US007016989B1
a2 United States Patent (10) Patent No.: US 7,016,989 B1
Bell 45) Date of Patent: Mar. 21, 2006

(54) FAST 16 BIT, SPLIT TRANSACTION I/O BUS 5,471,587 A 11/1995 Fernando
5,491,799 A 2/1996 Kreuzenztein et al.
(75) Inventor: D. Michael Bell, Beaverton, OR (US) 5,499,338 A 3/1996 Gercekel
5,541,919 A 7/1996 Yong et al.
(73) Assignee: Intel Corporation, Santa Clara, CA 2,048,733 A 8/1996 Sarangdhar
(US) 5,574,862 A 11/1996 Marianetti, II
5,625,779 A 4/1997 Solomon
(*) Notice: Subject' to any disclaimer,: the term of this g:gg;‘:gg i gﬁgg; ggz;.gn:t al;
patent 1s extended or adjusted under 35 5.659.718 A 8/1997 Osman
U.S.C. 154(b) by 0 days. 5668971 A 9/1997 Neufeld
5,671,441 A 9/1997 Glassen et al.
(21) Appl. No.: 09/471,445 5,715,438 A 2/1998 Silha
5,729,760 A 3/1998 Poisner
(22) Filed: Dec. 23, 1999 5,751,969 A 5/1998 Kapoor
5,758,166 A 5/1998 Ajanovic
Related U.S. Application Data 5,764,961 A 6/1998 Bhat
5,768,545 A 6/1998 Solomon
(63) Continuation of application No. 08/934,640, filed on Sep. _
22, 1997, now Pat. No. 6,088,370. (Continued)
(51) Int. CI. OTHER PUBLICATIONS
GOoF 13/14 (2006.01)
GOOF 13/20 (2006.01) Galles, Williams, “Performance Optimizations, Implemen-
tation, and Certification of SGI Challenge Muliiprocessor”,
(52) US.CL ., 710/33; 710/35; 710/58; Silicon Graphics Computer systems, Proceedings of the
710/60; 710/61 Twenty—Seventh Annual Hawan International Confernece
(58) Field of Classification Search 710/33, on System Sciences, 1994.
710/35, 58, 60, 61
See application file for complete search history. Primary Examiner—Rehana Perveen
(74) Attorney, Agent, or Firm—Ami P. Shah
(56) References Cited
(57) ABSTRACT
U.S. PATENT DOCUMENTS
) _ A synchronous bus system that enables the bus lengths
i’ggg’igg i 12?}3;2 ;}4?:;11(1 etal s 326/93 between devices to be extended such that the timing budget
4:7192621 A 1/1988 May 1s more than one clock cycle. A reset process resets the
4922486 A 5/1990 Lidinsky et al. transmission and reception circuitry and both circuitry func-
4,941,080 A 7/1990 Fischer tion according to prespecified parameters relative to the
5,101,347 A 3/1992 Balakrishnan deassertion of the reset signal such that the amount of logic
5,193,090 A 3/1993 Filipiak et al. required to latch and sample the data 1s minimized. As the
5,210,858 A 5/1993 lensen et al. fiming budget 1s not limited to one clock cycle, devices can
5,257,258 A~ 10/1993 Birman be spaced further apart providing more physical space for
0,325,492 A 6/1994 Bonevento et al. devices. Furthermore, skew sensitivity is reduced as to the
g:igiﬁ% ﬁ 13‘?1332 (S}Egllgt:i eett 211: skew 1s distributed over multiple clock periods.
5448708 A 9/1995 Ward
5,467,464 A 11/1995 Oprescu 23 Claims, 20 Drawing Sheets
”] [+] [
” | T
. s 13
/I,w% 16 Ilﬂ %Iﬁ
100 100 100 160
BUS BUS
R | o] b,
1’ 1125 120 %
190.] 1 121
GRAPHICS ~-~—" SINGLE 64-BIT

2 J2-BIT
BUS PCI A

US 7,016,989 B1
Page 2

U.S. PATENT DOCUMENTS

5,768,546 A
5,768,550 A
5,771,356 A
5,784,579 A
5802278 A
5.862.338 A

6/1998
6/1998
6/1998
7/1998
9/1998
1/1999

Kwon
Dean et al.
Leger et al.

Pawlowski
Isfeld et al.

Walker et al.

5.804.567 A 4/1999
5,905,766 A 5/1999
6,044.474 A * 3/2000
6,330,650 B1 * 12/2001
6347351 Bl * 2/2002

* cited by examiner

Dodd et al.
Nguyen

Klem
Toda et al.

Osborne et al.

............. 713/400
............. 365/233

............ 710/119

US 7,016,989 Bl

Sheet 1 of 20

Mar. 21, 2006

0Ll

U.S. Patent

LI}

["OId

10d
)d 11826 2 Snd
L8P JIONIS . SOIHAYHO
YAl ~£el |~2d!
0cl Gl
390148 390149 390148
Ny 3Ng H3ONVdX3 SOIHJVHD

001
a1

001
91

ST 43ITOHINOD

U.S. Patent Mar. 21,2006 Sheet 2 of 20 US 7,016,989 B1

CONTROLLER FCI
215 EXPANDER
BRIDGE
(PXB)

HCLK

U.S. Patent Mar. 21,2006 Sheet 3 of 20 US 7,016,989 B1

XCLKOUT |CONTROLLER|E A COPY OF THE CONTROLLER CORE CLOCK
CLK GENERATED BY THE XCLK PLL. AN
DRIVER | EXTERNAL LOW SKEW CLOCK DRIVER

DISTRIBUTES A BUFFERED VERSION TO THE
PXB AND BACK INTO THE CONTROLLER TO

THE PLL FEEDBACK. THERE IS ONE OF THESE
| FOR EACH BUS.

THE BUFFERED VERSION OF THE XCLKOUT
FROM THE EXTERNAL LOW SKEW CLOCK
DRIVER SENT TO THE PXB. THERE IS ONE OF
THESE FOR EACH BUS.

EXT. PXB
CLK

DRIVER

XCLK_IN CONTROLLER
DHIVEH

THE BUFFERED VERSION OF THE XCLKOUT
FROM THE EXTERNAL LOW SKEW CLOCK
DRIVER SENT TO THE CONTROLLER FOR THE

XCLK PLL FEEDBACK. THERE IS ONE OF
THESE FOR EACH BUS.

RESET CONTROLLER| PXB SYSTEM RESET GENERATED BY THE
CONTROLLER.

XRST# | CONTROLLER|PXB PXB RESET GENERATED BY THE CONTROLLER
THERE IS A SEPARATE ONE FOR EACH PXB.
XRSTIN # | CONTROLLER| CONTROLLER

THE CONTROLLER AND PXB SOURCE

SYNCHRONOQUS DATA STROBES START
RUNNING ON THE FIRST CLOCK AFTER
OBSERVING XRST # DEASSERT.

A COPY OF XRST # FED BACK INTO THE
CONTROLLER SO THAT THE PXB AND
CONTROLLER SEE XRST # DEASSERT
ON THE SAME CLOCK.

FIG. 2B

U.S. Patent Mar. 21,2006 Sheet 4 of 20 US 7,016,989 B1

X_P_STB#% | PXB CONTROLLER | PCI EXPANDER POSITIVE DATA STROBE
| ' SOURCES SYNCHRONQUS CLOCK STROBE

SENT FROM PXB TO CONTROLLER WITH
POSITIVE PHASE DATA. THIS STROBE CLOCK

l STARTS RUNNING ON THE FIRST CLOCK AFTER

OBSERVING XRST# DEASSERT. THE STROBE

S FREE-RUNNING UNTIL ANOTHER ASSERTION
OF XRSTH.

X_N_STB# | PXB | CONTROLLER | PCI EXPANDER NEGATIVE DATA STROBE

SOURCE SYNCHRONOUS CLOCK STROBE SENT
FROM PXB TO CONTROLLER WITH NEGATIVE
PHASE DATA. THIS STROBE CLOCK STARTS
RUNNING ON THE FIRST CLOCK AFTER
OBSERVING XRST# DEASSERT. THE STROBE IS
FREE-RUNNING UNTIL ANOTHER ASSERTATION
OF XRST#.

DATA. THIS STROBE CLOCK STARTS RUNNING
ON THE FIRST CLOCK AFTER OBSERVING XRSTIN#

B_P_STB# ICONTROLLER| PXB CONTROLLER POSITIVE DATA STROBE SOURCE
SYNCHRONOUS CLOCK STROBE SENT FROM
CONTROLLER TO PXB WITH POSITIVE PHASE
DATA. THIS STROBE CLOCK STARTS RUNNING
ON THE FIRST CLOCK AFTER OBSERVING XRST#
DEASSERT. THE STROBE IS FREE - RUNNING
UNTIL ANOTHER ASSERTION OF XRST#.

B_N_STB# ICONTROLLER CONTROLLER NEGATIVE DATA STROBE SQURCE
SYNCHRONOUS CLOCK STROBE SENT FROM
DEASSERT. THE STROBE IS FREE - RUNNING
UNTIL ANOTHER ASSERTATION OF XRST#.

