United States Patent

US007013457B2

(12) 10y Patent No.: US 7,013,457 B2
Chiang et al. 45) Date of Patent: Mar. 14, 2006
(54) PRIORITIZED DEBUGGING OF AN ERROR 5,210,859 A * 5/1993 Aoshima et al. 714/46
SPACE IN PROGRAM CODE 5,297,150 A * 3/1994 Clarkccvvvveevrnnnnnnn. 714/26
5,463,768 A * 10/1995 Cuddihy et al. 714/37
(75) Inventors: Tai-Ying Chiang, Taipei Hsien (TW); ?;2;8% i i éﬁ iggg glﬁifﬂﬂe et al. ...l ; Ig/ll/gg
: - _ 854, * IMOMUIA ...ovvvennnnnn...
i}?ﬁ'?@'ﬁigh‘]ﬁgi I_%Sallne??llsfm%‘W) 6.012.152 A * 1/2000 Douik et al. voovevvvernn.. 714/26
- L alpe = 6,014,598 A * 1/2000 Duyar et al. c.ooveeenenn..... 701/29
Jien-Shen Tsai, Taipei (TW) 6.076.083 A * 6/2000 Baker ..o.oovvvevorvernn 706/52
| _ | 6,173,440 B1* 1/2001 Darty ...oooceveeeveuenae.. 717/130
(73) Assignee: Springsoft, Inc., Hsinchu (TW) 6,280,264 B1* 9/2001 Zenke ...ocovvveeeeveene.. 700/245
(*) Notice: Subject to any disclaimer, the term of this ~ * cited by examiner
%atsel(]jt 1? SZ}EE;HE ed72(ri ggﬂfted under 35 Primary Fxaminer—Kakali Chaka
T Y yS: Assistant Examiner—William H. Wood
(21) Appl. No.: 09/682,140 (74) Attorney, Agent, or Firm—Smith-Hill and Bedell
. No.: .
(22) Filed: Jul 26, 2001 (57) ABSTRACT
(65) Prior Publication Data A computer system has an input system and an output
system. Program code to be debugged has a plurality of
US 2004/0205717 Al Oct. 14, 2004 program code statements. The input system 1s utilized to
(51) Int. Cl indicate an error variable in the program code. The error
GO:SF 9 144 (2006.01) variable has an error value that differs from a desired value.
' An error set of the error variable 1s obtained, which 1s a
(52) US. Clnnn 717131 771177//15 425_771177//113 237’ subset of the statements 1n the computer readable code. Each
_ _ _ ’ statement 1n the error set 1s relationally connected to the
(58) gleld Oii_Cla_SSlﬁgfmfon Searcih """"" h71£'7/ 124-153 error variable. A priority value 1s given to each statement in
c¢ application lile lor complete search history. the error set. The priority values indicate a computed prob-
: ability that the associated statement 1s an error source of the
(56) References Cited error variable. Finally, the output system 1is used to present
U.S. PATENT DOCUMENTS faach statement i'n the error set in an ordered manner accord-
4763277 A * 8/1988 Ashford et al. .oo.ovve..... J06/47 08 1o the priority values.
4,788,531 A * 11/1988 Corwin et al. 340/945
5,086,429 A * 2/1992 Gray et al.c.ceeeeeee. 714/13 29 Claims, 4 Drawing Sheets
N I ¢
Comippier seslam T
] _ . F oo assor ‘ i
E;?'H::t“*_ Dsplay | utput f’l?f'-‘iﬂm F’ur“mé;ier H:“ j: 2
_____________ ——— }— i
P gk, 174 Mouss fapud syslem: Eaybhoard Lm,.iﬁ
L | Mewmocy e
;:G”*-.m_,-"%*; - . - Pi’ﬂlgfﬂﬂl Eﬂdﬁ.‘ _ j "
_ Essculion system N
LS “‘[}ebug witormmlion ‘ e r;::r AT e
______ Efmg:;gimﬁ g Ullﬂﬂﬂtlﬂ
| wycle _Erpeuliea st FITTT **
~H__Lines Vacable data [T=T %52
f.,_.LL,i rrea b E_;ﬁ.ia 1 Errar varablaidded. e 40
Eoor yalpa it -4
 Usar (M0 system g
e —
| E?&%} i- ;ncé}*"’"“ B = s R

|t rmtisn

§
;

Eorpmy sl i N Ay

L% D5

M Correcl snomms
‘ Tarmi hna Roor %—m o
= SH I I

“H Eoroe cvecle Ff':irgai lifrs

ramr et

ot

) - Depeilizad sels
i - e, el | S T T 5

US 7,013,457 B2

Sheet 1 of 4

Mar. 14, 2006

U.S. Patent

_

["ol

X
A Bl A=

SISE
w m W .MH% ﬁmw,.,.,_m_,m
AEIRY

X
.

