US007010617B2

a2 United States Patent (10) Patent No.: US 7,010,617 B2

Kampe et al. 45) Date of Patent: Mar. 7, 2006
(54) CLUSTER CONFIGURATION REPOSITORY 6,151,688 A * 11/2000 Wipfel et al. 714/48
6,324,654 B1* 11/2001 Wahl et al. ..cveveverveenn.. 714/6
(75) Inventors: Mark A. Kampe? I .0s Angeles} CA 6?338?146 Bl * 1/2002 Johnson et al. ...covvn........ 714/4
(US); Frederic Herrmann, Palo Alto 6,401,120 B1* 6/2002 Gamache et al. 709/226
CA ("‘US)_ Gia-Khanh Ngu}en San ’ 6,594,786 B1* 7/2003 Connelly et al. 714/50

Jose, CA (US); Frederic Barrat, Foster OTHER PURIICATIONS

City, CA (US); Ramachandra |
Bethmangalkar, Santa Clara, CA (US); XP-002188657—Ralph Droms et al, “DHCP Failover Pro-

Ravi V. Chitloor, Santa Clara, CA (US) tocol,” Interne‘t Draft, Internet Engineeriqg Task Force,
Network Working Group, The Internet Society, pp. 1-119,

(73) Assignee: Sun Microsystems, Inc., Pala Alto, CA Mar. 2000.
(US) XP-002941302—“Jin1™ Architectural Overview, Technical

White Paper,” Sun Microsystems, pp. 1-21, Jan. 1999.
(*) Notice: Subject to any disclaimer, the term of this XP-002188658—Jim Plas, “Build a High-Availability Web
patent is extended or adjusted under 35 Site with MSCS and IIS 4.0,” Windows & .Net Magazine,

U.S.C. 154(b) by 834 days. pp. 1-3, Jun. 1999,
XP-004142121—A.W. van Halderen et al, “Hierarchical
(21) Appl. No.: 09/846,250 resource management in the Polder metacomputing Initia-
tive,” Parallel Computing 24, pp. 1807-1825, 1998.
(22) Filed: May 2, 2001 XP-002149764—R. Droms, “Dynamic Host Configuration

Protocol,” Network Working Group. pp. 1-19, Mar. 1997.
(65) Prior Publication Data

* cited by examiner
US 2001/0056461 Al Dec. 27, 2001

Primary Fxaminer—Glenton B. Burgess
Related U.S. Application Data Assistant Examiner—Yasin Bargadle

(60) Provisional application No. 60/201,209, filed on May gjg ﬁ;{aggjy’a‘;tgz”ﬁ;: 51; ilr T&Kﬁm A. Lembke; William J.
2, 2000, provisional application No. 60/201,099, filed > 108

on May 2, 2000. (57) ABSTRACT

(51) Int. CL.
GOGF 15/16 (2006.01) A system for providing real-time cluster configuration data
(52) US.Cl oo, 709/248: 709/201: 709/208: within a clustered computer network including a plurality of
? ? 709 /21:): clusters, including a primary node 1n each cluster wherein
(58) Field of Classification Search 709/200 the primary node includes a primary repository manager, a
709/201=203. 217. 208-213. 220-223 248? secondary node 1n each cluster wherein the secondary node
? ? 71; .46 f 4_16 includes a secondary repository manager, and wherein the

secondary repository manager cooperates with the primary
repository manager to maintain information at the secondary
(56) References Cited node consistent with information maintained at the primary
node.

See application file for complete search history.