XRST # CONTROLLER | pCI EXPANDER REQUEST TO SEND
REQUEST TO USE THE Bl - DIRECTIONAL
BUS SENT FROM PXB TO CONTROLLER

CONTROLLER TO PXB WITH NEGATIVE PHASE
SYNCHRONOUS TO XCLK#.

FIG. 2C

U.S. Patent Mar. 21,2006 Sheet 5 of 20 US 7,016,989 B1

CONTROLLER | CONTROLLER REQUEST TO SEND REQUEST TO
USE THE BI - DIRECTIONAL BUS SENT

FROM CONTROLLER TO PXB SYNCHRONOQUS
TO XCLK..

XADS# CONTROLLER| CONTROLLER
/ /
PXB PXB

PCI EXPANDER ADDRESS/DATA STROBE
Bl - DIRECTIONAL SIGNAL ASSERTED BY THE
SENDING AGENT DURING EVERY CLOCK OF A
PACKET TRANSMISSION EXCEPT THE LAST
CLOCK. IN A SINGLE CLOCK TRANSMISSION
SUCH AS A COMPLETION PACKET WITH NO
DATA, X_ADS# IS ASSERTED FOR ONE CLOCK.

PCl EXPANDER BYTE ENABLES Bl -
DIRECTIONAL SIGNALS ASSERTED IN
PHASE WITH DATA ON THE BUS TO
INDICATE VALID BYTES DURING THE DATA
PHASES OF A PACKET TRANSMISSION.
RESERVED FUNCTION DURING HEADER
PHASES.

XBE[1:0]# |CONTROLLER | CONTROLLER
/ /
PXB PXB

U.S. Patent Mar. 21,2006 Sheet 6 of 20 US 7,016,989 B1

XD[13.0}# PCI EXPANDER DATA BUS Bl - DIRECTIONAL
BUS TRANSFERS PACKETS BETWEEN THE
CONTROLLER AND PXB.

XADS#

PCI EXPANDER BUS PARITY Bl - DIRECTIONAL
SIGNAL INDICATES EVEN PARITY ACROSS
XD{15:0] AND XBE[1:0]. MUST BE VALID FOR
EVERY HALF CLOCK PHASE OF A PACKET
TRANSMISSION. INVALID PARITY WILL BE
GENERATED FOR DATA THAT HAD
UNCORRECTABLE MEMORY OR BUS ERRORS.

A PARITY SIGNAL IS CORRECT IF THERE ARE AN
EVEN NUMBER OF ELECTRICALLY LOW
SIGNALS IN THE SET INCLUDING THE COVERED
SIGNALS PLUS THE PARITY SIGNALS.

FIG. 2E

U.S. Patent Mar. 21,2006 Sheet 7 of 20 US 7,016,989 B1

40N I

l'l‘l.

AUPEWEIEE
IAN/A NI
sp e

IR
SRR
JINENIEEEEE

(IR ENIEEEEE
NN

(ER NI
e

T
B

|-.

s 3
B2z 2 & : 3

<
lC.'lzl n'lﬁz >

AN3S 3AI303H AN3S 3JAI303Y

‘TB

13 T4 15
FIG 3: F16 STROBE STARTUP TIMING DETAIL

T2

T

)
(.D
< %

P_STB#

FIG. 3

U.S. Patent Mar. 21,2006 Sheet 8 of 20 US 7,016,989 B1

‘0 CAPTURE FLOPS SAMPLING FLOP
SAMPLING MUX
> D Q ' |4 COMBINATORIAL
405 oeic w5/ P C
QB O 420 440 DATA
£ ~ @B) ORSIGNAL
TO BUS
—1D Q
P STB# 410)
QB
> P
E
D Q ||||”

PWR GD#
(SYNC'D)

I

XRST#
>—0 Q—p a}—p D Qb0 Q . D Q
> » > > > >

QB QB Q8 QB QB
CORE
CLOCK

FIG. 4

U.S. Patent Mar. 21,2006 Sheet 9 of 20 US 7,016,989 B1

au

INCIATSEEE
PN .Il.l'

1N l,.%!.l,llll-l
NI adB

INIFAINFaEEE
SININARTENEW

INIFAINaEEEE
IiINdRIEEER
N AL

l']ll‘llll.l'
INIFAINdEEE

IIIIITIIII-II
INIFAINdE NN

Iﬂll'llll

|..
)
o
<

139

&
o

FIGURE 5: F16 DATA TRANSMISSION DETAIL

~C
O
> l Q

e
2 581555
CL = Q. Z

AN3S 3JAI303d

FIG. 5

U.S. Patent Mar. 21,2006 Sheet 10 of 20 US 7,016,989 B1

START

SEND REQUEST SIGNAL SUCH THAT T
IS RECEIVED BY ALL CONNECTED
DEVICES AT THE SAME TIME

803

DEVICES OBSERVE DEASSERTION
610

FIRST RISING CLOCK EDGE THAT SAMPLES

RESET SIGNAL IS DESIGNATED AS SECOND
CLOCK EDGE AFTER DEASSERTION IS SAMPLED

812

FLIP FLOP SELECTING MULTIPLEXOR IN RECEIVER

CIRCUITRY OF DEVICES IDENTIFIES ODD CLOCK
WHEN RESET SIGNAL DEASSERTS TO
SYNCHRONIZE SAMPLING CHARACTER

620

INITIATE DATA TRANSMISSION ON
CLOCK EDGE OF EVEN CLOCK CYCLE

630

OUTPUT REQUEST
640

U.S. Patent Mar. 21,2006 Sheet 11 of 20 US 7,016,989 B1

START

SIMULTANEQUSLY LAUNCH STROBE
AND DATA FROM TRANSMITTING

DEVICE TO RECEIVING DEVICE

700

DATA AND STROBE RECEIVED AT
RECEIVING DEVICE

01

S "EVEN CLOCK", DATA CAPTURED BY
'EVEN" FLOPS; IF "ODD* CLOCK DATA
CAPTURED BY "ODD*® FLOPS

DATA IS SAMPLED TWO CLOCKS AFTER LAUNCHED;
DATA SAMPLED FROM EVEN FLOPS IF
LAUNCHED ON EVEN CLOCK AND SAMPLED
FROM ODD FLOPS IF LAUNCHED ON ODD CLOCK

703

FIG. 7

U.S. Patent Mar. 21,2006 Sheet 12 of 20 US 7,016,989 B1

PROCESSOR

INTERFACE/CONTROL LOGIC | 805

303 |

DATA

QUEUE
TRACKER

oo <XDOISM=

|

815
INBOUND

DATA

QUEUE
TRACKER

U.S. Patent Mar. 21,2006 Sheet 13 of 20 US 7,016,989 B1

NITIALIZE 300
BUFFER CNT

305

COMPLETION
RECEIVED
?

ODECREMENT
BUFFER CNT

REQUEST
TO BE SENT
?

YES
INCREMENT 0
BUFFER CNT

925 930
GREATER
THAN RETRY
9

OQUTPUT
REQUEST

NQ

U.S. Patent Mar. 21,2006 Sheet 14 of 20 US 7,016,989 B1

INITIALIZE DATA
BUFFER COUNT

350

955

COMPLETION
RECEIVED
?

DECREMENT DATA
BUFFER COUNT BY
LEN VALUE

REQUEST

TO BE SENT
7

DECREMENT DATA 370
BUFFER COUNT BY
LEN VALUE

975 385 390
YES Decggem

NO

FIG. 9B

OUTPUT
REQUEST

U.S. Patent

Mar. 21, 2006 Sheet 15 of 2()

396

COMPLETION
RECEIVED
?

NO

997
DECREMENT REQUEST

BUFFER CONTENT AND
DATA BUFFER COUNT

AVAILABLE

REQUEST BUFFER

SPACE AND AVAILABLE

DATA BUFFER

SPACE
?

YES

OUTPUT REQUEST TO 1001

REQUEST BUFFER

AND DATA TOQ DATA
BUFFER

US 7,016,989 Bl

US 7,016,989 Bl

Sheet 16 of 20

Mar. 21, 2006

U.S. Patent

[0:2viva
[91°€2lviva

LVYWAOL LINXOVd LSTNOTA

US 7,016,989 Bl

Sheet 17 of 20

Mar. 21, 2006

LVWAOI LINOVd NOILTTdWOD

U.S. Patent

US 7,016,989 Bl

Sheet 18 of 20

Mar. 21, 2006

U.S. Patent

JOL OId

S1S3ND3Y ANNOY1NO H3H1HNL SHJ018 J0IN “S143SSV A10Hd NIHM D0IN O1 8Xd AG a3NSS!