Emmm‘

. FIdTId 1dT16) 8 sArM[E

A
£

SIFEN
. AL ES R
A g =t udisse
'l e = | USIEsE
Fld| Eld =712 udiese
e TSR] | = B LdIEgE
4) ﬁé;%% OO0 1N} NG
o TIdEHATIA T 1 } nddur
g
e

US 7,013,457 B2

Sheet 2 of 4

Mar. 14, 2006

U.S. Patent

ﬂm. pua
TR bl d=g
& 3L
E.m%_
FIdE1d | 1dCIR%) & sARme
P
ISBIPUD
M= 10d ¢ 1INELIp
.M..m” R RO . MN._.__%__.H wﬁwﬁw . m
@ M' g M m me.mn _.“ s B
e T | s
07 53
7 A AN TEE) & SABME
o7 ™ 1d] e =g 0d UsIsse
77 = Ol Eld =M UaIEsE
“ m i H “mw m n—!lm * MM w Aﬂm Em Mm m mmﬂmmm.ﬂw
AR d = RS USISSE
cma 1 Od70d ndino
FIdEIdTId 1Id mdur

U.S. Patent Mar. 14,2006 Sheet 3 of 4 US 7,013,457 B2

Mar. 14, 2006

~
I~
) _ o
< e ~
= e e O i a—_
— | | .
~ | |
YIS A . 5%
G et LSS B S S
w C1RE PEZITRD 30
P
o TR L
O —— TS HIQI TS B
e 1RETE | | TGRS
IBITON AT
' (L kg - B -
TR YRLL TR .
L
< i et
-
O Em o gt e 4 g
._.r.#n_.:- “..,.L.“mm m— ..m.-.._m..._«h.‘u
- §
N - - 1
>, “
-
= BYER B[EITE 1
I B o 2
[~- SIIA | -
e 340 TOTITEnE bwo] TOH}INERS]
S T TOIT worpeursgor Engag hLed oo
g - LIRS AS TTOT) I ES
S L
I N s |
BP0 LIRS0 o
. 07
- % fuid igzIRY)
-1 prengdey wmagsds pdu) [esnop TR
um. = warw, | ﬁ.w.._......l i ._“_I . __.Ih. _-.:nr_m._..,.n..__ri............... T
G | _ FaurTI _ e Ag Jnd)n e
_ JORGR IO _

UIFRlRAS YRpndumn T

U.S. Patent

US 7,013,457 B2

1

PRIORITIZED DEBUGGING OF AN ERROR
SPACE IN PROGRAM CODE

BACKGROUND OF INVENTION

1. Field of the Invention

The present invention relates to debugging software.
Specifically, the present mvention discloses a system and
method that algorithmically determines the probability of a
line of source code as being an error source 1n the error space
of a variable.

2. Description of the Prior Art

Software 1s becoming increasingly common across a
broad spectrum of fields. Correspondingly, a number of
software tools and packages have come onto the market to
help with the automation and computerization of tasks that
were once done manually. Many of these tools are robust,
presenting themselves as highly specific programming lan-
guages to flexibly accomplish tasks in a narrow field. This
results 1n more people than ever, who never 1nitially con-
sidered themselves as programmers, being faced with the
task of debugging faulty code. An excellent example of this
is in the field of integrated circuit (IC) development. Nowa-
days, ICs are being designed not on paper, but coded as
instructions in a hardware development language (HDL).
These circuits are not tested and debugged with physical
clements, but virtually by way of simulators that execute the
HDL code. When the HDL code 1s considered bug-free, and
hence the under-lying circuits that are described by this code
are considered error-free, the HDL code 1s “compiled” into
the corresponding circuit elements for wafer manufacturing.
More than ever, circuit designers are not tinkering with
physical elements, but instead with lines of computer-
readable and executable code that simulates these elements.
A direct effect of this 1s that, to improve efliciency, means
must be found to help programmers quickly and easily
locate the sources of bugs in computer code.

The tried-and-true method for finding bugs 1n computer
code 1s by tracing and breakpoints. A programmer sets
breakpoint conditions that cause the computer to stop
executing at a particular line of code, under particular
memory read/write conditions, or by other methods. The
most common 1s simply to set a breakpoint at a line of code.
Every time the computer reaches the breakpoint, execution
of the program stops and the programmer can use a debugger
to check the contents of the memory and processor. Typi-
cally, breakpoints are set at the end of loops to determine 1f
the loop of code has executed as desired. Breakpoints are
also frequently set at the beginning of a subroutine when the
subroutine 1s known to be behaving incorrectly. The pro-
crammer can then trace through the execution of each line
of code 1n the subroutine individually to find the related bug.

All of this 1s extremely time consuming. Computer code
frequently runs mto the thousands of lines, and many of
these lines may be individually executed thousands of times
before a bug manifests 1tself. In turns of time resources spent
debugging, it 1s invariably 1nefficient, and sometimes 1mpos-
sible, for a programmer to manually trace through code to

find a bug.

SUMMARY OF INVENTION

It 1s therefore a primary objective of this invention to
provide a method and system that presents lines of code to
a programmer 1n an ordered fashion indicating which of the
lines of code are most likely to be a source of error for a
variable 1n a program.

10

15

20

25

30

35

40

45

50

55

60

65

2

The present invention, briefly summarized, discloses a
method and corresponding system for assisting with debug-
oing program code 1 a debugger on a computer system. The
computer system has an mput system and an output system.
The program code has a plurality of program code state-
ments. The input system 1s utilized to indicate an error
variable 1n the program code. The error variable has an error
value that differs from a desired value. An error set of the
error variable 1s obtained, which 1s a subset of the statements
in the computer readable code. Each statement in the error
set 15 relationally connected to the error variable. A priority
value 1s given to each statement 1n the error set. The priority
values 1mndicate a computed probability that the associated
statement 1s an error source of the error variable. Finally, the
output system 1s used to present each statement 1n the error
set 1n an ordered manner according to the priority values.

It 1s an advantage of the present invention that by pre-
senting the statements 1n the error set in a ordered manner
according to the priority values, a user debugging the code
can quickly refer to those lines of code that are deemed to
be the most probable sources of the bug. Debugging times
are thereby considerably shortened.

