(12) United States Patent

US007017046B2

(10) Patent No.: US 7,017,046 B2

Doyle et al. 45) Date of Patent: *Mar. 21, 2006
(54) SYSTEM AND METHOD FOR GRAPHICAL (56) References Cited
INDICIA FOR THE CERTIFICATION OF
RECORDS U.S. PATENT DOCUMENTS
4309569 A * 1/1982 Merkle ..oooovuvveveennn.. 713/177
(75) Inventors: Michael D. Doyle, Wheaton, IL (US); 5,001,752 A 3/1991 Fischercccccoveveueenns 380/23
Robert G. Hamilton, Oak Park, IL. 5,022,080 A * 6/1991 Durst et al. ..ocoovvenneeee 713/178
(US); Mare V. Perrone, Shorewood, 25122;232 i : 2/1992 FISCRET evvvveeeeeeeeeeennns 713/178
WI (US); Paul F. Doyle, Grand Rapids, 136, /1992 Haber et al. 713/178
y P 5136,647 A 81992 Haber et al. wvvvveeve...... 380/49
MI (US); Glenn W. Bernsohn, 5201000 A 4/1993 Matyas et al. .o.oooo........ 380/30
Evanston, IL (US) 5373561 A * 12/1994 Haber et al.ov........ 713/157
RE34,954 E 5/1995 Haber et al. 380/49
(73) Assignee: Proofspace, Inc., Grand Rapids, MI 5422953 A * 6/1995 Fischer ...cooveveeeeennn.. 713/172
(US) 5,469 507 A 11/1995 Canetti et al. 380/30
(*) Notice: Subject to any disclaimer, the term of this (Continued)
pa‘[en‘[iS 6}{‘[611(16(1 Or EldeSted U_I]der 35 FOREIGN PATENT DOCUMENTS
U.S.C. 154(b) by 511 days.
EP 96300340.5 8/1996
Tlhl.s patent 1s subject to a terminal dis- (Continued)
CldlITCT.

(21) Appl. No.: 09/844,790

(22) Filed: Apr. 26, 2001

(65) Prior Publication Data
US 2002/0129241 A1 Sep. 12, 2002

Related U.S. Application Data

(63) Continuation-in-part of application No. 09/158,592,
filed on Sep. 22, 1998, now Pat. No. 6,381,696.

(60) Provisional application No. 60/200,328, filed on Apr.
28, 2000, provisional application No. 60/200,372,
filed on Sep. 28, 2000, provisional application No.

60/059,455, filed on Sep. 22, 1997.

(51) Int. CI.

HO4L. 9/32 (2006.01)
(52) US.CL ..., 713/178; 713/156; 713/161
(58) Field of Classification Search 713/156—158,

713/171, 175-178, 161, 168; 705/50, 60,
705/63, 67, 418
See application file for complete search history.

TIME

INTERVAL 1

INTERVAL 2

INTERVAL 3 ¥

OTHER PUBLICATTONS

H. Massias and J. Quisquater. Time and cryptography, 1997.
Universite catholique de Louvain, Mar. 1997. TIMESEC

Technical Report WP1.*
(Continued)

Primary FExaminer—Kim Vu

Assistant Examiner—Thomas Gyorfl

(74) Attorney, Agent, or Firm—Sonnenschein Nath &
Rosenthal LLP

(57) ABSTRACT

A system and method for authenticating records. Certifica-
tion 1information may be encoded in graphical form. This
graphical form, or design, may be referred to as an “Indicia.”
The record at 1ssue may be printed out by a computer or
stored electronically and bear on it an indicia that relates to
the authenticity of the document. The indicia (and record)
may then be scanned and interpreted by the computer to
authenticate the record.

2 Claims, 25 Drawing Sheets

SERVER 1

(.- 1002
CERTIFICATION

Y

1004
//-—

CERTIFICATION

Y

1006
/’"

CERTIFICATION

US 7,017,046 B2
Page 2

U.S. PATENT DOCUMENTS

5,673,316 A 9/1997 Auerbach et al. 380/4
5,781,629 A * 7/1998 Haber et al. 713/177
5,787,172 A 7/1998 Arnoldoeveniinnnnnnnn. 380/21
5,864,667 A 1/1999 Barkan

6,671,813 B1* 12/2003 Ananda 713/202
6,711,679 B1* 3/2004 Guski et al. 713/156

FOREIGN PATENT DOCUMENTS

EP 96105258.6 10/1996
WO WO 9916209 Al * 4/1999

OTHER PUBLICAITONS

Shamir, A.: RSA for paranoids. CryptoBytes 1 (1995) 1—4.
http://citeseer.ist.psu.edu/shamir95rsa.html (pp. 14-15).*

Dave Bayer, Stuart Haber, and W. Scott Stornetta. Improv-
ing the efficiency and reliability of digital time-stamping. In

Sequences’91: Methods in Communication, Security, and
Computer Science, pp. 329-334. Springer Verlag, 1992.*
Stuart Haber and W.-Scott Stornetta. How to Time-Stamp a
Digital Document. Journal of Cryptology, 3(2):99-111,
1991.*

Verisign Digital ID Center Digital IDs Frequently Asked
Questions, [online], [retrieved on Sep. 8, 1998]. Copyright
1997. Retrieved from the imternet <URL: http://digitalid.
verisign.com/id_ fags.htm. pp. 1-19.

Digital Signature Trust Company Resources, [online],
[retrieved on Sep. 8, 1998]. Copyright 1997. Retrieved from
the Internet <URL: http://www.digsigtrust.com/resources/
pkc.html. pp. 1-2, pp. 1-26.

RSA Cryptography Today FAQ (3/3), [online], [retrieved on
Sep. 8, 1998]. Copyright 1993, Retrieved from the internet
<URL: http://www.cis.ohio-state.edu/hypertext/faq/usenet/
cryptography-faqg/rsa/part3/faq.html. pp. 1-17.

* cited by examiner

US 7,017,046 B2

Sheet 1 of 25

Mar. 21, 2006

U.S. Patent

14

L Old

JOMISS
~Nooooann ' (qwx) eresynies

woegune | —---—--=--—--—-- = _

Jawolsnn)

2boJoig

(INX) dedyia)

F3JOYS SO{0R
0qi »)
2P0 o Lo
poew b
pa{m{ouy 7o
uo 3} sy}

>

0¢

¢ Ol

US 7,017,046 B2

\f)
L\
-
-
L\
3 19M188
7>
suelos 'XNNIT AN - SO _
s T 1’} dL1H
—
“ fenes 41 1H
.,, AN
S 002 \
P
a]
= auBud 191G SjeoyIa) paleasd Amau
Olc 9sEqEIEd { 1aMoOg Loljesday ISanba! anssi s}eoye)

012

S19iMeg

BOC

U.S. Patent

19SMO.G

WAAS 198N
Sunereuab

a)eoliNed

1398 4 L1 H/M2M

SIQINES YN H

80¢

us)
AR AN

uoneolddy Jswolsng

AV A

199G HIBNJOOIH

Josmolg

SUeloS XNNIT IN- SO

US 7,017,046 B2

adeosioN
Slaylo
ayoedy
| I8M8S d1LH
Wg)SAS alaydgqapn
Ye oji4 SAlleN o]l elog [¢ [TV
M PI0%I0 MosT JUSAD 1SN
— ¢Hd ACAMST .
mu oaar unyf MIBNIO0I
D S—— auibu 19)Al108
@nu [12anag uonedtiddy
BuibBo eBessopy . so
\S : IBAIRS d11H
m v 110 _ auIbu3 1o|A198
= bdlIH o dsr
M Z0¢ \\ ettt - iV JuUL||O eiooid
Wa lojebedold Je|NJO01] Pojeasn Ameu s19A189 TN LH

uonedijddy Jewoisnn)

senba
lojeoldeyy é anssi| Y1ejoolid
ousland ewen

191JIU97) S8019) 1enssj
518|A19S YIBNJ00.d m mu | H_

Jusl|D e joold

00t

U.S. Patent

U.S. Patent Mar. 21,2006 Sheet 4 of 25 US 7,017,046 B2

Persistent
Archive

FIG. 4

U.S. Patent Mar. 21,2006 Sheet 5 of 25 US 7,017,046 B2

Persistent
Archive

i

LoadBalancer
(Verifigation host)

Load Balancer
{Issuing host)

FIG. 5

U.S. Patent Mar. 21,2006 Sheet 6 of 25 US 7,017,046 B2

_ X-Cen, Publish

FIG. 6

U.S. Patent Mar. 21,2006 Sheet 7 of 25 US 7,017,046 B2

FIG. 7

U.S. Patent Mar. 21,2006 Sheet 8 of 25 US 7,017,046 B2

800
\ CERTIFICATE
A. INTERVAL .
B. REQUEST o1

C. TIMESTAMP

804
TIME INTERVAL THAT THE CERTIFICATION
WAS ISSUED IN CURRENT ACCURACY QF
THE SERVER TIME SOURCE
. 806
D. SEQUENCE NUMBER WITHIN INTERVAL
809a

E. DIGITAL DIGEST (HASH) OF A-D
808
F. COPY OF MESSAGE DIGEST (HASH) FROM
PREVIOUS CERTIFICATION 20ck
G. DIGITAL DIGEST OF THE HASHES FROME
AND F
_ | 810
H. DATA
- - 812
. SIGNATURE

FIG. 8
L g00

DIGITAL SIGNATURE
902

A. KNOWN DATA, SUCH AS ONE-WAY HASH OF
DATA

904
B. KNOWN DATA ENCRYPTED BY THE PRIVATE
KEY

906
C. THE PUBLIC KEY, IF NECESSARY

FIG. 9

U.S. Patent Mar. 21,2006 Sheet 9 of 25 US 7,017,046 B2

TIME SERVER 1

1002
INTERVAL 1 CERTIFICATION

1004
INTERVAL 2 CERTIFICATION |

_ 1006
INTERVAL 3 | CERTIFICATION

FIG. 10

U.S. Patent Mar. 21,2006 Sheet 10 of 25 US 7,017,046 B2

TIME SERVER 1 SERVER 2

CERTIFICATION

INTERVAL 1 CERTIFICATION

REQ. FOR
X-CERT.

TO
INTERVAL 2 CERTIFICATION { SERVER 1 A CERTIFICATION

INTERVAL 3 CERTIFICATION CERTIFICATION

REQ. FOR
X-CERT.
TO OTHER
SERVER(S)

FIG. 11

U.S. Patent Mar. 21,2006 Sheet 11 of 25 US 7,017,046 B2

1200
\

CROSS-CERTIFICATION REQUEST
1202

A. ACTUAL DATA OR A REFERENCE TO THE ACTUAL DATA

1204

B. ONE-WAY HASH CF THE ACTUAL DATA
1206

C. IDENTIFICATION OF THE RECIPIENT OF THE CERTIFICATION

FIG. 12

/ e

INTERVAL CROSS-CERTIFICATION

(ISSUED DURING AN INTERVAL OTHER THAN THE
ONE FOR WHICH CERTIFICATION IS REQUESTED)

A. CURRENT INTERVAL
1304
B. REQUEST FOR CROSS-CERTIFICATION

C. TIMESTAMP 1306

TIME INTERVAL THAT THE CROSS- CERTIFICATION
WAS ISSUED IN CURRENT ACCURACY OF THE

SERVER TIME SOURCE 1308

D. SEQUENCE NUMBER WITHIN CURRENT INTERVAL
1310

E. DIGITAL DIGEST (HASH) OF A-D

1302

_ 1312
F. COPY OF MESSAGE DIGEST (HASH) FRCM PREVIOUS

CERTIFICATION

G. DIGITAL DIGEST OF THE HASHES FROM EAND F

FIG. 13

1314

U.S. Patent Mar. 21,2006 Sheet 12 of 25 US 7,017,046 B2

1400
MAY A CERTIFICATION BE ISSUED ?
1402
HAS A NEW KEY PAIR BEEN GENERATED?
1404
IS THE TIME SOURCE RUNNING WITHIN
SPECIFIED ACCURACY?
HAVE THE CROSS CERTIFICATIONS 1400
REQUESTED FROM OTHER
SERVERS BEEN RECEIVED?
WILL THE INTERVAL BE PUBLISHED | —— 1408

IN AT LEAST ONE ACHIEVE
(THE ROOT ACHIEVE) 7

FIG. 14

U.S. Patent Mar. 21,2006 Sheet 13 of 25 US 7,017,046 B2

U.S. Patent Mar. 21,2006 Sheet 14 of 25 US 7,017,046 B2

AmiParserAdapte

ProofMarkBuilder

+parseProofMark(in proofMarkXmi

VerificationReportBuilder

+parseVerificationReport(in reportXm

ProofMarkRequestBuilder

n requestXm

+parserrootMarkRequest

IntervalReferenceBuilder

+0 rseProofMarkReferen cefin referenceXmi

FIG. 16

U.S. Patent Mar. 21,2006 Sheet 15 of 25 US 7,017,046 B2

- . e
H—‘-I-'-i-r L --"-J-: :': '_l"'_- -.'-'i.l.'-:

L2 I r X F K F ¥

navaiable() : void -
valabie{) : void

TONNINYRURY F & O S

TN R :*:i 1y

ufll,*.f."

reQuest : ProofMarkRequesi) : ProofMark
Wwﬁ ProofMariRequest) .

-—'-r"" v -

i

|
|
|
L

geir wiS mbp ge gl S NN SUUF N dmm mhE URE

U.S. Patent Mar. 21,2006 Sheet 16 of 25 US 7,017,046 B2

FLNLoS UERITEFIER SERVET F
wlig g

R ARSUISTIER SERVIET BA 15 & SENE
NIARIUF SERVIET PATH * Strine
...;;.'. .ﬂ] Rl % l..-;. :1:;"]q - a ll : ‘:.:'l..l.'

FIG. 18

U.S. Patent Mar. 21,2006 Sheet 17 of 25 US 7,017,046 B2

Requesitin paramelers : Hashiable, in maponse | HYpServietResponse) . void
Requesifi parameters : Hashisbie, in eQURISONCE | SNPUISOUCS, in OupuUlaRer . PrintWritsr) .
A

e

nterval Maintanance: tssusrServiet

terral Mainterance: . StartupServist

"
= -
1 '
]
[T
[
-
»
]
v
[
-
In

inderval Mainlenance::YVarillerServiet

HrandieResponsaln inpulSource : inpuadSowurce, in ouiputAiter | PrinlVnled) !

FIG. 19

U.S. Patent Mar. 21,2006 Sheet 18 of 25 US 7,017,046 B2

ProofMark Servlet

ProofMark
ProofMark Broker Ventfier Servlet
Venlty O — Handle Request
Verification
Report

Create new instance for each request

ProofMark
Interval
Verification Report

Verty:
Signature
Chain (depth)
Cross-Cert.

FIG. 20

U.S. Patent Mar. 21,2006 Sheet 19 of 25 US 7,017,046 B2

PARSE
INCOMING REQUEST
2102
INITIATE REQUEST
TO CROSS-CERTIFY 2104

SERVER CAPABLE
OF ISSUING?