(1S3N03H
ISYI1IH FAISSVd 10N - SLHISSYIA GTOHd NIHM J0OIN OL X8d A9 gINSSH ONVA3AIS IAONIL) HESH
SNE 19d ALMIGILYINOD OL (1S3NO3Y

ONVE30IS 3HND3S) HASS

H3AV3IH DNO1 3SN LON S300 HOd XD 09¥ .
XN 0S¥ NO G3LVIYA DNIZE ATNO HIAVIH LHOMS ‘ATNO LVWHO H3QVIH ONOTNI [ogeyly | (SSTHAQV LSINOTH) (SE:EviV

'5.38 QHOMA GA0 JHL SAYMTV Si Iv:2]38H 'SST1HO SI1AG 8 40 S1SINDIH HOL SALAG FAILLOV

(S319V¥YN3
3149 1S3nNO3Y) (0:2]3aY

S.39 GHOMA N3AT FHL SAVMTV SI lo:el3gY

SNHNLIY JLIHM ¥ NFHM A
100d H344N8 JLHM THL O1 HISNNN SIHL SOaV YINOVHL Y344nG VIVE 3LVI0TIV-3a waw_%
O1 40 G3NYNLIH SGHOMA 40 HIANNN ONV G31SINDIH GHOMA O HIGNNN SILVIION! HLONT Viv() 0

‘NUNLIY A3HL SV SNOLLIENOD MOVHL Ol
HOL1S3N0D3Y A8 3SN 139HVL A8 GIIIGONNN - HOLSIND3YH A9 31V3HI .JVd HOLYHOS. (01 NOLLOVSNVYHL) [0:6la1L

(V4 QUWH
OL dVIN) JLIHM 13NOVd 1HOHS ‘GV3H 1INIVd THOHS ‘JLIHM V4 QUVH ‘GYIH IVd QHVYH (SONYWNOD
(MV4 QUYH O1 dYIN) 31IHM AH13H ‘Gv3H AHL13Y ‘JLIHM TYINHON ‘av3H TYIWHON NOLLIINOD) [0:¢W0D9D

-153N03YH A3LVIDOSSY 40 SNLVLS SNUNLIY

3NN LM AHOWIN ‘GV3H GO0
'HESH 'HASS ‘ILIM NOLLYENDIINOD ‘V3H NOLLYHNDIINOD HOOINN NOILLOINNOD ¥O3HD (SONVYINOO) HOOU

-J1IHM AHOW3IW -Qv3H AHOW3W ‘Gv3H O ‘NOILLOVSNVHL TVID3dS ‘39aTTMONNOY LdNHHILIN

| NOLLdIHOS3Q __ ONVAWOD

SU'IIId LINOVd

dor Old

US 7,016,989 Bl

Sheet 19 of 20

O — H
MO0T FHL ONILVILINI IN3DYV JFHL A8 1d430X3 SNE 1Dd G313DHVL 3HL OL S1S3NO3H U3HLHNS GVIH DO
SJ019 J0IN -3IN3ND3S AIND0T VY 40 AVIH 1SHI4 FHL HO4 X8d OL J0IN A9 A3NSSH

NOILLdI¥OS3a GNVANOD
SU'IAId LIXNOVd

Mar. 21, 2006

U.S. Patent

U.S. Patent Mar. 21,2006 Sheet 20 of 20 US 7,016,989 B1

SENDING DEVICE FORMS REQUEST PACKET
AND STORES DEVICE-SPECIFIC DATA IN TID

FIELD
1108

SENDING DEVICE ISSUES PACKET
1110

RECEIVING DEVICE RECEIVES PACKET

1113

RECEIVING DEVICE FORMS REPLY PACKET
AND COPIES TID DATA INTO TID FIELD
OF THE REPLY PACKET

1120

RECEIVING DEVICE SENDS
REPLY PACKET TO SENDING DEVICE

1123

US 7,016,989 B1

1
FAST 16 BIT, SPLIT TRANSACTION IO BUS

This 1s a continuation of application Ser. No. 08/934,640,
now U.S. Pat. No. 6,088,370, filed Sep. 22, 1997. This 1s
also related to U.S. Pat. No. 6,266,778 Bl, filed Aug. 25,
1999,

FIELD OF THE INVENTION

The present invention 1s related to a synchronous bus
system and method.

ART BACKGROUND

Buses are frequently used to transmit data between
devices. Generally two types of buses are used, synchronous
and asynchronous. In a synchronous system, the devices
coupled to the bus operate synchronous to one another.
Furthermore, the timing budget for data transmaission, that 1s
the time from outputting the data from the transmitting
device to the time that the receiving device samples the data,
1s one clock cycle. As the complexity of computer systems
has 1ncreased, it has become increasingly difficult to physi-
cally connect the devices close enough such that the time of
flight across the connection plus the set up and hold time of
the receiving device do not exceed the timing budget.

In an asynchronous system 1t 1s not necessary that the
clocks of the receiving and sending devices are synchronous
to one another. However, the receiving device has to include
logic to wait a number of clock cycles before reading out the
captured data and sampling the captured data in order to
ensure that the data 1s stable.

SUMMARY OF THE INVENTION

The system and method of the present invention provides
for a synchronous bus system. The sending device sends out
data and a strobe during the first clock cycle. The receiving
device latches the data based upon receipt of the strobe. The
receiving device further samples the data latched a prede-
termined plurality of clock cycles after the first clock cycle.
Thus, unlike prior art synchronous bus systems, the bus is
not required to send, launch and sample the data within one
clock cycle. An 1mnnovative reset process synchronizes both
devices 1n such a manner that simple logic 1s implemented
to latch and sample the received data. Thus, unlike asyn-
chronous bus systems, the overhead required to ensure that
the received launched data 1s stable before sampling is
avolded. By expanding the time budget to multiple clock
periods, clock skew sensitivity 1s reduced as the skew 1s
distributed over the multiple clock period.

BRIEF DESCRIPTION OF THE DRAWINGS

The objects, features, and advantages of the present
invention will be apparent to one skilled 1n the art 1n view
of the following detailed description in which:

FIG. 1 1s an example of a system utilizing the bus system
of the present invention.

FIGS. 2a, 2b, 2¢, 2d and 2e illustrate the signaling

topology of one embodiment of the bus system of the present
invention.

FIG. 3 1s a timing diagram 1illustrating the strobe startup
timing detail for a 2 clock cycle timing budget.

FIG. 4 1llustrates the basic structure for receiving packets
transmitted over the bus.

FIG. 5 1s a timing diagram illustrating the data transmis-
sion detail.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 6 1s a flow chart illustrating one embodiment of the
reset process utilized to synchronize the receiving device
and sending device circuitry.

FIG. 7 1s a flow diagram 1illustrating the packet transmis-
sion process 1n accordance with the teachings of the present
invention.

FIG. 8 1s a simplified block diagram illustrating one
embodiment of the flow control mechanism of the present
invention.

FIGS. 9a, 9b, and 9c¢ are flow charts illustrating one
embodiment of process for transmitting data in accordance
with the teachings of the present invention.

FIGS. 10a, 106, 10c, and 104 illustrate request and

completion formats used in one embodiment of the system
of the present invention.

FIG. 11 1s a simplified flow diagram of one embodiment
of a process using a device configurable field 1n accordance
with the teachings of the present invention.

DETAILED DESCRIPTION

An exemplary system which incorporates the teachings of
the present invention 1s shown in FIG. 1. It 1s readily
apparent that the present invention 1s applicable to a variety
of systems and system configurations. FIG. 1 1s illustrative
of the bandwidth that the bus system of the present invention
can provide. Referring to FIG. 1, the synchronous bus
system 100 shown provides connections between a control-
ler 115, which functions as a bridge between a micropro-
cessor bus 110, to which one or more microprocess devices
are connected, or a memory bus (not shown) to which one
or more memory devices are connected, and bus expander
bridges 117, 120, and 125. As 1s shown 1n one embodiment,
bridges 117 and 120 expand and format the data received
across the bus 100 to provide output to a 64 bit Peripheral
Component Interface (PCI) bus 121 or two 32 bit PCI buses
122, 123 to which PCI compatible devices (not shown) are
connected. Furthermore, 1t 1s 1llustrated that the bus 100 can
provide data to a bridge that interfaces to a graphics bus and
connected devices (not shown).

The signaling topology of the bus system of the present
mvention 1s Hlustrated in FIGS. 2a, 2b, 2¢, 2d and 2e.
Referring to FIG. 2a, synchronous bus 200 connects a
controller 215 to an expander bridge 220, such as a PCI
expander bridge which bridges to a PCI bus (not shown). In
the present embodiment, a controller 1s shown to be con-
nected to a bus expander bridge via the bus. However, 1t 1s
readily apparent that the bus can connect a variety of types
of devices and subsystems. FIGS. 2b, 2¢, 2d and 2e are
tables describing the different signals used in the present
embodiment.

In one embodiment, the bus 1s a 16 bit wide data bus,
which carries commands, addresses, data and transaction ID
information. In addition, two additional bits carry mask and
other information for the data fields. In one embodiment, the
function of the two additional bits varies according to the
clock cycle. For example, the fields provide byte enables
(mask information) identifying the bytes consisting of valid
information and may alternately carry a command type or
parity.

The bus 1s bi-directional between the sending and receiv-
ing devices. In the present embodiment, the bus transactions
are Tull split transactions and consist of a request packet and
a completion packet. The request packet initiates a transac-
tion. Completion packets are used to return data, indicate
that a transaction has completed on the destination device,

US 7,016,989 B1

3

and reallocate buifer sources between the source and desti-
nation device. All transactions can be classified as a read
request or a write request. Read requests contain command
address bit enables for non-fetchable reads, routing infor-
mation and length for desired data. The read completion
packet contains the status of the request, the data retrieved
in response to the read request, and routing and transaction
information to identify the corresponding request. A write
request 1ncludes the write data in its packet. The write
completion contains no data but indicates if the write 1s
completed successfully. Each bus cycle (XCLK) is equiva-
lent to the system host clock cycle. However, each bus cycle
contains a “P” half cycle and “N” half cycle. The “P” halt
cycle occurs for example while XCLK clock 1s high. The
“N” half cycle occurs while the XCLK clock 1s low thus the
throughput 1s doubled by transmitting packets on each half
cycle.