These and other objectives of the present mvention will
no doubt become obvious to those of ordinary skill 1n the art
after reading the following detailed description of the pre-
ferred embodiment, which 1s illustrated 1n the various fig-
ures and drawings.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 illustrates lines of sample source code.
FIG. 2 illustrates the sample code of FIG. 1 with a bug.

FIG. 3 1s a perspective view of a computer system that
utilizes the method of the present invention.

FIG. 4 1s a block diagram of the computer system shown
in FIG. 3.

DETAILED DESCRIPTION

Please refer to FIG. 1. FIG. 1 shows an example of
hardware development language (HDL) code. The method
of the present invention 1s particularly well suited for the
debugging of HDL code, as HDL code 1s executed repeti-
fively 1n a series of discrete execution cycles. Each execu-
fion cycle may be thought of as a machine clock tick for the
circuitry that the HDL code 1s used to simulate. As the
circuitry should have well-defined outputs for each clock
tick, the variables that represent circuit outputs may be
checked at each execution cycle against desired results to
look for bugs. In this manner, a person debugging the code
may learn that a bug has cropped up 1n a particular execution
cycle. The method of the present invention shall be
explammed by way of a specific example of mcorrect code.

As can be seen, the HDL code of FIG. 1 comprises a
plurality of program code statements 1. Program code state-
ments 1 can be logically grouped together to form subrou-
tines 2. All of this should be obvious to one reasonably
skilled 1n the art of computer programming and debugging.
It should be noted that the subroutines 2 each begin with a
program code statement 1 that starts “always @(. . .)”. This
indicates that the program code statements 1 within the
subroutine 2 are always executed with each simulated clock
tick. The program code of FIG. 1 may be thought of as being
enclosed within a large execution loop (analogous to “for”
statements in C, Pascal, BASIC, etc.), each iteration of the
loop corresponding to a circuit clock cycle, and the subrou-

US 7,013,457 B2

3

tine statements 2 are executed with each iteration of the loop
to simulate a circuit clock tick.

The circuit has a plurality of primary inputs, as defined by
program code statement 1a with variables PI1, P12, PI3 and
PI4, and a plurality of primary outputs as defined by
program code statement 15 with variables PO1 and PO2.
The primary mputs are manipulated 1in each execution cycle
to generate the primary outputs. Generally speaking, when
testing the accuracy of the program code, with each execu-
tion cycle the values of the primary output variables are
compared against theirr desired values, as required by a
circuit specification. If, 1n an execution cycle, a primary
output variable does not agree with its desired value, then a
bug 1s said to be 1n the program code, and the variable
assoclated with the primary output is the error variable. The
execution cycle 1n which the error occurs 1s termed the error
cycle.

Simply 1dentifying that a bug exists 1s the first step in
removing the bug from the computer code. The second step
1s to find the source of the bug, and it 1s the object of the
present 1nvention to provide aide with respect to this second
step. The sources of bugs are multifarious, and the symp-
toms of a bug may not appear for many execution cycles,
under highly specific input conditions. Consider, for the
following example, the computer code of FIG. 2 1 con-
junction with that of FIG. 1. FIG. 2 shows computer code
much like that of FIG. 1, but with a bug in program code
statement 3b. FIG. 1 depicts a correct program code state-
ment 3a: “w2=PI4/PI1;”. In FIG. 2, the program code
statement 3b contains an incorrect line, “w2=PI4;”. That 1s,
the variable w2 1s directly assigned the value of the primary
input PI4, rather than being assigned the logical OR of the
primary inputs PI4 and PI1. Because the variable w2 1s not
a primary output variable, the effect of this bug may not
become 1mmediately obvious. That program code statement
3b has a bug may only become clear when the program code

of FIG. 2 1s run and compared against desired results. It
should be noted that, in FIGS. 1 and 2, the symbol “&”
indicates a logical AND, and “™ a logical XOR. The symbol

‘e |.5! *

1s, as 1ndicated in the above, a logical OR.

For the following example, suppose that in the first
execution cycle the primary inputs are set as follows: PI1=1,
P12=1, PI3=1, PI4=0

For the circuit represented by the code of FIG. 2, the

primary outputs have the following desired values: PO1=1,
PO2=1

When the code 1s executed, after the first execution cycle,

the following values are found for the variables PO1 and
PO2: PO1=1, PO2=1

Thus, the desired values of the primary outputs matches
the actual values of the related primary output variables, and
the bug 1n the program code statement 3b passes by unde-
tected after the first execution cycle. For all intents and
purposes, the computer code of FIG. 2 1s bug-free for the
first execution cycle.

The second execution cycle performs as follows: Primary
inputs:PI1=0, PI2=1, PI13=0, PI4=1 Desired outputs:PO1=1,
PO2=0 Actual outputs:POI=1, PO2=0

And, again, no bugs are detected. However, 1n the third

execution cycle the following occurs: Primary inputs:PI1=1,
PI12=1, PI3=0, PI4=0 Desired outputs:PO1=1, PO2=1 Actual

outputs:POI=0, PO2=1

In this case, the bug in program code statement 3b finally
presents 1tself. The actual output of the primary output
variable PO1, a value of 1, differs from its desired output of

10

15

20

25

30

35

40

45

50

55

60

65

4

O that 1s required by the circuitry specifications. PO1 1s thus
the error variable, and execution cycle number 3 is the error
cycle.