2100

2108

DELEGATE REQUEST
TO INTERVAL CHAIN

2108 2110
Yes FROM LOCAL Nor EXCEPTION
ARCHIVE?
No Yes
2912
GET CURRENT TIME AND
INTERVAL FOR THAT TIME
2114

CREATE AND
SIGN CERTIFICATE

FIG. 21

U.S. Patent Mar. 21,2006 Sheet 20 of 25 US 7,017,046 B2

(BN) e 20
CERTIFICATE
VERIFY THE SIGNATURE
ON CERTIFICATE SIGNATURE

Al

SET RECURSION TREE
TO ARCHIVE TREE FOR
CERTIFICATE'S INTERVAL

RECOVER INTERVAL
FROM ARCHIVE AND
VERIFY A MATCH WITH
CERTIFICATE'S INTERVAL

2206

2217

RELOAD INTERVAL,

RELOAD CHECK SIGNATURE FROM
CERTIFICAITE PREVIOUS INTERVAL

2214

VERIFY SERVER IDENTITY
SIGNATURE

2216

CERTIFICATIONS

Yes c3 4+~ x{111
fe

OTHER 2220
CROSS

CERTIFICATIONS?

VERIFY (NO
RECURSION)

FIG. 22

U.S. Patent

Mar. 21, 2006 Sheet 21 of 25

XXXX YYYY ZZZZ
XXXX VYVY 2277

aaa bbb
aaa bbb
cce ddd
cCC ddd
eee {{tftf gggg
cee tiitif gggg

111111111

kkk
kkk

US 7,017,046 B2

U.S. Patent Mar. 21,2006 Sheet 22 of 25 US 7,017,046 B2

BEGIN

2400
CHOOSE
PATTERN
FOR INDICIA
2402
CHOOSE
INDICIA SIZE
2404
FIND ORIGIN
2406 2408
POPULATE
Yes—s»| ENCODE DATA
2412
MOVE TO by
NEXT AREA 2410
y MORE
es DATA?
NoO

STOP

FI1G. 24

U.S. Patent Mar. 21,2006 Sheet 23 of 25 US 7,017,046 B2

BEGIN

2500

FIND ORIGIN

2502

DETERMINE

SCALE

2504

FIND AND
DECODE
AREA

2506
2510

ADD DE- |
CODED DATA |

MOVE TO RESULTS |
TO NEXT

AREA

2508

MORE
AREAS?

No

STOP

FIG. 25

U.S. Patent Mar. 21,2006 Sheet 24 of 25 US 7,017,046 B2

2806 2604

2662

TEXT

FIG. 26

2702

2704 i

G, 27 ke

U.S. Patent Mar. 21,2006 Sheet 25 of 25 US 7,017,046 B2

2804

2902 2904

RECEIPT/
DATA ENCODER CERTIFICATE |

FIG. 29

3000 3002 ;——-—- 3004

READABLE
TEXT

CERTIFICATE

F1G. 30

US 7,017,046 B2

1

SYSTEM AND METHOD FOR GRAPHICAL
INDICIA FOR THE CERTIFICATION OF
RECORDS

CROSS-REFERENCES TO RELATED
APPLICATIONS

This application 1s related to co-pending application No.
09/844,066, entitled “System and Method for Widely Wit-

nessed Proof of Time,” filed Apr. 26, 2001. This application
claims priority under 37 C.FR. § 1.78 as a continuation-in-
part of U.S. patent application Ser. No. 09/158,592, filed
Sep. 22, 1998, entitled “Method and System for Transient
Key Digital Time Stamps,” now 1ssued as U.S. Pat. No.
6,381,696 B1, which 1n turn claims priority under 35 U.S.C.
§ 119(e) from U.S. Provisional Patent Application Ser. No.
60/059,455, filed Sep. 22, 1997, entitled “Method and Sys-
tem for Transient Key Digital Time Stamps.” U.S. patent
application Ser. No. 09/158,592 and U.S. Provisional Patent
Application Ser. No. 60/059,455 are hereby incorporated
herein by reference in their entirety. This application also
claims priority under 35 U.S.C. § 119(e) from U.S. Provi-
sional Patent Application Ser. No. 60/200,328, filed Apr. 28,
2000, entitled “System and Method for Graphical Indicia for
the Certification of Records,” and from U.S. Provisional
Patent Application Ser. No. 60/200,372, filed Apr. 28, 2000,
entitled “System and Method for Widely Witnessed Proof of
Time,” the entirety of which are herein incorporated by
reference.

BACKGROUND OF THE INVENTION

Cryptology 1s the science of secret writing and has been
used for millennia to transmit information from one party to
another without allowing intermediaries to learn the infor-
mation. Cryptology includes cryptography, which 1s the
encoding of information, and cryptanalysis, which 1s the
decoding of the information. Often, people use cryptography
to mclude both cryptography and cryptanalysis.

In cryptology, an original message, 1n plaintext, 1s desired
to be sent from one party to another. The text 1s encrypted
using an algorithm or cipher, and the result 1s called cipher-
text.

Usually a key 1s used as part of the input to the algorithm,
to vary the results of the algorithm and make the ciphertext
more difficult to decipher, or turn back into plaintext.
Symmetric encryption uses a single key to both encrypt the
plaintext and decrypt the ciphertext. Asymmetric encryption
uses two separate keys, one to encrypt, and one to decrypt.
These two keys have a mathematical relationship that allows
what 1s encrypted with one key to be decrypted only with the
other key. Because of the nature of the mathematical rela-
tionship between the two keys, 1t takes longer to compute the
encryption and decryption of information using asymmetric
encryption.

Public key cryptography uses asymmetric encryption,
where one key 1s made public, and the other 1s kept private.
This 1s also referred to as a public/private key pair. A
message sender may publish its public key, and anyone can
use 1t to encrypt information. The sender will be the only one
who can decrypt the information, using a private key. A
second benelit to asymmetric encryption 1s that data can be
encrypted with a private key, which anyone knowing the
sender’s public key can then decrypt, creating a digital
signature that 1s unique. Digital signatures can also be
referred to as digital certificates. Often, a third-party Cer-
tificate Authority (“CA”) is relied upon to authenticate a

10

15

20

25

30

35

40

45

50

55

60

65

2

particular record. The system of using public and private
keys and a CA 1s frequently referred to as the Public Key
Infrastructure (“PKI”).

Another aspect of cryptology 1s the message-digest algo-
rithm. A message-digest algorithm takes any amount of
plaintext and produces a fixed-length ciphertext, which 1s
referred to as the message digest, digest, or hash. A strong
message-digest algorithm produces a unique digest for each

input, such that if only one character of the plaintext changes
the new digest 1s different.

The security of an algorithm used to encrypt information
1s based on whether or not 1t 1s considered possible to crack
the ciphertext and find the plaintext. The larger the key used
with the algorithm, the more secure the data.

Cryptanalysts traditionally break ciphers by finding pat-
terns within the data or by learning the key. Having more
examples of ciphertext created with the same key increases
the chance of finding patterns within the resulting data. Most
algorithms are published 1n order to undergo public scrutiny
to see 1f there are any weaknesses that can be used to break
the cipher.

A number of vulnerabilities exist to the Public Key
Infrastructure. As described, for example, 1n an article by
Carl Ellison (CEO of Counterpane Internet Security, Inc.)
and Bruce Schneider (Senior Security Architect for Intel
Corporation), “Ten Risks of PKI: What You’re Not Being
Told About Public Key Infrastructure,” a number of intran-
sigent difficulties are associated with PKI.

Many current certification systems for electronic records
depend upon a trusted third party, whose 1dentity and public
key can be verified by some alternate path and who systems,
processes and procedures for 1ssuing certificates must be
trusted. Such trust may not, 1n some cases, be warranted. For
example, a Certificate Authority may or may not be a
trustworthy organization. Properly evaluating the credentials
of an enftity who 1s to 1ssue certificates 1s difficult. There 1s
also a risk 1in a CA-based system that the private signing key
may not secure. The CAneeds to 1identify an applicant before
1ssuing a certificate, but the checks on the applicant to ensure
the right person has been signed up to receive particular data
may not be followed. Also, a certification for an individual
with a particular name may not be trustworthy if there 1s
more than one individual with the same name. In such a
case, public keys and data may be misdirected. Further, it 1s
difficult ensure that all of the computers with a particular
transaction (and particularly the verifying computer) are
SECure.

Certificates and their key pairs last a relatively long period
of time. If the certificates and key pairs are compromised,
however, certificate revocation lists must be published to
anyone who might get and rely upon the third-party’s
signature. Indeed, severe consequences may result if the
certificate authority’s key pair 1s compromised.

Reliable certification becomes even more important as
increased reliance 1s placed upon E-commerce and more
purchases are made using the internet. The more funds
assoclated with E-commerce, the greater incentive there 1s
for computer hackers to misdirect funds and the more dire
the consequences are 1f the trusted third party certifying a
particular set of data makes a mistake.

Accordingly, less reliance on trusted third parties 1n order
to provide documentary assurance 1s generally preferred.
There 1s a growing need for better assurance that a particular
document (or set of data) has existed in an unaltered states
as of a particular time.

US 7,017,046 B2

3
BRIEF SUMMARY OF THE INVENTION

The present system relates to a method for authenticating,
records. In some applications, it may prove useful for a
document to bear a representation of a certification. Accord-
ingly, for a paper document, such certification mnformation
may be 1n graphical form. This graphical form, or design,
may be referred to as an “Indicia.” The electronic record at
Issue may be printed out by a computer or stored electroni-
cally and bear on it an 1ndicia that relates to the authenticity
the document. The indicia (and record) may then be scanned
and interpreted by the computer to authenticate the record.

BRIEF DESCRIPTION OF THE DRAWINGS

A preferred embodiment of the present invention is
described herein with reference to the drawings wherein:

FIG. 1 1s a block diagram of a transaction scenario;
FIG. 2 1s a block diagram of the system;
FIG. 3 1s a block diagram of the system,;

FIG. 4 1s a block diagram showing a basic exemplary
topology for the present system;

FIG. 5 1s a block diagram showing an exemplary load
balancing topology for the present system;

FIG. 6 1s a block diagram showing an exemplary inter-
organizational topology for the present system;

FIG. 7 1s a block diagram showing an exemplary hierar-
chical topology for the present system,;

FIG. 8 1s a diagram showing the contents of an exemplary
certification;

FIG. 9 1s a diagram showing the contents of a digital
signature;

FIG. 10 1s a flow chart showing a series of sequential
certifications made with the present system;

FIG. 11 1s a flow chart showing a cross-certification made
with the present system;

FIG. 12 1s a diagram showing the contents of an exem-
plary cross-certification request;

FIG. 13 1s a diagram showing the contents of an Interval
cross-certification;

FIG. 14 1s a flow chart showing a series of inquiries made
in the present system prior to 1ssuing a certification;

FIG. 15 1s a class diagram of the Client API;

FIG. 16 shows the builder class model for the Client API;

FIG. 17 1s a class diagram showing the key classes 1n the
Interval maintenance subsystem for the present system;

FIG. 18 1s a block diagram showing the relationship of the
classes mvolved 1n cross-certification and the publication of
an Interval in association with the present system;

FIG. 19 1s a class diagram showing the servlet hierarchy
of the present system;

FIG. 20 1s a block diagram showing the operation of the
key classes of the verification subsystem of the present
mvention;

FIG. 21 1s a flow chart showing cross-certification;
FIG. 22 1s a flow chart showing verification;

FIG. 23 1s an 1ndica;

FIG. 24 1s a flowchart of indicia encoding;

FIG. 25 1s a flowchart of indicia decoding;

FIG. 26 1s a certificate with an indica;

FIG. 27 1s a cerfificate with an indica.

FIG. 28 1s a certificate with an indicia;

FIG. 29 1s a block diagram of the encoder; and
FIG. 30 1s a block diagram of the decoder.

10

15

20

25

30

35

40

45

50

55

60

65

4

DESCRIPTTION OF THE SPECIFIC
EMBODIMENTS

Overview

In general, the present method and system provides secu-
rity with respect to who provided what electronic data at
what time, without the need primarily to rely upon the
trustworthiness of a single organization or third party. Using
the system described in U.S. patent application Ser. No.
09/158,592 a public/private key pair 1s generally utilized for
some relatively short period of time. The private key 1s used
to create digital signature for that period of time and then
promptly destroyed. The private key 1s not stored. The
transient key pairs are then chained together serially by a
server. A certification or certificate 1ssued by a server accord-
ing to the present system are sometimes referred to 1n this
document as a ProofMark certificate or certification. Certi-
fications are sometimes referred to in this document as
certificates. Exemplary contents of a certificate are repre-

sented 1n FIG. 8.

As shown m FIG. 9, a digital signature 1s generally the
known data (usually a secure one-way hash of the data being
signed); the known data encrypted by the private key; and
the public key, if not implied. The serially chained certifi-
cation process 1s represented by the diagram in FIG. 10.

The Interval cerfification may include the server’s i1den-
tification; the start time of the Interval chain in UTC, the

start time of the Interval in UTC (which, for the first Interval,
is the same as the time of the start time of the Interval chain);
the stop time of the Interval in UTC; the public key for the
Interval; the digital signature for the Interval, signed by the
previous Interval’s private key; and a digital signature for
the Interval, signed by the server’s identity key (X.509 PKI
or PGP). Upon the expiration of the first Interval, the private
key 1s destroyed. The process 1s then repeated, as shown, for
the second, third and following Intervals. If, for any reason,
an Interval can not be created and readied 1n time, the chain
1s broken, and a new chain 1s started.

With present system, however, intervals are also cross-
chained with other servers to form a widely witnessed,
temporal web of signed intervals of time, which makes
attacks on individual servers fruitless. As shown 1n FIG. 11,
a second server may be configured to request a cross-
certification for, e.g., the second Interval. Thus, the first
server 1s elfectively requested to provide independent proot
of the existence of the Interval (and its public key) at a point
in time, which 1s witnessed by the first server. This cross-
certification (e.g., a ProofMark cross-certification) is illus-
trated in FIG. 13 and 1s provided 1n addition to the trusted-
time accuracy safeguards implemented by each server.

Of course, the second server could also request cross-
certifications from an unlimited number of other servers in
addition to the first server. Such cross-certifications can be
issued by other servers in the same organization or by
servers 1n other organizations. The contents of a cross-
certificate request are shown 1n FIG. 12.

Since cross-certification certificates are simply certifica-
fions that sign an Interval, they are themselves 1ssued by
some other Interval. The other Interval of FIG. 11 1s, of
course, third Interval (since it provides a cross-certification
certificate 1n response to the request issued by Server 2
during the second Interval).

The contents of a cross-certification certificate are shown
in FIG. 11. Cross-certification certificates might only 1ssue 1t
selected preconditions are met. Exemplary preconditions are
set out, for example, 1n the diagram of FIG. 14.

US 7,017,046 B2

S

Cross-certification certificates form an independent web
of trust, or a “chain mail” of proof of the Interval and its keys
at an i1ndependently trusted point i1n time. Such cross-
certifications protect the archive from forgery, since the
cross-certification web often may extend to several archives
and replicas of those archives. For example, the ProoftMark
certificates provide effective security against the possibility
of repudiation.

Certification information may be encoded i1n graphical
form. This graphical form, or design, may be referred to as
an “Indicia.” The record at 1ssue may be printed out by a
computer or stored electronically and bear on it an 1ndicia
that relates to the authenticity of the document. The indicia
(and record) may then be scanned and interpreted by the
computer to authenticate the record.

