US007013467B1
12 United States Patent (10) Patent No.: US 7,013,467 B1
McLain, Jr. et al. 45) Date of Patent: *Mar. 14, 2006
(54) SYSTEM AND METHOD FOR MANAGING OTHER PUBLICATIONS
COMPUTER SYSTEM RESOURCES USING _ _ _
COMMAND CONTROL VECTORS A. Yau. “An Object—Oriented Approach to Software Design

for Distributed Real-Time Computing Systems”, IEEE,
(75) Inventors: John V. McLain, Jr., Colorado Springs, 1993, pp. 297-303.%

CO (US); Damon Curnell, Colorado E. Gamma, Design Patterns Elements of Reusable Object—
Springs, CO (US) Oriented Software, pp. 127-134.%
K. Maruyama, et al “A Concurrent Object—Oriented Switch-
(73) Assignee: MCI Communications Corporation, ing Program in Chill”, IEEE, Jan. 1991, pp. 60—68.*
Washington, DC (US) H, Carr, et al “Compiling Distributed C + +”, IEEE, 1993,
(*) Notice: Subject to any disclaimer, the term of this pp. 496-503.%

patent 1s extended or adjusted under 35

Primary Examiner—>ue Lao
U.S.C. 154(b) by O days.

(57) ABSTRACT

This patent 1s subject to a terminal dis-

_ A system, method and computer program product for pro-
claimer.] P PIO& P P

cessing multiple tasks using a single copy of a data object
_ employs command control vectors (CCVs) for representing
(21) - Appl. No.: 08/987,849 tasks. A CCV 1ncludes pointers to method objects that store
(22) Filed: Dec. 9, 1997 instructions for processing tasks and pointers to data objects
(51) Int. Cl that store temporary data generated by execution of the

g method objects. A command response manager manages a

GO6E 9100 (2006.01) queue of CCVs. A separate CCV 1s generated for each
session thread. Multiple CCVs can point to the same method

(gz) g:sl-(iCl:E. éi - .ﬁ.“.‘l.::S- i;l 770199{331280 Object SO that OI]ly a Si[]gle COpy Of a I]:]E‘,th()d ObjeCt needs
(58) Field of Classification Search /318, to be provided. In one embodiment, CCVs are used 1n a

709/313, 315, 107, 108; 719/320, 315, 316,
719/313, 310; 718/107, 108, 102; 717/139

See application file for complete search history.

telecommunication network emulator, where each CCV
points to a command response table method object that
includes a variety of responses for a variety of mnputs. When

(56) References Cited a CCV pomnts to a script mvocation within a command

response table, the CCV includes a field for pointing to the

U.S. PATENT DOCUMENTS invoked script, a field for pointing to a particular offset

4455602 A 6/1984 Baxter, Il et al. 364/200 within the script and a field for pointing to a data object that

4575797 A 3/1986 Gruner et al. oveonnnn 364/200 stores data associated with execution of the script for the

4,636,968 A 1/1987 Gotou et al. woveneeeeennn. 364/300 CCV. The temporary data object and the virtual 1nstructions
4,799,251 A 1/1989 Smith et al. 379/1 of the script form a virtual data object.

4.024.493 A 5/1990 Dang et al. .coevene....... 379/94
(Continued) 11 Claims, 16 Drawing Sheets

Virtuai Objects

US 7,013,467 B1

Page 2
U.S. PATENT DOCUMENTS 5,396,616 A 3/1995 Venablecceenvneeennn. 395/500
5,410,586 A 4/1995 Daviescceeeevenenrnnnnnns 379/14
5,005,197 A 4/1991 Parsons et al. 379/21 5,414,858 A 5/1995 Hoffman et al. 395/723
5,008,812 A 4/1991 Bhandarkar et al. 364/200 5,435,003 A 7/1995 Chng et al. 395/575
5,027,343 A 6/1991 Chan et al. 370/17 5444693 A 8/1995 Arslan et al. weeeeeeeeeeenn.. 370/34
5,157,005 A 10/1992 Suppiah ... 371/20.1 5475732 A 12/1995 Pester, I ..occeeuveenen..... 379/34
5,170,362 A 12/1992 Greenberg et al. 366/550 5,488,648 A 1/1996 Wombleooovvveeennn.... 375/13
5,197,127 A 3/1993 Waclawsky et al. 395/200 5,490272 A 2/1996 Mathis et al. 395/650
5,226,041 A 7/1993 Waclawsky et al. 370/60 5,513,345 A 4/1996 Sato et al. 395/182.02
5,276,440 A 1/1994 Jolissaint et al. 340/825.02 5,551,035 A * 8/1996 Amold et al. 395/650
5,280,481 A 1/1994 Chang et al. 370/85.13 5,557,795 A 9/1996 Venableccceeeeue.... 395/650
5,285,494 A 2/1994 Sprecher et al. 379/59 5,563,930 A 10/1996 Pester, Iccovevveenn.... 379/34
5,323,388 A 6/1994 Chang et al. 370/60 5,594,792 A 1/1997 Chouraki et al. 379/252
5,335,268 A 8/1994 Kelly, Jr. et al. 379/112 5,600,632 A 2/1997 Schulman 370/252
5,337,306 A 8/1994 Hallccoovvvvvinininnnn..n. 370/13 5,636,345 A 6/1997 Valdevitoowemeenn... 395/200.11
5,343,461 A 8/1994 Barton et al. 370/13 5,652,888 A * 7/1997 BUIZESScovvvvvvennnnnnn. 395/683
5,373,501 A 12/1994 Rolandcceenenennet. 370/13 6,256.659 B1 * 7/2001 McLain, Ir. et al. 709/100
5?3755126 A 12/1994 Wallacecovvvnnennn.n 371/20. 6?2955518 Bl * 9/2001 McLain et al. 703/23
5,375,159 A 12/1994 Williamsccoeeeeeee. 379/23 6,427.231 B1 * 7/2002 Burke et al. 717/116
5,384,822 A 1/1995 Brown et al. 379/10
5,394,540 A 2/1995 Barrington et al. 395/500 * cited by examiner

U.S. Patent Mar. 14,2006 Sheet 1 of 16 US 7,013,467 Bl

110

Control

System

116
- l

112

TND Emulator ’ 126 124 NOCISS
System Manager 127

130 120

128

X.25 Card for
DEC platiorm

X.25 Card for

PC platform

FIG. 1

U.S. Patent Mar. 14,2006 Sheet 2 of 16 US 7,013,467 Bl

User
(mouse, keyboard,
aic.)
126
214
226

User Intarface

Configuration
Database

X.25 Interface
to Control
System 116

Network
Interface

Log

Database

Files
218

Command/
Response
Manager

Script
interpreter

Command/
Hesponse

. Tables

Script Flles

FIG. 2

U.S. Patent Mar. 14,2006 Sheet 3 of 16 US 7,013,467 Bl

3710
Start Emulator - Initiate SM

312
Verify System Components

314

Allocate Memory for DBM and Ul

316
Initialize DBM, CRM and NI

318

Perform Simulated Multi-Taskin
Network Emulation (See FIG. 4

Terminate
Network Emulation

Yes

322

Terminate Communications Sessions and
Command/Response Processing.
Free Memory.

324
Generate Report
326

System Manager

FIG. 3

U.S. Patent Mar. 14,2006 Sheet 4 of 16 US 7,013,467 Bl

318

410
Poll Network Interface 212
(See FIG. 5)
412
Check CRM Queue
(See FIG.8 & 7)
414
416

Check Database Queue
(See FIGQ. 8)

Simulated Multitasking

FIG. 4

U.S. Patent Mar. 14,2006 Sheet 5 of 16 US 7,013,467 Bl

410
Poll Network Interface

202

Any inbound No

messages?

S04

Yes

Append data to message butfer

506

507

Place
Message communications
complete? sesgion CCV in

incomplete state Find CCV for session;
Yes set message sent state

508

Find CCYV for session; set 520
message recsived state Transmit message to

No

Control System
510 |

Place request in DBM queue to | | 522
log message received Place request in DBM
- queus to log
. - 512 message sent
ace reques n
CRM queue 524
| Set session status to
514 remote in CCV
Flush message buffer; set 526

session status to local in CCV

Purge idie sessions

528

Update Main Window
with status of session

I |

End task

Polling Network Interface
FIG. 5

U.S. Patent Mar. 14,2006 Sheet 6 of 16 US 7,013,467 Bl

. 412
Ch ck CRM queus

602

No Any CCV's in

queue?

Yes
604
606 608
= scrot execuion . Y62 | Eccuteserpt |

No

6710

| gcate command in Command

Response Table using CCV
Message Buffer

* 612
Read action to take
674

Simple v
response or exaecute
scrip1?

616

Start script
execution

simple response

Read raesponse field; format
message accordingly

62

No Requeue CCV in CAM queue

Message
processin
complete

Queue CCV and response
message to NI queue

FIG. 6

U.S. Patent Mar. 14,2006 Sheet 7 of 16 US 7,013,467 Bl

Execute Script Start Script Execution

702 701

Reset CCV pointer to start

of script; set CCV “script-
in-progress indicator

Database

Yes :
request in progress?

No

704 706

Load script; purge from
memory scripts based

on LRU
708
Script found?
No 710

Send default responss;
reset CCV “script-in-
progress” indlcator

Script in memory? No

Execute current step of script;
point CCV pointer to next step

No
716

Database
request neaded?

Set pointer to DB request
indicator in script; queue
request to DB

Queue CCV; place
response message in
buffer

726
Set session in receive
mode

Set CCV "script-in-
progress” indicator

Reset CCV "script-in-
progress” indicator

FIG. 7

Response
generated?

Read request
issueqd?

Script execution
complete?

U.S. Patent Mar. 14,2006 Sheet 8 of 16 US 7,013,467 Bl

16

4
Check Database queue

Log 808

roquest Write to log

DB request
804
Execute request,
nopulate CCV cursor
806
Place CCV in CRM queue

Checking Database Queue

request or
Log?

FI1G. 8

US 7,013,467 Bl

Sheet 9 of 16

Mar. 14, 2006

U.S. Patent

sfiei4 pue

SuBlUI0d [euoRdp
SNOLIRA

yco

Uonnosx3y
apoQ Jduag 10}
SO|QELURA BleQ

Suipioy
juewbeg eleq

0} 18JUj0d

6 'Ol

I0J08/\ |04 PUBLUILOD)

UOIBILNWWON

0! “Old

E juswiabeuepy ADD
<>

SUOHEDUNMLWIOY) BABOSY JO DUBS

US 7,013,467 Bl

108f10) UOJIEOIMUOD

1085000, oBenbuen

(wesboid) jduog
\&
v—
= enany uo YJeg
~ L. .
H Jebeueyy Q:Lﬁm puUBWULIOYD fressaooN) esuodsey Of] ON I
S
-
g p
ensny)
* U0 ¥oeg
b4 uopINAS8Y
= enenp ey sBui4 9)qa . 8sU0dsH | |, yopJouu U UOIBILNWLG
— wawbag greq 8pon) ojqe] esuodsay lasuuey))
~ Wwauj 108es 5 “Mﬂiwomﬁ%.ug - 0)Joiod 1duos 0) s8juiod wﬁ%t:..ww eomeQ (891607 fuepey
; . ll ”
o
~

uaiionisu
oie . suodse 8KBL. SUORH | 7 uopoeuuog |z uoeaUMWLWOD
pue siequiod PUBLILIDY | gowag jecibon | rewepa
BUONJO SNOMBA clOf
aKe] Isucdsey
DUELAIOY)

| UOOBUUOD) |} UOHBINNWWOY
aaeq (@380 JEuIax3

puB 818JUj0d
jeuondo SnoLeA

O} Jojuiod 010!