U.S. PATENT DOCUMENTS

5,862,348 A * 1/1999 Pedersen 709/229 13 Claims, 2 Drawing Sheets
rly 1
(§0 —k Cluster 6O 1 \'
! Eg _lH Nade - 1 (Frimary) Node - 2 (Secondery) ‘I .
Primary Repository Manager ” “L Secondary Reposhory Managsr i
' 2 88 T F
| X
Primary Servicss Sacondary Services
ot .,
Primary Repesitory Sacondary Repository
[L
72 1 Nods - n W
™ | Repoaitory Agent
k \ A

U.S. Patent Mar. 7, 2006 Sheet 1 of 2 US 7,010,617 B2

‘H)k
U e —

Network with Muitiple Ciusters

30 j
Cluster - 1 Ciluster - 2
O O Q |

20

i

=
Q_

4() \
N
Cluster n

, |O Q B
e

1 B

y

Fig. 1

U.S. Patent Mar. 7, 2006 Sheet 2 of 2 US 7,010,617 B2

20]

50 Cluster 60
- - -——‘——-—————"—"'————__N\l
[Node - 1 (Primary)

i 52 r
| i

- |l Primary Repository Manager

DG

Primary Services

e

Secondary Services

f 54 ’ |
54

Secondary Repository

Primary Repository

70 ™
S)

Node - n

72 |
B EEE =& _kl\ Repository Agent |
' |

Fig. 2

UsS 7,010,617 B2

1
CLUSTER CONFIGURATION REPOSITORY

CROSS-REFERENCE TO RELATED
APPLICATTONS

This application claims the benefit of U.S. Provisional
Patent Application No. 60/201,209 filed May 2, 2000, and
entitled “Cluster Configuration Repository,” and U.S. Pro-
visional Application No. 60/201,099, filed May 2, 2000, and
entitled “Carrier Grade High Availability Platform™, which
are hereby incorporated by reference.

BACKGROUND OF THE INVENTION

1. Field of the Invention

This mvention relates to data management for a carrier-
orade high availability platform, and more particularly, to a
repository system and method for the maintenance of, and
access to, cluster configuration data in real-time.

2. Discussion of the Related Art

High availability computer systems provide basic and
real-time computing services. In order to provide highly
available services, peers 1 the system must have access to,
or be capable of having access to, configuration data in
real-time.

Computer networks allow data and services to be distrib-
uted among computer systems. A clustered network provides
a network with system services, applications and hardware
divided into nodes that can join or leave a cluster as is
necessary. A clustered high availability computer system
must maintain cluster data 1n order to provide services in
real-time. Generally this creates large overhead and com-
mitment of system resources and the need for additional
hardware to provide the high speed access necessary. The
additional hardware and system complexity can ultimately
slow system performance. System costs are also increased
by the hardware and complex software additions.

SUMMARY OF THE INVENTION

The present invention is directed to a system for providing,
real-time cluster configuration data within a clustered com-
puter network that substantially obviates one or more of the
problems due to limitations and disadvantages of the related
art. An object of the present mmvention i1s to provide an
innovative system and method for providing real-time stor-
age and retrieval of cluster configuration data and real-time
recovery capabilities 1in the event a master node of a cluster,
or 1ts conflguration data, 1s 1naccessible due to failure or
corruption.

It 1s therefore an object of the present invention to provide
real-time access and retrieval of cluster configuration data.

It 1s also an object of the present invention to provide
primary and secondary repositories and repository managers
to eliminate down time from a single-point-of-failure.

A further object of the present invention 1s the ability for
external management and configuration operations to be
initiated merely by updating the information kept in the
repository. For example, an application can register its
interest 1 specific information kept in the repository and
will then be automatically notified whenever any changes in
that data occur.

Another object of the present invention i1s to allow the
repository to be used by the high availability aware appli-
cations as a highly available, distributed, persistent storage
facility for slow-changing application/device state informa-

10

15

20

25

30

35

40

45

50

55

60

65

2

tion (such as calibration data, software version information,
health history, and administrative states).

Additional features and advantages of the invention will
be set forth 1n the description, which follows, and 1n part will
be apparent from the description, or may be learned by
practice of the mvention. The objectives and other advan-
tages of the invention will be realized and attained by the
structure particularly pointed out in the written description
and claims hereof as well as the appended drawings.