A packet of information consists of multiple 32 bit words.
One word associated byte enables are sent over the bus each
XCLK cycle. Each word 1s distributed between the positive
and negative phase of the bus clock cycle with bits [31:16]
set on the positive phase and bits [15:0] set on the negative
phase. It 1s readily apparent that the bus 1s not limited to this
packet structure and a variety of implementations may be
used.

One key aspect of the high speed synchronous bus of the
present invention is that the reset signal (XRST#) enables
the synchronization of all devices connected to the bus.
Once synchronized, the transmitting and receiving devices
operate synchronously 1n accordance with prespecified tim-
ing protocols to synchronously transmit packets between
devices over multiple clock cycles.

As 1llustrated in FIG. 2a, both the reset signal (XRST#)

and clock signal (XCLK) arrive at each connected compo-
nent simultaneously 1n order to maintain synchronous opera-
fion. In the present embodiment, the XCLK and XRST#
signals are 1ssued by one component 215 and transmitted to
the second component 220 and back into the first component
215 through lines 217, 219, which are approximately equal
in length to lines 221, 223 connected between the first and
second components 215, 220. This ensures that both com-
ponents 215, 220 receive the signals at the same time and
maintain synchronous operation. Preferably the lengths of
lines 217, 223 are matched as closely as possible as the clock
timing 1s critical. The matching of lines 219, 221 may be less
accurately matched 1n length.

An 1llustrative timing diagram for the reset process for a
2 clock cycle timing budget 1s shown 1n FIG. 3. Each device
connected to the bus sees the XRST# deasserted on the same
generating XCLK clock signal. Each component starts its
synchronous strobes signal running a predetermined number
of clock cycles (e.g. three clock cycles) after observing an
XRST# deassert. Although a three clock cycle 1s specified 1n
the present embodiment, the number of predetermined
cycles can vary so long as all devices start their synchronous
strobe signal on the same cycle. With reference to FIG. 3,
cach device captures the XRST# deassertion on the rising
edge of clock T3. Each component, therefore, initiates its
strobe signal generator after the rising edge of clock T6. The
source synchronous signal capture circuit can therefore
synchronize its sampling clocks, since 1t knows the timing
relationship between the XRST# deassertion and the first
data strobe.

The system and timing relationships can be defined 1 a
variety of ways. However, in the present embodiment the
rising clock edge that samples XRST# deassertion 1is

10

15

20

25

30

35

40

45

50

55

60

65

4

referred to the odd cycle and the first data strobe 1s started
from an even clock edge. The earliest even clock edge that
starts the strobe signals 1s the second even clock edge after
the XRST# deassertion 1s sampled. In the present embodi-
ment which implements a two clock cycle timing budget, the
sampling, for reception of data, always selects the capture
element (e.g. flip-flop) that contains data that was launched
two clock cycles earlier. For example, in a three clock cycle
mode, the selection would select that which was launched
three clock cycles earlier. The multiplexor 1dentifies the odd
clock when XRST# deasserts. Since it 1s defined that the first
strobe 1s always sent on an even clock, the capture flops and
sampling multiplexors remain synchronized.

As described ecarlier, the distance between devices i1s
longer than typical synchronous bus systems as the timing
budget has been expanded to span multiple clock cycles.
Furthermore, greater data throughput using fewer pins 1is
achieved 1n part by launching data on both the even and odd
numbered clock cycles. The capture mechanism at the
receiver, which enables this capability as well as expansion
of the timing budget, 1s shown 1n FIG. 4. Data 1s received via
onc of two capture flops 405 or 410. The flop enable 1is
controlled by a third flop 415, which causes the enabled flop
to toggle between capture flops 405 and 410, as driven by the
positive data strobe signal (P_ STB#). Thus, data that is
launched on an even clock is captured by the even capture
flop 410. Data that 1s captured on an odd clock 1s always
captured by the odd capture flop 405. The present circuit,
illustrated 1n FIG. 4, 1llustrates the capture circuitry for the
positive data phases of the signals. Therefore, a negative
data phase capture circuit would also be included driven by
a negative strobe signal (N_ STB#). In such a circuit the
core clock-to-sampling flop would also be inverted.

Referring again to FIG. 4, the sampling multiplexor 420
samples the data from the capture flops two clock cycles
after transmission of the data was initiated (i.e. launched).
The multiplexor 420 1s synchronized by the reset signal
XRST# and the circuitry 430, which 1s driven by the reset
signal. Thus, as the sampling multiplexor 420 1s synchro-
nized to sample initially on the even clock and the data first
arrives on the even, clock as shown 1n the strobe start up
timing detail, the multiplexor 420 properly samples the odd
and even clocks data two cycles after launch.

Once the data 1s processed through the sampling
multiplexor, the data 1s input to combinatorial logic and into
a sampling flip-flop 440. This 1s subsequently output into
other circuitry of the device. It should be noted that the
circuitry 430 shows a number of flip-flops which cause a
delay sufficient to provide adequate initialization for valid
sampling of data. The delay path synchronizes the sampling
multiplexor 420 to the launched data. The delay can be
varied according to the configuration i1mplemented.
Preferably, as shown in FIG. 2, XCLKout (the clock signal)
and XRSTout# (the reset signal) are generated by a common
source. Both are generated by the controller in the present
embodiment and are kept synchronous by routing both
through an external clock driver and maintaining approxi-
mately the same routing signal line length as shown 1 FIG.
2. It 1s preferred that the length of the bus i1s limited by the
following factors: XCLK, XCLK to P_ STB#+TOF (time of
flight between devices)+P_ STB# to capture data valid+set
up time for P data sample is less than or equal to the number
of allocated clock periods (in the present illustration two
clock periods). Thus, in the present embodiment, the delay
through the combinatorial logic 435 between the sampling
flop and sampling multiplexor must be included in the set up
time. Preferably, the turn around time from receiving to

US 7,016,989 B1

S

sending must increase from one XCLK period to two when
XCLK to P_ STB+TOF 1s greater than or equal to one clock
cycle. This 1s required to prevent sending data from colliding
with the trailing negative data phase receive data.

A timing circuit showing the timing of exemplary packet
transmissions 1s shown i FIG. §. Referring to FIG. 8§,
XRST# already has deasserted at some time prior to TS. The
strobes (P__STB#, N__ STB#) already are running and the
sampling circuitry 1s synchronized. Signals bracketed at the
left and labeled “send” indicate the observed signal timing
at the sending end. “Receive” indicates the same observed
signals at the receiving end. The difference 1s the time shaft
due to the flight time of the signals between the sender
device and the receiver device.

At time T37 the sender device asserts HRTS# to indicate
its request to send. At time T37, XRTS# (not shown) was not
observed asserted, so the sending device knows that 1t has
won arbitration of the bus. The sender asserts XADS# at

time T38 to frame the packet information indicated as 1P,
1IN, 2P, 2N.

At the receiving end, the receiver device observes
(captures) HRTS# asserted at time T38. This is the time
shifted HRTS# signal asserted at time T37. The receiver
knows to expect XADS# during the next clock (139). The
present embodiment utilizes a distributed arbiter. Thus, 1f the
sender 1n this example did not have high priority, XADS#
would have been sent two clocks after HRTS# instead of one
clock after HRTS#. Each device knows 1ts priority. By
convention, the high priority device will send 1ts data one
clock earlier than the low priority device (assuming the low
priority device was not already requesting). Therefore, the
low priority device must wait an additional clock when 1t
asserts 1ts request 1n order to guarantee the high priority
device has observed the request. At clock T39, the receiver
samples HRTS# from the capture FLOP that captured 1it.
Data 1s then sampled starting at time T39 from the respective
flops.

The processes for resetting the system to operate in a
synchronous matter and transmission of data are 1llustrated
by the simplified flow diagrams FIGS. 6 and 7. The process
for performing reset 1s generally described with reference to
FIG. 6. At step 605, reset signal 1s sent such that it is
received by all devices at the same time. Furthermore, the
reset signal (XRST#) is output through drivers and fed back
into the originating device such that the line lengths are
compatible and the reset signal 1s received by all devices at
the same time. The reset signal 1s clocked out by a PLL clock
which typically 1s not 1n phase with the core clock of the
controller device (e.g., device 215, FIG. 2). However, the
equal length feedback trace assures that the clock (and the
reset signal that is synchronous to it) will be in phase with
the core clocks by the time the signal arrives at the end of
the wires. The devices (e.g., 215, 220, FIG. 2), at step 610,
observe the deassertion of the reset signal. At step 616, the
first rising clock edge that samples the reset signal 1is
identified as the odd clock cycle and the next edge 1is
identified as the even clock cycle. The first data strobe
therefore 1s designated as the second clock edge (even) after
deassertion of the reset signal. At step 620, a tlip-flop
selecting multiplexor 1n the receiver circuitry of each device
identifies the odd clock cycle when the reset signal is
deasserted 1n order to synchronize sampling circuitry to the
sending circuitry which issues the data strobe and data.