Please refer to FIG. 3 1n conjunction with FIGS. 1 and 2.
FIG. 3 1s a perspective view of a computer system 10 that
utilizes the method of the present invention. The computer
system 10 includes a display 12 as an output system, and a
mouse 14 with a keyboard 16 as an input system. To find
which of the program code statements 1 are most likely to
be responsible for the bug, a user first uses the mouse 14 or
keyboard 16 to indicate one or more error variables. In this
case, the error variable would be PO1l. The user also
indicates which execution cycle 1s the error cycle. In this
case, the error cycle 1s cycle number 3. The computer system
10 then implements the following method to present on the
display 12 an ordered list of the most likely lines of program
code statements 1 that are responsible for the bug.

To begin, an error set of the error variable 1s found. To do
this, the relation space of the error variable 1s used, which 1s
all program code statements 1 that are relationally connected
to the error variable. This relation space can be termed the
error space of the program code, for 1t includes all program
code statements 1 that are directly or indirectly responsible
for setting the value of the error variable (i.e., PO1). In the
worst case, the error space could include the entirety of the
program code. In the simplest case, the error space would
include only one program code statement 1. Using the
present example, as noted, the error variable 1s PO1. The
most obvious program code statement that 1s relationally
connected to PO1 1s program code statement 26. It 1s noted
that program code statement 26 1nvolves variable wl, whose
value 1s assigned at program code statement 22. What value
1s assigned to POl depends on the “case” statement in
program code statement 25. Program code statement 25, 1n
turn, relies on the variable sell, which 1s assigned 1n program
code statement 20. Continuing this process, it 1s clear that a
rapid fan-out of inter-related variables causes PO1 to be
relationally connected to almost every line 1n the program
code of FIG. 2. Indeed, the final error space 1s found to be
(indicated by item numbers): Error space={20, 21, 22, 24,
25, 26, 27, 28, 29, 30, 31, 3b}

About the only program code statement that 1s not rela-
tionally connected to PO1 1s program code statement 23,
which simply assigns a value to primary output variable
PO2. For these purposes, the relatively simple 1nput/output
variable declarations of 1a and 1b are 1ignored, as well as
block nesting identifiers “begin” 1¢ and “end” 1d, as they
can have no direct influence on the value of error variable
PO1.

It would help considerably if the error space could be
narrowed down. Ideally, this should be done without remov-
ing the program code statement that 1s responsible for the
bug, 1.e., program code statement 3b. To narrow the error
space, and thus generate the error set, the execution set 1s
considered. This execution set 1s the set of all program code
statements that are executed 1n the error cycle. Indicated
with 1tem numbers, the execution set for the present example
is: Execution set=120, 21, 22, 23, 24, 25, 27, 29, 30, 3b}

To obtain the error set, the relation space for the error
variable 1s considered only 1n the context of the execution
set. That 1s, only program code statements 1n the execution
set that are relationally connected to the error variable are
used to generate the error set. It 1s noted, for example, that
program code statement 26 1s not in the execution set, and
thus 1s not relationally connected to the error variable PO1
with respect to the executions set, though it 1s 1n the error
space. To generate the error set, each 1tem 1n the execution

US 7,013,457 B2

S

set 1s checked for relational dependency with the error
variable PO1, in much the same manner that the error space
1s found. The error set, as a sub-set of the execution set, 1S
found to be: Error set={20, 21, 24, 25, 27, 29, 30, 3b!

Note, 1 particular, that program code statements 22 and
23, which are both 1n the execution set, are not 1n the error
set. Program code statement 23 1s not 1n the error set because
it was never 1n the error space to begin with, and thus could
not possibly be relationally connected to the error variable
PO1. On the other hand, program code statement 22 1s 1n the
error space, yet it 1s not 1n the error set. This 1s because
program code statement 22 assigns a value to variable wl
and, within the error cycle, the value of wl 1s never used 1n
any way to influence the value of the error variable PO1.
Program code statement 22 1s thus not relationally connected
to the error variable PO1 within the context of the execution
set. The program code statements 1n the error set are
considered the most likely candidates for the source of the
bug. The primary objective of the present mvention 1s to
prioritize these program code statements as more or less
likely sources of the bug, and thereby more quickly speed a
programmer to the target source of the bug.

To obtain a computed probability that a program code
statement 1n the error set 1s the source of the bug, previous
execution cycles are used in conjunction with one or more
correct variables. A correct variable 1s any variable whose
value matches its desired value 1n the error cycle. For the
present example, the primary output variable PO2 1s con-
sidered as a correct variable. The correct variable 1s prefer-
ably a primary output variable, or one with many relational
dependencies with the error variable. The number of execu-
fion cycles that are used before the error cycle may be
coniigured as deemed best. Generally speaking, the more
execution cycles used, the better the results of the prioriti-
zation. However, more execution cycles can lead to slower
processing times, and heavier demands on computer
resources. For the present example, the first two execution
cycles are considered. That 1s, the first two execution cycles
before the error cycle are considered, with PO2 as the
correct variable, since PO2 has a value of one 1n the error
cycle that agrees with 1ts desired value of one.