Architecture of the System

Referring now to FIG. 1, one embodiment of the present
ivention 1s described. A Client API runs within a Banking
Web Server 10 (operated by a bank) and provides commu-
nications to a certification and verification server 12, which
1ssues and verifies certificates. The bank stores the certificate
in a storage unit 14, which 1s coupled to the Banking Web
Server 10. Optionally, the server 12 can be configured to
store the certificate. In this example, the server 12 may be a
ProofMark server manufactured by ProotMark, Inc. of Chi-
cago, Ill.

The customer, from a personal computer 18, sends a
request 22 to pay a monthly mortgage. The personal com-
puter 18 1s coupled through a firewall 20 to the banking
server 10. The request goes past the firewall 20 to the
Banking server 10. Then, the Banking server 10 1ssues an
clectronic payment request to bank’s payment execution
system 16. Next, the bank’s payment execution system 16
issues a payment 32 and an acknowledgement 34. The
Banking server 10 requests payment from the execution
system 16. Then, the Banking server 10 sends a request 26
for a certificate to the server 12. Next, the server 12
generates an XML file (receipt) 28 and returns it to the
banking server 10. Then, the Banking server returns the
“receipt” 24 (the same as the receipt 28) to the customer.
Finally, the customer stores and prints a receipt 30.

The server 12 creates intervals, 1ssues certificates, and
verifles certificates. Other functions are possible. One
example of a server 1s the ProotMark server manufactured

by ProofMark, Inc. of Chicago, Ill.

Intervals are created by the system and method of the
present invention to provide transient key pairs for encrypt-
ing data. Each interval produces one key pair, with a private
key that 1s available only for the duration of the interval, and
a public key which 1s passed on to an archive tree. The
archive tree provides the security of multiple servers attest-
ing to the integrity of the system.

In addition to creating the key pair, each interval creates
the next interval 1 an interval chain. This chain of intervals,
cach signed by the previous interval, 1s used to provide
irrefutable proof for the certificates produced by the system.

Intervals exist for a pre-determined length of time (de-
fined at system configuration). At the end of each interval,
the private key 1s destroyed. The private key has existed only
for the duration of the interval, and has never been written
to a storage device, increasing the security of the private key.

A certificate can be a Proof Mark certificate, which 1s an
encrypted XML (eXtensible Markup Language) document,
created with the interval’s private key. Other examples of
certificates are possible.

10

15

20

25

30

35

40

45

50

55

60

65

6

Certificates contain the data to be certified, a time stamp
from a trusted time source, and the identity information of
the parties mvolved. A certificate also includes the public
key of the interval used to create 1t and information about
where to find an archive that can be used to verily the
certificate. Other information may be contained 1n the cer-
tificate.

Certificates are also verified. A verification report 1s
issued by a server 1n response to receiving a request for
verification of a certificate. An example of a verification
report 1s a ProofMark verification report. Other examples of
verification reports are possible.

Veritying the data may include confirming that the data in
the certificate has not been tampered with (a consistency
check), recursively validating of the interval chain used to
sign the certificate, or checking a log for record of the
creation of the certificate being verified. Other examples of
verification are possible.

Referring now to FIG. 2, a server 200 1s coupled to a

customer application 202. The customer application 202
comprises a Client API 204 and a server 206. The Client API

204 may be a ProotMark Client API and the server 200 may
be a ProofMark server, both manufactured by ProotMark,
Inc. of Chicago, Ill. A browser 218 i1s coupled to the
customer application 202.

The server 200 can be implemented as Java Servlets 208
that can be run on an Application Server. The ProotMark
Client API can be implemented as a Java class library and
can be run 1n a Java Virtual Machine. The server 200 also
comprises a servlet engine 210, HI'TP server 212, operating
system 214 and database 216.

A customer requests a certificate using the browser 218.
The customer application prepares and issues a certificate
1ssue request. The server 200 1ssues a certificate 1n response
to the request.

The Client API of the present invention 1s used to request
the 1ssuance or verification of certificates from a server. As
stated above, one example of a client interface 1s the
ProofMark Client API. The Client API can be implemented
in Java, but implementations 1n other languages or 1mple-
mentations using other systems are possible.

The Client API constructs and iitializes service request
objects; converts these objects to XML documents; sends
XML/HTTP requests to a designated server; converts server
XML/HTTP responses 1nto the appropriate response objects;
and presents a consistent set of exceptions, such as commu-
nications errors and server errors to the programmer.

The Client API may be optimized to run 1n a Java2
environment. Other environments are possible.

The Client API typically runs in a corporate environment.
The Client API requests or verifies certificates from the
corporate systems. The Client API helps to simplify the
implementation of the server. The Client API communicates
with the server via standard HTTP 1.1.

One particular example of the system of FIG. 2 1s illus-
trated 1n FIG. 3. FIG. 3 also 1llustrates servlets 302 in server
300.

The following table identifies the primary purpose of
these servlets. Other servlets are possible.

Servlet Purpose

[ssuer Responds to requests from the Client API for the issuance
of a ProofMark certificate

Verifier Responds to requests from the Client API for verification

of a ProotMark certificate

US 7,017,046 B2

7

-continued

Servlet Purpose
Retriever Responds to requests from the Client API for the retrieval

of certificates or intervals
Cross [ssues ProofMark certificates to certify another ProofMark
Certifier server’s Intervals
Publisher Creates and stores new Intervals and certificates
Replicator Sends copies of the archive tree to the appropriate servers
Propagator = Forwards intervals to other archives

The Client API receives requests via HTTP. These
requests can be for the 1ssuance of certificates or for the
verification of existing certificates.

A request contains some or all of the following informa-

tion:

a reference to the data being certified, such as a filename
or a SQL string or the actual data to be certified (used
when the amount of data to be certified 1s relatively
small and can be included in the request)

an SHA-1 digest of the contents of the data or the data
referred to by the reference (the digest is prepared by a
client program when creating the request)

zero or more X.509 certificates acting as witnesses to the
request (to include X.509 certificates, the client appli-

cation must provide the signed hash of the transaction
data to the Client API)

There are additional options that can be used when
requesting a certificate, indicating whether the certificate
should be stored on the server or whether only a reference
to the certificate should be returned.

Certificates are 1ssued for specific intervals. Referring to
FIG. 10, certificates 1002, 1004, and 1006 are issued 1n
intervals 1, 2, and 3, respectively.

The Client API also supports verification of previously
1ssued certificates. Verification can be: an internal consis-
tency check (validating the signature within the certificate
using the public key); sending the certificate to a server for
authentication; recursively verifying the itegrity of the
interval chain using cross-certifications; and/or recursively
verifying the integrity of the interval chain using cross-
certifications and checking the digest log for the digest of the
certificate being verified.

Each type of verification, except the internal consistency
check, produces an XML verification report. If the certificate
has been tampered with, the report will indicate what errors
were uncovered. Using the more thorough levels of verifi-
cation impacts the amount of CPU time required to complete
the verification.

A multi-processor (MP) machine is preferred, although
not essential, to 1mplement the method and system. Cryp-
tographic algorithms perform large numbers of mathemati-
cal calculations. An MP machine improves the server’s
performance, and requires no configuration changes to the
SErver.

A Multiplexing proxy set in front of a group of servers,
although not essential to implement the method and system,
will increase throughput. When a Multiplexing proxy 1s
used, the client applications point to the proxy, and the proxy
redirects the request to actual servers based on current
workload.

Another way to increase performance, although not essen-
fial to implementing the method and system, 1s to use a
Cryptographic Accelerator card, which 1s a piece of dedi-
cated hardware that can create key pairs, 1ssue signatures,

10

15

20

25

30

35

40

45

50

55

60

65

3

and verily signatures. For example, nCipher’s nFast300 can
increase the throughout of an MP machine.

Intervals, certificates, and digest logs may be stored 1n a
variety of memory or database options. For example, they
may be stored 1n any JDBC compliant database or a local file
system where information 1s hierarchically stored in folders.
Other storage options are possible. Both options can be used
in combination, for instance, a file system for intervals and
digest logs, and a relational database for certificates.

The user may choose any of several options for storing,
certificates. Each option offers different benefits that may
apply to particular circumstances. These options include:

fat certificate, low administrative overhead

fat certificate, higher client-tier administrative overhead,

and smaller 1ndicia

thin certificate, higher server-tier administrative over-

head, and smaller indicia

Fat and thin certificates may be implemented as fat and thin
ProofMark certificates.

With a fat certificate and low administrative overhead
configuration, the corporate requests (through the Client
API) that all transaction data be stored within the certificate.
The end users are responsible for storing and/or printing the
certificates 1ssued to them, which they can use for verifica-
tion later. With this configuration, less database space 1is
needed since the client tier and the server does not have to
store the certificates.

With a fat cerfificate, higher client-tier administrative
overhead, and smaller indicia configuration, the corporate
requests (again, through the Client API) that all transaction
data be stored 1n the certificate, but the certificates are stored
on the client tier and pass the end-user a reference to the
certificate. This reference may be similar to a URL, which
can be encoded 1n a very small indicia.

With a thin certificate, higher server-tier administrative
overhead, and smaller indicia configuration, the Client API
passes transaction data to the server, but only asks for a
reference back. A Server tier stores the certificate and the
client tier passes a reference to the end user 1n a very small
indicia. This situation 1s optimal if the server tier i1s very
secure and fault-tolerant, and if end users do not want to
store or encode/decode large certificates.

The system may be organized using a variety of topolo-
oles. Intra-organizational Cross-certification topologies
address server workload and system reliability 1ssues. Inter-
organizational topologies provide additional quality of ser-
vice levels to the certificates that are 1ssued.

The topologies discussed below represent only a few of
the possible configurations. Of the intra-organizational
topologies, the choice 1s primarily a matter of volume
requirements; the load balancing topology 1s more appro-
priate for high volume 1installations.

Two primary 1ntra-organizational topologies are recipro-
cal peer and load balancing. Other examples are possible.

The reciprocal peer topology comprises clients connect-
ing directly to one or more servers. The servers cross-certily
cach other.

Referring to FIG. 4, all of the organization’s clients C,
connect directly to one of the servers P, or P, via a load-
balancing server which provides the appearance of a single
virtual host. These servers store intervals and cross-certifi-
cation trees to a shared or replicated archive. The same
virtual hostname 1s used for both i1ssuance and verification,
and 1s therefore used as the archive’s nominal hostname.

In a load balancing topology, which 1s used 1in conjunction
with a reciprocal peer topology, clients connect to one of

US 7,017,046 B2

9

several servers NP, that do not have local access to the
archive. See FIG. 5. These servers 1 turn cross-certity with
at least one of the servers P1 or P2 that only serve as
cross-certification and archive servers. Aload balancer 1s not
used on the connection between the NPm and P1/P2 servers
for purposes of cross-certification, but 1s present as the
nominal archive host and serves to load-balance verification
requests to the archive. While not shown, severs distinct
from P1 and Pn could be deployed as independent verifica-
tion/archive servers, so that P1 and P2 would perform only
cross-certification requests. Given the light load of simply
Issuing cross-certifications, one server could easily satisty
this role, but having two provides for redundancy of this
function.

Two 1nter-organizational topologies are meshed peer and
hierarchical. Other examples are possible. An organization
may be any form of enfity or sub-entity within a larger
organization.

In a meshed peer topology, several organizations running,
servers agree to provide mutual cross-certification and pub-
lication services. Each participating organization can con-
figure 1ts cross-certifications to be obtained from any num-
ber of other organizations, and may specify how many are
optional or required for certifying the interval. Certificates
1ssued by one of these intervals will list the root archive as
the one belonging to the 1ssuing organization, and will list a
tree of other archives where the 1nterval 1s published. In FIG.
6, the organizations deploy reciprocal peer topologies, but
they may also deploy load-balancing topologies. If the load
balancing topology i1s used within an organization, the
cross-certification servers will 1ssue cross certifications both
within and between orgamizations. This work 1s normally
insignificant when compared to the load placed on the
Issuing server farms.

Variations on these topologies include organizations that
are present on a meshed peer topology, receiving cross-
certification services from one or more of the trusted peers,
but providing no cross-certification in return. Additionally,
an organization may participate in more than one trusted
peer topology.

The hierarchical topology closely models the certificate
authority (CA) model for digital certificates. In this case,
there are recognized and reputable Public Record (PR)
service organizations that only supply cross-certification and
publication services to organizations. Organizations can
request cross-cerfification directly from a PR, or indirectly
through another organization. In FIG. 7, S, 1s considered a
broker between the public records and organization S.,.

Server Operation

Certificates

A certificate 1s an electronic document that verifies the
existence of some data at a point 1 time that 1s trustworthy
independent of the organization issuing the certificate. It
provides non-repudiable proof of the “who, what, and when”
of E-commerce transactions and network events.

Certificates are XML (extensible Markup Language)
documents that digitally sign and authenticate some data. A
certificate 1s 1ssued by the server 1n response to receiving an
issue request (also an XML document) as input to an HT'TP
request.

When an 1ssue request 1s sent to the HT'TP server com-
ponent of a server, the HI'TP server recognizes the header as
a request for a servlet and dispatches the servlet engine
running the server to handle the request. The server encap-
sulates the certificate Request document inside an XML
document and returns this to the client of the request.

5

10

15

20

25

30

35

40

45

50

55

60

65

10

Certificates can, as an option, be stored 1n a database on
the server. When that 1s done, a reference URL used for
retrieving the certificate can be returned instead of the full
certificate.

One example embodiment of a certificate 1s 1llustrated in
FIG. 8. Referring to FIG. 8, the certificate 800 contains: the
data 810 to be certified; a timestamp 804, 1n UTC, that the
certificate was 1ssued and the current accuracy of the serv-
er’s time source; an interval 802; a sequence number 806
within the interval; a copy of the message digest (hash) 808
from the previously 1ssued certificate; a message digest 809a
and 809b of the contents of the certificate; a digital signature
812 of the concatenation of the two message digests; and a
request 814.

Intervals

Intervals are used by the system to provide the transient
key pairs which safely encrypt the data in a certificate. Using,
fransient key pairs instead of a long-term secure facility
provides greater security for protecting the integrity of the
private keys.

The length of time during which a key-pair can be used 1s
set during start-up of an 1ssuing server. Each server gener-
ates one key-pair per interval.

A single server has only one active interval at any given
fime. As the server runs, subsequent intervals are created
which are guaranteed to be contiguous (the stop time of an
interval is identical to the start time of the next interval).
These contiguous 1ntervals form an interval chain, with each
interval signed by the previous interval. If a new interval
cannot be readied and prepared before 1ts prescribed start
time, the chain i1s broken, and the server automatically
restarts a new chain.

An 1nterval contains the following information: the
server-id (the hostname|:port] of the server); the start time of
the interval chain in UTC (universal coordinated time); the
start time of the mterval in UTC; the stop time of the 1nterval
in UTC; the public key for the interval; the digital signature
for the interval, signed by the previous interval’s private
key; a digital signature for the interval, signed by the
server’s X.509 (an international standard for the format of
digital certificates) identity key; Cross-certification informa-
tion (a certificate issued for an interval by another server);
and the digest log of the interval completed just prior to the
interval used to create the current interval.