At step 630, data transmission 1s 1nitiated on a clock edge
of an even clock cycle, which comcides with the 1ssuance of
the data strobes on the even clock cycle. Preferably, the

10

15

20

25

30

35

40

45

50

55

60

65

6

system waits a predetermined number of clock cycles, such
as 64 clock cycles, before 1nitiating data transmission such
that sufficient time 1s given for initialization of circuitry.

The transmission process will now be described with
reference to FIG. 7. At step 700 the transmitting device
simultaneously launches a strobe and data to the receiving
device. At step 701, the strobe and data are received at the
receiving device. At step 702, if the strobe was sent on an
even clock the data 1s captured by the even flops; if the
strobe was sent on an odd clock, the data 1s captured by the
odd flops. At step 703, data 1s sampled at the receiver two
clocks after launch from the sending device. Thus, data is
sampled by the even flop if launched on even clock cycle
and sampled by the odd flop if launched on an odd clock
cycle. As mentioned above, once the circuitry 1 both
devices are synchronized, the receiver circuitry simply
toggles between even flops and odd flops. Thus, a process of
operation for synchronous bus transmission across multiple
clock cycles 1n which the sending and receiving devices
receive clock signals at the same frequency 1s described.

Although not required for operation of the high speed
synchronous system as described above, the effectiveness of
the system 1s further enhanced using the embedded tflow
control method and apparatus described below.

In particular, bus overhead 1s decreased by distributing,
flow control to the devices coupled to the bus and embed-
ding tflow control data into the packets. Each device has at
least one tracker device or circuit that tracks the flow of data
and bus requests mbound and outbound onto the bus. At
initialization, each tracker 1s provided mmformation regarding
the builer capacities of the other coupled devices. During the
process of transmission of packets, the tracker accesses
predetermined bits of each packet to determine the states of
the queues (i.e., how full/empty) and controls the flow of
packets between devices. Thus flow control 1s embedded 1n
the packet protocol.

In the present embodiment, flow control between two
devices 1s described. However, it 1s contemplated that the
structure can be expanded to support flow control between
multiple pairs of devices by replication of trackers. A
simplified block diagram of the flow control portion of the
system 1s 1llustrated 1n FIG. 8. Referring to FIG. 8, a
memory controller 803, 1s coupled to memory 802 and a
processor 803. Alternately the memory controller 1s coupled
to a processor bus to which one or more processes 803 are
coupled. The memory controller 805 1s further coupled to a
bus bridge 810 through a bus 815. In one embodiment, the
bus bridge 810 1s connected to a PCI bus 820. The bus bridge
810 shown provides one bus connection (e.g., one 64 bit
connection) to the PCI bus 820. However, it is contemplated
that the bus bridge supports multiple bus connections (e.g.
2-32 bit connections). In a multiple bus connection
arrangement, the tracker circuitry tracks the status of dual
queues, one per connection. Furthermore, device 805 1is
described heremn as a memory controller. However, 1t 1s
readily apparent that device 805 can be a variety of types of
devices that coupled to the bus 815. Similarly, device 810
can be embodied as a variety of devices and 1s not limited
to a bus bridge.

The memory controller 805 1ncludes request queue
tracker logic 822, data queue tracker logic 832, outbound
request queue 824, outbound data buffer 826, inbound
request queue 828 and inbound data queue 830. Also shown
1s 1nterface/control logic 834 which provides supporting
logic for interfacing with the memory 802 and processor
803, performing the memory operations with memory 802

US 7,016,989 B1

7

and processor 803, as well as providing the request packets
and confirmation packets that are described below.

For purposes of simplification of explanation, the data
communicated between the memory 802, processor 803 and
the memory controller 805 1s shown to be transmitted
through the interface/control logic 834; however, 1t 1s con-
templated that data may be transmitted directly between the
queues and the memory 802 and processor 803. The request
queue tracker logic 822 and data queue tracker logic 832
respectively track how full the respective queues 824, 852
and 826, 856 arc, such that once queue 1s full, the tracker
prevents a packet from being generated and placed 1n the

queues 824, 826.

In the present embodiment, the tracker 822, 832 functions
as a counter to maintain counts of available queue space. The
interface/control logic 834 operates 1n conjunction with the
tracker 822, 832 to 1ssue the corresponding control signals/
data to processor 803 and memory 802 to permit/prevent
outbound packet generation and placement i1n the corre-
sponding queues. Inbound request queue 828 and inbound
data queue 830 respectively receive mbound requests and
confirmation packets (and associated data) from the bus
bridge 810. In one embodiment, the write data and read data
1s separately queued and tracked. In one embodiment, the
request queue maintains both read and write requests, but the
tracker permits only a predetermined maximum number of
read requests and a predetermined number of write requests
regardless of the number of available slots 1in the queue.

In one embodiment, the tracker logic 822 1s configured to
permit only two read requests and six write requests 1n an
eight deep queue. This 1s desirable so that the one type of
request, €.g., write request, does not prevent the queuing of
read requests when the number of requests exceeds the size
of a queue. Thus in the current example, if s1x write requests
are currently queued and the device wishes to queue a
seventh write request, the tracker will not permit 1t even
though the queue has the capacity to receive two more
requests. (those that are preallocated per read requests). If
the queue currently has six write requests and the device
wishes to 1ssue a read request, the tracker will permit the
read request to be queued.

The bus bridge 810 1s similarly configured with a request
queue tracker 850, data queue tracker 860, outbound request
queue 852, inbound request queue 854, outbound data queue
856, inbound data queue 858 and interface/control logic 882.
The queue tracking functions are performed similar to that
described above. Trackers 850, 860 maintain counts of
information stored in the queues 854, 828, and 858, 830,
respectively, and prevent the generation of packets when one
of the queues 1s full. Interface/control logic 882 not
described 1n detail herein represents the logic used to
communicate with the bus 820 and generate the request and
confirmation packets as described below.

FIGS. 9a and 9b are simplified flow charts respectively
illustrating the flow control process for requests and data.
Although the two processes are described separately and
flow control can be initiated using either one or both
processes, 1t 1s preferred that both processes are used con-
currently to control flow control as shown in FIG. 9c¢. In the
present embodiment, the tracker maintains a count repre-
sentative of the data stored in the receiving buifer. For
example, tracker 824 maintains a count of requests stored 1n
queue 852. When the count exceeds a predetermined
maximum, the tracker controls the device, e.g. processor
803, to prohibit the creation of the packet, and causing the
device to continue to retry 1ssuing the request until space in

10

15

20

25

30

35

40

45

50

55

60

65

3

the queue becomes available. In the present embodiment, a
packet 1s not created 1f the tracker indicates that the receiv-
ing queue 1s full; 1t 1s contemplated that 1n other embodi-
ments the tracker may use other mechanisms for preventing
a request from entering a full queue.

Turning back to the present embodiment, 1f an 1nbound
PCI (write) request, for example, 1s attempted from bus 820,
the request will be retried until the inbound tracker 850
indicates that the inbound queue 1n device 805 has room for
the write request. The same occurs for outbound transac-
fions. If an inbound request queue were to accept a trans-
action for which there 1s no room in the receiving mbound
queue, a deadlock can occur even though no packet 1s sent,
until there 1s room 1n the receiving queue.

Referring to FIG. 9a, at step 900, the request builer count
maintained by the tracker i1s mmitialized. For example, the
count may be 1nitialized to zero. However, the actual value
may be some other value such that when the count reaches
the predetermined maximum corresponding to the size of the
corresponding buifer, a register overflow occurs. Alternately,
the count 1s initialized to a value corresponding to the
predetermined maximum and the tracker decrements the
count for each request to be sent. Thus, the buffer maximum
1s reached when the count reaches zero. The maximum size
of the buffer may be hardcoded or read from a configuration
register or fill. Preferably, the capacities of corresponding
pairs of buffers, ¢.g. 724, 752 are checked to determine the
buffer having the smaller capacity; in this situation the
maximum size would correspond to the size of the buifers
having the smaller capacity. Furthermore, 1t 1s contemplated
that the predetermined maximum does not necessarily equal
the exact capacity of the buffer and can be a value smaller
than the actual bufler capacity for a variety of reasons. For
example, 1n the present embodiment, the predetermined
maximum for write requests 1s 6 even though the buifer
capacity 1s 8 requests. Other embodiments are also contem-
plated.

I

At step 9035, 1f a completion packet 1s received, the request
tracker decrements the request buifer count, step 910, as
receipt of a completion packet 1s indicative that the request
has been processed and 1s no longer in the buffer. At step
915, it a request packet 1s to be sent, at step 920, the request
buffer count 1s incremented and 1t 1s determined whether the
count exceeds the predetermined maximum, step 925. If the
count does not exceed the predetermined maximum, then the
receiving buifer in the device has the capacity to receive the
request and the request packet 1s prepared for transmission
and subsequently sent out over the bus, step 940. If the count
exceeds the predetermined maximum, then the available
capacity of the bufler cannot accept the request packet and
the request packet tracker prevents the request packet from
being created or enqueued and causes the transmission
process at the initiating bus to be retried, step 935.