Initially, a set of priority values 1s created and 1nitialized
so that each member of the set 1s zero. Each priority value
in the set of priority values directly corresponds to one of the
program code statements 1n the error set, and indicates a
computed probability that the related program code state-
ment is an error source (i.€., bug) for the error variable. For
the present example, a higher priority value will indicate that
the related program code statement 1n the error set 1s a less

likely source of the bug. We thus have: Error set:{20,21,24,
2527,29,303b} Priority values:{0,0,0,0,0,0,0,0}

The first execution cycle 1s considered. A first sensitized
set for the correct variable 1n the first execution cycle is
obtained. A sensitized set 1s analogous to the error set, and
1s found 1 much the same manner, except that the correct
variable PO2 1s considered, and statements executed 1n the
first execution cycle are considered. To put this another way,
the error set above 1s simply a sensitized set for the error
variable PO1 1n the error cycle, 1.e., the third execution
cycle. However, only program code statements 1n the error
set are permitted 1n a sensitized set. Thus, to build a
sensitized set, three parameters must be known: the variable
to be considered, the execution cycle 1n which the executed
program code statements are parsed to determine if they are
relationally connected to the variable under consideration,
and the error set. With the present example, a first execution
set 15 constructed, which contains all of the program code

10

15

20

25

30

35

40

45

50

55

60

65

6

statements executed in the first execution cycle (indicated by
item numbers): First execution set={20, 21, 22, 23, 24, 25,
27, 29, 30, 31}

Program code statements 1n the first execution set that are
relationally connected to the correct variable PO2 are then
used to generate the first sensitized set. For example, pro-
oram code statement 23 actually assigns a value to the
correct variable PO2. This assignment, 1n turn, depends on
the variable w2. Variable w2 1s assigned 1n program code
statement 31. This 1s due to the “if” statement of program
code statement 30, embedded 1n the subroutine defined by
program code statement 29, and which, 1n turn, depends on
variable sel2. Variable sel2 1s assigned a value in program
code statement 21 from a logical OR of two primary 1nputs,
PI3 and PI4. This yields then, 1n item numbers, a preliminary
set for the correct variable PO2:

Preliminary set={21, 23, 29, 30, 31}

To generate the first sensitized set for the correct variable
PO2, the preliminary set 1s intersected with the error set to
yield: First sensitized set={21, 29, 30}

For every program code statement 1n the first sensitized
set, a value of one 1s added to the corresponding element in
the priority set, which acts as a scaling function that indi-
cates a reduced computed probability of the related program
code statement as being a source of the bug: Sensitized
set:21,29,30} Error set: {20,21,24,25,27,29,30,3b} Priority
values:{0,0+1,0,0,0,0+1,0+1,0}

Program code statements 21, 29 and 30 ecach thereby
acquire a priority of one, indicating that they have a reduced
computed probability that they are sources of the bug.

For the same execution cycle, a second sensitized set 1s
also found for the error variable PO1. The first execution set
1s thus used, together with the error set, to obtain the second

sensitized set. The procedure iterated above 1s used to
obtain:

Second sensitized set={20, 21, 24, 25, 27, 29, 30}

Analogously, for every program code statement in the
second sensitized set, a value of one 1s added to the
corresponding element in the priority set to indicate reduced
computed probabilities for these program code statements as
being bug sources: Sensitized set:{20,21,24,25.27.29.30}
Error set:{20,21,24,25,27,29,30,3b} Priority values:{0+1,
1+1,04+1,0+1,0+1,1+1,1+1,0}

This completes the analysis for the first execution cycle.
At this point, the highest contender for the source of the bug
1s program code statement 3b, with a priority value of zero.
The lowest contenders are program code statements 21, 29
and 30, with priority values of 2. The other program code
statements 20, 24, 25, and 27 lie in-between these two
extremes, with a priority value of one each.

The above procedure 1s repeated for execution cycle 2.
This requires a second execution set indicating all of the

program code statements executed 1n the second execution
cycle: Second execution set=420, 21, 22, 23, 24, 25, 26, 29,

30, 31}

A third sensitized set 1s found, which 1s for the correct
variable PO2 m the second execution cycle. A fourth sen-
sitized set 1s also found, which 1s for the error variable PO1
in the second execution cycle. These are found to be (using
item numbers): Third sensitized set={21, 29, 30} Fourth
sensitized set={20, 24, 25}

It 1s worth noting that the fourth sensitized set 1s so small
because, 1n the second execution cycle, as indicated by the
second execution set, the program code statement 27 1s not
executed. The error variable PO1 thus has no relational
connection with the variable w2, and hence all program code
statements relationally connected to the variable w2 are left

US 7,013,457 B2

7

out of the fourth sensitized set. The third and fourth sensi-
tized sets are used to adjust the corresponding priority values
within the priority set, yielding: Error set:{20,21,24,25.27,
29,30,3b} Priority values: {2,3,2,2,1,3,3,0}

The error set 1s then sorted based on the priority set, from
most-likely error source to least-likely error source: Error
set:{35,27,20,24,25,21,29.30} Priority values: {0,1,2,2,2,3,
3,3}

Finally, the program code statements in the error set are
presented on the display 12 1n their sorted order, with their

corresponding priority scores, an example of which is pre-
sented below: Line 20:w2=PI4 (Score:0) Line 11:PO1=w2

(Score:1) Line 3:assign sell=PI1 & PI2 (Score:2) Line
7:always @(sell, wl, w2) (Score:2) Line 9:case (sell)
(Score:2) Line 4:assign sel2=PI3/P14 (Score:3) Line 15:al-
ways (@(sel2, PI1, PI3, PI4) (Score:3) Line 17:if (sel2)
(Score:3)

Line 20, which 1s, 1n fact the error source, 1s properly
identified as the program code statement having the highest
computed probability of being the error source of the bug.