910!
ananpd

Ao

U.S. Patent

U.S. Patent Mar. 14,2006 Sheet 11 of 16 US 7,013,467 Bl

1110

1118

1010
Data
Object
CCV 1

1113 1117

Object

916/918
913:922! _
h
1012 1120
Data v 1121
Object
c:cvz ata
Object
924 922
v
®
&
®
. |
1014 1122 7114

Method
CCVn Object
1124

Data

Virtual Objects
FIG. 11

US 7,013,467 Bl

Sheet 12 of 16

Mar. 14, 2006

U.S. Patent

AN E
Ogc aseqgejeq uopeinbyuon 10} S9jqe) asegeyeq

507 suopesuNuLLO)) OB L

 pusodeflessay - | N | oav [ebessopy |

abessepy 60 bunsog unasg renpip ew o Suipuodsarioo “ON uolsses HHE
obessopy HuiBBo ucisseg jo q) eousul HH H

WO} SSSSMINHH Ul JUaAS (0 awi} N | N | suy

607 aoei) ¢ g8}

Z291qe)
Wova | L
_WOYN | §
aiS3Hd | d |
AMIUYD] N |
Q) by
 Od¥ | P
 NO3LUS| H |
BESIE
wa [3 |
- ovd | a
dvY] 9 |
483 1 8 |
OXa | Vv
- Oova | 8
- diS | 8
3008x3a@l 9
| 3IXY | S |
. X0S | ¢
 S10 | £ |
- Xag | e
0SeSNGl 1
| 30ALA6Q | QlAeQ

US 7,013,467 Bl

Sheet 13 of 16

Mar. 14, 2006

U.S. Patent

el "Oid
v sfewuusy || Boquwop || Dojaoeay li eun) feey __EH
m
dv9 |
1HAONIH *
| XGNINY ._
> | ST1OINY
030 00 I 020
650 60 L 60
850 880 ' 8I0 |
150 1£0 L 210 _
8g0 9£0 I 910
6G0 GE0 i SI0
S0 20 I $10
£50 £E0 L €10
280 260 1 210
160 1£0 L 110
050 020 L 010 “
640 620 L 600 ._
8¥0 820 I 800 |
LH0 120 L 700 |
ot 920 i 900 |
S0 G20 L 500
0 20 L 00
£v0 £20 vINYHD | E0O
v 220 ZMOd 1 200 |
Z|1.3009X30 2uv | 1¥0 3009X3Q ZUV | 120 3009X3C 21V | 100 <= +
8dfi-AeQ pruUd # O-A odAl-AsQ PHUd # DA odAL-A9G PIU4 £ DA _
1 11000° LA 1:00:G 1 \ 8822EE |3ujesy 2661 10N(0)
MOPUIA UVIEW

U.S. Patent Mar. 14,2006 Sheet 14 of 16 US 7,013,467 Bl

7410\

The Command Response Manager uses a Command Response Table to
generate responses to0 messages.

1412
1414 nteger Unlque Identifying Number

arying 0-256 characters | Selection Criteria
arying 0-256 characters | Response Text String

1416 Commanq
1418 1 espoense

=
wlly

1420] Next Response pointer to next rasponse entry

1400 \Next Commandjinteger | pointer to next command entry

1404 Next Condition poinier to next condition entry

142¢ .} Repeat repeat this message n times
integer

Delay Integer

delay message n seconds

Command Response Table Format

FIG. 14

U.S. Patent Mar. 14,2006 Sheet 15 of 16 US 7,013,467 Bl

Preemptive
Processing

Cooperative
Processing

Module
1514

Module
1516

Hybrid Preemptive/Cooperative
Multitasking Module 71512

System Manager 127

FIG. 15

U.S. Patent Mar. 14,2006 Sheet 16 of 16 US 7,013,467 Bl

1602 o

000000000 | 1604
o O
O Q
O o
M O { Processor | O
| o o
o o
o o
000000000
———————— 1606
o K " MainMemory
m
g o o1r o el bl bend ed bad Ry G —_—
, -
e,
S
I 1608
>3
= >
g 1610
A Hard Disk Drive
M 1612 1614

- Otorage Drive Storage Unit
Interface M Removable
Storage Unit

1622

1624

1626 1628

Communication
Interface

FIG. 16

US 7,013,467 Bl

1

SYSTEM AND METHOD FOR MANAGING
COMPUTER SYSTEM RESOURCES USING
COMMAND CONTROL VECTORS

CROSS-REFERENCE TO OTHER
APPLICATTONS

This patent application 1s related to the following com-
monly owned United States Patent Applications:

1. U.S. Patent Application titled, “System and Method for
Emulating Telecommunication Network Devices,” Ser.

No. 08/987,229, filed Dec. 9, 1997, by John V. McLain,
Jr., and Damon Curnell, now U.S. Pat. No. 6,295,518;

2. U.S. Patent Application titled, “System and Method for

Performing Hybrid Preemptive and Cooperative Multi-
Tasking in a Computer System,” Ser. No. 08/987,633,

filed Dec. 9, 1997, by John V. McLain, Jr., and Damon
Curnell, now U.S. Pat. No. 6,256,659;

3. U.S. Patent Application titled, “System and Method for

Generating Responses to Inputs Using a Hybrid State
Engine Table,” Ser. No. 08/987,850, filed Dec. 9, 1997,

by John V. McLain, Jr., and Damon Curnell, now U.S.
Pat. No. 5,974,532;

4. U.S. Patent Application titled, “Method and Apparatus
for Emulating a Dynamically Configured Digital

Cross-Connect Network,” Ser. No. 08/641,458, by John
V. McLain, Jr., and James Dellinger, filed May 1, 1996,
now U.S. Pat. No. 5,809,286;

5. U.S. Patent Application titled, “Method and Apparatus
for Emulating a Digital Cross-Connect Network,” Ser.

No. 08/641,459, by John V. McLain, Jr., filed May 1,
1996, now U.S. Pat. No. 5,748,617;

6. U.S. Patent Application titled, “Method and Apparatus

for Emulating Digital Cross-Connect Network using a
Flexible Topology to Test MCS Network

Management,” Ser. No. 08/641,461, by John V.
McLain, Jr., filed May 1, 1996, now U.S. Pat. No.
5,867,689;

7. U.S. Patent Application titled, “Method and Apparatus

for Emulating a Network of State Monitoring Devices,”
Ser. No. 08/672,141, by John V. McLain, Jr., filed Jun.

2’7, 1996, now U.S. Pat. No. 5,812,826;

8. U.S. Patent Application titled, “Method and Apparatus
for Simulating MultiTasking,” Ser. No. 08/641,460,
filed May 1, 1996, by John V. McLain, Jr., now U.S.
Pat. No. 5,850,536;

9. U.S. Patent Application titled, “System, Method and

Computer Program product for Digital Cross Connect
Testing,” Ser. No. 08/774,650, by John V. McLain, Jr.,

and Dale W. Harris, filed Dec. 30, 1996, now U.S. Pat.
No. 5,954,829; and

10. U.S. Patent Application titled, “Digital Cross Connect
Command Script Generator,” Ser. No. 08/774,651, by
John V. McLain, Jr. filed Dec. 31, 1996, now U.S. Pat.
No. 5,854,930.

FIELD OF THE INVENTION

The present 1nvention 1s directed to computer system
resource management and, more particularly, to a system,
method and computer program product for managing com-
puter system resources using command control vectors.

RELATED ART

In computer applications such as, for example, telecom-
munication network device emulation applications, different

10

15

20

25

30

35

40

45

50

55

60

65

2

tasks or processes often refer the same set of 1nstructions 1n
a method object to process tasks. Method objects can be, for
example, a state engine table or a script. Typically, a separate
copy of a method object 1s provided for each task or process.
Where many processes refer to the same method object, such
as for example, 1n a telecommunications network device
emulator application, tens or hundreds of copies of the same
method object may have to be provided. These copies take
up considerable amounts of physical memory and commu-
nication overhead.

In multi-tasking systems, one or more processors alternate
between processing different tasks. Typical multi-tasking,
systems employ preemptive time-slice processing where
tasks are automatically interrupted after a predetermined
period of time or after a specific instruction type. At some
later point 1n time, processing of the task resumes, prefer-
ably from where 1t was interrupted.

In order to resume processing from where a task was
interrupted, a pointer can be maintained for each task to
identify a position within the copy of the method object
assoclated with the task. When a task 1s interrupted by the
multi-tasking system, the pointer maintains the current posi-
tion within the copy of the method object. When processing
of the task resumes, the pointer 1dentifies the next instruction
to execute within the method object.

When a process 1s interrupted there are typically one or
more temporary values stored 1n registers that must be saved
for when processing resumes. Thus, 1n addition to a pointer
that points to a position within a method object, each task
typically includes one or more additional pointers that point
to temporary variables stored 1n memory. When processing
of an interrupted task resumes, these pointers are used to
retrieve the temporary variables.

Where there are tens, hundreds and perhaps thousands of
current processes or tasks being multi-tasked, such as in, for
example, a telecommunications network device emulator,
management of separate copies of method objects for each
process or task and management of multiple pointers for
cach process or task becomes a process that consumes
considerable memory CPU and disk space.

What 1s needed, 1s a system, method and computer
program product for multi-tasking that reduces the number
of copies of method objects required for processing tasks
and that combines all pointers and data objects associated
with a task into a single command control vector.

SUMMARY OF THE INVENTION

The present invention 1s a system, method and computer
program product for processing multiple tasks using a single
copy ol a method object and for combining all pointers and
data associlated with a task into a single command control
vector. In one embodiment, the present invention 1s 1mple-
mented as an integral part of a hybrid preemptive and
cooperative multi-tasking system.

The present 1nvention employs a command response
manager to manage a queue of complex pointers or com-
mand control vectors (CCVs). A separate CCV is generated
for each session thread. Each CCV points to one or more
method objects that are used to process tasks. Each CCV
maintains a variety of data associated with its thread such as,
for example, status information and pointers that identily
memory objects such as command response tables and
scripts and pointers that identify data objects that store data
assoclated with execution of a method object. Multiple
CCVs can point to the same method object. Thus, only a
single copy of a method object needs to be placed mto

US 7,013,467 Bl

3

physical memory. Each CCV can 1dentify a separate data
object for storing data for the respective CCV,

In one embodiment, each CCV points to a command
response table method object that includes a variety of
responses for a variety of inputs. A command response table
can 1nclude instructions that invoke a script. Where a
command response table includes a script invocation, a CCV
that points to the command response table includes a field
for pointing to the mnvoked script, a field for pointing to a
particular offset within the script and a field for pointing to
a temporary data object provided for storing data associated
with execution of the script for the CCV.

Further features and advantages of the present invention,
as well as the structure and operation of various embodi-
ments of the present invention, are described 1n detail below
with references to the following drawings.