Referring to FIG. 9, a digital signature 900 comprises
known data 902. This can be 1n the form of a secure one-way
hash of the data being signed. In addition, the digital
signature comprises the known data encrypted 904 (en-
crypted by the private key) and a public key 906.

Interval length, in seconds, 1s the amount of time that an
interval and 1ts unique key-pair will be used before destroy-
ing the private key and creating a new Interval. There are
several considerations 1n selecting this length. For instance,
shorter intervals may provide a smaller target for hackers.
Also, 1ntervals are independently cross-certified which may
make a shorter interval advantageous. In addition, the cre-
ation of the next interval (since each interval is prepared
during the previous interval) may make a longer interval is
advantageous. The storage of intervals in the archive may
make longer intervals better since longer intervals may
result in fewer Intervals to store.

In weighing these considerations, the inventors have
discovered that an interval length of around 5 minutes is
advantageous 1n some situations. However, depending upon
the type of installation, and other factors, any length of
interval may be used.

US 7,017,046 B2

11

A shorter 1nterval may be preferable since 1t 15 a smaller
target for hackers. If the other safeguards i protecting the
fransient private key were broken, obtaining any given
private key would only allow for false 1ssuance of certifi-
cates for the one Interval. This risk 1s much lower since keys
are never stored or transported, and only exist during the
interval. Using a supported hardware crypto-accelerator,
they never exist or are accessible outside of the transient
memory 1n the crypto-processor board. This 1s a significant
improvement over permanent key, third party key systems.

A shorter interval may also be preferable since each
interval 1s independently cross-certified. A smaller Interval
may tend to strengthen the independently-verifiable time of
the cerfificates 1ssued by the interval, to the extent that the
atomic-clock time sources used by any one server are
suspect.

On the other hand, a longer interval may be preferable
since the interval 1s prepared for use during the previous
interval. This preparation includes key generation, obtaining
cross-certifications for the interval, storing the interval 1n the
local archive, and publishing the interval to at least one
external archive, if any are specified.

All of these must be completed before the start time of the
interval, and extra time may be required 1if there are tem-
porary network bottlenecks in obtaining, for example, cross-
certifications for the mterval. Selecting too short an interval
may 1mpact server availability 1f these things cannot be
completed on time.

A longer 1nterval may also be preferable since there will
be fewer intervals to store i1n the archive, retrieve, and
cross-certity. This results 1n less network overhead and less
file storage 1n the archives where the interval 1s stored.

Interval Chains

The first two intervals i1n the chain act as bootstrap
intervals for signing the chain, and are generally shorter than
the configured interval length. These intervals exist only
until they can create the subsequent intervals, and are never
used to 1ssue certificates.

The start time of the very first mterval in the chain 1s
known as the chain start time, and 1s stored 1n each interval.
While theoretically possible, 1t 1s unlikely that two different
servers would be configured with the same server-id. It is
highly improbable that these servers could also be started at
exactly the same time, resulting in identical chain start-
times. Therefore, adding the chain start time to the server-id
uniquely 1dentifies an interval chain.

Once the chain 1s 1dentified, an interval within the chain
1s umquely 1dentified by the interval’s start time. The chain’s
intervals are stored persistently 1in an archive.

During each interval, the private key 1s used in the
creation of certificates. Many certificates can be 1ssued
during an interval, each signed by the interval’s private key.

At the end of each interval the private key 1s destroyed
and a new key pair 1s generated for the subsequent interval.
During the process of activating a new interval, the current
interval’s private key signs the new interval’s public key and
start and stop times. Once a signature for the interval’s key
has been acquired, the private key 1s permanently destroyed.

The start time within each interval coupled with the chain
start time form an unbroken sequence of public keys that can
be used to fix a certificate’s position in time, which also fixes
the exact state of a set of data at that point 1n time. To prove
this state at some future point, the chain of public keys 1s
posted to an easily accessible place (i.e. several web servers)
from where they can be used to verily a certificate.

10

15

20

25

30

35

40

45

50

55

60

65

12

Interval Cross-Certification

Cross-certifications are certificates whose signed data 1s
an 1nterval, and cross-certification refers to the process by
which one server issues a certificate for another server’s
interval. The cross-certification provides imndependent proot
of the existence of the interval (and its public key) at a point
in time, and creates a widely witnessed chain of proof for the
interval. Cross-certifications also protect the archive from
tampering, since the cross-certification web extends to sev-
eral archives and replicas of those archives.

An 1nterval can have any number of cross-certifications,
i1ssued either by other servers within the same organization,
or by servers 1n other organizations. A minimum number of
cross-certifications must be returned before the 1nterval can
become active (set at system configuration). A larger number
of cross-cerfifications results 1n a more widely witnessed
chain of proof.

The cross-certification process requires that the times-
tamp (from a trusted time source) of the interval and the
timestamp of the cross-certifying server agree. That means
the difference 1s less than the sum of the accuracies of the
two timestamps plus the time required to obtain the cross-
certification.

During cross-certification, the cross-certifying server
authenticates the PKI signature in the interval that is being,
cross-certified, and rejects any requests whose PKI signa-
tures cannot be verified.

Referring to FIG. 11, one cross-certification process 1s
described. As shown 1 FIG. 11, a second server may be
coniigured request a cross-certification for, €.g., the second
interval. Thus, the first server 1s effectively requested to
provide independent proof of the existence of the Interval
(and its public key) at a point in time, which is witnessed by
the first server. This cross-certification (also referred to in
this document as a ProotMark cross-certification and 1llus-
trated in FIG. 13) 1s provided in addition to the trusted-time
accuracy safeguards implemented by each server.

Of course, the second server could also request cross-
certifications from an unlimited number of other servers in
addition to the first server. Such cross-certifications can be
issued by other servers in the same organization or by
servers 1n other organizations. The contents of a cross-
certificate request are shown 1n FIG. 12.

Since cross-certifications are simply certifications that
sign an Interval, they are themselves 1ssued by some other
Interval. The other Interval of FIG. 11 1s, of course, third
interval (since it provides a cross-certification in response to
the request issued by Server 2 during the second interval).

The contents of a cross-certification certificate are shown
in FIG. 11. Cross-certifications may only issue 1if selected
preconditions are met. Exemplary preconditions are set out,
for example, 1n the diagram of FIG. 14.

Cross-certifications form an independent web of trust, or
a “chain mail” of proof of the Interval and its keys at an
independently trusted point 1n time. Such cross-certifications
protect the archive from tampering, since the cross-certifl-
cation web often may extend to several archives and replicas
of those archives. The certificates provide effective security
against the possibility of repudiation.

Referring to FIG. 12, a cross-certification request 1200
comprises actual data or reference to actual data 1202,
one-way hash of actual data 1204, and identification of the
recipient of the certification 1206.

Referring to FIG. 13, a cross-certification certificate 1300
comprises a current interval 1302, request for cross-certifi-
cation 1304, time stamp 1306, scquence number 1308,

US 7,017,046 B2

13

digital digests 1310 and 1314, and a copy of the message
digest from the previous certification 1316.

Referring to FIG. 14, preconditions for certification are
described. Step 1400 checks to see 1f a certification has been
issued. Step 1402 checks whether a new key pair has been
ogenerated. Step 1404 determines if the time source 1s run-
ning with the specified accuracy. Step 1406 checks 1f cross-
certifications have been received from other servers. Step
1408 checks if the interval will be published 1n at least one
archive. If any of the answers to the above steps are
negative, certification may not proceed. Or, only some of the
conditions may need to be met 1n order for certification to
proceed. Alternatively, certification might proceed 1f none of
the conditions are met.

Referring now to FIG. 21, an illustrative cross-certifica-
tion process 1s described. A servlet parses the incoming
request at step 2100. Then, at step 2102, the servlet initiates
a request to perform cross-certification. At step 2104, a test
1s performed to determine whether the server 1s capable of
Issuing a cross-certification certificate. For example, 1f a
server 1s being used, it 1s determined whether the server 1s
coniigured to 1ssue certficates.

Then, at step 2106, the request 1s delegated to the interval
chain. In other words, the request 1s passed to the interval
chain. At step 2108, 1t 1s determined whether the server 1s 1n
safe mode. If the answer 1s affirmative, execution continues
at step 2112. If the answer 1s negative, 1t 1s determined
whether the request 1s to cross-certily a certificate from a
local archive at step 2109. It the answer 1s negative, then, at
step 2110, an exception 1s logged and execution ends. If the
answer at step 2109 1s atfirmative, then control continues at
step 2112. At step 2112, the current time and interval are
obtained. Next, at step 2114, a certificate 1s created and
signed.

Trusted Time

Each certificate has a timestamp indicating the time that
the certificate was 1ssued. The timestamp 1s created using
Universal Coordinated Time (UTC), with precision to the
nearest millisecond. Within the server, timestamps are
obtained from a trusted time source (commonly via the
Network Timing Protocol (NTP)).

Times are calculated via a time biasing mechanism, which
obtains the time from the trusted time source periodically
and uses a local hardware timer 1n the interim. If the trusted
time cannot be obtained, the server will not 1ssue certificates
until the trusted time can be reestablished. The system clock,
which 1s vulnerable to tampering, 1s never used as a source
of time.

Every timestamp has an associated accuracy, in millisec-
onds, which 1s reported along with the timestamp 1n every
1ssued certificate. In a typical configuration, accuracy within
100 milliseconds of the Atomic clock 1s possible.

If the TimeSource 1s not running within its specified
tolerance, a StaleTimeException occurs, which prevents the
creation of certificates.

Digest Logs

The digest log 1s used to ensure that false certificates
cannot be created after an interval has been created, cross-
certified, and published (unless the attacker has successfully
compromised the enfire distributed network of cross-certi-
fying servers and archives).

The digest log contains the individual digests for each
certificate created by an interval, as well as a “superhash”
digest, computed from the individual digests. The digest log
1s placed into the next interval to be created within the
interval chain (this is not the interval immediately after the
interval the digest log represents, but the one following it).

10

15

20

25

30

35

40

45

50

55

60

65

14

When the interval 1s published, the digest log 1s also
published.Digest logs are periodically propagated to the
same archive(s) as the intervals they represent.

The digest log 1s used to protect against the creation of
false certificates. While 1t 1s possible for someone to obtain
the transient key for an interval (which can be done only
while the interval is active), the digest log would not contain
a digest for any false certificates created using the private
key.

The existence of the digest log also enhances security. A
cracking attack i1s one 1n which the transient private key 1is
deduced after the end of an interval, by applying cryptanaly-
sis techniques to existing certificates created during the
interval. A false cerfificate created using a private key
obtained in this manner could not be verified if the digest log
veriflication option was required, since no record of that
certificate would be present 1n the digest log for the 1ssuing
interval. Finally, since digest logs are cross-certified 1n the
same manner as intervals, tampering with a published digest
log after the fact would require altering all records of the
digest log, 1in all cross-certifying servers.

The risk of false certificates 1s much lower with the
present 1nvention since kKeys are never stored or transported,
and only exist during the interval. Using a supported hard-
ware crypto-accelerator, they never exist or are accessible
outside of the transient memory in the crypto-processor
board. This 1s a significant 1mprovement over permanent
key, third party key systems.

Ensuring Server and Interval Identity

Preferably, a server 1s uniquely identified by an Internet
hostname and optional port number, for example, 80. The
server ID 1s included 1n the interval.

Preferably, the server can interoperate with the Public Key
Infrastructure (PKI) digital certificates issued by a Certifi-
cate Authority (CA), such as Verisign, Entrust, or a cus-
tomer-operated CA.

Each server can have an optional digital certificate with a
Subject distinguished name (SubjectDN) that matches the
server’s hostname (the serverID, excluding the optional
port). Each server that has such a certificate can be config-
ured with information on how to locate and use the certifi-
cate during startup. A server that has been so configured will
use the certificate’s key to create a digital signature of each
interval that 1t creates. The digital cerfificate’s key and
signatures are distinct and independent from the interval’s
transient key-pair. The PKI information will appear as a
PKISignature element in the interval within each certificate
issued by the server.

Veridication

Once a cerfificate 1s 1ssued, a user may request a deter-
mination that i1t has not been tampered with and that 1t 1s
authentic. To determine that a certificate has not been
tampered with since it was 1ssued, an internal consistency
check can be performed. To determine that a certificate 1s
authentic, 1t 1s sent to an archive for verification.

To confirm a certificate’s authenticity, 1t must be verified
against an archive. There are several types of archive
verification. All types of archive verification perform the
internal verification described above prior to checking the
archive.

Several types of interval verification are possible includ-
ing 1nternal verification, interval veriication, cross-certifi-
cation verification, and digest log verification. The later
three represent types of archive verification.

Internal Verification

With the aid of publicly available software, any certificate
can be tested for internal consistency. This check does not

US 7,017,046 B2

15

require communication with a server, yet will immediately
detect 1f the cerfificate was modified since it was 1ssued.

To test a certificate for internal consistency, the system
compares a digest of the original data (created with an
SHA-1 hash algorithm) with the digest from the certificate.
If the two digests match, the certificate 1s internally consis-
tent. If the two digests do not match, the data in the
certificate has been tampered with, and 1t 1s not a valid
certificate.

The first level of archive verification authenticates any
PKI signatures which were included 1n the original request
that generated the certificate (these are part of the certifi-
cate). Authentication 1s accomplished by first verifying each
certificate 1 the PKI signature’s certificate chain, then
checking for a trusted certificate in the machine’s local
keystore whose subjectDN matches the 1ssuerDN of the first
certificate 1n the PKI signature’s certificate chain. If these
keys fail to match, an error 1s reported 1n the verification
report.

Cross-Certification Verification

The second level of archive verification authenticates the
PKI signatures, and checks the archive for the public key of
the interval. Then, the interval’s cross-certifications (which
are themselves certificates) existing in the archive are recur-
sively authenticated.

Referring now to FIG. 22, one verification procedure of

the present invention 1s described. Cross-certification cer-
tificates C1 and C2 reside 1n archive Al. Cross-certification
certificate C3 resides 1n an archive A2. Cross-certification
certificate C1 has an associated interval chain IC1; C2 has an
assoclated interval chaimn IC2; and C3 has an associated
mnterval chain IC3. The certificate 2202 has an associated
mnterval chain 2210. The interval chain 2210 has intervals 10,
I1, and 12; C1 has intervals 13, 14, and IS; C2 has intervals
I6, I7, and I8; and C3 has intervals 19, 110, and I11. The
numbering of the intervals between chains (i.e., 10 . . . 12,
3...1516...18, and I9 . . . I11) is done for ease of
explanation. Sequencing between chains, although possible,
is not required (i.e., I3 may not follow 12 in time).

The certificate 2202 1s the “current certificate” being
verifled and may change, as described below. The interval in
the certificate 1s the “current interval,” 1n this case, 12. The

current archive 1s the archive where this interval 18 stored, 1n
this case, Al.

At step, 2200, the signature on a certificate 2200 1s

verifled. At step 2204, the recursion tree 1s set to an archive
tree 2206 for the current certificate’s interval. In this case, 1t
1s set to archive tree for 12, which 1s archive tree 2206. At
step 2208, the interval chain 2210 is recovered from the
iterval’s archive. In this case, interval chain 2210 1s recov-
ered from the archive Al. Then, the interval 1s recovered and
a match 1s attempted to be made with the current interval. In
this case, 12 1s recovered from chain 2210 and matched
against the interval (I2) from certificate 2202.