To achieve these and other advantages and 1in accordance
with the purpose of the present invention, as embodied and
broadly described, the invention includes a system {for
providing real-time cluster configuration data within a clus-
tered computer network includes a plurality of clusters,
including a primary node in each cluster wherein said
primary node includes a primary repository manager, a
secondary node 1n each cluster wherein said secondary node
includes a secondary repository manager, and wherein said
secondary repository manager cooperates with said primary
repository manager to maintain information at said second-
ary node consistent with information maintained at said
primary node.

In another aspect, a method i1s presented for providing
real-time cluster configuration data within a clustered com-
puter network including a plurality of clusters, including the
steps of choosing a primary node 1n each cluster wherein the
primary node includes a primary repository manager, choos-
ing a secondary node 1n each cluster wherein the secondary
node includes a secondary repository manager, and causing
the secondary repository manager to cooperate with the
primary repository manager to maintain information at the
secondary node consistent with mmformation maintained at
the primary node.

In another aspect, a computer program product 1s pro-
vided including a computer useable medium having com-
puter readable code embodied therein for providing real-
time cluster configuration data within a clustered computer
network including a plurality of clusters, the computer
program product adapted when run on a computer to eff

cct
steps including choosing a primary node 1n each cluster
wherein the primary node includes a primary repository
manager, choosing a secondary node 1n each cluster wherein
the secondary node includes a secondary repository man-
ager, and causing the secondary repository manager to
cooperate with the primary repository manager to maintain
information at the secondary node consistent with informa-
fion maintained at the primary node.

In a further aspect, the invention provides a computer
program product mcluding a computer useable medium
having computer readable code embodied therein for pro-
viding real-time cluster configuration data within a clustered
computer network comprising a plurality of clusters, the
computer program product including means for choosing a
primary node 1n each cluster wheremn the primary node
includes a primary repository manager, means for choosing
a secondary node 1n each cluster wherein the secondary node
includes a secondary repository manager, and means for
causing the secondary repository manager to cooperate with
the primary repository manager to maintain information at
the secondary node consistent with information maintained
at the primary node.

Thus, 1n accordance with an aspect of the invention, a
cluster configuration repository 1s a software component of
a carrier-grade high availability platform. The repository
provides the capability of storing and retrieving configura-
tion data in real-time. The repository 1s a highly available
service and it 1s distributed on a cluster. It also supports

UsS 7,010,617 B2

3

redundant persistent storage devices, such as disks or flash
RAM. The repository further provides applications with a
simple application programming interface (API). The primi-
tives are essentially elementary record-oriented data man-
agement functions: creation, destruction, update and
retrieval.

It 1s to be understood that both the foregoing general
description and the following detailed description are exem-
plary and explanatory and are intended to provide further
explanation of the mvention as claimed.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are included to pro-
vide a further understanding of the invention and are 1ncor-
porated 1n and constitute a part of this specification, illustrate
embodiments of the invention and together with the descrip-
tion serve to explain the principles of the invention. In the
drawings:

FIG. 1 1s a diagram 1llustrating a clustered high availabil-
ity network.

FIG. 2 1s a diagram illustrating a single cluster with
n-nodes, including a primary and secondary node.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

Reference will now be made in detail to the preferred
embodiments of the present 1invention, examples of which
are 1llustrated in the accompanying drawings.

The present invention, referred to 1n this embodiment as
the cluster configuration repository, 1s a software component
of a carrier-grade high availability platform. A main purpose
1s to provide real-time retrieval of configuration data from
anywhere within the cluster. The cluster configuration
repository 1s a fast, ligchtweight, and highly available per-
sistent database that 1s distributed on the cluster and allows
data 1n various forms such as structure, and table to be stored
and retrieved. Using a carrier-grade high availability event
service, the cluster configuration repository can also notily
applications whenever repository data 1s modified. In addi-
fion, 1t can support redundant persistent storage devices,
such as disks or flash RAM.