BRIEF DESCRIPTION OF THE FIGURES

The present invention will be described with reference to
the accompanying figures, wherein:

FIG. 1 1s a high level block diagram of a telecommuni-
cations network device (TND) emulator coupled to a net-
work control system;

FIG. 2 1s a block diagram 1illustrating the logical compo-
nents and databases of the TND emulator of FIG. 1;

FIG. 3 1s a process flowchart illustrating the process
performed by a hybrid preemptive and cooperative multi-
tasking system manager;

FIG. 4 1s a process flowchart illustrating a set of four
preferred tasks performed by multi-tasking system manager;

FIG. 5 1s a process flowchart illustrating the process
performed by the network interface of FIG. 2;

FIG. 6 1s a process flowchart illustrating the process
performed by the command response manager of FIG. 2;

FIG. 7 1s a process flowchart illustrating the process
performed by the script mterpreter of FIG. 2;

FIG. 8 1s a process flowchart illustrating the process
performed by the database manager;

FIG. 9 illustrates a command control vector for maintain-
ing pointers and data associated with 1n input command;

FIG. 10 1illustrates a command control vector queue
maintained by the command response manager of FIG. 2;

FIG. 11 illustrates virtual objects formed by a single copy
of a data object that 1s shared by multiple command control
vectors and by data segments that are associated with
individual command control vectors;

FIG. 12 contains Tables 1-5, illustrating sample data

tables for configuration database 226 and log database files
228;

FIG. 13 illustrates a view of a main window of a TND
emulator;

FIG. 14 illustrates one format of a command response
table;

FIG. 15 1s block diagram of a hybrid preemptive/
cooperative multi-tasking system manager; and

FIG. 16 1s a block diagram of a computer system on which
the present invention can be 1implemented.

The present invention will now be described with refer-
ence to the accompanying drawings. In the drawings, like
reference numbers typically indicate identical or function-
ally similar elements. Additionally, the left-most digit(s) of
a reference number typically 1dentifies the drawing in which
the reference number first appears.

5

10

15

20

25

30

35

40

45

50

55

60

65

4

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

Table of Contents
I. Network Emulator Overview
II. Network Emulator Architecture

A. Network Interface

B. User Interface
C. Database Manager

D. Command Response Manager
1. Command Response Tables
2. Command Control Vectors

3. Virtual Objects

E. Script Interpreter
1. Loadable Script Files
2. RealNet Script Language
3. Script Interpreter

E. System Manager
1. Hybrid Preemptive and Cooperative Multi-Tasking

G. Computer Program Products
III. Method of Network Emulation

IV. Conclusions

I. Network Emulator Overview

The present 1nvention provides a computer-implemented
method and apparatus for emulating a telecommunications
network by simultaneously emulating multiple independent
activities normally performed by multiple network devices
in a telecommunications network. The system provides both
script and non-script responses to a control system. Script
responses preferably work in conjunction with databases
that contain data from actual network devices to generate
realistic responses. The system, method and computer pro-
gram product can employ a simulated multi-tasking control-
ler to perform internal processes 1n apparent parallel.

II. Network Emulator Architecture

In one embodiment, a telecommunication network device
(IND) emulator 1s implemented in software on a standard
IBM-compatible PC, with a 386 or better microprocessor.
However, one skilled in the art will realize that a TND
emulator could also be implemented through hardware,
software, firmware or any combination thereof.

Referring to FIG. 1, a high-level block diagram is pro-
vided 1n which a control system 116 1s coupled to a TND
emulator 126 via an interface network 114. Control system
116 1s preferably implemented on a computer 110 that can
be, for example, a Digital Equipment Corporation (DEC)
platform such as a VAX, an Alpha mid-range or an IBM
RS/6000. Any other suitable computer can be employed as
well.

TND emulator 126 can be implemented on a conventional
personal computer platform or PC 112. TND emulator 126
tests control system 116 under realistic network conditions
by emulating up to thousands of network devices.

Interface network 114 can employ an X.25 communica-
fions protocol, which 1s a common protocol for telecommu-
nications network operations and control. X.25 network 114
can be an actual X.25 network, as 1s used in production
environment, or i1t can be a direct cable link. Alternatively,
any other suitable protocol can be used.

Control system computer 110 includes an interface card
118 for interfacing with interface network 114. Where
interface network 114 employs an X.25 protocol, and where

US 7,013,467 Bl

S

control system computer 110 1s a DEC computer, 1nterface
card 118 1s preferably an X.25 card designed for a DEC
platform. Preferably, interface card 118 1s modular so that
other protocols can be substituted 1f necessary.

Interface card 118 works 1n conjunction with X.25 com-
munications software 120. Where control system computer
110 1s a DEC platform, and where X.25 communications
protocol 1s employed, X.25 communications software 1s
preferably a PSI package manufactured by DEC.

A network management interface (NMI) 122 and a net-
work object communications interface (NOCISS) 124 sup-
port communications between control system 116 and TND
emulator 126. Use of these can vary with configurations of
the control system and the testing environment.

PC 112 includes an interface card 128 for interfacing with
interface network 114. Where interface network 114
employs an X.25 protocol, interface card 128 1s preferably
an X.25 card designed for a PC platform. Preferably, inter-
face card 128 1s modular so that other protocols can be
substituted if necessary. Interface card 128 works 1n con-
junction with X.25 communications software 130. Software
130 can be stored 1n a memory of PC 112.

Referring to FIG. 2, TND emulator 126 includes a variety
of modules. A network 1nterface 212 module provides com-
munications between TND emulator 126 and control system
110. A user mterface module 214 receives user 1mnputs and
provides user outputs. A command response manager mod-
ule 216 reads control system commands and generates
responses. A script interpreter module 218 executes scripts.
Details of each module and associated databases are pro-
vided below.

In one embodiment, TND emulator 126 includes a hybrid
preemptive and cooperative multi-tasking controller 127
(system manager 127), for controlling processes of the
various modules 1n apparent parallel. Multi-tasking control-
ler 127 can be programmed into the code of TND emulator
112. Alternatively, multi-tasking controller 127 can be
implemented as an independent module that operates 1n
conjunction with an existing operating system.
Alternatively, multi-tasking controller 127 can be imple-
mented as an integral part of an operating system.

Under control of multi-tasking controller 127, TND emu-
lator 112 can communicate with control system 110, accept
user 1nput via user interface 214, provide output to the user’s
monitor via user 1nterface 214, execute scripts, read
commands, formulate responses, and perform database
functions, apparently simultancously and without any per-
ceived 1nterruption to any process. TND emulator 112 can
also perform these functions for multiple logical connections
(communications sessions) with control system 110, in
emulation of multiple network devices running in parallel.
A. Network Interface

Network interface 212 1s responsible for communications
with control system 110. Network mterface 212 can respond
to low-level protocol and provides a default protocol
response when necessary. Network interface 212 conducts
multiple conversations, preferably via X.25. Network 1nter-
face 212 logs inbound and outbound messages, responds to
all unsolicited inbound messages and controls network inter-
face X.25 conversation until either a protocol mterrupt or
data-block arrives.

When network interface 212 receives one of these events,
the event 1s queued for command response manager 216
processing. Network interface 212 then suspends the X.25
session and performs no other operations until command
response manager 216 generates a response or until an

10

15

20

25

30

35

40

45

50

55

60

65

6

unsolicited message 1s received. Network interface 212
updates a display window (not shown) with status of each
session, immediately after a message 1s received or trans-
mitted.

B. User Interface

TND emulator 126 can run on a standard PC 112 and
utilize conventional means for user input and output such as
a mouse, keyboard, and monitor. User interface 214 handles
interactions between computer 112 and various user inter-
face devices. User interface 214 includes a variety of drivers
and software for supporting user interaction.

FIG. 13 illustrates a view of a main window of TND
emulator 112. User interface 214 controls user displays and
user 1nteraction. User interface 214 handles displays for
script databases and log files, controls a screen-saver feature
and controls real-time display.

C. Database Manager

Database manager 220 manages a variety of databases
that are employed by TND emulator 126. Databases store
files for operation and can be maintained 1n one or more
physical storage devices. Database manager 220 performs
database functions such as, for example, add, delete, modily
and retrieve.

Database manager 220 also interacts with user interface
214, network interface 212 and script interpreter 218.

Database manager 220 1s a series of callable routines that
can be used to access and update various system databases.
Database manager 220 can be developed using Paradox TM
1.0 engine. Database manager 220 preferably uses a cursor
to access and retrieve mformation from associated data-
bases. The cursor can be a work area stored 1n expanded
memory.

Databases employed by TND emulator 126 preferably
include a configuration database files 226 for storing con-
figuration data for system 112. Data stored 1n configuration
database files 226 1denfifies each network device that is
being emulated. Identification includes the type of device
and the command and response format used for controlling,
cach device. Configuration data be received from a control
system under test and can include network topology, com-
munication addresses, device names and translations.

Referring to Table 1 of FIG. 12, the data stored 1n a device
type database replicates nomenclature used for devices 1n a
network. The device identification of the switches must
match information stored in this table for proper initializa-
fion of the system. Table 2 of FIG. 12 provides a cross-
reference of device types and device identifications. For
example, 1f a DEX600E switch 1s to be emulated, the device
type field must be set to a “6”.

TND emulator 126 preferably includes log database files
228 containing a communications log for storing messages
sent and received by the TND emulator. A sample commu-
nications log 1s shown 1n Table 4 of FIG. 12. Log database
228 also 1ncludes a trace log for reporting errors and system
status. The trace log can be a circular file of records. A
sample trace log 1s shown in Table 3 of FIG. 12.

Referring to Table § of FIG. 12, TND emulator 126
preferably employs a cross-reference database to allow each
device configured 1n a database to have its own set of tables.
There can be 20 or more tables per device 1n such a file.

Scripts, however, are generic. In order to maintain the
generalities of the scripts, this table allows scripts to access
tables belonging to a device using a generic name. Thus, the
same script can be executed by many different devices with
any modification to the script. A script acts on a table using,
the finance 1dentification of the device executing the script
and generic table name declared by its cursor. This infor-

US 7,013,467 Bl

7

mation 1s passed to database manager 220 when a script
requests access to a table. The actual table name 1s 1nvisible
to the script.

The above-method 1s preferred because DOS can only
handle eleven character filenames. Paradox TM reserves
three characters (the file extension) for its naming conven-
tion so only eight characters remain for use as an actual table
name. Database manager 220 controls generation of unique
DOS filenames and uses this name to access, retrieve and
update tables as requested by scripts. For example, database
manager 220 could use a file naming convention of
RN__Fxxxx, where XXxXxX 1S a numeric sequence ranging
from 0000 to 9999.

TND emulator 126 preferably can employ a script data-
base 230 for storing data for script execution. This data
reflects data tables that are maintained in actual network
devices.

In operation, when a process needs data from a database,
a request 1s sent to database manager 220 using a cursor.
Database manager 220 processes the request and returns the
cursor populated with data extracted from the database.

On 1nitialization, database manager 220 loads configura-
tion from a configuration database 226 into a globally
accessible area of memory. Database manager 220 computes
the number of sessions configured. After session
computation, database manager 220 verifies existence of a
trace log and communication log. If neither log file exists,
database manager 220 allocates and mitializes them.

When log file verification 1s complete, database manager
220 checks the validity of contents of the switch table names
to the DOS file names cross reference data base. The
cross-reference data base 1s reconciled to msure that all
tables for each switch type are identified. When tables
cannot be found for a defined switch, new tables can be
propagated from a like-switch type.