Next, at step 2212 the signature from the previous interval
is checked. In this case, the signature of 12 (that was created
with the private key of I1) 1s decrypted with the public key
of I1. Then, at step 2214, the server identity signature 1s
verified. The server has a cerfificate and 12 1s verified as to
whether 12 was signed by this certificate.

At step 2216 1t 1s determined 1f there are more certifica-
tions 1n other archives. If the answer 1s afirmative, at step
2217, the certificate and 1its interval are reloaded. For
instance, C3 replaces certificate 2202 and IC3 replaces chain
2210. Then, the process is repeated. For example, 11 (C3’s
interval) is checked against I11 in the chain IC3. Also, the

10

15

20

25

30

35

40

45

50

55

60

65

16

signature of 11 (that was created with the private key of I10)
1s decrypted with the public key of 110. The server identity
signature 1s verifled.

Preferably, this process 1s repeated at one-level. That 1s
the system may verify the certificates 1n the archives certi-
fying certificate 2202, not the cross-certification certificates
for these cross-certification certificates. However, multiple
levels of recursion are possible.

If the answer at step 2216 1s negative, at step 2218, it 1s
determined 1if there are more cross-certifications in the
interval’s archive (In this case, archive Al). If the answer is
athirmative, then, at step 2220, the other cross-certifications
are non-recursively checked. In this case, C1 and C2 are
checked against the interval chains IC1 and IC2. Further, IS
(C1’s interval) is checked against IS in the chain IC1; I8
(C2’s interval) is checked against I8 in the chain IC2. Also,
the signatures of IS and I8 (that were created with the private
keys of 14 and 17, respectively) are decrypted with the public
key of 14 and 17, respectively. The server identity signatures
are also verified. If the answer 1s negative, execution ends.

Digest Log Verification

The highest level of archive verification authenticates the
PKI signatures, checks the archive for the public key of the
interval, and checks the interval’s cross-certifications. When
these have been verified, the server confirms that the digest
exists 1n the interval’s archived digest log.

Verification Reports

The server 1ssues a verification report 1n response to a
veriflication request. Input to this request 1s the certification
(the XML) to be verified. Output from this request is a
verification report XML document containing the results.

The verification report either lists any errors discovered 1n
the process or indicates that the verification was successtul.

Archives

An archive 1s a logical or named database 1n which
intervals and their cross-certifications are stored. The ability
to retrieve an interval and its cross-certifications from an
archive provides all the information necessary to complete
the verification of a certificate.

Because an archive 1s a logical database, 1t can be shared
or replicated (copied) to many servers, and can be hosted on
any server. Its physical persistence may be mapped into
either a normal file system or a JDBC-compliant (Java
Database Connectivity) relational database.

Each archive 1s 1dentified by a unique hostname URL.:
hostname or hostname:port. For example, the port may
default to 80. This host name 1s the logical host of the
archive, which may be either a single real server or a
load-balance proxy to a group of servers. Other hosts may
have replicas of the archive as well.

If the archive’s real host ceases to exist, the archive
directory will list forwarding host addresses where copies of
the archive are located.

Archive Directory

A Web server exists that contains a database of forwarding
addresses for archives whose contents are no longer serviced
by the original logical host. The normal verification of a
certificate would send a request to one of the archive hosts
listed 1n the certificate’s archive tree. If one or more of these
hosts were no longer operating, the directory could be
queried for other servers that now serve the archive.

Replication

Since several servers may have a copy of an archive, or
contribute to 1t, the copies of the archive are replicated
among cach server 1n the archive. This replication may be
achieved by several methods. For file-system archives, any
file replication product, such as the Andrew File System

US 7,017,046 B2

17

(AFS), or utilities such as RDIST (remote software distri-
bution system) or RSYNC (a file transfer program for Unix
systems) can be used. For JDBC database archives, either a
shared database service or the replication service can be
used.

Interval Archive Tree

Every interval must be stored 1n at least one archive,
known as the 1nterval’s root archive. Intervals may be stored
in additional archives as well. During creation of the inter-
val, an archive tree 1s established for the interval and the
interval 1s stored or published 1n 1ts root archive before it 1s
available for use.

After 1ts initial publication, the interval 1s forwarded
asynchronously to one or more additional archives in the
archive tree, which may 1n turn each forward to additional
archives. The archive tree 1s represented as part of the
interval’s XML representation and therefore appears 1n each
certificate 1ssued by the interval. This enables the holder of
the certificate to know which archives can be used for later
verification of the certificate. In one example, a client may
have its own archive, and will forward its intervals to a
public archive, but more extensive archive trees are possible.
Each additional archive may have been configured to for-
ward to another level of archive (propagating the archives).

The process of establishing the archive tree for an interval
occurs 1mmediately after the cross-certifications for the
interval have been obtained. The archive tree 1s constructed
by combining the archive trees from the servers that 1ssued
cross-certifications as follows. The interval’s local archive
becomes the root of the archive tree. The set of archive trees
of all of the cross-certifications for the interval are added as
immediate branches of the root archive. If there are archives
that have been configured for publication, without requiring
cross-certifications, these archives are also added as
branches. Any cycles or redundant branches 1n the resulting
archive tree are removed.

Alternatively, the interval does not have a local archive. In
this case, it must be configured with only a single cross-
certification group from which cross-certifications are
required. The resulting archive tree then becomes a copy of
the archive tree from that group.

Archive Integrity

The integrity of the intervals stored 1n an archive 1s
important and must be protected from tampering 1n order to
guarantee the authenticity of certificates. Since one cannot
guarantee that any particular server 1s immune from tam-
pering, the intervals themselves have been designed to
prevent undetected tampering;:

cach interval in the chain has been signed by the previous
interval

cach interval can have a PKI signature that certifies that
it was created by a particular server

cach interval has cross-certification certificates, issued by
other servers, which sign the interval, and the 1ntervals
that 1ssued these cross-certifications are themselves
cross-certified

the 1nterval 1ssuing a cross-certification for another inter-
val 1s archived 1nto an archive tree that 1s a branch of
the archive tree of the interval that is being certified

Since intervals and their cross-certifications appear in
more than one archive, the integrity of any given archive
replica can be validated by verifying the cross-certification
certificates using a different archive. An automatic auditing
process that cross-authenticates an archive’s integrity can
also be used.

5

10

15

20

25

30

35

40

45

50

55

60

65

138

Publication

Publication refers to the process of making intervals and
their cross-certifications available in one or more databases
that are:

permanently accessible, even 1if the 1ssuing organization

ceases to exist

stored 1n such a way that they cannot be altered without

detection
Publication 1s achieved in the system with the following,
PrOCESSES:

an 1nterval and 1ts cross-certifications are published to the
root archive 1n the interval’s archive tree, before the
interval can become active

an archive can be periodically replicated to several servers

in order to provide high availability and redundancy
against loss

Intervals and their cross-certifications are propagated

from one archive to another, as defined by the subor-

dinate branches of the intervals archive tree, using the

following automatic process:

as an 1nterval 1s stored 1n any archive, 1t 1s flagged for
propagation 1f there are any branches 1n the interval’s
archive tree that occur beneath archive in which the
interval 1s currently being stored

periodically, a propagation service forwards all inter-
vals marked 1n this way to each of the archives that
appear beneath the current archive m the interval’s
archive tree (the propagation flag for the interval is
cleared when the interval has been propagated suc-
cessfully to each of these archives)

this recursive process continues until the interval has
eventually been stored 1n each archive 1n its archive
free

Syslog/Message Log

Each server may log activity messages related to 1ifs
operation 1n a standardized format. There are several con-
figuration options available to specily where these messages
are logged and which message level in included 1n the log.

The syslog message-logeing configuration 1s strongly
recommended. It enables a server to send messages to any
server running a syslog daemon process. With this option
and a set of widely available third party tools, server
messages can be filtered and routed to a variety of destina-
tions mncluding pagers, e-mail accounts or Internet based
messaging Services.

Interval Processing Implementation

Interval processing deals with the transition from one
interval to another, including cross-certification.

One 1implementation of this functionality is the Interval
Maintenance Subsystem of the ProofMark system. A copy of
the Java-based code for Interval maintenance for the Proof-
Mark system 1s appended as Attachment B. Other imple-
mentations and other implementations using other program-
ming languages are possible. Although the prior description
would be more than sufficient for a person of ordinary skall
in the art to assemble and use the system, the code 1is
appended for exemplary purposes only, to show one of a
large number of different ways by which the system may be
implemented.

The Interval Maintenance subsystem systematically cre-
ates new 1ntervals and activates them as needed. An mnterval
represents a period of time within which certifications are
issued. Only one interval 1s active at any particular time and
has a start time and stop time and an associated public and
private key pair that 1s used to generate and verily digital
signatures. Each interval has a defined duration and 1is
digitally signed by the previous mterval. Upon expiration of

US 7,017,046 B2

19

an 1nterval, a previously prepared interval 1s activated and
the expired interval’s private key 1s destroyed. The imterval
maintenance subsystem continually repeats this process of
creating, activating and destroying intervals. One interval
begins immediately after one expires.

The subsystem also interacts with a time subsystem to
obtain times and to determine when 1t’s time to create new
intervals and activate previously prepared intervals. If the
fime subsystem fails for any reason, it becomes 1mpossible
for the subsystem to create new and/or activate intervals. For
security reasons, time gaps between intervals are not
allowed. If the time subsystem {fails, the interval chain can
be broken. In this case, the interval maintenance subsystem
will continually attempt to restart itself until either the time
subsystem begins functioning or the system is shutdown.

The Interval Maintenance subsystem also provides a
client interface, provides recovery measures, interfaces with
a message logeing subsystem, and interfaces with a security
subsystem. Other functions are possible.

Interval Maintenance Subsystem Overview

The Interval Maintenance subsystem comprises classes
that collaborate to provide the desired services. With respect
and 1n reading Appendix B, all classes in the subsystem
belong to the com.proofspace package. The key classes are
as follows: IntervalSI; IntervalChainSI; Server; CrossCerti-
ficationBroker; CrossCertityingGroup; IntervalPublishing-
Broker; ProoftMarkBrokerSI; ReplicatorServlet; CrossCerti-
fierServlet; PublisherServlet; IssuerServlet; and
StartupServlet.

A number of exceptions have been defined and are thrown
by various components of the subsystem. These exceptions
arc as follows: CrossCertificationException; Interval-
NotReadyException; PublishingException; and ProofSpac-
eServletException.

The class diagram of FIG. 17 1llustrates the key classes in
the subsystem and their respective associations with one
another.

The diagram of FIG. 18 shows the relationship of the
classes mvolved 1n cross-certification and publication of an
Interval. The class diagram of FIG. 19 shows the servlet
hierarchy.

Key Classes

Each of the key classes 1n the subsystem are described
below. Each description will contain an overview of the
class, services that it provides and a listing of its relevant
methods. FIG. 20 shows the operation of the key classes.

com.proofspace.IntervalSI

IntervalSI 1s an extension of com.proofspace.client.Inter-
val and is the server implementation (SI) of the interval
class. An 1nterval represents some period of time during
which ProofMarks are 1ssued. Each interval has a specified
start and stop time and 1s active only from 1t’s specified start
time and expires precisely at its stop time. It also contains a
PublicKey. The IntervalChain keeps track of each interval’s
associated PrivateKey. The PrivateKey 1s not accessible
from the Interval and only exists from the point the mnterval
1s created until 1t expires. IntervalChainSI 1s declared as a
package friendly, final class to minimize the external expo-
sure to private keys. Upon expiration of the Interval, its
PrivateKey 1s destroyed by the chain. The integrity of an
Interval 1s provided by having another Interval digitally sign
its PublicKey, start and stop times. This will ensure that an
Interval’s PublicKey, start time and stop time have not been
altered. Additionally, each Interval retains a reference to the

10

15

20

25

30

35

40

45

50

55

60

65

20

previous interval’s digital signature thereby creating a chain
of imtervals. This chain of intervals 1s managed by the
IntervalChainSI.

Depending upon the server’s configuration, each interval
may be cross certified with zero or more groups of other
ProofMark servers. The cross-certification servers are orga-
nized mto groups by their archive. Each group of servers
therefore must share the same archive. The server will
publish each interval to each unique archive 1n the cross-
certification groups that have a different archive than its
own. Finally, the server may also store and potentially mark
for propagation an interval 1f a local archive exists.

There are three main services provided by an IntervalSI:

Digitally sign the next interval in the chain using 1its

PrivateKey;
Hand out a unique sequence number assigned to each
ProofMark 1ssued within the interval; and
Cross-certification, publication and persistence.

Therefore, there are few public methods available when
interacting with an IntervalSI. All of the other public meth-
ods are 1nherited from 1ts superclass, interval. These 1nher-
ited public methods provide access to the interval’s state (i.e.
start time, stop time, PublicKey, etc.).

public synchronized int getNextSequenceNumber()

This method returns the next sequence number for the
interval. Each ProotMark 1s 1ssued a unique sequence num-
ber.

void sign(IntervalSI Interval, Signature signer)

This method accepts the next IntervalSI that has just been
created and a signature that has been initialized with the
Interval’s PrivateKey. The signing interval retrieves the
bytes representing the Interval to be signed and digitally
signs them using the specified signer. This signature 1s stored
in the specified interval along with the signing interval’s
PublicKey, digital signature and previous interval’s digital
signature.

public boolean isInSafeMode()

This method answers whether or not the interval 1s 1n
“safe mode.” Safe mode 1s a scenario where an interval was
unable to obtain the minimum number of intra-archive
cross-certifications. Once the interval 1s activated, 1t can
only 1ssue cross-certifications from other servers within its
own archive. All other 1ssue requests are rejected.

void turnOnSafeMode()

This method 1s used exclusively during cross-certification
and turns on safe mode. Once safe mode has been turned on,
it remains on until the 1nterval has expired.

void CrossCertifyPublishAndStore(CrossCertiflcationBro-
ker broker) throws CrossCertificationException

This method handles the cross-certification, publication
and persistence of the Interval. The interval collaborates
with the CrossCertificationBroker and IntervalPublishing-
Broker to accomplish these tasks. If any of the groups are
publish only groups, they do not participate 1 cross-certi-
fication.

Cross-Certification

If the minimum number of intra-archive cross-certifica-
tions are not obtained, the Interval 1s created 1n “safe mode.”
This means that once the interval 1s activated, it can only
1ssue cross-cerfifications from other servers within 1ts own
archive. All other 1ssue requests are rejected.

If the minimum number of inter-archive cross-certifica-
fions are not obtained, an exception i1s thrown, thercby
breaking the interval chain and causing the server to attempt

US 7,017,046 B2

21

restart. If the minimum number of inter-archive cross-
certifications for a particular group 1s 0, the archive for that
group 1s added to the mterval’s archive tree anyway so that
it 1s published anyway.

Publishing

The 1nterval 1s published to each external archive. If all
publication attempts fail, an exception i1s thrown, thereby
breaking the interval chain and causing the server to attempt
restart. If at least one publication attempt succeeds and a
local archive exists, the remaining publication failures if
any, are used to make propagation entries for the mterval 1n
the persistent store. Another process 1s responsible for
actually propagating the entries.

The 1nterval 1s stored 1n the local archive if the server 1s
configured with a local archive. Each failed publication will
result 1n a corresponding propagation entry for the mterval.

