines from the
horizontal edge 1mage, similar to AutoScaleVertLines.

10.1 For each line select the longest edge in the horizontal
edge 1mage. Therefore, the final horizontal edge 1mage
will have only two horizontal edge segments corre-
sponding to each horizontal line and are expected to
represent the two most horizontal sides of the scale.

10.2 Determine the centers of the two horizontal edges.

10.3 Based on the maximum pixel limit determine a
bounding box 1solating the two horizontal edges.

10.4 Select all vertical edges falling within the selected
bounding box.

11. Perform the following test:

11.1 The vertical distance between the two centers of the
two horizontal edges 1s within a predetermined range of
distance.

11.2 The horizontal distance between the two centers of
the two horizontal edges 1s within a predetermined
tolerance.

11.3 At least one vertical edge should exist within the
bounding box.

12. If the test fails return a fail value, e.g., 99999, for

AutoScale fail.

Uus 7,020,307 B2

19

AutoScaleVertScale

1. Based on the bounding box, narrow the search space for
two horizontal lines. Then, using the narrowed dimensions
in 1mage recalculate the best two horizontal straight lines.
Store the coordinates of the two horizontal lines to deter-
mine the scale.

2. Select the vertical edges falling within the two lines and
also within the bounding box.

3. I there are no vertical edges found then return a fail
value, e.g., 99999,

4. If vertical edges are found, then perform the Hough
transiform and determine the best fitting vertical line. Store
the coordinates of the line.

5. Calculate the coordinates of the intersecting points
between the vertical line and two horizontal lines.

6. Obtain pixel distance between two intersecting points.

7. Using the true length of the scale, determine the LPR
(true distance 1n cm/pixel length).

FIG. 7 1s a percentage-passing curve which shows the
volume distribution calculated from the manual tracing of
the rock fragments and the volume distribution calculated
using the system 10 of the present invention. It 1s apparent
that the system 10 provides results comparable to the manual
procedure without requiring any labor intensive and time-
consuming manual tasks.

The 1mage processing system 14 generates an alarm to
notify the operator of any problems or faults 1n the system
10, such as unacceptable rock distribution, failure to read the
rock scoop identification tag, image brightness i1s below an
acceptable threshold, the analysis cannot be performed for
any reason, and the image 1s not available or cannot be
found. The alarm may be in the form of an e-mail or a
TCP/IP message sent by the rock fragmentation analysis
system 10 to a remote PC. It 1s contemplated that the system
10 communicates the results of the analysis and reasons for
the generation of an alarm to a central computer located in
a remote location.

The rock fragmentation analysis system 10 of the inven-
tion 1s designed to operate on-line, 1.e., while the mine,
quarry, etc. 1s fully functional. Preferably, the two or more
processors provided within the 1image processing system 14
distribute the processing load of the 1mage processing sys-
tem 14.

While 1 accordance with the provisions of the statute,
there are illustrated and described herein specific embodi-
ments of the invention, those skilled in the art will under-
stand that changes may be made 1n the form of the invention
covered by the claims and that certain features of the
invention may sometimes be used to advantage without a
corresponding use of the other features.

The embodiments of the mnvention in which an exclusive
property or privilege 1s claimed are defined as follows:

1. A system for performing fragmentation analysis, the

system comprising:

a camera configured for capturing a plurality of images of
fragmented particles, wherein the plurality of images
include at least two 1mages for each group of frag-
mented particles;

at least one processor for executing programmable
istructions for generating at least one of a fragmen-
tation distribution of the fragmented particles corre-
sponding to at least one of the plurality of images, and
a total fragmentation distribution of the fragmented
particles corresponding to two or more of the plurality
ol 1mages;

5

10

15

20

25

30

35

40

45

50

55

60

65

20

means for determining an orientation and a direction of
travel for each vehicle of a plurality of vehicles loaded
with a respective group of fragmented particles; and
means for identifying each of the plurality of vehicles.
2. The system according to claim 1, wherein the means for
determining an orientation and a direction of travel includes
at least one tag having a plurality of markers and mounted

to each of the plurality of vehicles, and the means for
identifying includes a subset of the plurality of markers
providing a respective i1dentification code for each of the
plurality of vehicles.
3. The system according to claim 1, further comprising:
means for scaling each of the plurality of images to locate
side edges of a scale positioned 1n an 1mage view of the
camera; and

means for measuring a pixel distance between the side

edges to obtain a length to pixel ratio (LPR).

4. The system according to claim 3, wherein the means for
scaling includes means for using a Hough transformation
method to determine a straight line passing through a
maximum number of non-zero pixels i a binary image
corresponding to at least one of the plurality of 1images.

5. The system according to claim 1, wherein each of the
plurality of images 1s a top view 1mage of the fragmented
particles.

6. The system according to claim 1, further comprising:

means for detecting entry of an object within a field of

view of the camera; and

means for detecting exit of the object from within the

camera’s field of view.