D. Command Response Manager

Command response manager 216 facilitates emulation of
real switches 1n a network. Command response manager 216
reads control system commands and generates appropriate
responses. Command response manager 216 1s responsible
for session control, reading control system commands and
formulating responses. All commands sent from control
system 116 are initially processed by command response
manager 216. Commands can be device-specific instructions
that would normally be handled by a network device.
Commands are not to be confused with protocol, which 1s
handled by network interface 212.

Command response manager 216 employs one or more
command response tables stored in command response table
database 222. Command response tables can call loadable
script files from loadable script file database 224. Databases
222 and 224 provide mput to command response manager
216 and do not require extensive management. Additional
details of command response tables are provided below.

Command response manager 216 employs command con-
trol vectors (CCVs) to control processing of input messages,
which can include generation of responses to input mes-
sages. Command response manager 216 allocates a CCV for
cach input command to be processed. The CCV contains
session status information, a buffer and pointer into a
command response table. CCVs are described more fully
below.

CCVs can be generated upon system 1nitialization or
dynamically, as needed. In a network emulation
environment, a predetermined number of CCVs are prefer-
ably allocated at initialization rather than generated dynami-
cally. This 1s because network device emulators typically

10

15

20

25

30

35

40

45

50

55

60

65

3

conduct communications with tens or hundreds of devices at
a time. Such a communication load can require more CCVs
than system memory can handle. In a system that dynami-
cally generates CCVs, when there 1s mnsuflicient memory to
generate the necessary number of CCVs, a system anomaly
can result. However, 1n a system that generates a predeter-
mined number of CCVs, the system 1s never presented with
the dilemma of generating a CCV for which there 1s msui-
ficient memory. Although the system might conceivably run
out of CCVs for handling input messages, that 1s preferable
fo a system anomaly.

When a message 1s received from control system 110,
network interface 212 places a service request 1n a message
queue of command response manager 216. When command
response manager 216 1s invoked, possibly by a multi-
tasking controller or operating system, command response
manager 216 reads the message queue and begins process-
ing. The message queue contains session and protocol
information and a pointer to a message buffer. Command
response manager 216, using session 1nformation stored 1n
the process request, selects an appropriate CCV and begins
message generation. The process 1s described more fully
below.

1. Command Response Tables

Command response tables are used to generate multiple
levels of responses to mputs. In one embodiment, command
response tables provide up to three levels of responses
including simple, unintelligent responses; 1ntelligent
responses using simple commands; and detailed logical
responses. Detailed logical responses can be provided
through script invocations.

Command response tables can be thought of as a large
table containing selection criteria used to parse an 1n-bound
message and take a specific action. Put in programmatic
terms, a command response table 1s a large case statement.
Command response tables provide a sequence of events.
Once a sequence of events 1s established, 1t will always be
followed 1n the same manner. Command response tables are
preferably pre-loaded into memory so that command
response manager 216 can quickly search the table and
generate a response.

Referring to FIG. 14, a sample format of a command
response table entry 1410 1s provided. Each entry 1410
includes an entry ficld 1412 containing a unique 1dentifying
number. A command field 1414 1dentifies a particular com-
mand that can be received by TND emulator 126. A response
field 1416 provides an appropriate response for the com-
mand 1denfified 1n field 1414.

Each entry 1410 can also include a number of additional
field such as, for example, a next response field 1418, a next
command field 1420, a next condition field 1422, a repeat
field 1424 and a delay field 1426. Additional fields
1418—-1426 are described more fully below.

Command response manager 216 uses a message pointer
to determine which entry will control response generation.
The message pointer can be part of a command control
vector. On 1nitialization, the message pointer 1s positioned at
the first entry 1n a command response table. When a com-
mand 1s received from network interface 212, a command
column containing command fields 1414 1s searched for a
match. If the command 1s found 1n the command column,
command response manager 216 takes action as indicated by
an assoclated response field 1416.

Actions can include a first level of response for unintel-
ligently responding to certain inputs, a second level of
response for intelligently responding to certain 1nputs using
simple commands and a third level of response for providing
detailed logical responses by invoking a script.

US 7,013,467 Bl

9

For simple, unintelligent responses, command response
tables provide quick responses and fast implementation. For
example, 1f the word “hello” 1s received, a stmple, unintel-
ligent responses can be “hello.” Simple, unintelligent
response times are typically less than one millisecond when
using a 33 MHz central processing unit (CPU).

For a first level simple response, command response
manager 216 uses response field 1416 to format a message.
Command response manager 216 then calls network inter-
face 212 to transmit the data. Once the transmit 1s complete,

command response manager 216 1s inactivated until the next
request 1s received.

For a second level response, the command response table
can employ simple instructions such as, repeat, delay, mes-
sage parsing and response. For example, 1f the word “hello”
1s received, a simple instruction can check the time of day
and, based upon the time of day, provide a response of “good
morning,” “good afternoon,” or “good evening.”

For a third level response, where the response field of the
command response table 1s a script mnvocation, command
response manager 216 preferably checks to see 1if the script
1s already loaded. If the script 1s loaded, control 1s passed to
script interpreter 218. If the script 1s not loaded, command
response manager 216 searches loadable script files 224 for
the script. If the script 1s found, the script 1s loaded and
control 1s passed to script interpreter 218. Script interpreter
218 1s discussed more fully below. When the script 1s not
found, a default response can be transmitted to prevent or
reduce anomalies.

After script interpreter 218 executes the script, script
interpreter 218 updates the command control vector and
returns conftrol to command response manager 216. After
script interpreter 218 returns control to command response
manager 216, several actions can be taken on the status
returned. If the script execution failed, command response
manager 216 sends a default response and returns control to
the system manager. If the script 1ssued a request for data,
command response manager 216 transmits a message buifer
and returns control to the control system. If the script
completed successtully, command response manager 216
transmits a message buifer and returns control to the control
system. If the script 1ssued request for more time, command
response manager 216 transmits a message builer 1f any data
1s ready and re-queues the command response manager
request that started this action. Command response manager
216 then returns control to the system manager.

After a response 1s generated, command response man-
ager 216 can take additional action based on the contents of
any remaining command response table fields. For example,
if there 1s an entry 1n repeat field 1424, command response
manager 216 repeats sending of the response until a thresh-
old 1s met. If there 1s an entry in next response field 1418,
command response manager 216 positions the message
pointer to the table entry pointed to and then chains the
response to the last response sent. Command response
manager 216 then restarts message generation. It there 1s an
entry 1 next condition field 1422, command response man-
ager sets a conditional flag and waits for the next mnbound
message. On subsequent messages, 1f the condition flag 1s
raised, command response manager 216 conducts a speciiic
scarch for selection criteria using entries chained to the next
condition field until a match 1s found or until the search 1s
exhausted. If there 1s an entry in next command field 1420,
command response manager 216 sets a next command flag
and waits for the next inbound message. If the next com-
mand flag 1s raised, command response manager 216 gen-
erates the response using the response text and restarts
message generation.

10

15

20

25

30

35

40

45

50

55

60

65

10

Command response tables can be generated 1in any of a
variety of formats, using any of a variety of techniques, such
as known techniques employed for state engine tables.

In one embodiment, a command response table 1s pro-
vided for each device type and version of a device type. In
another embodiment, a single command response table 1s
provided for each device type regardless of version. In
another embodiment, a single command response table 1s
provided for all device types.

Preferably, command response tables are compiled into a
loadable 1mage. A loadable 1mage 1s a condensed represen-
tation that 1s easily understood by an application or inter-
preter. A loadable 1mage can be, for example, machine code,
a bit map or other instructions. Condensed representations
load faster than an image raw images (i.€., human readable
form). Loadable images can be used with a command
response table interpreter. The command response table
interpreter can implemented as part of an operating system
or system manager. Where a command response table inter-
preter 1s 1mplemented in an operating system or system
manager, command response tables can be ported to other
systems by simply recompiling the system manager or
operating system. The recompiled interpreter will interpret
the loadable images without recompiling the loadable
Images.

2. Command Control Vectors

Command response manager 216 can employ command
control vectors (CCVs) for managing processing tasks. A
CCV 1dentifies a task or thread that requires processing time
and 1ncludes pointers to method objects and data objects that
are to be used for processing the task. Method objects can
include command response tables and scripts.

Referring to FIG. 9, a CCV 910 includes fields 912-924
for 1denfifying data associated with a process or task. Field
912 can1dentily any source of communication that generates
threads for processing by a processor. Where command
control vector 910 1s implemented 1n a network emulator,
field 912 can 1dentify a source of external communication
such as a terminal of a telecommunications control system
116 that 1s under test.

Field 914 provides additional details associated with field
912. For example, 1f the external communication i1dentified
in field 912 1s an input from a telecommunications control
system 116, field 914 can idenfify a particular type of
network device that the telecommunications control system
1s trying to control. Field 914 can include the actual com-
mand sent by control system 116.

Field 916 contains a pointer to a method object that
contains 1nstructions for processing the task. The method
object 1dentified 1n field 916 can be a command response
table. Field 918 contains a pointer to a particular instruction
within the method object or command response table iden-
tified 1n field 916.

Recall that command response tables can include script
invocations. Thus, field 918 can point to a script 1nvocation
within command response table. When field 918 points to a
script invocation, field 920 provides a pointer to a particular
line of the mvoked script code. Thus the script 1s identified
by a pointer 1n field 918 and an instruction within the script
1s 1dentified by a pointer in field 920.

When field 920 points to a script, field 922 provides a
pointer to a data segment of data object. A data object 1s a
portion of memory associated with a particular CCV and that
1s used for temporary storage of values generated by the
script. A data object can be 1dentified when a script is
invoked and released when the script terminates. Fields 920
and 922 together 1dentify what 1s referred to herein as a

US 7,013,467 Bl

11

virtual object. Virtual objects are described more fully
below, with reference to FIG. 11.

A variety of other optional pointers and flags can be
provided 1 CCV 910 as indicated by ficlds 924.

One advantage of CCVs 1s that they permit more than one
thread or task to point to the same copy of a command
response table, script or other method object. CCVs thus
permit multiple tasks to be processed using a single copy of
a command response table, script or other method object. By
employing command control vectors, memory and time are
saved by not having to retrieve and store a duplicate copies
of method objects. This 1s a big advantage 1n systems such
as network emulators that have to generate responses for up
to thousands of emulated telecommunications devices and
that would otherwise have to provide and maintain a sepa-
rate copy ol a method object for each task.

Referring to FIG. 10, command response manager 216
preferably handles CCVs on a first in, first out (FIFO) basis.
Alternatively, each CCV can include an additional field for
assigning priority.

CCVs 1010-1014 are stacked m a CCV queue 1016.
When command response manager 216 1s invoked, it selects
the top CCV, shown here as CCV 1010, for processing.
Command response manager 216 will examine pointer fields
912-924 and then take appropriate action. For example,
where field 918 points to a command response table, com-
mand response manager 216 will access that table. In a
multi-tasking environment, where command response man-
ager 1s 1nvoked for a period of time or for a select number
of instructions, processing of top CCV 1010 might have
been interrupted 1n a prior command response manager
Processing session.