Com.poofspace.IntervalChainSI

IntervalChainSI is the server implementation (SI) of the
interval chain class. IntervalChainSI represents a chain of
intervals. It 1s responsible for managing this chain. Its main
purpose 1s to periodically create new intervals and then
activate them as necessary. Each server creates a single
interval chain that 1t used to manage Intervals. The mterval
chain constructs and starts a separate thread that spends
much of 1its time sleeping. It periodically wakes up to create
new 1ntervals and activate readied intervals when one
expires. There 1s some overhead 1n creating an interval since
this entails generating a new public/private key pair, obtain-
ing cross-certifications, publishing and persisting. Depend-
ing upon the algorithm used and the strength of the keys, this
key generation process could be time consuming. Cross-
certification and publication are time bounded. That 1s they
are provided a fixed amount of time to complete. If they fail
to complete within this specified amount of time, the task is
aborted. Depending upon the server’s configuration, this
may result 1n a restart condition.

As mentioned previously, each mterval 1s active for some
specified amount of time. The thread started by interval
chain must wake up 1 enough time to create and ready a
new 1nterval. Creating a new 1nterval includes setting the
new 1nterval’s start and stop time, generating its public and
private keys, having the current (active) interval digitally
sign 1t using the previous iterval’s private key, obtaining
cross-certification certificates from zero or more other serv-
ers, publishing the interval to one or more archives and
making the 1nterval persistent. After the creation process has
completed, the interval chain stores this interval until 1t 1s
ready to become active. The thread then sleeps until the
current interval 1s expired. It then wakes up and activates the
previously prepared interval. Upon expiration of an interval,
the chain destroys the private key of the expiring mterval.
The thread continues this process, sleeping until it’s time to
create the next interval.

The main services provided by interval chain are creating
and preparing intervals; activating intervals at the appropri-
ate time, destroying the private key of the expired interval;
1ssuing a certificate; Issuing a cross-certification certificate;
starting and running a separate thread that performs the
actual creation and activation of intervals; and detecting
failures and providing restart services to keep the server
running and starting a new chain of intervals, 1f necessary.

If IntervalChainSI 1s declared as package friendly, no
classes outside of the com.proofspace package interact with
it. Therefore, there are no public methods.

10

15

20

25

30

35

40

45

50

55

60

65

22

Synchronized void activateNextlnterval()

ActivateNextInterval activates the next interval that was
previously created and prepared. The current interval 1s
replaced and 1ts private key destroyed. The separate thread
that continuously sleeps and wakes up to create and activate
intervals calls this method when necessary. It 1s sometimes
necessary to activate an Interval based upon a client request.
If a request for the 1ssuance of a certificate specifies a time
that 1s beyond the stop time of the current interval, the
readied interval i1s activated during the request. Therefore,
the thread may wake up and find that there 1s no interval to
activate.

Synchronized Create New Interval (synchronized private
IntervalSI createNewlnterval())

Create New Interval creates a new interval and puts 1t 1n
a ready state. The Interval 1s not used until 1t 1s activated.
The separate thread awakes periodically and creates an
interval. Upon creation, the thread will go back to sleep until
it 1s time to activate the interval. Creating an interval
involves setting the start and stop time (the start time is set
to the stop time of the current interval), generating a new
public/private key pair, asking the current interval to sign the
newly created interval, obtaining cross-certification certifi-
cates from zero or more servers, publishing and persisting.

ProofMark crossCertify (ProofMark crossCertify(Proof-
MarkRequest proofMarkRequest) throws Stale TimeExcep-
tion, IssuanceException

CrossCertity 1ssues a ProofMark as a cross-certification of
another server’s interval. If the current interval is 1n safe
mode and the request 1s from a server outside of the 1ssuing
server’s local archive, the request 1s rejected.

ProofMark Issue (ProofMark issue(ProofMarkRequest
proofMarkrequest) throws StaleTimeException, Issuance-
Exception

The method Issue 1ssues a certificate based upon a client
request.

Private synchronized Restart (private synchronized void
restart()

Restart 1s executed 1f the interval chain detects a failure.
Failure sources can be the time subsystem, 1nability to obtain
cross-certification certificates, publication or persistence.
The IntervalChainSI attempts to restart only when 1t
becomes evident that the current chain of Intervals will be
broken (a new interval cannot be created in time). Restart
involves creating a new chain of intervals and will not
complete successtully until the problems are resolved. Once
restart has completed, normal operation resumes. Since this
method 1s synchronized, it prevents new certificates from
being issued (due to the lock). To prevent client requests
from blocking, the method sets a flag 1n the server to indicate
the unavailability of the IntervalChainSI. Any client requests
received during a restart are automatically rejected without
causing the client to wait. Messages are logged to a Message
Logging subsystem which will most likely cause some sort
of external notification (i.e. paging, e-mail) to occur.

Private void Start Interval Maintenance Thread (private void
startIntervalMaintenance Thread()

Start Interval Maintenance Thread starts and runs the
separate thread that sleeps and systematically wakes up to
create and activate intervals.

Private void Validate (private void validate()

Since the process validate 1s user configurable, 1t 1s
possible that invalid configuration parameters can be speci-
fied. During server startup, the configuration parameters are

US 7,017,046 B2

23

checked for validity. If any configuration errors are 1denti-
fied, they are logged and the server startup fails.

com.proolfspace.Server

Server 1s the client interface to the Interval subsystem.
Server exhibits singleton behavior, but doesn’t prohibit
multiple instances from being created. Since server is the
client interface to the Interval subsystem, 1t stands to reason
that 1t 1s responsible for starting and initializing the sub-
system on demand. The server 1s typically started through
the StartupServlet. A server can be configured 1ssue certifi-
cates. If the server 1s non-1ssuing, no interval chain 1s started.
Non-issuing servers can be used as publication and/or veri-
fication servers. However, since no interval chain exists,
they cannot be used as cross-certification servers. Server
maintains a reference to both the Message Logging sub-

system and Time subsystem so that other components within
the subsystem can easily utilize the services of these other

subsystems.

The main services provided by Server includes start and
initialize (and shutdown) the Interval maintenance sub-
system, provide an interface to the Time subsystem so that
the current time can be retrieved, provide an provide an
interface to the Message Logging subsystem so that message
logging can be performed, 1ssue ProofMarks based on client
requests; and 1ssue cross-certification ProofMarks from
other servers.

public static Server getDefault() throws StartupException

Get Default allows a client to obtain a reference to the
server. If no instance of server exists, an exception 1s thrown.

public static Server startup() throws StartupException

The method Startup starts the server. Depending upon the
conilguration, an interval chain may be started as well. An
exception 1s thrown if startup fails for any reason. If an
exception 1s thrown, no server instance 1s created.

public ProofMark crossCertify(ProofMarkRequest request)
throws IssuanceException

CrossCertify 1ssues a certificate as a cross-certification of
an 1nterval from another server. It simply delegates to the
interval chai.

public long getCurrentTime()

GetCurrentTime returns the current time from the Time
subsystem. The time 1s always 1n GMT.

public long getCurrentTime(int millisecondsToWait)

GetCurrentTime may also return the current time from the
Time subsystem, waiting up to the specified number of
milliseconds. The wait time 1s used only if the Time sub-
system has failed. If a time 1s not retrieved from the Time
subsystem within the specified wait time, an exception 1s
thrown.

public Issuer getlssuer()

Getlssuer returns the Issuer of certificates. It contains
identifying information about the organization that is 1ssuing
certificates.

public int getMaximumTransactionDataSize()

GetMaximumTransactionDataSize returns the maximum
fransaction data size 1n bytes. This attribute 1s a configura-
tion parameter and might be used by a client 1n determining
whether or not to 1ssue a certificate. The mtended use 1s to
prevent clients from submitting unreasonably large transac-
tion data, thereby effecting server performance.

10

15

20

25

30

35

40

45

50

55

60

65

24

public String getl.ocalArchive()
Getl.ocalArchive answers the local archive for the server
or null if the server has no local archive.

public ProofMark issue(ProofMarkRequest request) throws
IssuanceException

The method Issue 1ssues a certificate based upon a client
request. It delegates to the interval chain.

com.proofspace.CrossCertificationBroker

The Class CrossCertificationBroker 1s a concrete subclass
of BrokerGroup and 1s responsible for obtaining cross-
certification certificate from other servers. The cross-certi-
fication configuration 1s specified 1n the server’s configura-
fion and results mm zero or more CrossCertifyingGroup
instances. Each group consists of one or more servers. All
servers 1n a group share the same archive. The configuration
also specifies the minimum number of cross-certifications
that must be obtained from each group. A connection 1is
obtained with each configured server in 1ts own thread. The
entire Cross-certification process 1s given a specifled amount
of time to complete. If a timeout occurs, the broker kills all
of the remaining threads and uses only the cross-certifica-
tions that were successtully obtained within the timeout
period. If the minimum number of cross-certifications are
not obtained for each group, an exception 1s thrown. The one
exception to this rule 1s 1f the only failing cross-certification
ogroup 1s within the server’s local archive, no exception 1s
thrown, but safe mode 1s turned on for the Interval being
cross certified.

The main services provided by the CrossCertificationBro-
ker are:

Obtain cross-certifications from the configured groups of

servers 1n separate threads; and

Validate that the required number of cross-certifications

have been obtained.

public CrossCertificationBroker(List groups, int cross-
CertificationTimeout) throws CrossCertificationException

The constructor CrossCertificationBroker 1s used to
instantiate a broker with a list of groups with which to cross
certify and a timeout value (in milliseconds). Each group
consists of one or more servers.

public void crossCertify(IntervalSI Interval) throws
CrossCertificationException

CrossCertify 1nifiates the cross-certification process.
Upon successtul receipt of all cross-certifications or a tim-
cout, a validation step occurs. The broker checks to ensure
that the minimum number of cross-certifications were
obtained for each group. All thread management 1s handled
in the superclass.

protected void runBrokerThread(ProofMarkBrokerSI
broker)

RunBrokerThread attempts to obtain a single cross-certi-
fication certificate from another server. This method will be
called once per server defined 1n each cross-certification
group 1n a separate thread. If this method completes before
the cross-certification timeout expires, the obtained certifi-
cate will be added to the mnterval. Otherwise, the thread will
be killed and any subsequent results 1ignored. If a certificate
1s obtained, a sanity check is performed against the certifi-
cate to ensure that 1t 1s within the acceptable time bounds.
The requesting server measures the time 1t took to obtain the
certificate. The accuracy of the requesting server 1s sub-
tracted from the start time and the accuracy of the issuing
server 1s added to the stop time to account for acceptable
inaccuracies of both server’s time sources. This provides an
acceptable time bound to which the certificate’s timestamp
1s compared. Failure results 1n a thrown exception. The

US 7,017,046 B2

25

actual act of cross-certification 1s delegated to the Proof-
MarkBrokerSI specified on the method call.

com.prooispace.CrosscertiiyingGroup

The CrossCertifyingGroup class represents a group of
servers to which the requesting server will cross certify.
Each group shares a common archive. Each group specifies
a mimmum number of cross-certifications that must be
obtained. Exactly what happens if the mmmimum require-
ments are unmet 1s dependent upon whether the group 1is
within the server’s local archive or not. If 1t 1s and the
minimum requirements are unmet, the Interval being cross
certified 1s placed into safe mode. In all other failure cases,
an exception 1s thrown causing the server to attempt restart.
The groups are actually created during startup and are
owned by the IntervalChainSI. Each group 1s also used as a
container for obtained ProofMarks during the cross-certifi-
cation process. It 1s possible to create a group with no
individual server members. In this case, the group must
specily an archive name and a minimum certification count
of 0. A group configured 1n this way 1s thrown as a publish
only group. That 1s, it defines an external archive that 1s used
to publish with, not cross certify with.

The main services provided by CrossCertifyingGroup are:
Keeping track of the group members;

Keeping track of the minimum number of cross-certifi-
cations for the group;

Act as a holder of obtained certificates during cross-
certification; and

Be able to determine which servers have/have not
responded during cross-certification.

public Cross certifying Group (List serverNames, Int
minimumCertificationCount, String archiveName)

The CrossCertifyingGroup constructor 1s used to create a
CrossCertifyingGroup 1instance for the specified list of
server names. The group must obtain the specified minimum
number of cross-certifications and shares the specified
archive name.

public void addProofMarkResponse(String serverURL,
ProofMark ProofMark)

Add ProotMarkResponse 1s used during cross-certifica-
fion to add an obtained cross-certification certificate. The
serverURL 1s also specified so that the group can know
which servers have responded and which have not.

public String getArchiveName()

GetArchiveName answers the name of the archive that 1s
shared by all members of the group. The archive name 1s a
URL to which intervals are published and 1s specified in
terms of hostname:port where hostname can be an IP address
or DNS hostname and the optional port 1s the port number
on which the server 1s listening for publication requests. This
attribute 1s configured in a file (ProofMarkServer.proper-
ties).

public List getGroupMembers()

GetGroupMembers answers a List of Strings, each of
which 1s a server URL. The URL 1s specified 1n terms of
hostname:port where hostname can be an IP address or DNS
hostname and the optional port 1s the port number on which
the server 1s listening for cross-certification requests. This
attribute 1s configured in a file (ProofMarkServer.proper-
ties).

public int getMemberCount()

GetMemberCount answers the number of group mem-
bers.

5

10

15

20

25

30

35

40

45

50

55

60

65

26

public int getMinimumCrossCertificationCount()

GetMinimumCrossCertificationCount answers the mini-
mum number of Cross-certifications that must be obtained
for this group. This attribute is configured in a file (Proof-
MarkServer.properties).

public List getProofMarks()

Get ProofMarks answers a List of certificate (Proof-
Marks) that have been obtained during this cross-certifica-
tion attempt. There will be at most, one certificate for each
group member.

public List getRespondents()

Get Respondents answers a List of Strings, each of which
1s a server URL that has responded with a certificate during
this cross-certification attempt. The URL 1s specified 1n
terms of hostname:port where hostname can be an IP address
or DNS hostname and the optional port 1s the port number
on which the server 1s listening for cross-certification
requests.

public int getResponseCount()

Get Response Count answers the number of certificates
that have been obtained during this cross-certification
attempt.

public boolean isPublishOnlyArchive()

Is Publish Only Archive answers whether or not the group
1s configured as a publish only archive.

public void reset()

Reset clears the collection of certificates and servers that
responded during the last cross-certification attempt. This
enables the groups to be reused over multiple cross-certifi-
cation attempts.

com.prooispace.IntervalPublishingBroker

The class Interval Publishing Broker 1s a concrete sub-
class of BrokerGroup and 1s responsible for publishing the
interval to each publication archive. The publishing broker
1s also responsible for making the interval persistent if the
server has a local archive. Each CrossCertityingGroup
shares a common archive. This archive 1s also known as the
publishing archive and 1s a URL that identifies a server to
which a publishing request 1s made. A connection 1s obtained
with each publishing server in its own thread. The entire
publication process 1s given a specified amount of time to
complete. If a timeout occurs, the broker kills all of the
remaining threads and determines whether at least one
publication request was successtul within the timeout
per1od. If not, an exception i1s thrown resulting 1n the server
attempting restart. If publication succeeds and the server has
a local archive, the Interval is stored using the persistence
subsystem. A propagation entry will be made for each
publication archive that failed to publish the interval. A
separate process 1s responsible for actually propagating the
Interval. The broker only marks the Interval as propagatable
to each failed publication archive. Servers that cross certily
only within 1t’s own archive do not publish.