7. The system according to claim 6, wherein the means for
detecting entry of an object comprises:

means for taking two bands of pixels from the top and

bottom of the camera’s field of view;

means for calculating the standard deviation of the inten-

sity of red channel pixels within the two bands;
means for comparing the calculated standard deviation to
a standard deviation of a blank image; and
means for determining that the object has entered the
camera’s field of view 1f the calculated standard devia-
tion 1s greater than the standard deviation of the blank
image.

8. The system according to claim 6, further comprising
means for determining whether the object detected as having
entered the camera’s field of view by the means for detecting
entry 1s a vehicle.

9. The system according to claim 8, wherein the means for
determining whether the object detected as having entered
the camera’s field of view 1s a vehicle comprises means for
determining if an 1mage representing the object within the
camera’s field of view contains an identification object by
analyzing a binary image corresponding to the image.

10. The system according to claim 1, further comprising:

means for determining a region of mterest (ROI) window

within each of the plurality of images;

means for performing a segmentation process for the ROI

window for generating a final blob 1image for each of
the plurality of images; and

means for determining the major and minor diameters of

blobs 1n the blob image.

11. The system according to claim 10, wherein the means
for performing a segmentation process comprises:

means for separating blobs 1n a segmented gray scale

image to produce a blob 1mage;

means for determining edges of the fragmented particles

to produce a edge 1mage; and

Uus 7,020,307 B2

21

means for combiming the blob and edge images to produce

the final blob 1mage.
12. The system according to claim 10, wherein the at least
one processor produces fragmentation results by using the
major and minor diameters of blobs i1n the blob image
corresponding to each of the plurality of 1images.
13. A method for performing fragmentation analysis, the
method comprising the steps of:
capturing a plurality of 1mages of fragmented particles,
wherein the plurality of images include at least two
images for each group of fragmented particles;

executing programmable instructions for generating at
least one of a fragmentation distribution of the frag-
mented particles corresponding to at least one of the
plurality of 1mages, and a total fragmentation distribu-
tion of the fragmented particles corresponding to two or
more of the plurality of images;

determining an orientation and a direction of travel for

cach vehicle of a plurality of vehicles loaded with a
respective group ol fragmented particles; and
identifying each of the plurality of vehicles.

14. The method according to claim 13, wherein the step
of determinming an orientation and a direction of travel
includes the step of providing at least one tag having a
plurality of markers to each of the plurality of vehicles, and
the step of identitying each of the plurality of vehicles
includes determining a respective identification code for
cach of the plurality of vehicles using a subset of the
plurality of markers.

15. The method according to claim 13, further comprising
the steps of:

scaling each of the plurality of images to locate side edges

of a scale positioned 1in an 1image view of the camera;
and

measuring a pixel distance between the side edges to

obtain a length to pixel ratio (LPR).

16. The method according to claim 135, wherein the step
of scaling includes the step of using a Hough transformation
method to determine a straight line passing through a
maximum number of non-zero pixels 1n a binary image
corresponding to at least one of the plurality of 1mages.

17. The method according to claim 13, wherein the step

of capturing the plurality of images includes the step of

providing a camera to capture top view images of the
fragmented particles.
18. The method according to claim 13, further comprising
the steps of:
detecting entry of an object within a field of view of a
camera positioned for capturing the plurality of images;
and

5

10

15

20

25

30

35

40

45

22

detecting exit of the object from within the camera’s field
of view.

19. The method according to claim 18, wherein the step
ol detecting entry of an object comprises the steps of:

taking two bands of pixels from the top and bottom of the
camera’s field of view;

calculating the standard deviation of the intensity of red
channel pixels within the two bands;

comparing the calculated standard deviation to a standard
deviation of a blank 1mage; and

determining that the object has entered the camera’s field
of view 1f the calculated standard deviation 1s greater
than the standard deviation of the blank 1mage.

20. The method according to claim 18, further comprising,

the step of determining whether the object detected as
having entered the camera’s field of view 1s a vehicle.

21. The method according to claim 20, wherein the step
of determining whether the object detected as having entered
the camera’s field of view 1s a vehicle comprises the step of
determining 1f an 1image representing the object within the
camera’s field of view contains an 1dentification object by
analyzing a binary image corresponding to the image.

22. The method according to claim 13, further comprising
the steps of:

determining a region of iterest (ROI) window within
cach of the plurality of 1mages;

performing a segmentation process for the ROI window
for generating a final blob 1mage for each of the
plurality of images; and

determining the major and minor diameters of blobs 1n the
blob 1mage.

23. The method according to claim 22, wherein the means
for performing a segmentation process comprises the steps

of:

separating blobs 1 a segmented gray scale image to
produce a blob 1mage;

determiming edges of the fragmented particles to produce
a edge 1mage; and

combining the blob and edge 1images to produce the final
blob 1mage.

24. The method according to claim 22, further comprising,
the step of producing fragmentation results by using the
major and minor diameters of blobs in the blob i1mage
corresponding to each of the plurality of 1images.

	Front Page
	Drawings
	Specification
	Claims