The cluster configuration repository also provides appli-
cations within the cluster a simple API. The primitives are
essentially elementary record-oriented data management
functions such as creation, destruction, update and retrieval.
In order to satisfy the performance requirements for some
fime-critical cluster configuration repository services, the
cluster configuration repository offers two types of APIs: a
common base API, and a real-time API. The common base
API set includes a set of primitives that are not performance-
critical. The real-time API, on the other hand, guarantees
high performance for read operations of repository data.

The cluster configuration repository must be highly avail-
able within the carrier-grade high availability platform. To
support such a requirement, the cluster configuration reposi-
tory managers should be available 1n a primary/secondary
mode to eliminate the possibility of the single-point-of-
failure. This primary/secondary configuration allows a sec-
ondary 1nstance of the repository to always be available to
replace the master repository, should 1t ever fail.

A key role of the cluster configuration repository in the
carrier-grade high availability platform 1s that many external
management and configuration operations can be initiated
merely by updating the information kept in the cluster
conflguration repository. An application can register its

10

15

20

25

30

35

40

45

50

55

60

65

4

interest 1n specific mformation kept in the cluster configu-
ration repository and will then be automatically notified
whenever any changes 1n that data occurs. Following the
notification, the application can take appropriate actions.

Aside from storing configuration data, the cluster con-
figuration repository can also be used by the HA-aware
applications as a highly available, distributed, persistent
storage facility for slow-changing application/device state
information (such as calibration data, software version infor-
mation, health history, and administrative states).

Referring to FIG. 1, a highly available network 10 1s
divided 1nto clusters 20, 30 and 40. Each cluster 20, 30, and
40 are organizations of nodes 22. Nodes 22 are organized
within each cluster to provide highly available software
applications and access to hardware.

Referring to FIG. 2, a cluster i the present invention 1s
normally made up of at least a primary node 50 and a
secondary node 60. Core cluster services are provided as
primary services 56. A back-up copy 1s provided as second-
ary services 66. Within these copies of core cluster services
the primary services 56 include the primary repository
manager 52 and the secondary services 66 include the
secondary repository manager 62. The primary services 56,
including the primary repository manager 52, are generally
located on the primary node 50. The primary repository
manager 352 1s responsible for: managing the persistent
storage of the repository data on disk; maintaining an
in-memory copy of the entire repository to guarantee high-
performance for read operations; and synchronizing the
repository updates.

The secondary repository manager 62, on the other hand,
1s generally located on the secondary node 60 and keeps both
an in-memory copy of the repository data 64 and a disk copy
of the repository data, each synchronized with those main-
tained by the primary manager. This implies that the sec-
ondary manager maintains 1ts own persistent data store. The
two repository managers 52 and 62 cooperate to (1) provide
highly-available repository services, and (2) make sure that
when the primary manager fails, the secondary manager will
have consistent and up-to-date repository mformation to
continue offering the cluster configuration repository ser-
vices to its clients.

Repository managers 52 and 62 run on two nodes 50 and
60 (with access to local disks) of the cluster. Each of the
remaining nodes 70 run a repository agent 72 that interfaces
with the primary repository manager 52 to serve its local
clients. Therefore, the cluster configuration repository cli-
ents, other than clients on nodes 50 and 60, never interact
directly with the repository managers 52 and 62. They
always contact the local repository agent 72 to get the cluster
conilguration repository services. Each repository agent 72
handles an in-memory software cache of priority repository
data and can handle read requests by 1itself. However, to
ensure proper serialization among concurrent updates, all
repository data updates are managed by the primary reposi-
tory manager 52 only. The repository agents 72, thereby,
forward all write/update requests to the primary repository
manager 52.