The above example has been presented with a very simple
fragment of computer code. As such, only one correct
variable, PO2, 1s used. However, in practice, a plurality of
correct variables will be used to generate the priority values
held 1n the priority set, and these may be selected by the user,
or chosen automatically. Additionally, the user may also
select a plurality of error variables. In this case, the error set
would be the union of the mndividual error sets of each error
variable. The basic method presented above would, how-
ever, remain the same. It should be obvious that the actual
program code statements 1 are not contained within the
sensitized sets or the error set. Rather, these sets hold
pointers, source code line numbers, or other similar indica-
tors, to reference the appropriate program code statements.
Also, above, a constant value (namely one) 1s added to each
priority value that corresponds to a program code statement
held within a sensitized set. This 1s the simplest manner of
performing a scaling function. Other scaling functions are
also possible, and could be quite complex 1n nature. What 1s
of 1mportance, though, 1s that, regardless of the method
used, for each program code statement 1n a sensitized set, the
scaling function set a reduced computed probability of the
program code statement being an error source.

The method of the present invention i1s mtended to be
implemented on a computer system, such as the computer
system 10, as a convenient feature within a program debug-
oing tool. Please refer to FIG. 4 1n conjunction with FIG. 3.
FIG. 4 1s a block diagram of the computer system 10 of FIG.
3. The computer system 10 has an output system 13, which
includes the display 12 and may include a printer 15. The
computer system 10 also has an mput system 18, which
includes the mouse 14 and keyboard 16. Additionally, the
computer system 10 comprises a processor 11 and memory
19. The processor 11 executes programs 1n the memory 19,
and uses the memory 19 to store data.

The memory 19 includes program code 20, an execution
system 30, debug information 40, a user input/output (I/O)
system 50, and a prioritizing system 60. The program code
20 comprises a plurality of program code statements 22, as
previously illustrated 1n FIG. 1 . The execution system 30 1s
used to execute the program code 20 to generate the debug
information 40. The execution system 30 can be an inter-
preter, a combination of compiler and debugger (a so-called
development system), or may simply be a compiled version
of the program code 20 with appropriate instructions embed-
ded therein to generate the debug information 40. The debug
information 40 comprises data about the execution of the

10

15

20

25

30

35

40

45

50

55

60

65

3

program code 20, and this data can be organized into a
plurality of execution cycle blocks 42. Each execution cycle
block 42 contains all the data needed by the prioritizing
system 60 to generate a sensitized set for a respective
execution cycle of the program code 20, such as lines 44 that
indicate program code statements 22 that were executed 1n
the respective execution cycle, and variable data 46 that
holds the values of variables 1n the program code 20 at the

end of the respective execution cycle. In particular, the
debug information will hold information about an error
execution cycle 42¢, in which an error variable 46¢ obtains
an error value 49¢ that disagrees with a desired value. With
reference to the example above, the error execution cycle
42¢ would thus be the third execution cycle. The error
variable 48¢ would be the variable PO1, and the error value
49¢ would be one, disagreeing with the desired value of
zero. Execution set 44¢ contains the program code state-
ments 22 that are executed within the error execution cycle
42¢, and would correspond to the execution set of the above
example.

The user I/0O system 50 1s used to present data to the user
by way of the display 12 or printer 15, and to obtain data
from the user by way of the mouse 14 and keyboard 16. In
a development system, the user I/O system 50 1s the heart of
the system 10, presenting the program code 20 to the user for
editing and review, enabling the user to control the execution
system 30 to trace through the program code 20 while
viewing the contents of the processor 11 and memory 19,
permitting the user to view the contents of the debug
information 40, and performing a host of other tasks.

The prioritizing system 60 interfaces with the user 1/0
system 50 to implement the present invention method. The
prioritizing system 60 utilizes the user I/O system 50 to
obtain mmformation 70 from the user, such as correct vari-
ables 72 (1.e., PO2 in the example above), error variables 74
(i.e., PO1), the error cycle 76, the number of cycles to
process prior to the error cycle, and any other relevant
information. In particular, the error cycle 76 should corre-
spond with the error execution cycle 42¢ 1f one of the error
variables 74 1s the error variable 48¢. With this information
obtained from the user, the prioritizing system 60 then parses
the program code 20 to obtain the error space 63, and
analyzes the debug information 40 with respect to the
program code 20 and the error space 63 to obtain the error
set 62 and sensitized sets 69. As noted previously, the error
space 63 contains references to all program code statements
22 that are relationally connected to the error variables 74.
The error set 62 comprises a plurality of target lines 64 with
corresponding priorities 66. Each target line 64 1s 1n the error
space 63 and corresponds to one of the program code
statements 22 within the program code 20. Each priority 66
1s the computed probability that the related target line 64 1s
an error source within the program code 20. The user 1/0
system S0 then presents, on the display 12 (or printed out
with the printer 15), the error set 62 and related priorities 64
in a manner sorted according to the priorities 64, with a
target line 64 having the highest computed probability of
being an error source being displayed first. As previously
discussed, the sensitized sets 69 are used to generate the
priority values 66. Each set 69a within the sensitized scts 69
corresponds to one of the execution cycles 42 prior to the
error execution cycle 42¢, and 1s with respect to either one
of the correct variables 72 or one of the error variables 74.