Services provided by the IntervalPublishingBroker
include publishing the Interval to each cross-certification
oroup’s shared archive and persisting the Interval and pro-

viding the ability to mark as propagatable.

public void publish(IntervalSI Interval) throws Publish-
ingException

Publish 1nitiates the publication process. The publication
archives are obtained from the specified mterval by publish-
ing to all branch root archives of the interval’s archive tree.
All thread management 1s handled i1n the superclass.

protected void runBrokerThread(ProofMarkBrokerSI
broker)

Run Broker Thread attempts to publish the interval to one
publishing server. This method will be called once per server

US 7,017,046 B2

27

obtained from the interval’s archive tree 1n a separate thread.
Failure to publish to at least one archive results in a thrown
exception. The actual act of publication 1s delegated to the
ProotMarkBrokerSI specified on the method call.

public void storeAndPropagate(IntervalSI
throws Persistence Exception

Store And Propogate uses the persistence subsystem to
store the interval and marks the interval for propagation to
cach failed publication archive.

Interval)

com.proofspace.ProofMarkBrokerSI

The class ProofMarkBrokerSI 1s the server side imple-
mentation of the ProoftMarkBroker. A ProofMarkBroker
handles all communication between the requesting server
and another remote server. Communication 1s usually per-
formed by 1nvoking a servlet on the remote server using the
HTTP protocol. The server side implementation provides the
ability to cross certify with, publish to and/or start the server
on a single remote server.

public ProofMarkBrokerSI(String rootUrlString, Object
owner) throws MalformedURLException

The constructor ProoftMarkBrokerSI 1s used to create an
instance of a ProofMarkBrokerSI with the server specified 1n
the rootUrlString. The caller may optionally pass an owner
that can be used for some specific purpose.

public ProofMark crossCertify(String requestxml) throws
CrossCertificationException, IOException

CrossCertily 1nvokes the cross-certification servlet
(CrossCertifierServlet) on the remote server and sends the
specified XML request and answers the resulting.

public String crossCertify Xml(ProofMarkRequest
request) throws CrossCertificationException, IOException

CrossCertifyXml performs the same function as Cross-
Certily except that it accepts a ProofMarkRequest and
answers an XML representation of the resulting certificate.

public Object getOwner()

GetOwner answers the owner of the broker that was
specified on the constructor.

public void publish(String IntrvalXml) throws Publish-
ingException, IOException

Publish invokes the publishing servlet (PublisherServlet)

on the remote server and sends the specified XML as the
HTTP request.

Public ZipInputStream replicateIntervals(String latestInt-
ervals) throws ReplicationException, IOException

ZipInputStream invokes the replicator servlet (Replica-
torServlet) on the replication source server and sends the
latest intervals persistent in the replicator’s persistent store.

public String startServer() throws StartupException,
IOException

StartServer invokes the startup servlet (StartupServlet) on
the remote server and answers a String that 1s the response
from the remote server.

com.proofspace.CrossCertifierServlet

CrossCertifierServlet 1s a concrete subclass of com.pro-
ofspace.ProofSpace XmlServlet and communicates directly
with the Server and calls 1t’s crossCertily method. The main
service provided by the CrossCertifierServlet 1s to obtain a
cross-certification certificate from the server based upon the

XML request sent via HT'TP.

protected void handleRequest(Hashtable parameters, Input-
Source requestsource, PrintWriter outputWriter) throws
ProofSpaceServletException

HandleRequest reads the input stream from the HTTP
request and uses an XML parser to parse the request. The

10

15

20

25

30

35

40

45

50

55

60

65

23

server’s CrossCertily method 1s invoked and an XML rep-
resentation of the resulting certificate 1s sent back to the
caller via an HTTP response.

com.proofspace.PublisherServlet

PublisherServlet 1s a concrete subclass of com.proofs-
pace.ProofSpaceXmlServlet and uses the persistence sub-
system to store (and potentially mark for propagation) the
interval. The main service provided by the PublisherServlet
1s to publish the interval provided as part of the HTTP
request.

protected void handleRequest(Hashtable parameters, Input-
Source requestSource, PrintWriter outputwriter) throws
ProofSpaceServietException

HandleRequest reads the input stream from the HTTP
request and uses an XML parser to parse the request into an
Interval. The interval 1s stored and marked for propagation
to all branch root archives of the publishing server.

com.proofspace.ReplicatorServlet

ReplicatorServlet 1s a concrete subclass of com.proofs-
pace.ProofSpaceServlet and uses the persistence subsystem
to retrieve and send Intervals back to the replicator. The
Intervals are sent using a ZipOutputStream so that compres-
sion 1s achieved since the data volumes can be substantial.

protected void handleRequest(Hashtable parameters,
HttpServletResponse response) throws ServletException,
IOException

HandleRequest reads the parameters, determines which
intervals to send back to the replicator and sends the HT'TP
response to the replicator.

com.proofspace.StartupServlet

StartupServlet 1s a concrete subclass of com.proofs-
pace.ProoiSpaceXmlServlet and starts a server if it 1s not
already started. Any exceptions that occur during startup are
returned to the caller via HI'TP. The main service provided
by the StartupServlet is to start the default Server.

protected void handleRequest(Hashtable parameters, Input-
Source requestsource, PrintWriter outputWriter) throws
ProofSpaceServletException

HandleRequest starts the default Server, catching any
exceptions that occur and sending them back to the caller.

Configuring the Interval Maintenance Subsystem

The Interval Maintenance subsystem 1s configurable.
Configuration parameters are specified in a properties file
that 1s read on Server startup and 1s used to initialize the
Interval Maintenance subsystem.

Subsystem processes
There are a number of processes that occur during the
operation of the Interval Maintenance subsystem including:
Subsystem startup, restarting, creating a new interval,
activating an interval, 1ssuing a ProofMark, 1ssuing a cross-
certification ProoftMark and publishing an interval.

Subsystem Startup

The Interval Maintenance startup process 1s initiated by
the mvocation of the StartupServlet. The Server initializes
itself, 1nitializes and obtains a reference to the Time sub-
system, 1nitializes and obtains a reference to the Message
Logeing subsystem and 1nitializes and optionally obtains a
reference to the mterval chain. A server can be configured as
non-issuing 1n which case no interval chain 1s created.

Starting the 1nterval chain requires signs the first available
interval the previous interval, which 1s also signed by 1t’s
previous Interval. Therefore, starting a new chain requires
two “bootstrap” Intervals to be created first. The third

US 7,017,046 B2

29

Interval 1s actually the first one available for use during the
1ssuance of certificates. This interval chain startup process 1s
detailed as follows:

The first “bootstrap” interval 1s created with 1ts current
start time obtamned from the Time subsystem. A Public/
Private key pair 1s then generated for the “bootstrap™ Inter-
val. Key pairs are generated by a java.security. KeyPairGen-
erator. The interval chain obtains and keeps a reference to
the key pair generator since 1t 1s used cach time a new
interval 1s created. The interval 1s cross certified with other
servers as specifled 1n the server’s configuration. Successiul
cross-certification indicates that the interval was cross-
certified, published and persisted according to the server’s
configuration. The first interval 1s never activated and 1s used
only to sign the second “bootstrap” interval. The first
“bootstrap” 1nterval’s stop time 1s then set to the current
time, also obtained from the Time subsystem. The interval
preparation time 1s calculated by determining the amount of
clapsed time between the instantiation of and complete
preparation of the interval. The preparation time for each of
the first two bootstrap and 1nitial valid intervals. The maxi-
mum preparation time 1s used as a basis 1n determination of
the interval creation lead-time. This 1s calculated by taking
the maximum interval preparation time and adding, for
example, 25%.

The second “bootstrap™ mnterval 1s created with 1ts current
start time set to the stop time of the first “bootstrap” mterval.
A Public/Private key pair 1s then generated for the second
“bootstrap” interval. The second “bootstrap” interval’s stop
time 1s then set to the current time obtained from the Time
subsystem. The first “bootstrap” interval i1s then used to
digitally sign the second “bootstrap” interval. The second
“bootstrap” 1interval 1s never activated either and 1s used only
to sign the third interval. Cross-certification 1s performed.
This third Interval 1s the first interval that 1s available for the

1ssuance of certificates.

The third interval 1s created using the interval chain’s
createNewlnterval() method. This method creates a new
interval, initializing its start time to the previous (second
“bootstrap”) interval’s stop time. Its stop time is set to its
start time plus the defined interval length. The Public/Private
key pair 1s generated, the new interval 1s digitally signed by
the previous (second “bootstrap”) interval and cross-certi-
fication, publication and persistence occur.

The imterval chain then makes this third interval the
current mterval and creates and starts a separate thread to
maintain the chain.

Restarting

Restarting 1s a service that the Interval Maintenance
subsystem automatically performs when a {failure 1s
detected. Sources of failure include Time subsystem failures,
cross-certification, publication and persistence failures. The
system strives not to break chains. A new interval must have
a start time that matches the previous mnterval’s stop time. If
an 1nterval cannot be created 1n time, the server must break
the chain and attempt to restart, thereby starting a new chain.
The subsystem continually tries to restart until either 1t is
successful (the failure is resolved) or the subsystem 1is
manually shutdown. Alerts are 1ssued each time the sub-
system tries to restart and also each time 1t fails to restart.

The restart process begins by notifying the Server that the
interval chain 1s unavailable. This allows the Server to
immediately reject any client requests against the interval
chain until the problem has been corrected so that clients can
be immediately notified as opposed to blocking indefinitely.

10

15

20

25

30

35

40

45

50

55

60

65

30

Creating a New Interval

Intervals are created and prepared some period of time
before they are activated. The creation and activation pro-
cess 1s controlled by the thread created and started during
interval chain startup. Each interval 1s active for some
specified amount of time. It 1s important that an interval be
ready when 1t 1s activated. For this reason, intervals are
created and prepared before they are actually needed. The
interval creation process can be time consuming due prima-
rily to the expense of generating a Public/Private key pair,
cross-certification, publication and persistence. An Interval
awaiting activation 1s stored in the interval chain’s nextlnt-
erval instance variable, while its corresponding private key
1s stored 1n the interval chain’s nextPrivateKey instance
variable. Similarly, the current Interval i1s stored in the
interval chain’s currentinterval instance variable, while 1t’s
corresponding private key 1s stored in the interval chain’s
currentPrivate Key instance variable.

The Interval Maintenance Thread

The thread that 1s started by IntervalChain during startup
exists solely to create and activate Intervals. It spends most
of 1ts time sleeping and wakes up periodically to work. The
following summarizes the life of the thread:

1. Sleep;

2. Wake up and create a new Interval;

3. Sleep;

4. Wake up and activate the previously created Interval;

5. Go back to step 1 and repeat this unfil a restart

condifion arises or the Server 1s shutdown.

Although much of its life 1s spent sleeping, 1t must wake up
at fairly precise times. The sleep times are calculated so that
the thread doesn’t sleep too late or wake Up too early. The
sleep time 1n Step 1 1s calculated before the loop starts. It 1s
calculated by subtracting the sum of the current time and
calculated Interval creation lead-time from the stop time of
the current Interval. For example, assume the following;:

Current time (in milliseconds from the epoch)
=940708033170

Current Interval stop time (in milliseconds from the
epoch)=940708333170

Interval creation lead-time (in milliseconds)=30000

Step 1 sleep time=270000 milliseconds

In the previous example, each time the thread executed
step 1, 1t would sleep for 270,000 milliseconds before
waking up to create a new Interval. After creating the
Interval in Step 2, the thread goes back to sleep. Similarly,
the sleep time must be calculated so that 1t sleeps precisely
the amount of time it needs to. The sleep time 1n Step 3 1s
calculated by subtracting the current time from the current
Interval’s stop time and adding some small factor to help
ensure the thread sleeps just beyond the current interval’s
expiration time. Continuing with the previous example,
assume the following after the thread woke up to create a
new 1nterval and went back to sleep:

Current time (in milliseconds
=940708323170

Current interval stop time (in milliseconds from the
epoch)=940708333170

Additional factor (in milliseconds)=10
Step 3 sleep time=10010 milliseconds

from the epoch)

Creating the Interval

An 1nterval exists within a chain of intervals. This chain
1s established by creating a link between two intervals. The
following are the components that link two Intervals
together:

US 7,017,046 B2

31

1. Each mterval’s start time 1s equal to the stop time of the
previous 1nterval.

2. Each 1nterval keeps a reference to the previous inter-
val’s public key

3. Each interval 1s digitally signed by the previous inter-
val’s private key, resulting 1n a digital signature that 1s
kept by the interval.

4. Each interval keeps a reference to the previous inter-
val’s digital signature that was signed by the previous
interval’s private key.

It 1s this complex linking of Intervals that creates a chain.
Consequently, creating an interval requires several steps as
follows:

1. The interval’s start time 1s calculated by obtaining the

current 1nterval’s stop time.

2. The imterval’s stop time 1s calculated by adding the
interval.length property to the interval’s start time.

3. A new public/private key pair 1s generated using the
interval chain’s key pair generator that was created
during startup.

4. A new 1nterval 1s created and 1mitialized with 1ts start
time, stop time and public key.

5. The interval chain stores the interval’s private key for
use 1n signing the next interval that will be created. An
interval does not keep a reference to its private key
since the interval 1s passed around. The interval chain
keeps the private key as an extra measure of protection.

6. The interval chain creates a Signature using the current
interval’s private key.

/. The 1nterval chain asks the current interval to sign the
newly created (and not yet activated) interval by pass-
ing it the new interval and the Signature.

8. The current interval asks the new interval for a byte
representation of itself suitable for signing and asks the
Signature to sign the bytes.

9. The current interval stores the digital signature just
produced, its digital signature (created by the current
interval’s previous interval) and the current interval’s
public key 1n the new Interval.

10. The new 1interval attempts to cross certify itself with
zero or more servers. Cross-certification to all cross
certifying servers occurs simultaneously i1n separate
threads with each thread obtaining a single cross-
certification certificate.

11. The new 1nterval 1s then published to the branch root
archives of the interval. This 1s the shared archive from
cach configured cross-certification server group.

12. If the requesting server has a local archive, the new
interval 1s stored and marked for propagation to any
servers that failed to publish.

Activating an Interval

Activating an interval maybe accomplished in one of two
ways. As previously mentioned, this task i1s part of the
Interval Maintenance thread. Since the activation of a new
interval 1s crucial, the subsystem cannot count solely on the
Interval Maintenance thread to activate an awaiting interval.
One or more client requests could be made after the current
interval has expired, but before the sleeping thread has
awaken to activate the previously prepared interval. To
prevent this from happening, a client request might also
cause the activation of an interval. In this scenario, the
thread can see that there 1s no interval to activate, so it
simply goes back to sleep until 1t’s time to create a new
interval. In both cases, the activation of an interval occurs 1n
a synchronized method. In any case, activating an interval
entails the following;:

10

15

20

25

30

35

40

45

50

55

60

65

32

1. Check to see if there 1s an Interval to activate. This 1s
necessary in case the interval has already been acti-
vated. If so, there 1s nothing else to do.