An 1mportant requirement of the cluster configuration
repository service 1s to guarantee the consistency of the
information kept by the two repository managers 52 and 62.
This requirement remains even 1n the presence of undesir-
able events such as a failure of a repository manager 52 or
62, as well as failures 1n the data repositories 54 or 64. The
cluster configuration repository design satisiies this require-
ment by enforcing “all or nothing” write semantics. The
client sends the data to be written/updated to the primary

UsS 7,010,617 B2

S

manager 52 only. The primary manager 52 works with its
secondary manager 62 counterpart and validates the suc-
cessful completion of a write operation only when both
primary manager 532 and secondary manager 62 have suc-
ceeded the operation. In case of failure of one manager, the
other manager rolls back the effect of the operation and
returns 1ts repository to the state prior to the initiation of
write operation.

The primary repository manager 52 and secondary reposi-
tory manager 62 support the cluster configuration repository
services 1n a highly available manner. There can be several
ways ol assigning these repository managers to the cluster
nodes. The following approach 1s a preferred embodiment.

The carrier-grade high availability platform has various
primary services 56 including the cluster configuration
repository that must be available 1n the form of primary/
secondary 56 and 66, c.g., the Component Instance/Role
Manager (CRIM). It 1s desirable that the primary instances
of these services 56 are co-located in the same node. It 1s
also desirable that the secondary instances 66 are co-located
on a node as well. The best possible location for the primary
instances of these services 56 1s the master or primary node
50 of the cluster. The carrier-grade high availability platform
includes a cluster membership monitor to monitor removal
and joining of nodes into clusters (due to failure, repair
completion, or addition of a new node). The cluster mem-
bership monitor elects two nodes with special responsibili-
ties: (1) Primary (Master) node 50, and (2) Secondary (Vice
Master) node 60. It is preferred to assign the master node 50
to run the primary instances for all system services.

The secondary node 60 (which i1s an already-elected
backup for the primary node 50) is also a preferred location
to run the secondary instances of these services 66. When the
primary 1nstance of any of these services fails, this failure
will be interpreted that the primary node 50 1s incapable of
hosting carrier-grade high availability system services,
meaning that all primary instances of system services 56
should be failed over to the secondary node 60. In other
words, after a failure in any of the system services 56, the
cluster membership monitor will be notified to switch over
the master role to the secondary node 60. Then, the cluster
membership monitor will elect a new secondary master node
and secondary instances of the system services will be
recreated 1n the newly elected secondary master node.

The primary repository manager 52 runs in the master
node 50 of the cluster, and the secondary repository manager
62 runs in the secondary node 60. In other words, the failure
of the primary repository manager 1s translated to the failure
of the master node and will be handled 1n that context.
However, the cluster configuration repository should include
mechanisms for handling various failures of 1ts components.

When a cluster configuration repository service 1s started
(for example during cluster initialization), it will start with
an empty repository. The repository can then be populated
through OAM&P (Operation, Administration, Maintenance
and Provisioning). However, a second embodiment provides
that some minimal repository information 1s included in the
boot 1mage where 1t can be used as the 1nitial repository. The
initial repository can, for example, include the information
about the configuration of other essential carrier-grade high
availability system services. The rest of the repository can be
built later with the help of the clients themselves or
OAM&P.

There are two possible upgrade styles during a software
upgrade process: (1) a rolling upgrade, and (i1) a split-mode
upgrade. During a rolling upgrade the services are being,
upgraded incrementally (one node at a time), thus, no

10

15

20

25

30

35

40

45

50

55

60

65

6

specific protocol 1s needed to keep the cluster configuration
repository service available to the whole cluster. However,
during the split-mode upgrade the cluster 1s divided 1nto two
semi-clusters; one running the new release (new domain),
and the other running the previous release (old domain). It
1s then 1nevitable to have two disjoint cluster configuration
repository services, one for each domain. The cluster con-
figuration repository supporting the new domain will ini-
tialize 1ts repository using the same process as the cluster
conilguration repository initialization discussed earlier. This
newly created cluster configuration repository will be 1ni-
tialized using the repository mmformation in the boot-image
or through OAM&P. It 1s 1important to notice that there are
no automatic repository data exchanges between the two
cluster configuration repositories. The new cluster configu-
ration repository populates its data directly from the client or
OAM&P, but not from the cluster configuration repository
of the old domain. After the completion of the upgrade
process, the cluster conflguration repository representing the
old domain dies out.