If CCV 1010 1s just beginning to be processed, command
response manager 216 searches the command response table
for a command idenfified 1n CCV 1010. In a network
emulating environment, the command can be stored in field
914. If command response manager had previously been
processing CCV 1010 1n a prior processing session and was
iterrupted, processing will begin at a point identified in
field 918.

In either event, when processing of CCV 1010 begins,
field 918 maintains a pointer to a current instruction. If
processing of CCV 1010 1s interrupted, CCV 1010 1s
returned to the queue so that processing can resume at a later
fime exactly where it was 1nterrupted.

If field 918 of CCV 1010 points to a script invocation,
command response manager 216 invokes script interpreter
218. Script processing 1s described more fully below. When
CCV 1010 generates an output, the output 1s sent to network
interface 212.

3. Virtual Objects

Virtual objects are generated by command control vec-
tors. Virtual objects include a method object (i.e., set of
instructions) and an associated data object for storing data
associated with execution of the method object. The method
object can be shared by multiple virtual objects. Using
virtual objects, a single copy of a command response table
or script code 1s made available to multiple CCVs. Thus, no
CCV has exclusive control over a set of instructions. Instead,
cach CCYV can execute the instructions independent of other
CCVs. Virtual objects permit multiple tasks to be processed
using a single copy of a method object. Virtual objects can
include command response tables and scripts.

Conventional object-oriented systems capture data and
method (or data and logic) in one unit. In contrast, the
present mvention employs virtual objects to separate data
from logic so that different data sets can use the same logic.

10

15

20

25

30

35

40

45

50

55

60

65

12

This avoids unnecessary duplication and storing of multiple
instances of the same logic.

Virtual objects can be employed by a variety of systems
to reduce multiple 1nstances and transmission of method
information or logic. For example, virtual objects can be
used to reduce 1nternet tratfic by passing multiple data sets

without passing multiple method information or logic.
Referring to FIG. 11, virtual objects 1110, 1112 and 1114

are generated by CCVs 1010, 1012 and 1014 respectively.
Each virtual object can include one or more method objects
and zero, one or more data objects.

For example, virtual object 1112 can include method

objects 1116, 1117 and data objects 1120 and 1121. Data
objects 1120 and 1121 are associated with method objects

1116 and 1117, respectively. Method object 1116 can be, for
example, a command response table that 1s pointed to by

CCV pointer 916. Method object 1116 includes 1nstructions
that are pointed to by CCV pointer 918. Data object 1120 can

store data used for and/or generated by execution of method
object 1116 by CCV 1012. Data object 1120 1s pointed to by

a CCV pointer 942.

Method object 1117 can be, for example, a script that 1s
invoked by an instruction within method object 1116. The
script can be pointed to by the same CCV pointer 918 that
invoked the script. The script can include instructions that
are pointed to by CCV pointer 920. Data object 1121 can
store data for and/or generated by execution of method
object 1116 by CCV 1012. Data object 1121 1s pointed to by
CCV pointer 922.

Virtual object 1110 mcludes the same method objects
1116 and 1117 that forms part of virtual object 1110. Virtual
object 1112 also includes data object 1118, associated with
method object 1116. Data object 1118 can be used to store
data for execution of method object 1116 by CCV 1010.

Virtual objects 1110 and 1112 illustrate how more than
one command control vector can point to the same copy of
a script, command response table or any other method object
to process tasks. In a telecommunication network emulator
environment, method object 1117 can be a command
response table and method object 1116 can be script code.
When processing CCV 1010, command response manager
216 executes 1nstructions from command response table
1117 that are pointed to by field 918 of CCV 1010. Com-
mand response manager 216 also executes 1nstructions from
script code 1116 that are pointed to by field 920 of CCV
1010. Data associated with processing of script code 1116
for CCV 1010 1s stored 1n data object 1118, identified by
pointer 922.

When processing CCV 1012, command response man-
ager 216 executes nstructions from command response
table 1117 that are pointed to by field 918 of CCV 1012.
Command response manager 216 also executes instructions
from script code 1116 that are pointed to field 920 of CCV
1012. Data associated with processing of script code 1116
for CCV 1012 1s stored 1n a data object 1120, 1dentified by
field 922 1n CCV 1012.

A virtual object can include just a method object, and a
data object or any combination of method objects and data
objects. For example, virtual object 1114 includes method
object 1124 and data object 1122. Method object 1124 can
be, for example, script code.

When processing CCV 1014, command response man-
ager 216 executes instructions from script code 1124, 1den-
fified by field 920 i CCV 1014. Data associated with
processing of script code 1124 1s stored 1n data object 1122,
identified by field 922 1n CCV 1014.

CCVs permit multiple threads to use a single copy of a
command response table or script code, thus eliminating the

US 7,013,467 Bl

13

need for a separate copy of a command response table or
script code for each thread. CCVs free substantial amounts
of memory that otherwise would be used for multiple copies
of 1dentical logic.

E. Script Interpreter

1. Loadable Script Files

Scripts are used by command response tables to generate
detailed logical responses to inputs. Scripts are a speciiic
action 1n a command response table. In one embodiment,
scripts include a RealNet Script Language (RSL), described
below, to create realistic responses based on data stored in
script database files 230. Scripts are subordinate to the
command response table because the table must be used to
execute a script. Scripts responses typically take less than 10
milliseconds when using a 33 MHz CPU.

Script database files 230 preferably include data from
actual telecommunications network devices. Scripts can
store, update, retrieve and validate data. Scripts can be used
to provide a greater degree of realism than that provided by
a simple response that i1s pre-loaded mto a command
response table.

For example, assume that the command “update my table
with ABC” would normally result in the response “okay” if
ABC was already on file; and “failed” if ABC was not on
file. A stmple response, or even an intelligent response using
simple commands from a command response table, can only
return one of the conditions, “okay” or “failed.” It cannot
determine whether data 1s 1n the file.

In contrast, a script can be programmed to return “okay”
if data was present; and “failed” 1f data was not. A script can
also save the data 1n a facsimile of the table. In addition to
the above example, one skilled 1n the art will recognize that
scripts can be generated to perform any of a wide variety of
tasks.

2. RealNet Script Language

In one embodiment, scripts are written using a RealNet
script language (RSL), developed by MCI Corporation. RSL
1s a procedural language composed of three simple con-
structs: variables, operands, and statements.

Variables can be simple or complex. Simple variables
hold either a character string or mteger value. Complex
variables hold a list of simple variables.

Simple and complex variables are stored in one of three
pools: a literal pool, a variable pool, or a temporary pool. A
pool 1s a list of variables, either complex or simple.

The literal pool 1s used to store constants and literals
declared within the program. The variables stored 1n this list
can be 1nitialized to a predefined value and can not be
modified during the course of script execution.

The variable pool 1s used to store user-declared variables
and can be modified.

The temporary pool 1s invisible to the user. The variables
stored 1n the temporary pool are dynamic and result when
script interpreter 218 must resolve a complex equation. The
variables 1n the temporary pool are deleted after they are no
longer needed.

Operands are used to reference variables. Several oper-
ands can point to the same variable. This allows reduction of
storage by allowing a variable to be stored only once.
Operands contain an operator that can be arithmetic,
relational, or format-related. The operand/operator relation-
ship 1s used to store expressions using infix notation. Each
operator 1s stored using 1ts rank 1n precedence. Parenthesized
operations are achieved simply by multiplying the operator
by (nesting level +1).

Statements are composed of a token and a list of operands.
A token 1s the nucleus of the statement. The token describes

10

15

20

25

30

35

40

45

50

55

60

65

14

how script interpreter 218 will act on the operands 1n the
statement’s operand list. Operands are linked together to
form an operand list or expression. Expressions are resolved
from left to right. A sequence number 1s used for debugging
a script and represents the actual line number 1n which the
statement was actually stored in the script source file.
Conditional tokens, such as “while” and “if”, store an
optional field branch that contains a pointer to the statement
where program execution should continue if the expression
evaluates to false.

A tokenized script 1s composed of a list of statements, an
operand list, a variable pool, and a literal pool. Script
interpreter 218 maintains pointers to the first statement 1n the
statement list and to the current statement being executed.
Script interpreter 218 executes the script by moving the
current statement pointer down the statement list sequen-
fially and evaluating each statement as 1t passes. The top of
list and current statement pointers are stored in the command
control vector of command response manager 216. These are
the only two pieces of mmformation needed by script inter-
preter 218 to execute a script since all of the other compo-
nents are self-referencing. The pointers enable script inter-
preter 218 to swap a script into memory from either disk
storage or expanded memory and to execute the script as the
script was 1n memory. In order to achieve this, tokenized or
compiled scripts are stored 1n a format that allows them to
be loaded directly into memory.

3. Script Interpreter

In one embodiment, scripts are compiled to a loadable
image prior to storage in database 224. A system manager or
an operating system can include a script interpreter, such as
script interpreter 218, for mterpreting the compiled scripts.
In this way, the system can be ported to other processor
systems by simply recompiling the system manager or
operating system. The scripts, having been compiled to an
assembly level for use by the script interpreter, need not be
recompiled.

Script interpreter 218 1s responsible for actual script
execution. Script interpreter 218 ensures that a script either
completes successtully or that a failure returns control to
command response manager 216.

When a script 1s loaded 1n memory, preferably in
expanded memory, by command response manager 216,
control 1s passed to script interpreter 218 to execute the
script. Script mterpreter 218 1s responsible for the orderly
execution of the script and for termination of the script in the
event of errors. In one embodiment, script interpreter 218
completes all of the script possible within a user-defined
interval and then returns control to command response
manager 216 under one of the following conditions:

the script completes execution;
the user-defined interval expires; or

the script requests 1nput from the system manager.

Script mterpreter 218 1mifiates and formats all database
requests required by the script. Calls made to the database
are single-action calls. For instance, to access a table and
find a record requires three separate calls to the server (open
table, find record, close table). If a script runs out of time or
requests additional input, script interpreter 218 maintains all
information using the CCV so that 1t can resume execution
where 1t stopped, when control 1s returned to script inter-
preter 218. A stand-alone version of script mterpreter 218
can be used for testing and development of scripts.
EF. System Manager

TND emulator 112 includes a system manager 127 that
controls various processes and interactions between the
logical components of TND emulator 126 and provides a

US 7,013,467 Bl

15

mechanism for mvoking and terminating processes. In one
embodiment, system manager 127 interacts with an existing
operating system 1nstalled on PC 112. In an alternative
embodiment, system manager 127 1s an integral part of an
operating system.

System manager 127 1s responsible for initializing the
system, validating software, verifying hardware, controlling
program execution and termination of the system, when
appropriate. The control system starts all components, veri-
fies successful 1nitializations, verifies the existence of
expanded memory system (EMS), a mouse, video graphics
array (VGA) screen capability and disk storage capacity.

After system manager 127 performs verifications, 1t allo-
cates expanded memory for database manager 220 and user
interface 214. System manager 127 also initializes database
manager 220, a command response manager 216 and net-
work 1nterface 212.

When 1nitialization 1s complete, system manager 127
enters a control loop that polls network interface 212 for
communications and time-outs, monitors a queue ol com-
mand response manager 216, monitors user interface 214 for
user mteraction, monitors a queue of database manager 220.
This loop 1s repeated indefinitely until termination. Upon
termination, system manager 127 terminates any active
interfaces with control system 110, terminates any tasks
executing 1 command response manager 216 and frees
expanded memory. System manager 127 preferably moni-
tors itself 1n order to reduce conilicts. Where system man-
ager 127 1s self-monitoring, it preferably generates a TND
self-monitoring emulator report. System manager 127 can
execute a screen saver program 1f there 1s no activity for a
grven amount of time.