2. Obtain the current time from the Time subsystem and
use 1t to make sure that the current Interval has expired.
If not, there 1s nothing else to do.

3. Make the previously created interval the current inter-

val.

. Destroy what 1s now the previous interval’s private key.

. Make what 1s now the current interval’s private key the
current private key.

6. Null out the nextInterval and nextPrivateKey instance

variables.

b A

[ssuing a Certificate (ProofMark)

This process 1s described from the point the request enters
the server via the IssuerServlet. An 1ssuing server’s main
function 1s to 1ssue certificate. The process begins when the
IssuerServlet 1s invoked. The client sends an HT'TP request
that contains an XML representation of an ProoftMarkRe-
quest. The contents of the request are the data to be certifi-
cated. The following steps are followed during the 1ssuance
of a certificate:

1. The servlet parses the incoming XML and instantiates

a ProoftMarkRequest.

2. The servlet asks the server to 1ssue a certificate passing,
the ProotMarkRequest as an argument.

3. If the server 1s currently capable of 1ssuing, it delegates
the request to the interval chain.

4. The interval chain gets the current time and gets the
interval for that time.

This may cause an interval flip.

5. The 1nterval chain then creates a certificate based upon
the ProofMarkRequest and signs i1t with the current
interval’s private key.

6. The 1ssued certificate 1s then returned all the way back

to the servlet which renders the ProoftMark as XML and
sends 1t back to the client via HTTP.

[ssuing a Cross-certification Certificate (ProofMark)

This process 1s described from the point the request enters
the server via the CrossCertifierServlet. One function of an
Issulng server’s main function 1s to 1ssue certificates. Cross-
certification certificates are just like any other issuance
request except that they follow a slightly different path
through the server. The process begins when the CrossCer-
fifierServlet 1s 1nvoked. A server requesting cross-certifica-
tion sends an HTTP request that contains an XML repre-
sentation of a ProofMarkRequest. The content of the request
1s the XML representation of the interval being cross certi-
fied. The following steps are followed during the issuance of
a cross-certification certificate:

1. The servlet parses the incoming XML and instantiates

a ProotMarkRequest.

2. The servlet asks the server to cross certily the interval
contained 1n the ProofMarkRequest passing the Proof-
MarkRequest as an argument.

3. If the server 1s currently capable of 1ssuing, it delegates
the request to the interval chain.

4. If the 1nterval 1s 1n safe mode and the request 1s from
a server 1n the server’s local archive, the cross-certifi-
cation certificate 1s 1ssued. If the request 1s from a
server outside of the server’s local archive, an excep-
tion 1s thrown.

5. The 1nterval chain gets the current time and gets the
Interval for that time.

This may cause an Interval flip.

US 7,017,046 B2

33

6. The 1nterval chain then creates a certificate based upon
the ProofMarkRequest and signs 1t with the current
interval’s private key.

7. The 1ssued certificate 1s then returned to the servlet
which renders the certificate as XML and sends it back
to the client via HTTP.

Publishing an Interval

This process 1s described from the point the request enters
the server via the PublisherServlet. Publication 1s slightly
different than i1ssuance in that an 1ssuing server 1s not
required. That 1s, it 1s possible to configure a server that does
not i1ssue certificates. Instead, 1t publishes and/or verifies
certificates. This provides the flexibility to offload the bur-
den of publication and/or verification to other servers that
aren’t responsible for 1ssuance. The process begins when the
PublisherServlet 1s invoked. A server requesting publication
sends an HT'TP request that contains an XML representation
of an imterval. The following steps are followed during the
publication of an interval:

1. The servlet parses the incoming XML and instantiates
an interval.

2. The servlet then obtains the local archive from the
server, locates the archive 1n the 1nterval’s archive tree
and obtains the branch root archives of that.

3. The servlet asks the configured PersistenceBroker to
store the interval in the local archive passing the
Interval and the branch root archives as arguments.

4. The broker stores the interval and marks 1t for propa-
gation to each archive in the list. The ensures that the
propagation process will move the interval toward the
public record.

Verification Subsystem Implementation

This section describes how Cross-certification come 1nto
play during verification. Verification 1s the process whereby
previously issued certificates (ProofMarks) are verified and
validated. This 1nvolves:

Checking the signature on the certificate
Verifying the interval and its public key 1n the archive

Verifying the interval chain, by verifying the previous
intervals and the signatures of an interval made by the
previous 1nterval.

Recursively verifying the cross-certifications for a Inter-
val, which are certificates i1ssued by another server
where the data being signed 1s the first server’s interval.

Creating a verification report which contains the results of
this process, and returning this report to the client.

The verification process starts when a client 1ssues a veri-
fication request via a ProotMarkBroker, supplying a previ-
ously 1ssued cerfificate. This request 1s sent by the client to
a server that 1s expected to have a record of the certificate’s
issuing 1nterval 1n its archive. The certificate’s archive tree
lists the archives where the interval 1s published, so the
verification request 1s normally sent to one of these hosts.

Description of Key Classes

Key classes 1 the subsystem 1s individually described.
Sece FIG. 15. Each description will contain an overview of
the class, the key services that it provides and a listing of its
public methods.

com.proofspace. VerilierServlet

VerifierServlet 1s a subclass of ProofMarkServlet. A single
instance 1s created by the servlet engine which will then
process multiple parallel requests for verification.

10

15

20

25

30

35

40

45

50

55

60

65

34

protected void handleRequest(InputSource requestSource,
PrintWriter outputWriter) throws ProoiSpaceServletExcep-
fion

HandleRequest 1s run to receive each verification request.
The ProofMark 1s received by parsing the requestSource
stream. Next, an 1nstance of Verifier 1s constructed with the
certificate and sent the verify() message. The returned
verification report 1s written as XML on the outputWriter.

com.proofspace.Verifler

Veridier class 1s created for each verification request. Its
responsibility 1s to carry out the verification process.

An outline of the algorithm (for “complete” verification”)
1s as follows. “Basic” verification does not verily cross-
certifications.

1. Verity the ProotMark

a. Set the recursionTree to the interval’s archive tree (of
the certificate).
b. Verily the signature on the certificate.
c. Verify the interval chain to depth(l)
1. Recover the interval from the archive record and
verily that 1t matches the current mterval.
2. Check the signature from the previous interval.
3. Verly the server identity signature
d. Verily the cross-certification certificate for the inter-
val
1. For cross-certifications where issuing archive 1s
different from the interval’s archive, recursively
verify (starting at step 1.b) the cross-certification
certificate -1f the i1ssuing interval 1s below the
certified interval in the recursionTree.
2. For other cross-certifications, verity without
recursing subsequent cross-certifications.

com.prooispace.client. VerificationReport

An 1nstance of VerificationReport 1s returned for each
certificate that 1s veriied. In the case where cross-certifica-
fions of a certificate’s interval are verified, corresponding
verification reports are included recursively 1n the certifi-
cate’s verification reports.

Indicia

The system and method encodes certificates using any
graphically interpretive symbology. For example, 2-dimen-
sional barcode symbology or data glyfs may be used.

Other examples are possible. This will allow a superfi-
cially uniform, machine-readable graphical representation
for all certifications.

As discussed above, a certificate, 1n an exemplary
embodiment, consists of a certificate containing information
which can be encoded 1n ASCII. An XML DTD has been
defined which allows XML representations of certifications
to be sent over networks using the HT'TP protocol, among
others. However, an XML document, with 1ts numerous
markup tags and (in the case of certifications) ASCII rep-
resentations of binary hashed data, may be deemed by some
to be aesthetically displeasing. A graphical “logo,” which
may also be referred to as an “indicia” or “insignia,” may be
made to contain the certification’s data. This provides an
attractive way of storing and transporting certifications
outside of computer systems.

Attributes of an Exemplary Embodiment

The following attributes are preferred, but certainly not
essential, for the Indicia:

The 1ndicia’s visual appearance from several feet away
should be roughly the same regardless of the content of
the certificate 1t encodes.

Proofspace software should generate an indicia for a
given certificate.

US 7,017,046 B2

35

Indicia generation should take place on the server; it
should not require software components (plug-ins,
ActiveX controls, etc.) to be installed on client
machines. Thus, the i1ndicia may be displayed, for
example, 1n web browsers, and allow printing of the
indicia or storing of the digital representation of the
indicia for later use.

Indicia should be generated 1in a standard image repre-
sentation format (e.g., .gif or .tiff).

In some applications, the size of the indicia may be
variable and have a number of different sizes. Obvi-
ously, for a given size indicia, there 1s necessarily a
limit on the size of certificate (i.e., the amount of
transaction data) that can be represented by the indicia.

Many of the 1ndicia should be printable with a computer.
For some users, it may also be useful to have printed
indicia able to be scanned using a flatbed scanner,
allowing the computer to recover the information
encoded 1n the indicia.

It 1s anticipated that a user may electronically process a
gif/.tiff-encoded 1ndicia, and recover the mmformation
encoded 1n the indicia.

One exemplary approach to handle the encoding and
decoding of certifications as graphical indicia 1s described
further below as it relates to the ProotMark system.

The ProotfMark indicia 1s graphically designed so that it
can be rendered as a collection of squares arranged 1n a
Cartesian grid. Alternatively, any shape of any size can be
used. The principle would be similar to that used 1n bit-
mapped fonts, albeit on a larger scale. As 1n bitmapped fonts,
some squares would be “black™, and some would be white
(blank). Each “black” square would actually be occupied by
a 2D barcode, for example, that encoded a piece of the
ProofMark’s data. However, other machine readable inter-
pretable graphics are possible. The minimum size of each
“black” square will be a function of the symbology chosen
and the amount of ProotMark data that 1s to be encoded 1n
a 1ndicia of a given overall area. The smaller the “black™
squares relative to overall indicia area, the more visually
appealing we can make the design. Therefore, the symbol-
ogy used, 1n one exemplary embodiment, offers fairly high
density while still being printable and scannable by available
computer printers and scanners.

In an exemplary embodiment, certain sections (e.g.,
squares) of the indicia are black. To recover a ProofMark
certification, “black™ squares are traversed left-to-right, top-
to-bottom, decoded individually, and the results concat-
enated together to restore the original ProofMark’s XML
data.

The example shown in FIG. 23 1llustrates this approach.
The ProofMark indicia has been designed to look like the
letter “P”. Each black square 1s represented by two rows of
identical letters. In the implementation this would be an
encoded barcode.

In one exemplary embodiment, in order to recover Proot-
Mark data from a scanned bitmap, reader finds the origin
(c.g. the upper left corner) of the ProofMark indicia, and
determine the scale being used (if multiple insignia sizes
have been elected as an option. Alternatively, the application
that recovers the ProoftMark information from the indicia
may also simply query the user as to what size or scale
indicia is being scanned).

Alternatively, the system may use an arbitrarily complex
and attractive “logo” which carries no ProofMark informa-
tion. Instead, the background surrounding the logo (and

10

15

20

25

30

35

40

45

50

55

60

65

36

possibly 1n interior regions of the logo that are white or
near-white) may be used to encode the necessary ProofMark
information.

Referring now to FIG. 29, data 1s input to an encoder 2902
which encodes and creates the indicia onto a receipt or
certificate 2904. Referring now to FIG. 30, a receipt or
certificate 3000 containing indicia 1s decoded by a decoder
3002 into readable text 3004.

Referring now to FIG. 24, at step 2400, a pattern 1s chosen
for the indicia. The pattern can be any suitable pattern,
preferably, of a recognizable shape. For example, the letter
“P” can be used. See FIG. 23. Next, at step 2402, the size of
the 1ndicia 1s selected. Then, at step 2404, the origin for the
indicia 1s selected. This can be anywhere 1n the indicia, for
example, 1n the upper left corner of the indicia. At step 2406,
it 1s determined whether an area 1n the indicia 1s to be
populated (encoded) with information. The area can be of
any shape and dimension. It can be of a fixed shape and
dimensions or a variable shape and dimensions or any
combination of the above.

If the answer at step 2406 1s allirmative, at step 2408, the
area 1s encoded with data. Control then continues with the
execution of step 2410. If the answer at step 2406 1is
negative, then control continues with step 2410. At step
2410, 1t 1s determined 1f there 1s more data to encode. If the
answer 1s allirmative, control passes to step 2412 where the
system moves to the next area to populate. Control then
continues with step 2406. If the answer at step 2410 1is
negative, then execution ends.

Referring now to FIG. 25, at step 2500 the origin 1s
located. For example, the origin may be in the upper-left
section of the indicia. Then, at step 2502, the correct scale
for the 1ndicia 1s determined. Then, at step 2504, the system
finds and decodes the current area. At step 2506, the decoded
data 1s added to the results. Next, at step 2508, 1t is
determined whether there 1s more area to decode. If the
answer at step 2508 1s affirmative, then at step 2510, the
system moves to the next area to decode and execution
continues at step 2504. If the answer at step 2508 1s negative,
then execution ends.

Referring now to FIG. 26, a textual area 2602 1s sur-
rounded by a margin 2604. The margin includes the encoded
data 1n an indicia arca 2606. The area 2606 may be of any
S1Ze.

Referring now to FIG. 27, a textual area 2704 1s sur-
rounded by a margin 2702. The textual area 2702 includes
a small indicia area 2706 where the encoded data 1s con-
tained. The area 2706 may be of any size.

Referring now to FIG. 28, a receipt 2800 comprises areas

2802, 2804, 2806, and 2808 of encoded data and textual
arcas 2810, 2812, and 2814.

The foregoing description of the preferred embodiments
1s more than sufficient to enable a person of ordinary skill in
the art to make and use the invention. The substantial detail
in the description, together with the source code following
as Attachment B, have been included to provide exemplary,
detailed information concerning the programming and over-
all operation of the system. Additional detailed features of
the system will become apparent to those skilled in the art
from reviewing the forgoing description and appended
source code listing.

The foregoing description of the preferred embodiments
1s more than sufficient to enable a person of ordinary skill in
the art to make and use the invention. The substantial detail
in the description, together with the source code following
as Attachment B, have been included to provide exemplary,
detailed information concerning the programming and over-

US 7,017,046 B2

37

all operation of the system. Additional detailed features of
the system will become apparent to those skilled in the art
from reviewing the forgoing description and appended
source code listing.

A preferred embodiment of the present invention has been
described herein. It 1s to be understood, however, that
changes and modifications can be made without departing
from the true scope and spirit of the present imvention.

What 1s claimed 1s:

1. A method for providing security with respect to who
provided digital data at what time, said method comprising,
the steps of:

performing a serially chained certification process 1includ-
Ing:

a) forming a first interval certification at a first server
including the server’s identification, the start time of an
mterval chain in Coordinated Universal Time, the start
time of the interval in Coordinated Universal Time, the

10

15

33

stop time of the interval, a public key for the interval,
a digital signature for the interval, signed by a previous
interval’s private key, and a digital signature for the
interval, signed by the interval’s private key;

b) upon expiration of the first interval, destroying its
private key;

¢) continuing steps (a) and (b) for second, third, and
following intervals so that intervals are cross-chained

with other servers to form a widely witnessed, temporal
web of signed intervals of time; and

encoding certification information in graphical form to
form an indicia that relates to the authenticity of the
document.

2. The method of claim 1 further comprising the step of:

decoding the indicia to authenticate a document.

	Front Page
	Drawings
	Specification
	Claims