In a preferred embodiment, clients view the repository
data as a set of tables. A table 1s represented as a regular file
on a Unix-like file system. Each record (i.e., a row in the
table) is accessed through a primary key. A hashing tech-
nique 1s used to map the given key into the location of the
corresponding record. A table 1s represented 1n memory as a
set of chunks. A chunk 1s a set of contiguous bytes and can
be dynamically allocated/de-allocated to a table on an as
needed basis.

If a table 1s opened 1n a node with the cached option, it
will be cached 1n the address space of the local repository
agent when the table 1s accessed for the first time. To further
enhance the performance of read operations, the cluster
conilguration repository maps the cached table to the cor-
responding application address spaces using POSIX-like
shared memory facility.

The cluster configuration repository i1s organized as a set
of data tables, which can be accessed 1n a consistent manner
from any node in the cluster. At creation time, i1t can be
requested that a table be persistent. The table 1s then kept on
redundant persistent storage devices. Tables are created with
a given 1nifial size that determines the number of pre-
allocated records. This policy has been chosen to ensure that
the minimal set of vital resources can be pre-allocated at
creation time. Tables may grow dynamically after creation 1t
the necessary resources (i.e. memory and storage space) are
still available.

The name space of the tables 1s the global name space also
used by event channels and checkpoints. Tables are referred
to by their context and name, which are managed by the
Naming Service through the naming API. The name server
entry of a table created as persistent 1s also persistent.

Each table of the cluster configuration repository contains
records of the same composition. A record 1s composed of a
set of columns. Each column 1s represented by a unique
name, which 1s a string. The value of a column may be of the
following types: signed and unsigned number types (8, 16,
32 and 64 bit), string (fixed size array of ASCII characters),
and fixed-length raw data. A string 1s null-terminated, there-
fore its length (the number of characters before the null
character) is variable and may be less than the size of the
array which 1s fixed and corresponds to the resources
allocated for the string.

By construction, records 1n a given table all have the same
fixed si1ze. The API design assumes that the record size is
between 4 bytes and 4 Kbytes, but does not exclude larger

UsS 7,010,617 B2

7

sizes. As records 1n a given table have the same composition,
this composition 1s also called the record format or the table
schema.

The cluster configuration repository identifies records
using keys. One specific column of the record format 1s the
record key. This particular column must be of type string,
and 1ts value 1s the unique 1dentifier of a record within the
table. The only way to search for a given record 1s by
specitying its key. Each table 1s created with an associated
hash imndex used to perform these lookups. The number of
hash buckets (size of the index) can be specified at the time
the table 1s created.

The repository allows an application to obtain a private
copy of a record. The API supports the retrieval of any
number of columns of a given record. This helps optimizing
the access cost by avoiding the transfer of an entire (poten-
tially large) record.

A record 1s created by writing a record with a key which
does not exist 1n the table yet. Two local or concurrent write
operations of the same record are serialized at some point
(no interleaving occurs). When a record write operation
successtully returns, the record has been committed to the
redundant persistent storage. Subsequent reads of that record
on any node return the updated data. If the write fails, the
cluster configuration repository guarantees that the record
has not been committed. If a read operation 1s 1ssued
concurrently with a write, 1t returns either the old values
(before the modification) or the new values (after the modi-
fication), but not a mix of old and new values.

The repository also supports updates of any number of
columns of a record. This means the whole record doesn’t
have to be rewritten just to update one column. In general,
change to the repository incurs a notification to the appli-
cations 1n the form on an event.

A bulk update 1s an operation 1n which a large number of
modifications are done to the repository. In order to optimize
the cost of this operation, the process 1ssues a bulk update
start request, makes the individual modifications, then 1ssues
a bulk update end operation.