It should be noted that FIG. 9a 1s described with respect
to the transmission of request packets from a first device
(e.g., device 805, FIG. 8). However, the same process is
performed when the same device 1s to send a completion
packet as the packets are buffered in the same buffer (e.g.,
inbound request buffer 852, FIG. 8). In addition, if the
process 1s performed with a dual port device such as the bus
bridge described above, the first device would continue to
send (preferably sending to alternate buffers) until both
buffers are at full capacity.

A very similar process 1s performed to control flow
control with respect to data contained in the packet. A
request packet 1s a determined size which fits 1n a predeter-

US 7,016,989 B1

9

mined amount of space. However, the amount of data is
variable. Thus for data buifers, a length field 1n the packet 1s
accessed to determine the amount of buifer space needed. A
similar process 1s then performed to determine when data to
be queued would cause the capacity of the data queue to be
exceeded. The tracker will not allow the capacity of the data

buffer to be exceeded. For example, 1f a device on the bus
820 wants to write 16 DWORDS (16x4 bytes), but the
tracker indicates only room for 8, the control logic 882 will

only accept eight DWORDS. The device (not shown) on the
bus 820 must retry a write for the remaining DWORDS until
the tracker indicates room for them. Alternately, control
logic 882 will be configured such that the logic will not
allow the generation of packets unless all data can be placed
in the queue.

Referring to FIG. 9b, the data buffer count 1s 1nitialized,
step 950. If a completion packet 1s received, step 955, the
data buffer count 1s decremented, step 960, by the length
(LEN) value stored in the completion packet. By using the
LEN value, accurately bufler tracking relevant to the buifer
capacities can be performed. It should be noted that the LEN
value 1s the same length as 1s found in the outgoing infor-
mation. At step 965, 1f a request 1s to be sent, the LEN value
1s determined, and the data buffer count 1s incremented by an
amount corresponding to the LEN. At step 970, if the
amount of data of the packet plus the current amount of data
in the buffer will exceed the capacity of the builer, the device
1S prohlblted from creating the packet and placing the packet
in the buffer. The device subsequently will retry, 990, until
the capacity of the buffer can accept the amount of data of
the packet. Preferably, the requestmg device can indicate
that a portlon of the data that fits in the remaining buifer
space 1s to be sent (e.g., by issuing a command to the
tracker). The requesting device subsequently issues requests,
and retries if necessary, for the balance of the data. If the
buffer count will not be exceeded, at step 995 the packet 1s
formed by the requesting device and placed in the buffer.

As noted earlier, 1t 1s preferable that the flow control
process takes into account available request butfer space and
available data buffer space. If either buifer 1s full and cannot
receive data, the request 1s not processed. This 1s 1llustrated
by the flow chart of FIG. 9c¢. At step 996, 1t 1s determined if
a completion packet 1s received and if one 1s received, at step
997, the request buller count 1s decremented by an amount
corresponding to one request and the data buffer count is
decremented by an amount corresponding to the LEN value.
At step 998, if a request 1s received, it 1s determined whether
there 1s available buflfer space 1n the request buffer and the
data buifer. As the amount of data can vary, 1t 1s possible that
one buifer 1s full while the other buifer still has capacity. It
cither buifer 1s not available to receive a request, the request
1s not processed. The sending device is 1ssued a retry signal,
step 1000, to indicate to retry the request later. Otherwise, at
step 1001, the request 1s output to the request buifer and the
corresponding data to the data buifer.

Thus the flow control 1s embedded into the packet pro-
tocol. Illustrative packets are shown in FIGS. 104, 105, 10c,
and 10d. The flow control mechanism described refers to the
type encoding (TP[1:0]), request command encoding
(RCOM| 4:0]), completion command encoding (CCOM
[4:0]) and length (LEN|[7:0]) fields which are found in the
request packets (FIG. 10a) and completion packets (FIG.
10b). Preferably writes and reads are controlled separately
by the tracker such that different maximum count values can
be used for write requests and read requests.

For example, when a read request 1s pushed into the
memory controller’s outbound transaction queue, TP[1:0] is

10

15

20

25

30

35

40

45

50

55

60

65

10

00 to indicate a request with no data and RCOM][4:0] is O to
indicate that the request 1s to use a read queue slot. The
packet 1s formed and placed 1 the queue and the outbound
read queue tracker therefore 1s decremented by one. When
the completion packet corresponding to the read request 1s
sent back by the PXB, TP[1:0] is [1:x], where x 1s 1 if the
data returned and O if no data was return. CCOM|4:0] 1s O
to indicate this 1s a completion for a read request. The
outbound read queue tracker therefore increments the count
by one. It follows that when a read completion 1s popped
from the memory controller inbound transaction queue, the
outbound read queue tracker 1s incremented by one. Similar
operations occur with respect to the bus bridge.

When a write 1s to be performed, the request 1s pushed
into the device’s outbound transaction queue. TP[1:0] is 01
to indicate a request with data and RCOM]|4:0] is 1 to
indicate the request 1s using a write queue slot. The output
write request queue tracker 1s incremented by 1. When the
completion for a write request is sent back, TP[1:0] 1s 10 to
indicate a completion with no data. CCOM[4:0] 1s 1 to
indicate a completion for a write request. When a write
completion 1s popped from the device’s inbound transaction
queue, the outbound write queue tracker 1s incremented by
1. As noted above, when a transaction queue tracker decre-
ments to zero, transactions of that type can no longer be
pushed into the transaction queue Preferably, the requesting
device will retry any additional actions of this type.

In the present embodiment, data buffer management 1s
handled a little differently; however, 1t 1s contemplated that
data buffer management can be handled the same way as
requests. The TP[1:0], RCOM[4:0] and LEN]7:0] fields in
the request packet header are used to allocate data bulifers by
the data buffer trackers. The TP[1:0], CCOM|4:0] and
L.EN[7:0] fields in the completion packet header are used to
deallocate data buffers by the data buffer trackers.

For example, when a read 1s pushed into the memory
controller outbound transaction queue, ¢.g. by the processor,
TP[1:0] 1s 00 to indicate a request with no data and RCOM
[0] is O to indicate the request is using a read queue slot. The
outbound read data buifer tracker 1s decremented by LEN

where LEN indicates data size, in the present embodiment,
the number of DWORDS being requested.

When the completion packet for the read 1s sent back by
the bus bridge, TP[1:0] i1s [1:x] where x is 1 if data is
returned and O if no data was returned. CCOM]|4:0] 1s O to
indicate that the packet 1s a completion packet for a read.
When a read completion 1s popped from the memory con-
troller inbound transaction queue, the outbound read data
buffer 1s incremented by LEN.

When a write packet 1s pushed mnto the memory controller
outbound transaction queue, ¢.g. by the coupled processor,
TP[1:0]1s 01 to indicate a request with data and RCOM][4:0]
1s 1 to 1ndicate the request 1s using a write queue slot. The
outbound write data buffer tracker 1s decremented by LEN
where LEN indicates the number of DWORDS being writ-
ten. The value 1n the LEN field of the write request packet
and the associated completion packet are always equal even
if the write was not successiul at the other bus.

When the completion packet for the write 1s sent back by
the PXB, TP[1:0]1s 10 to indicate a completion with no data.
CCOM]|0] 1s 1 to indicate that the packet is a completion
packet for a write request. When the write completion 1s
received by the outbound write data buifer tracker, the count
1s incremented by LEN. Normally, requests and completions
leave a transaction queue 1n the same order as entered. This
1s necessary to preserve proper transaction ordering, 1.€., the

US 7,016,989 B1

11

order of occurrence on one bus 1s the same as the order on
the receiving bus. However, a write completion contains no
data, hence, no ordering requirement. Therefore, 1t 15 pre-
ferred that the completion packet 1s sent directly to the
tracker.

When a data buffer tracker decrements to zero or has
insufficient data buffers for a particular request, that request
cannot be pushed into the transaction queue. The data butfer
tracker’s bus interface will therefore retry any additional
transactions of that type. Similar logic 1s used to support
write packets 1ssued by the bus bridge.

A simplified example of the embedded flow control
process 1s 1llustrated below. For purposes of discussion, the
example 1s stmplified and does not take 1nto account other
conilguration parameters such as those related to prefetch-
ing. In addition, the below example and the discussion that
follows discusses the flow control mechanism 1n the context
of a device, such as a memory controller, coupled through
the high speed bus of the present invention to a PCI bus
bridge expander that transfers the data to 2 32 bit PCI busses
or 1 64 bit PCI bus.