1. Hybrid Preemptive and Cooperative Multi-tasking

Conventional multi-tasking systems include preemptive
multi-tasking systems and cooperative multi-tasking sys-
tems.

In conventional preemptive multi-tasking systems,
threads are processed based on allotted time slices, where
cach thread 1s allotted a certain amount of processing time,
known as a time slice. When a time slice expires, processing,
of one thread 1s mterrupted so that another thread can be
processed. A pointer 1s typically provided for indicating
where 1n a stream of 1nstructions processing was interrupted.
When processing resumes at a later time, the pointer 1den-
fifies the next instruction to be executed.

In time-slice preemptive processing, whenever processing
of a thread 1s interrupted, a variety of temporary values must
typically be stored until processing of the thread resumes.
For example, a first thread can involve a number of machine
instructions to complete, such as the calculation of (A+B)
(C+D). A first machine instruction can add (A+B). A second
machine instruction can place the calculated value of (A+B)
into a first register. A third machine instruction can calculate
(C+D). A fourth machine instruction can place the value
(C+D) 1n a second register. A fifth machine instruction can
retrieve the value (A+B) from the first register and the value
(C+D) from the second register for multiplication. Finally, a
sixth instruction might output the calculated value, (A+B)
(C+D), to memory for use by anther thread or process at a
later time.

If the time slice allotted to the first thread expires between
the fourth and fifth instructions, the values stored 1n the first
and second registers would have to be stored in memory so
that processing could resume at the fifth instruction at a later
point 1n time. A separate pointer 1s required for each value
to msure that the values could be retrieved when processing
of this thread resumes. An instruction pointer 1s required to

10

15

20

25

30

35

40

45

50

55

60

65

16

identify the fifth instruction that 1s to be executed when
processing of the thread resumes.

In the above example, the values can be stored in local
physical memory. However, local physical memory 1s often
required for processing subsequent threads. Thus, the stored
values might later be moved to a hard disk or other periph-
eral storage device. In either event, storage and subsequent
retrieval of data takes valuable time that could otherwise be
spent processing threads.

Time slice-based preemptive multi-tasking systems are
thus time and resource consuming because of so many
memory recads and writes. Each additional storage of a
temporary variable and an associated pointer consumes
valuable memory.

In cooperative multi-tasking systems, application pro-
crammers design applications with interruption points.
When an interruption point 1s reached, the operating system
can switch to another task. Designers can set interruption
points where relatively few temporary values need to be
stored. Cooperative multi-tasking systems tend to require
fewer temporary storage location and thus can be faster than
preemptive multi-tasking systems.

In cooperative multi-tasking systems, however, each
application must be designed as a cooperative application.
Otherwise, because the operating system has no way to
force, or preempt, operation, after an application begins
execution, 1f the application does not freely give up control,
it will continue to execute until it terminates. In such a
situation there 1s no multi-tasking.

In one embodiment of the present invention, system
manager 127 1s a hybrid preemptive and cooperative multi-
tasking system that executes processor instructions in mul-
tiples of logical units of work 1n order. Logical units of work
mmclude a set of one or more machine instructions, the
completion of which 1s a logical stopping point. In other
words, a logical stopping point 1s where a logical sequence
of events or instructions completes. Thus, where a script
includes nstructions for performing a number of different
calculations, logical stopping points can be defined as loca-
tions 1n the script where each individual calculation 1is
complete.

A logical unit of work can be, for example, a single
instruction 1n a script of mstructions that employs a number
of individual machine code instructions. In the example
above, a logical stopping point might be at the end of the
sixth mstruction where the contents of the first and second
registers are no longer required by the thread. Logical units
of work can also be referred to as smallest logical units of
work.

By processing preemptive logical units of work, substan-
tial amounts of memory are freed because there 1s no longer
a need to store substantial amounts of data values from
registers whenever processing of a thread 1s interrupted.
Instead, only a pointer to a next instruction is typically
required.

Referring to FIG. 15, system manager 127 includes a
hybrid preemptive and cooperative multi-tasking module
1512. Module 1512 includes a preemptive processing,
portion, or module, 1514 and a cooperative processing
portion, or module, 1516.

Preemptive processing module 1514 includes instructions
for processing a logical unit of work for each type of task
that system manager 127 1s expected to process. For
example, referring back to FIG. 4, module 1514 includes
instructions that define a logical unit of work for polling
network interface 212 (step 410), for checking the CRM

queue (step 412), for checking user interface 214 for inter-

US 7,013,467 Bl

17

action (step 414) and for checking the database queue (step
416). Preemptive processing is discussed in co-pending U.S.
Patent Application titled, “Method and Apparatus for Simu-
lating Multi-Tasking,” Ser. No. 08/987,229, by John V.
McLain, Jr., incorporated herein by reference 1n its entirety.

Cooperative processing module 1516 includes instruc-
tions for processing an integral number of logical units of
work for each task that system manager 127 1s expected to
process. For example, module 1516 can include instructions
for processing a number n of instructions for a logical unit
of work for polling network interface 212 (step 410). Mod-
ule 1516 can also include instruction for processing a
number m of instructions for checking the CRM queue (step
412), etc. Module 1516 can set n and m to any integer value.
Module 1516 can even set n equal to m so that an equal
number of tasks are performed for polling network 1nterface
212 (step 410) and for checking the CRM queue (step 412).
Module 1516 can set n and m at mitialization or can set them
dynamically, according to system loads or any other factors.

In operation, a hybrid preemptive and cooperative multi-
tasking system 1512 jumps between threads, permitting each
thread to execute 1nstructions up to a logical stopping point.
In one hybrid preemptive and cooperative multi-tasking
system, a number of logical units of work or logical stopping
points are allotted to each thread. Thus, instead of preempt-
ing a thread after just a single logical unit of work 1is
complete, the thread 1s allowed to complete a number of
logical units of work.

For example, a first thread can be executing a script that
includes multiple equations. A second thread can be output-
ting data to a screen display. A hybrid preemptive/
cooperative multi-tasking system might permit each thread
a number n of logical units of work.

For the first thread, a logical unit of work can be defined
as execution of the necessary machine instructions for
calculating one equation. Thus, n logical units of work
corresponds to calculation of n equations.

For the second thread, a logical unit of work can be
defined as a portion of a screen display output, say, for
example, one line of a screen display. Thus, n logical units
of work corresponds to n lines of screen display. In this
example, therefore, a hybrid preemptive and cooperative
multi-tasking system that performs n logical units of work
per thread, will calculate n equations for the first thread
followed by outputting n lines of display data to a screen
display. Thereafter, an additional n calculations will be
performed for the first thread, followed by another n lines of
display data to the screen display.

In one embodiment, hybrid preemptive and cooperative
multi-tasking system 1512 dynamically sets the number of
logical units of work performed for each thread. In the
example above, for instance, the first thread can be allotted
n logical units of work while the second thread 1s allotted m
logical units of work. Hybrid preemptive and cooperative
multi-tasking system manager 127 dynamically sets n to five
and m to twenty, five equations will be calculated for the first
thread followed by outputting of twenty lines of screen
display data to the screen display.

Regardless of whether the hybrid system performs a
single number n of logical units of work for all threads, or
dynamically assigns a different number of logical units of
work according to the type of thread, hybrid system manager
127 can be tailored according to the types of tasks performed
by the computer system.

Hybrid preemptive and cooperative multitasking system
manager 127 permits designers to take advantage of human
perception. For example, a hybrid preemptive and coopera-

5

10

15

20

25

30

35

40

45

50

55

60

65

138

tive multitasking system manager 127 can be tailored to
stcal screen display time without any human-perceptible
delay. A typical screen display update can take approxi-
mately one hundred milliseconds. Hybrid system manager
127 can be tailored to steal, for example, five milliseconds
of time between, every ten lines of screen display data on a
fifty line monitor. The five milliseconds of time can be used
by system manager 127 for processing other tasks. A five
millisecond interruption to a screen display, although 1mper-
ceptible to humans, can be used to accomplish significant
amounts of processing tasks for other threads. In a network
emulation environment, five milliseconds can be used to
process communications to and from emulated devices.

Hybrid preemptive and cooperative multitasking system
manager 127 permits designers to take advantage of
mechanical delays as well. For example, a print job to a
printer device and process a script of instructions. Since
typical printers include a print buffer for locally storing data
for printing, system manager 127 can be tailored to output
enough print data to prevent the print buffer from emptying
while mtermittently mterrupting printer outputting for pro-
cessing the script processing. While system manager 127
processes the script, the printer continues to print data stored
in 1ts buffer. The number of logical stopping points assigned
to each task 1s preferably set to a level where, when
processing returns to the printer, the printer 1s just exhaust-
ing the data in its buffer. When hybrid preemptive and
cooperative multi-tasking system manager 127 1s combined
with CCVs, the result 1s a very powerful, memory and CPU
cycle conserving processing system.

In TND emulator 126, hybrid preemptive and cooperative
multi-tasking system manager 127 uses CCVs to switch
between processing tasks for network interface 212, user
interface 214, database manager 220 and command response
manager 216. Details of this multi-tasking are provided
below. In one embodiment, the hybrid preemptive and
cooperative multi-tasking system 1s a software module that
works 1n conjunction with an existing operating system. In
an alternative embodiment, the hybrid preemptive and coop-
erative multi-tasking system 1s implemented as an integral
part of an operating system.

G. Computer Program Products

The present invention can be i1mplemented using
hardware, software or a combination therecof and can be
implemented 1n a computer system or other processing
system. Referring to FIG. 16, a block diagram illustrates a
computer system that can be used to implement the present
invention. Various software embodiments are described in
terms of this example computer system. After reading this
description, it will be apparent to a person skilled in the
relevant art how to implement the invention using other
computer systems and/or computer architectures.

In FIG. 16, a computer system 1601 includes one or more
processors, such as processor 1604. Processor 1604 1s con-
nected to a communication bus 1602. Computer system
1601 includes a main memory 1606, preferably random
access memory (RAM), and can also include a secondary
memory 1608. Secondary memory 1608 can include, for
example, a hard disk drive 1610 and/or a removable storage
drive 1612, representing a floppy disk drive, a magnetic tape
drive, an optical disk drive, etc. Removable storage drive
1612 reads from and/or writes to a removable storage unit
1614 1n a well known manner. Removable storage unit 1614,
represents a floppy disk, magnetic tape, optical disk, etc.
which 1s read by and written to by removable storage drive
1612. Removable storage unit 1614 includes a computer
usable storage medium having stored theremn computer
software and/or data.