The prioritizing system 60 contains a function call that
returns a sensitized set 69a given the three inputs noted in
the above example. That 1s, within the prioritizing system

US 7,013,457 B2

9

60, a pseudo-code routine for returning a sensitized set 69
has the form: Sensitized set=GetSensitizedSet(variable,
execution cycle, error set);

This pseudo-code subroutine returns a sensitized set 69a
as desired based upon the three mput parameters: a correct
variable 72 or error variable 74, an execution cycle 42, and
the error set 60. For example, the first sensitized set dis-
cussed 1n the example above would have a pseudo-code call
that looks like: First sensitized set=GetSensitizedSet(PO2,
first execution set, error set);

The second sensitized set discussed 1n the example above
would have a pseudo-code call that looks like: Second
sensitized set=GetSensitizedSet(PO1, first execution set,
error set);

The benefit of the above 1s that the error set 62 can be
found simply as a sensitized set, using the error variables 74,
the error cycle 76, and the error space 63 as the three mnput
parameters, respectively.

Although the above method and corresponding system
have been presented by way of example with HDL code, 1t
should be clear to one 1n the art that the present invention
method 1s suitable for not only HDL code but any type of
computer code that contains a repetitively executed loop
within which a bug 1s known to exist.

In contrast to the prior art, the present invention identifies,
and prioritizes, program code statements as being error
sources within a program. These prioritized program code
statements are presented to the user in order, from most-
likely error source to least-likely error source. The user thus
need not trace through code looking for likely sources of a
bug, but instead needs only to i1dentily a variable that 1s
known to be incorrect, an execution cycle in which the bug
occurs, and any correct variables within this buggy execu-
tion cycle. The prioritizing system according to the present
invention method then performs parsing and post-process
analysis of the program code to find most likely culprit
program code statements and present them to the user.

Those skilled 1n the art will readily observe that numerous
modifications and alterations of the device may be made
while retaining the teachings of the mvention. Accordingly,
the above disclosure should be construed as limited only by
the metes and bounds of the appended claims.

What 1s claimed 1s:

1. A method for aiding debugging of program code 1n a
computer system, the computer system comprising an input
system and an output system, the program code comprising
a plurality of program code statements, the method com-
prising:

utilizing the 1nput system to indicate an error variable 1n

the program code, the error variable containing an error
value that differs from a first desired value;

obtaining an error set of the error variable, the error set

comprising a subset of the program code statements,
cach program code statement in the error set being
relationally connected to the error variable;
assigning a priority value to each program code statement
in the error set, each priority value indicating a com-
puted probability that the associated program code
statement 1S an error source of the error variable; and

the output system presenting each statement in the error
set based on the relative ordering of the priority value
of the program code statement to the other priority
values of the other program code statements 1n the error
set.

2. The method of claim 1 wherein the program code
statements 1n the error set are presented in order from a
most-likely error source to a least-likely error source.

10

15

20

25

30

35

40

45

50

55

60

65

10

3. The method of claim 1 wherein each program code
statement 1n the error set i1s presented with the associated
priority value.

4. The method of claim 1 wherein the program code 1s
repetitively executed by way of a plurality of execution
cycles, and obtaining the error set comprises:

obtaining an error cycle that 1s an execution cycle 1n

which the error variable obtains the error value;
obtaining an execution set comprising all program code
statements that are executed 1n the error cycle; and
utilizing the program code statements in the execution set
to generate the error set, every program code statement
in the error set being in the execution set and also being
relationally connected to the error variable.

5. The method of claim 4 wherein the program code
comprises a correct variable, the correct variable having a
value that agrees with a second desired value in the error
cycle, and wherein the step of assigning the priority value to
cach program code statement in the error set comprises:

for a first execution cycle prior to the error cycle, obtain-

ing a first sensitized set for the correct variable, the first
sensitized set comprising at least a program code
statement that 1s relationally connected to the correct
variable, that 1s executed 1n the first execution cycle,
and that 1s 1n the error set; and

for each program code statement 1n the first sensitized set,

applying a scaling function to the priority value asso-
cilated with the 1dentical program code statement 1n the
error set, the scaling function setting a reduced com-
puted probability that the associated program code
statement 1n the program code 1s the error source of the
error variable.

6. The method of claim 5 wherein the scaling function
adds a constant value to the I priority value associated with
the 1dentical program code statement in the error set.

7. The method of claim 5 wherein a second sensitized set
1s additionally obtained for the error variable, the second
sensitized set comprising at least a program code statement
that 1s relationally connected to the error variable, that is
executed 1n the first execution cycle, and that 1s 1n the error
set, and for each program code statement in the second
sensitized set, the scaling function 1s applied to the priority
value associated with the i1dentical program code statement
in the error set.

8. The method of claim § wherein a plurality of execution
cycles prior to the error cycle are utilized to assign the
priority values.

9. The method of claim 5 wherein a plurality of correct
variables are utilized to assign the priority values.

10. The method of claim 1 wherein the program code 1s
hardware development language (HDL) code.

11. A method for aiding debugging of program code 1n a
computer system, the computer system comprising an input
system and an output system, the program code comprising
a plurality of program code statements that are repetitively
executed by way of a plurality of execution cycles, the
method comprising:

utilizing the input system to indicate an error variable in

the program code, the error variable containing an error
value that differs from a first desired value;

obtaining an error cycle that 1s an execution cycle 1n
which the error variable obtains the error value;

obtaining an execution set comprising all program code
statements that are executed 1n the error cycle;

utilizing the program code statements in the execution set
to generate an error set of program code statements,

US 7,013,457 B2

11

every program code statement 1n the error set being 1n
the execution set and also being relationally connected
to the error variable;

assigning a priority value to each program code statement

in the error set, each priority value indicating a com-
puted probability that the associated program code
statement 1n the error set 1s an error source of the error
variable; and

output system presenting each statement 1n the error set

based on the relative ordering of the priority value of
the program code statement to the other priority values
of the other program code statements 1n the error set.