Write Write Read Data Read
Data Trans- Buifer 1rans-
Tracker action Tracker action
Request Count Slots Count Slots Action
Any Read X X 0 X Retry
Bus Bridge X X 3 >() Request up to 8
(BB) Read DWORDS
BB Read X X 3 >0 Request up to &
Multiple DWORDS
Mem Read X X 1 >() Request 1
Partial (1 DWORD
DWORD)
Mem Read X X X 0 Retry
Partial
Mem Read X X 1 >() Read 1
Partial (2 DWORD
DWORDS)
Any Write 0 X X X Retry
Mem Write > >1 X X Write 1
Partial (1 DWORD
DWORD)
Mem Write 1 1 X X Write
Partial (2 1DWORD 2nd
DWORDS) DWORD must
Retry
BB Write 3 >() X X Burst until 8
DWORDS
BB MWI <8 X X X Retry (must
(line = 8 have 8
DWORDS) DWORDS of
buffer
Mem Write X 0 X X
Partial (1
DWORD)

Certain transactions demand a fixed number of DWORDS
to transfer. For example, a line write command (PCI MWI)
must transier a full line. If a line consists of 8 DWORDS and
less than 8§ DWORDS of buffering i1s available, the trans-
action must be retried. A normal write burst, however, could
result in a portion of the number of DWORDS being
accepted and the remainder being retried. For example,
Memory Read Line (MRL) transaction would be retried
unless buffer space corresponding to a full line of DWORDS
1s available.

As noted above, the bus bridge 1s preferably configured to
route packets for dual 32 bit operating modes and single 64
bit operating modes. In dual 32 bit mode the ‘a’ and ‘b’

10

15

20

25

30

35

40

45

50

55

60

65

12

transaction queues operate independently on their respective
buses. The only interaction occurs at the high speed bus
interface where one or the other set of queues send or receive
on the high speed bus between the bus bridge and the
memory controller.

In single 64 bit mode the outbound transaction queues are
paired up to appear as a single outbound queue and the
inbound transaction queues are paired up to appear as a
single inbound transaction queue. Effectively, the 64 bit PCI
bus 1nterface has twice the queue depth of each of the dual
32 bit PCI interfaces. Thus, queue tracking 1s configurable to
track a pair of 1nbound/outbound queues as well as a single
set of queues.

The outbound transaction queues are treated 1n a similar
manner to the mbound transaction queues. If an outbound
fransaction from the high speed bus interface enters the ‘a’
outbound queue (OutQa), the next outbound transaction will
enter the ‘b’ outbound queue (OutQb) and so forth. At the
bus bridge interface, logic (e.g., a state machine) toggles
between OutQa and OutQb. Starting at OutQa, the first
outbound transaction 1s attempted on the bus coupled to the
bus bridge (e.g., a PCI bus). If the transaction completes, it
1s popped from OutQa and the completion packet 1s pushed
into whichever inbound queue the queue pointer currently 1s
pointing. Next, the transaction at the top of OutQb 1s
attempted. If every outbound transaction completes on first
attempt, the outbound queue pointer keeps togeling with
cach completed transaction.

If a read transaction at the top of the outbound queue 1s
retried, 1t 15 moved 1nto the corresponding read request
queue RRQ (a or b) and the outbound queue pointer toggles
to the other queue. If a write transaction at the top of the
outbound queue 1s retried, 1t 1s preferred that the queue
pointer does not toggle. A retried write must succeed before
the outbound queue pointer will toggle to the opposite
queue. However, between attempts to complete the write at
the top of the current queue, any reads 1n either RRQ may
also be attempted. Once the current outbound write succeeds
it 1s popped from the queue and a completion packet is
inserted mto the current inbound queue. The outbound queue
pointer will then toggle to the opposite queue even if an
uncompleted read remains in the RRQ.

In summary, the outbound queue pointer toggles to the
opposite queue as soon as a transaction 1s popped from the
current queue. A retried write 1s not popped until 1t succeeds.
A retried read 1s popped from the outbound queue and
pushed mnto the RRQ. A read in a RRQ can be attempted at
any time because 1ts ordering requirements were met at the
time it was popped from the outbound queue. (Note that
outbound reads 1n one RRQ can pass outbound reads in the

other RRQ in a 64 bit PCI mode.)

In 32 bit mode, an outbound transaction 1s routed from the
high speed bus to either outbound queue ‘a’ or ‘b’ depending
upon the packet’s destination 1dentification (Destination ID)
Multiplexors select the next outbound request or a pPrevi-
ously retired read as discussed m the previous section.
Preferably a separate multiplexor 1s used for 64 bit PCI
mode. When the bus bridge 1nitiates a PCI transaction 1n 64
bit mode, a multiplexor selects the command and address

bits from either outbound queue ‘a’ or outbound queue ‘b’.

Inbound transactions can address more than 32 bits so
both inbound queues support dual address cycle (DAC)
decode 1n 32 bit mode and 64 bit mode. The inbound request
queues have separate latch enables for upper and lower 32
bits of address. In 32 b1t mode, the low order address 1s

latched 1n address latch ‘a’ or address latch ‘b’ for PCI bus

US 7,016,989 B1

13

“a’ or ‘b’ respectively. The inbound request queue latches the
low order address prior to the next PCI clock 1n preparation
for the arrival of the high order address of a DAC. If the
inbound transaction 1s a single address cycle transaction,
zeros must be loaded 1nto the high order address field of the
inbound request queues.

In 64 bit mode, the inbound transaction can be 1nitiated by
either a 32 bit PCI master or 64 bit PCI master. DAC 1s
required to be asserted on C/B[3:0] in packets by 32 bit and
64 bit PCI masters (e.g., memory controller) addressing
above 4 GB because 1t 1s unknown to the master at this time
if the target 1s 64 bit capable or not. A 64 bit PCI master 1s
not required to drive the high order address bits to zero for
addresses below 4 GB. If REQ64+# 1s asserted with FRAME#
and the PXB decodes DAC on C/B[3:0] during the first
address cycle, 1t can immediately decode the full address. It
C/B|3:0] does not indicate DAC, the PXB must force the

high order address to all zeros before decoding the address.

As noted previously, it 1s preferred that the data buifers
exist as separate structures from the transaction or request
queues. The data for PCI transactions 1s stored 1n a separate
queue structure from the transaction queues. This data queue
structure 1s referred to as the data buifers or the data queues.
Separate queues are needed for data because the transactions
and completions 1n the transaction queues do not always get
retired 1n the same order that they entered the transaction
queues. For example, write transactions may pass read
transactions in the same direction. Also, PCI delayed reads
get retired 1n the order that the PCI masters return for their
data which 1s not necessarily the same order that the read
requests or read data were received.

In dual 32 bit PCI mode when an immbound PCI write
transaction enters InQa, the data that follows the address and
command on the PCI bus will enter the PW Data 1 inbound
data queue. When the associated write packet 1s sent over the
F16 bus, the packet header containing the write command
and address will be pulled from the InQa transaction queue
and the write data will be pulled from the PW Data
1/DRPLY Data 1 inbound data queue. Likewise, an inbound
PCI write on PCI Bus ‘b’ pushes the command and address
into InQb and the associated data that follows on the PCI bus
1s pushed mmto PW Data 2 mbound data queue.

In dual 32 bit PCI mode, an outbound 32 b1t PCI read to
PCI bus ‘a’ 1s pulled from OutQa or RRQa when the read
succeeds on the PCI bus and a Read Completion 1s pushed
into the InQa inbound transaction queue. The associated
read data enters the PW Data 1/DRPLY Data 1 inbound data
queue. When the Completion packet 1s sent over the F16
bus, the packet header containing the read completion 1den-
tifier will be pulled from the top of the InQa transaction
queue and the read data will be pulled from the PW Data
1/DRPLY Data 1 inbound data queue.

Each 32 bit PCI port can have two mbound PCI reads
outstanding. An mbound PCI read on PCI port a 1s pushed
into InQa 1f there 1s a slot available 1n the PXB inbound
queue for a read and there are inbound read data buifers
available in the PXB and MIOC. At this time the mmbound
delayed read completion tracker is loaded with the command
and address fields of the inbound read so that 1t can 1denfify
the PCI master requesting the read. A transaction i1dentifier
unique to this mbound transaction is also loaded into the
inbound delayed read completion tracker so that the read
completion can be identified when 1t arrives 1n the OutQa.
When the inbound read completes on the P6 bus, a delayed
read completion (DRC) packet containing the read data will
arrive to the bus bridge over the high speed bus. The DRC

10

15

20

25

30

35

40

45

50

55

60

65

14

translation header containing the inbound read 1dentifier will
be pushed into OutQa. The read data that follows m the
packet will be pushed into DRC Data 1 data queue or DRC
2 data queue depending upon which DRC data queue was
assigned to this inbound read. When the PCI master returns
for its data (it will be continuously retired until the data
arrives) it will receive the data from DRC Data 1 or DRC
Data 2 data queue if the associated inbound read completion
has been popped from the top of the OutQa transaction
queue and marked the inbound read as complete 1n the
inbound delayed read completion tracker.

In 64 bit PCI mode, the two sets of data bufler queues are
paired similar to the transaction queue 1n 64 bit PCI mode.
An mbound write will result 1n data being alternately pushed
into PW Data 1 and PW Data 2 data queues. The data queues
are 32 bits wide (DWord). If data is received 64 bits at a time
from a 64 bit PCI master and the data queue pointer is
pointing at PW Data 1 queue, the first DWord 1s pushed 1nto
PW Data 1 data queue and the next DWord 1s pushed into
PW Data 2 date queue. Additional DWORDS alternate

between the two mbound data queues.

The DRC data queues and write data queues are paired
and 1nterleaved 1n a similar fashion.