US 7,013,467 Bl

19

In alternative embodiments, secondary memory 1608 can
include other similar means for allowing computer programs
or other 1nstructions to be loaded into computer system
1601. Such means can include, for example, a removable
storage unit 1622 and an interface 1620. Examples of such
can include a program cartridge and cartridge interface (such

as that found in video game devices), a removable memory
chip (such as an EPROM, or PROM) and associated socket,

and other removable storage units 1622 and interfaces 1620
which allow software and data to be transferred from the

removable storage unit 1622 to computer system 1601.
Computer system 1601 can also include a communica-
tions interface 1624. Communications interface 1624 allows
software and data to be transferred between computer sys-
tem 1601 and external devices. Examples of communica-
tions 1nterface 1624 include, but are not limited to a modem,
a network interface (such as an Ethernet card), a commu-
nications port, a PCMCIA slot and card, etc. Software and
data transferred via communications interface 1624 are in
the form of signals which can be electronic, electromagnetic,
optical or other signals capable of being received by com-
munications mterface 1624. These signals 1626 are provided
to communications interface via a channel 1628. Channel
1628 carries signals 1626 and can be implemented using

wire or cable, fiber optics, a phone line, a cellular phone link,
an RF link and other communications channels.

In this document, the terms “computer program medium”™
and “computer usable medium” are used to generally refer
to media such as removable storage device 1612, a hard disk

installed 1n hard disk drive 1610, and signals 1626. Com-

puter program products are means for providing software to
computer system 1601.

Computer programs (also called computer control logic)
are stored 1n main memory and/or secondary memory 1608.
Computer programs can also be received via communica-
tions interface 1624. Such computer programs, when
executed, enable the computer system 1601 to perform the
features of the present mnvention as discussed herein. In

particular, the computer programs, when executed, enable
the processor 1604 to perform the features of the present
invention. Accordingly, such computer programs represent
controllers of the computer system 1601.

In an embodiment where the mvention 1s 1implemented
using software, the software can be stored 1n a computer
program product and loaded into computer system 1601
using removable storage drive 1612, hard drive 1610 or
communications 1interface 1624. The control logic
(software), when executed by the processor 1604, causes the
processor 1604 to perform the functions of the invention as
described herein.

In another embodiment, the invention i1s implemented
primarily in hardware using, for example, hardware com-
ponents such as application specific integrated circuits
(ASICs). Implementation of the hardware state machine so
as to perform the functions described herein will be apparent
to persons skilled in the relevant art(s).

In yet another embodiment, the invention 1s implemented
using a combination of both hardware and software.

III. Method of Network Emulation

A method for emulating a telecommunications network 1s
now provided. The method 1s described as implemented by
the logical components 1dentified 1n FIGS. 1 and 2. Refer-
ring to the process flowchart of FIG. 3, the process begins at
step 310, where TND emulator 126 1s started, initiating
system manager 127.

In step 312, system manager 127 verifies system
components, such as the computer’s memory, mouse,
display, and disk storage.

10

15

20

25

30

35

40

45

50

55

60

65

20

In step 314, system manager 127 allocates the computer’s
memory for database manager 220 and user interface 214.

In step 316, system manager 127 initializes database
manager 220, command response manager 216 and network
interface 212. Upon 1nitialization, command response man-
ager 216 preferably allocates a predetermined number of
CCVs 910 for handling anticipated communications ses-
sions. Alternatively, CCVs 910 can be generated dynami-
cally as each command 1s received by TND emulator 126.

In step 318, hybrid, preemptive and cooperative multi-
tasking controller 1s initiated for carrying out various pro-
cesses. The hybrid, preemptive and cooperative multi-
tasking controller can be part of system manager 127. The
multi-tasking controller selectively passes control of system
processing from one task to another so that the processes
appear to be performed 1n parallel. In FIG. 4, these tasks are
shown as steps 410—416. Steps 410416 arc executed 1n a
tightly controlled loop. At any time, the user or the control
system can opt to terminate processing, as indicated 1n step

320.

Referring to FIG. 4, system manager 127 polls network
interface 212 by checking its queue for inbound and out-
bound messages. Inbound messages are received from con-
trol system 116 and passed on to command response man-
ager 216. If any outbound messages are found, system
manager 127 1nvokes network interface 212, which sends
the messages to control system 110 as illustrated in FIG. §.

Referring to FIG. 5, the process performed by network
interface 212 1s 1llustrated. This 1s a detailed breakout of the

process performed 1n step 410.

TND emulator 126 supports multiple communications
sessions with control system 116. While processing a
received message, TND emulator 126 can receive another
message and begin processing it as well.

In step 502, system manager 127 determines whether any
inbound messages have been received. If no message 1s
detected, processing jumps to step 516. If a message 1s
detected, processing proceeds to step 504.

Network interface 212 can receive messages 1n data
packets. A message can thus require several reads before 1t
1s completed. In step 504, network interface 212 stores these
message packets in a memory buffer and continuously
appends the data there until reception 1s complete.

In step 506, network interface 212 determines whether the
message 1s complete. If not, processing proceeds to step 507,
where network interface 212 places the command control
vector 1n an incomplete state. Processing then jumps to step
516 for processing of outbound messages. Step 516 1is
described below.

In step 506, if the message 1s complete, processing,
proceeds to step 508, where network interface 212 sets the
command control vector for the session to a “message
received” state. The command control vector contains a
pointer to the memory buifer that contains the inbound
message.

In step 510, the received message 1s sent to database
manager 220 to be logged 1n a log file that i1s part of log
database files 228. A request to log the message 1s placed in
queue for database manager 220. System manager 127
checks this queue for such requests in step 416.

In step 512, network interface 212 places the command
control vector 1n the queue of command response manager
216. This 1s an indication to system manager 127 that an
inbound message 1s pending 1n command response manager

216.

US 7,013,467 Bl

21

Later, 1n step 412, system manager 127 detects this
message CCV and invokes command response manager
216. The CCV contains session and protocol information
and a pointer to a buifer that stores the received message. As
described below with reference to FIG. 6, command
response manager 216 can read the request and retrieve the
command message from the buffer.

Session status can be maintained 1n field 924 of command
control vector 910, which acts as a simple state engine.
Session status identifies a device that 1s responsible for
sending a next message. Session status can be set to “local”
or “remote.” Local refers to TND emulator 126. Remote
refers to a device other than TND emulator 126. In step 514,
network 1nterface 212 flushes the message bufler and sets the
session status to local, indicating that TND emulator 126 1s
expected to generate a response to the received message.

In step 516, network interface 212 detects outbound
messages. Outbound messages are typically responses for-
mulated by command response manager 216 1n response to
inbound messages from control system 110. Outbound mes-
sages are detected by checking the queue of command
response manager 216.

If an outbound message 1s detected 1n step 516, then in
step 518, network interface 212 locates the associated com-
mand control vector for the current session and sets it to
“message sent” state.

In step 520, network interface 212 transmits the message
to control system 116. The message can be transmitted using
a message transfer protocol (MTP) via X.25 network 114.
One skilled 1n the art will recognize that any other suitable
protocol can be employed.

In step 522, a request to log this message 1s placed in
queue for database manager 220. In step 416, system man-
ager 127 will check this queue for such requests. The sent
message will then be recorded 1n a log file that 1s part of log

database files 228.

In step 524, after transmitting and logging the sent
message, network interface 212 sets the session’s status,
maintained 1in the command control vector, to remote.

In step 526, after processing and logging the outbound
message, or 1if no outbound messages were detected 1n step
516, network interface 212 purges any idle communications
S€SS101S.

In step 528, network interface 212 updates a display with
the current session status. See FIG. 13 for a typical display
screen.

Referring back to FIG. 4, after a predetermined number of
logical stopping points are reached in step 410, the multi-
tasking controller jumps to step 412. In step 412, system
manager 127 checks a queue of command response manager
216 for mbound messages placed by network interface 212.
These messages represent commands from control system
110. One or more of these messages can require a response.
Recall that network interface 212 sets an indicator 1 a
command control vector for each recerved command and
places the command control vector 1n the queue of command
response manager. The command control vector contains a
pointer to the memory bulfer that contains the inbound
message. If any messages are 1n the queue, system manager
127 1mmvokes command response manager 216, which per-
forms the process illustrated 1n FIG. 6. The command
response manager process of FIG. 6 can invoke a script
interpreter processes, 1llustrated in FIG. 7 and discussed
below.

Referring to FIG. 6, a process flowchart illustrates the
process performed by command response manager 216.

10

15

20

25

30

35

40

45

50

55

60

65

22

System manager 127 mnvokes command response manager
216 when system manager 127 detects a request to process
in 1mmbound message in the queue of command response
manager 216. The process 1s based on status information 1n
the command control vector. The command control vector
contains pointers to a command response table.

In step 602, command response manager 216 1s invoked
if any command control vectors are detected 1n 1ts queue by
system manager 127.

In step 604, command response manager 216 finds and
reads the command control vector 1n its queue.

In step 606, command response manager 216 determines
whether a script 1s currently executing. A script can be
executing for the current CCV or a different CCV. If a script
1s currently executing, 1t 1s typically 1n a hold state at the end
of a logical unit of work. If a script 1s currently executing,
processing of the script resumes 1n step 608.

In step 608, script mterpreter 218 receives control to
execute a script. This process 1s illustrated 1n FIG. 7 and
described more fully below.

If no script 1s currently executing, then in step 610,
command response manager 216 finds an appropriate com-
mand response table from a pointer 1n the command control
vector. Command response manager 216 employs the com-
mand from the 1mbound message 1n the message bufler,
which 1s also located from a pointer 1n the command control
vector, to locate the appropriate record in command
response tables 222. This record will indicate a certain
action to take, based on the command.

In step 612, command response manager 216 reads the
action from command response tables 222.

In step 614, a determination 1s made as to whether the
action will be to formulate a first level response, a second
level response or execute a script.

If a script 1s 1nvoked, then 1n step 616, command response
manager 216 1mnvokes script interpreter 218 to execute the
script 1dentified 1n the command response table. This process
1s 1llustrated 1n FIG. 7 and described more fully below.

In step 618, command response manager 216 reads the
response field from the record it located in command
response table. It formats a response message 1n accordance

with this field.

In step 620, if the hybrid, preemptive and cooperative
multi-tasking controller interrupts processing at a logical
stopping point, command response manager 216 determines
if message processing 15 complete.

In step 622, if message processing 1s not complete,
command response manager 216 re-queues the command
control vector 1n the queue of command response manager
216. This command control vector will be detected again 1n
step 602 when system manager 127 returns to step 412 so
that and processing for this message will continue until 1t 1s
complete.

In step 624, when message processing 1s complete, the
command control vector 1s placed 1n a queue of network
interface 212, which contains a pointer to the buffer in which
the response message resides. This 1s an indication to system
manager 127 that an outbound message 1s pending trans-
mission by network interface 212.

Referring to FIG. 7, a process flowchart illustrates the
process performed by script interpreter 218. Script inter-
preter 218 can be invoked by command response manager 1n
step 608 or step 616 of FIG. 6. Script imterpreter 218
performs the processing that emulates the intelligence of a
network device. In executing a script, it uses data from script

US 7,013,467 Bl

23

database files 230. These files are data tables that reflect
actual data tables of network devices, such as routing tables
In a switch.

In step 701, 11 a script 1s to begin executing from step 616,
then the command control vector 1s handed off to script
interpreter 218, which resets a pointer 1 field 920 of the
command control vector to the start of the script. Script

mterpreter 218 also sets a “script-in-progress” indicator 1n
the command control vector to on.

In step 702, 1f a script 1s already executing and control 1s
passed to script interpreter 218 from step 608, system
manager 127 first determines 1f a database request 1s 1n
progress. If so, the script task ends so that database manager
220 can complete the database request.

In step 704, script interpreter 218 determines whether the
script to be executed 1s 1n memory. The requested script can

already be 1n memory 1n order to generate a response for
another CCV.