12. The method of claim 11 wherein the statements 1n the
error set are presented 1 order from a most-likely error
source to a least-likely error source.

13. The method of claim 11 wherein each statement 1n the
error set 1s presented with the associated priority value.

14. The method of claim 11 wherein the program code
comprises a correct variable, the correct variable having a
value that agrees with a second desired value in the error
cycle, and wherein the step of assigning the priority value to
cach program code statement in the error set comprises:

for a first execution cycle prior to the error cycle, obtain-

ing a first sensitized set for the correct variable, the first
sensitized set comprising at least a program code
statement that 1s relationally connected to the correct
variable, that 1s executed 1n the first execution cycle,
and that 1s 1n the error set; and

for each program code statement 1n the first sensitized set,

applying a scaling function to the priority value asso-
cilated with the identical program code statement 1n the
error set, the scaling function setting a reduced com-
puted probability that the identical program cede state-
ment 1s the error source of the error variable.

15. The method of claim 14 wherein the scaling function
adds a constant value to the priority value associated with
the related program code statement 1n the error set.

16. The method of claim 14 wherein a second sensitized
set 1s additionally obtained for the error variable, the second
sensitized set comprising at least a program code statement
that 1s relationally connected to the error variable, that is
executed 1n the first execution cycle, and that 1s in the error
set, and for each program code statement in the second
sensitized set, the scaling function 1s applied to the priority
value associated with the i1dentical program code statement
in the error set.

17. The method of claim 14 wherein a plurality of
execution cycles prior to the error cycle are utilized to assign
the priority values.

18. The method of claim 14 wherein a plurality of correct
variables are utilized to assign the priority values.

19. The method of claim 11 wherein the program code 1s
hardware development language (HDL) code.

20. A computer system comprising:

a Processor;

an output system for presenting information to a user;

an 1put system for obtamning data from the user; and

a memory for storing code and data for the processor, the

Memory comprising:

program code comprising a plurality of program code
statements,

debug information about the program code;

an execution system for generating the debug informa-
tion; and

a prioritizing system, executed by the processor, that
utilizes the debug information to perform the fol-
lowing:

10

15

20

25

30

35

40

45

50

55

60

65

12

utilizing the mnput system to indicate an error vari-
able 1n the program code, the error variable con-
taining an error value that differs from a {first
desired value;

obtaining an error set of the error variable, the error
set comprising a subset of the program code
statements, each program code statement 1n the
error set being relationally connected to the error
variable;

assigning a priority value to each program code
statement 1n the error set, each priority value
indicating a computed probability that the associ-
ated program code statement 1s an error source of
the error variable; and

the output system presenting each program code
statement 1n the error set based on the relative
ordering of the priority value of the program code
statement to the other priority values of the other
program code statements in the error set.

21. The computer system of claam 200 wherein the pro-
oram code statements 1n the error set are presented 1n order
from a most-likely error source to a least-likely error source.

22. The computer system of claim 20 wherein each
program code statement 1n the error set 1s presented with the
associated priority value.

23. The computer system of claim 20 wherein the pro-
ogram code 1s repetitively executed by the execution system
in a plurality of execution cycles, and obtaining the error set
COMPIISES:

obtaining an error cycle that 1s an execution cycle 1n

which the error variable obtains the error value;
obtaining an execution set comprising all program code
statements that are executed 1n the error cycle; and

utilizing the program code statements 1n the execution set
to generate the error set, every program code statement
in the error set being 1n the execution set and also being,
relationally connected to the error variable.

24. The computer system of claim 23 wherein the pro-
oram code comprises a correct variable, the correct variable
having a value that agrees with a second desired value in the
error cycle, and wherein the step of assigning the priority
value to each program code statement in the error set
COMPriSes:

for a first execution cycle prior to the error cycle, obtain-
ing a first sensitized set for the correct variable, the first
sensitized set comprising at least a program code
statement that 1s relationally connected to the correct
variable, that 1s executed in the first execution cycle,
and that 1s 1n the error set; and

for each program code statement 1n the first sensitized set,
applying a scaling function to the priority value asso-
cilated with the 1dentical program code statement 1n the
error set, the scaling function setting a reduced com-
puted probability that the associated program code
statement 1n the program code 1s the error source of the
error variable.

25. The computer system of claim 24 wherein the scaling
function adds a constant value to the priority value associ-
ated with the identical program code statement 1n the error
set.

26. The computer system of claim 24 wherein a second
sensitized set 1s additionally obtained for the error variable,
the second sensitized set comprising at least a program code
statement that 1s relationally connected to the error variable,
that 1s executed 1n the first execution cycle, and that 1s 1n the
error set, and for each program code statement 1n the second

US 7,013,457 B2
13 14

sensitized set, the scaling function 1s applied to the priority 28. The computer system of claim 24 wherein a plurality
value associated with the i1dentical program code statement of correct variables are utilized to assign the priority values.
in the error set. 29. The computer system of claim 20 wherein the pro-

27. The computer system of claim 24 wherein a plurality gram code 1s hardware development language (HDL) code.

of execution cycles prior to the error cycle are utilized to 5
assign the priority values. ok k% ok

	Front Page
	Drawings
	Specification
	Claims