The innovative packet format described above 1n addition
to embedding flow control information, also provides at
least one field referred to herein as the transaction identifi-
cation (TID) field, that can be used 1n a variety of ways. The
field 1s preferably configurable, depending upon the appli-
cation. The advantage 1s that the sending device, 1.€., the
device 1ssuing a request packet, can store predetermined data
in this field, e.g., a transaction 1dentifier or other identifier.
The control logic of the receiving device, after processing
the request and preparing the completion packet, simply
copies the contents of the field into the completion packet for
fransmission back to the initial sending device. Thus, the
conilguration can be such that the field contents 1s mean-
ingiul only to the sending device as the receiving device
simply copies the contents and sends 1t back. Furthermore,
as the packet 1s not limited to specific data, the field can be
used for a variety of purposes. Furthermore, as the receiving
device simply copies the contents into the completion
packet, the contents remain undisturbed.

This process 1s described generally with reference to FIG.
11. At step 1105, the sending device forms a request packet.
The request packet includes the transaction ID field which 1s
used to store requesting device data. At step 1110, the
request packet 1s 1ssued and at step 1115, the receiving
device receives the packet and forms a reply packet, step
1120. The receiving device simply copies the TID field into
the reply packet for subsequent access by the sending
device. Thus, the contents of the TID are not required to be
interpreted by the receiving device as a simple copy opera-
fion 1s all that 1s required. At step 1125, the reply packet,
including the copied contents of the TID field, 1s sent back
to the requesting device.

In the present embodiment, the field 1s used for a deferred
outbound read (processor to PCI) transaction. A deferred
fransaction 1s a split transaction where the read 1s split mto
the 1nitial read request followed at a later time by a deferred
reply. The requested data 1s returned by the deferred reply.
Thus, the device and transaction ID of the read requester 1s
put 1nto the TID field. When the completion packet with the
read data 1s sent, the TID 1s copied from the request packet
to the completion packet. When the completion reaches the
top of the inbound request queue, a deferred reply 1s sent to
the requesting processor. The deferred reply copies the

US 7,016,989 B1

15

completion TID into the deferred reply where 1t 1s used to
address the processor that 1nitiated the original read.

The 1invention has been described 1in conjunction with the
preferred embodiment. It 1s evident that the numerous
alternatives, modifications, variations, and uses will be
apparent to those skilled 1n the art in light of the foregoing
description.

What 1s claimed 1s:

1. A method comprising;:

sending out data and a data strobe from a sending device
during a first clock cycle;

latching the data at a receiving device based upon receipt
of the data strobe;

sampling the data at said receiving device a predeter-
mined number of clock cycles after the first clock
cycle;

1ssuing a reset signal from a first device to at least one
second device, said first device further receiving the
reset signal as 1nput after a delay corresponding to a
time to transmit the reset signal between the first device
and second device, wherein said first device and said
second device receive the reset signal at the same time;

and

upon receipt of the reset signal, said first device and said

second device executing a predetermined reset process

comprising:

identitying a first predetermined clock edge as a first
odd clock cycle;

identifying a subsequent clock edge as a first even
clock cycle;

initiating the data strobe on a clock edge of a prespeci-
fied even clock cycle; and

said first clock cycle occurring after mitiating the data
strobe.

2. The method as set forth in claim 1, wherein said
latching occurs at least a variable amount of time that 1s less
than a predetermined amount of time prior to the clock cycle
at which the step of sampling occurs.

3. The method as set forth in claim 2, wherein the
predetermined amount of time satisiies a set up and hold
time for the data in the latch.

4. The method as set forth in claim 1, wherein data sent
and latched comprises n-bit packets of data and said receiv-
ing device further formats data received into m-bit packets
of data and transmits the m-bit packets to a third device.

5. The method as set forth 1n claim 4, wherein m 1s greater
than n.

6. The method as set forth in claim 1, wherein the data
sent comprises n-bit packets of data, said sending device
further receiving m-bit packets of data on a bus and format-
ting the m-bit packets to n-bit packets prior to the step of
sending.

7. The method as set forth 1in claim 1, further comprising,
forwarding the latched data from said receiving device
across a transmission medium to a second receiving device.

8. A method comprising:

sending out data and a data strobe across a first bus from
a sending device during a first clock cycle;

latching the data from said first bus at a bridge device
based upon receipt of the data strobe, wherein said
sending device and said bridge device operate synchro-
nous to each other;

sampling the data at said bridge device a predetermined
number of clock cycles after the first clock cycle to
receive a packet of data;

transmitting said packet of data from said bridge device
across a second bus;

10

15

20

25

30

35

40

45

50

55

60

65

16

receving the packet across the second bus at a receiving,
device;

1ssuing a reset signal from said sending device to the
bridge device, said sending device further receiving the
reset signal as an 1nput after a delay corresponding to
a time to transmit the reset signal between the sending,
device and the bridge device, wheremn the sending
device and bridge device receive the reset signal at the
same time; and

upon receipt of the reset signal, said sending device and

bridge device executing a predetermined reset process

comprising:

identifying a first predetermined clock edge as a first
odd clock cycle;

identifying a subsequent clock edge as a first even
clock cycle; and

initiating the data strobe on a clock edge of a prespeci-
fied even clock cycle;

wherein said first clock cycle occurring after initiating
the data strobe.

9. The method as set forth in claim 8, wherein a data width
of the second bus being different than a data width of the first
bus, said bridge device comprising a bus expander device,
said method further comprising selectively translating the
data into a format compatible with the first bus or the second
bus the bridge device 1s to transmit data on.

10. The method as set forth mn claim 8, wherein said
latching occurs a time less than a predetermined amount of
time prior to the clock cycle at which said sampling occurs.

11. The method as set forth m claim 10, wherein the
predetermined amount of time satisfies a data set up and hold
fime for a latch of said bridging device.

12. A bus system comprising;:

a first device configured to be coupled to a first bus;

a controller configured to be coupled to the first bus and
to communicate data on the first bus with the first
device;

a synchronous high speed second bus configured to be
coupled between the controller and a bridge device,
said controller configured to send data and a data strobe
during a first clock cycle;

said bridge device configured to latch the data based upon
receipt of the data strobe and sample the data a prede-
termined number of clock cycles after the first clock
cycle to receive the data;

wherein the controller 1s further configured to 1ssue a reset
signal to the bridge device and receive the reset signal
as 1nput after a delay corresponding to a time to
transmit the reset signal between the controller and the
bridge device, wherein the controller and bridge device
receive the reset signal at the same time; and

said controller and bridge device further configured to,
upon receipt of the reset signal, execute a predeter-
mined reset process comprising 1dentifying a first pre-
determined clock edge as a first odd clock cycle,
1dentify a subsequent clock edge as a first even clock
cycle, and 1nitiate the data strobe on a clock edge of a
prespeciflied even clock cycle; wherein said first clock
cycle occurs after initiating the data strobe.

13. The bus system as set forth 1n claim 12, wherein the
bridge device 1s further configured to be coupled to a third
bus and to communicate data latched to a second device
coupled to the third bus.

14. The bus system as set forth 1n claim 12, wherein a data
width of a third bus 1s different than a data width of the
second bus, said bridge device further configured to selec-

US 7,016,989 B1

17

tively translate data received into a format compatible with
the second bus or the third bus the data 1s to be transmitted
on.

15. The bus system as set forth 1n claim 12, wherein the
bridge device latches at a time less than a predetermined
amount of time prior to the clock cycle at which the bridge
device samples occurs.

16. The bus system as set forth 1n claim 15, wherein the
predetermined amount of time satisfies a set up and hold
time for a data latch at said bridge device.

17. The bus system as set forth 1n claim 12, wherein the
first device 1S a miCroprocessor.

18. The bus system as set forth 1n claim 12, wherein the
first device 1s a memory.

19. The bus system as set forth 1n claim 13, wherein the
second device 1s a memory.

20. The bus system as set forth in claim 13, wherein the
second device 1S a miCroprocessor.

21. A bus system comprising:;

a first set of lines coupled between the first device and the
second device and configured to transmit data;

at least one clock line configured to provide a clock signal
to said first device and said second device;

at least one strobe line configured to provide a strobe
signal concurrently with the transmission of data
between the first and second device;

10

15

20

25

138

at least one reset line coupled to the first device and the
second device, said reset line configured to communi-
cate a reset signal to said first device and said second
device, said first and second devices using the reset
signal to synchronize sampling of data, latched in
accordance with the strobe signal, a predetermined
number of clock cycles after transmission of data; and

wherein the reset signal 1s 1ssued by the first device, said
at least one reset line comprising a first reset line
coupled to the first device and a second reset line
coupled to the second device, said first reset line and
second reset line having substantially the same length
such that the reset signal 1s received substantially at the
same time by the first device and the second device.
22. The bus system as set forth 1n claim 21, wherein the
clock signal 1s 1ssued by the first device, said at least one
reset line comprising a first clock line coupled to the first
device and a second clock line coupled to the second device,
said first clock line and second clock line having substan-
fially the same length such that the clock signal is received
substantially at the same time by the first device and the
second device.
23. The bus system as set forth 1n claim 21, wherein the
first set of lines further comprise lines to transmit address
information.

	Front Page
	Drawings
	Specification
	Claims