If the script 1s not in memory, script interpreter 218 loads
the script to memory 1n step 706. Script interpreter 218 can
also free up needed memory by purging any scripts in
memory based on a least recently used algorithm (LRU).
The least recently used algorithm determines, from a time
stamp of last activity, those scripts in memory that have been
inactive the longest. It purges these, according to the
algorithm, until the amount of needed memory 1s freed for
use 1n processing the current script.

Recall that more than one CCV can point to the same copy
of a command response table or script. Thus, there 1s no need
to maintain more than one copy of a command response
table or script in memory.

In step 708, script interpreter 218 determines 1f the current
script was found and loaded.

In step 710, 1f the script 1s not loaded, script interpreter
218 1instructs command response manager 218 to send a
default response. Script interpreter 218 then resets the com-
mand control vector’s “script-in-progress” indicator.

In step 712, if the script was found and loaded, script
interpreter executes the current step. The current step is
located with the script pointer 1n field 920 of command
control vector 910, which was set at the start of the script in
step 701. The pointer 1s then incremented to the next step.
System manager 127 can 1dentify a data segment such as
data segment 1116, 1120 or 1122 to store data associated
with script execution. The CCV maintains a pointer to an
assoclated data segment 1n field 922.

In step 714, script interpreter 218 determines 1f an error
occurred during the execution of step 712. If so, script
interpreter 218 instructs command response manager 218 to
send a default response 1n step 710.

If no error was detected 1 step 714, then in step 716,
script 1nterpreter 218 determines 1f a database request 1s
needed.

In step 718, 1f a database 1s required, script interpreter 218
sets a pointer to the place in the script of the database request
indicator. This pointer 1s contained in the command control
vector. Script interpreter 218 then places the database
request 1n a queue of database manager 220. The task ends
and control 1s returned to system manager 127. When system
manager 127 returns control to script interpreter 218 1n step
608, script mterpreter 218 will continue processing this
sCript.

In step 720, script interpreter 218 determines 1f a response
has been generated by the script.

In step 722, 1if a response was generated, command
response manager 216 places the command control vector in

10

15

20

25

30

35

40

45

50

55

60

65

24

a queue of network interface 212 and places the response
message 1n a buifer. The task ends and control 1s returned to
system manager 127. This can be used as a logical stopping
point indicating the end of a logical unit of work. When
system manager 127 returns control to script interpreter 218
in step 608, script interpreter 218 will continue processing
this script.

In step 724, script interpreter 218 determines if a read
request has been 1ssued by the script.

In step 726, 1f a read request was 1ssued, system manager
sets the communications session, via indication 1n the com-

mand control vector, in a receive mode. The task ends and
control 1s returned to system manager 127. This can be used
as a logical stopping point indicating the end of a logical unit
of work. When system manager 127 returns control to script
interpreter 218 1n step 608, script interpreter 218 will
confinue processing this script.

In step 728, script mterpreter 218 determines 1f script
execution 1s complete.

In step 730, if script execution 1s not complete, script
interpreter 218 sets the command control vector’s “script-
In-progress” to indicate script processing 1s not complete.
The task then ends and control 1s returned to system manager

127. This can be used as a logical stopping point indicating,
the end of a logical unit of work. When system manager 127
returns control to script interpreter 218 in step 608, script
interpreter 218 will continue processing this script.

In step 732, when script execution 1s complete, script
interpreter 218 resets the command control vector’s “script-
in-progress.” The task ends and control is returned to system
manager 127. This can be used as a logical stopping point
indicating the end of a logical unit of work. The virtual
object script code (e.g., 1118) is only purged when neces-
sary.

Referring back to FIG. 4, after a predetermined number of
logical units of work are completed in step 412, the hybrid
multi-tasking controller jumps to step 414. In step 414,
system manager 127 checks user interface 214 to detect any
input by the user. This can involve, for example, checking
for keyboard inputs, mouse input, touch-screen inputs, etc.
Then, after a predetermined number of logical units of work
are completed 1n step 414, the hybrid multi-tasking control-
ler jumps to step 416.

In step 416, system manager 127 checks a queue of
database manager 220 to determine whether any requests
have been sent to database manager 220 by any of the other
processes. If a request 1s detected 1n the database queue,
system manager 127 invokes database manager 220 to
perform the process illustrated in FIG. 8.

Referring to FIG. 8, a process flowchart illustrates the
process performed by database manager 220. In step 802,
when a database request 1s detected 1n step 416, system
manager 127 invokes database manager 220 to determine 1f
the request 1s a database request or a log request.

In step 804, 1f the request 1s a database request, database
manager 220 executes the request by performing the appro-
priate database management function, such as retrieve or
modify data. Database manager 220 uses an area of memory
as a cursor and performs the work 1n this cursor. Database
manager 220 populates the command control vector with a
pointer to the cursor.

In step 806, database manager 220 places the command
control vector 1n the queue of command response manager
216, mndicating that the request has been completed.

In step 808, 1f the request 1s a log request, database
manager 220 retrieves the message from a buffer and writes
it to the appropriate log 1 log database files 228.

US 7,013,467 Bl

25

Referring back to FIG. 3, 1f 1n step 320, 1f a user opts to
terminate processing then, in step 322, system manager 127
terminates all communications sessions and processes that
are currently executing under control of command response
manager 216. System manager 127 also frees up memory
used by buflers, queues, and command control vectors. In
step 324, TND emulator 126 creates a report of statistics on
the processing 1t has just performed.

IV. Conclusions

The present invention has been described above with the
aid of functional building blocks illustrating the perfor-
mance of specified functions and relationships thereof. The
boundaries of these functional building blocks have been
arbitrarily defined herein for the convenience of the descrip-
tion. Alternate boundaries can be defined so long as the
specified functions and relationships thereof are appropri-
ately performed. Any such alternate boundaries are thus
within the scope and spirit of the claimed invention. One
skilled 1n the art will recognize that these functional building
blocks can be 1implemented by discrete components, appli-
cation specific integrated circuits, processors executing
appropriate software and the like or any combination
thereof.

While various embodiments of the present invention have
been described above, 1t should be understood that they have
been presented by way of example only, and not limitation.
Thus, the breadth and scope of the present mmvention should
not be limited by any of the above-described exemplary
embodiments, but should be defined only in accordance with
the following claims and their equivalents.

What 1s claimed 1s:

1. A method for managing computer system resources,
comprising;

generating a first command control vector for a first input

message, the first command control vector 1identifying

a method object that contains one or more instructions

for processing the first 1nput message, wherein the

generating a first command control vector comprises:

identifying the method object 1n the first command
control vector, and

identifying, 1n the first command control vector, a first
current 1nstruction of the method object, wherein the
first current 1nstruction 1s used to process the first
Input message;

generating a second command control vector associated

with a second input message, the second command

control vector i1denfifying the same method object

identified by the first command control vector, the

method object containing one or more 1nstructions for

processing the second imput message, wherein the

generating a second command control vector com-

PriSes:

identifying the same method object 1n the second
command control vector; and

identifying, i the second command control vector, a
second current instruction of the method object,
wherein the second current instruction 1s used to
process the second mput message;

providing a single copy of the method object for the first
and second command control vectors; and

processing the first and second mput messages using the
single copy of the method object.
2. The method according to claim 1, wherein the gener-
ating a first command control vector further comprises:

identitying, in the first command control vector, a com-
munication link from which the first input message 1s
received; and

5

10

15

20

25

30

35

40

45

50

55

60

65

26

1dentifying, 1n the first command control vector, a desti-

nation device for which the first 1nput message i1s
intended.

3. The method according to claim 2, wherein the gener-

ating a second command control vector further comprises:

identifying, in the second command control vector, a
communication link from which the second mnput mes-
sage 1s received; and

identifying, in the second command control vector, a
destination device for which the second input message
1s 1ntended.

4. The method of claim 3, wherein the first and second
current mstructions are the same instruction and the same
instruction invokes a script, wherein the processing the first
and second 1nput messages comprises:

using a single copy of a script to process the first and
second 1nput messages.
5. The method of claim 4, wherein the using a single copy
of the script comprises:

identifying current script instructions in the first and
second command control vectors for processing the
first and second 1nput messages, respectively;

storing, 1n a first data object, data that 1s generated during,
execution of the script for the first command control
vector; and

storing, 1n a second data object, data that 1s generated
during execution of the script for the second command
control vector.
6. The method according to claim 1, wherein the process-
ing the first and second mnput messages comprises:

processing a number n of logical units of instructions for
the first command control vector;

interrupting processing of the first command control vec-
tor; and

processing a number m of logical units of 1nstructions for
the second command control vector.

7. A computer program product for permitting a computer
system to manage computer system resources, said com-
puter program product comprising:

a computer usable medium having computer readable
program code means embodied 1 said medium for
causing an application program to execute on the
computer system, said computer readable program
code means comprising:

a computer readable first program code means for
causing the computer system to generate a first
command control vector for a first input message, the
first command control vector identifying a method
object that contains one or more instructions for
processing the first input message, the first program
code means further causing the computer system to
identify a first current instruction of the method
object and use the first current instruction to process
the first mnput message;

a computer readable second program code means for
causing the computer system to generate a second
command control vector associated with a second
input message, the second command control vector
1dentifying the same method object 1dentified by the
first command control vector, the method object
containing one or more Instructions for processing,
the second 1nput message, the second program code
means further causing the computer system to 1den-
tify a second current instruction of the method object
and use the second current instruction to process the
second 1nput message; and

US 7,013,467 Bl

27

a computer readable third program code means for
causing the computer system to process the first and
second 1nput messages using a single copy of the

method object.
8. A system for managing computer system resources,

comprising:
means for generating a first command control vector for
a first input message, the first command control vector

identifying a method object that contains one or more
instructions for processing the first input message;

means for generating a second command control vector
assoclated with a second input message, the second
command control vector 1dentifying the same method
object 1dentified by the first command control vector,
the method object containing one or more 1nstructions
for processing the second mput message;

means for providing a single copy of the method object
for the first and second command control vectors; and

means for processing the first and second mnput messages
using the single copy of the method object.
9. The system according to claim 8, wherein the means for
generating a first command control vector for a first input
message further comprises:

means for identifying, in the first command control vector,
a communication link from which the first input mes-
sage 1S received;

means for identifying, in the first command control vector,
a destination device for which the first input message 1s
intended;

10

15

20

25

23

means for 1dentifying the method object 1n the first
command control vector; and

means for identifying, in the first command control vector,
a first current instruction of the method object, wherein
the first current mstruction 1s used to process the first
Input message.
10. The system according to claim 8, wherein the means
for generating a second command control vector associated
with a second input message further comprises:

means for identifying, in the second command control
vector, a communication link from which the second

Input message 1s received;

means for i1dentifying, in the second command control
vector, a destination device for which the second input
message 1s 1ntended;

means for identifying the same method object 1n the
second command control vector; and

means for i1dentifying, in the second command control
vector, a second current instruction of the method
object, wherein the second current instruction 1s used to
process the second input message.

11. The system of claim 10, wherein the first and second
current 1nstructions are the same instruction and the same
instruction invokes a script, wherein the means for process-
ing the first and second 1nput messages using the single copy
of the method object further comprises:

means for using a single copy of a script to process the
first and second 1nput messages.

	Front Page
	Drawings
	Specification
	Claims