After the start primitive, the modifications are done using
the usual primitives of the API. However, their effects may
not be propagated throughout the cluster upon return from
these primitives. This means that read operations on some
other nodes may return the values as they were before the
modifications. To simplify the management of concurrent
modifications by other applications, only one process in the
cluster can engage a bulk update at a time, and other
processes will get an error code 1f they 1ssue a bulk update
start request.

When a process starts a bulk update, it speciiies whether
updates from other processes are still possible. If they are,
individual writes can be interleaved within a bulk update
without compromising the atomicity of any writes and reads.
The only difference 1s that individual updates are 1mmedi-
ately propagated throughout the cluster.

The end primitive completes the bulk update operations,
previously started by the same process. It returns when all
the modifications 1ssued subsequent to the start point are
propagated throughout the cluster. It also allows a new bulk
update to be 1ssued. If a process terminates for any reason
(¢.g., exit or crash) and it was in the middle of a bulk update
operation, an 1mplicit bulk update end operation i1s per-
formed. The update operations already performed remain
valid (no rollback).

In contrast to the non-bulk update operations, modifica-
tions made within a bulk update do not generate events, only
one notification event 1s sent after the bulk update end is

10

15

20

25

30

35

40

45

50

55

60

65

3

issued. If the bulk update end was made implicitly by the
cluster configuration repository (i.e. the application process
crashes), a special event 1s sent to tell applications that the
bulk update 1s over and that i1t did not finish as planned.

Applications with critical time constraints require read
access 1n a few hundreds of nanoseconds. A real-time API 1s
provided to provide applications with faster mechanisms to
retrieve data. It introduces new objects such as handles,
column 1ds and links. It does not provide a real-time write
operation.

An application accessing a table for the first time can
request that the table be cached. If real-time access 1is
required, the data needs to be present in memory on the local
node, therefore the table must be cached. Using the real-time
API on a non-cached table returns an error.

Caching a table has an 1mpact on the memory consump-
tion of both the local node and the main server. On the local
node, the cache 1s populated on a per-request basis. There-
fore, records that haven’t been read once are not present on
the local node and need to be fetched from the main server
the first time they are accessed. On the main server, if the
table 1s opened as cached, the full table 1s loaded into
memory when the open call 1s performed. It 1s unloaded
from memory when the table 1s closed. In other words, 1if the
table 1s not cached, there 1s no in-memory representation of
the table on the cluster and all operations must be performed
on the persistent storage. It can be seen as a trade-off
between performances and memory consumption.

If a table 1s opened by multiple processes, but only one
wants it cached, caching has priority. In such a case, the table
1s loaded 1n memory of the main server and cached on the
node where that application 1s running. Memory for the
cache and on the main server 1s freed when the last appli-
cation requesting caching closes the table.

Handles can be used by the application to memorize the
result of a record lookup. Applications aware of the real-time
API can then use handles to retrieve or update data once the
cost of the initial lookup has been paid.

As a key 15 a string, columns of string type may contain
keys to express persistent relations between records. Such
columns are called links. Cross-table relations can be
expressed using links, with the assumption that the related
table names are known by the application and explicitly
passed to the cluster configuration repository API.

The cluster configuration repository basic API uses the
keys to express persistent references to other records. The
real-time API of the cluster configuration repository inter-
nally associates a link to each one of these keys. The 1nitial
state of a link 1s “unresolved,” a lookup operation is required
to resolve the link by using 1ts associated key. Once
resolved, links allow the process to access data without
performing a lookup, just as handles do. As opposed to
handles, links are internal cluster configuration repository
enfities that cannot be accessed or copied 1nto the process
address space.

Accessing the repository through the real-time API 1s a
two step process: 1) look up the repository using a key value
to obtain a handle; and 2) use the handle to access the
designated record.

The provided real-time API functions have the same
semantics as the equivalent basic versions. They may return
an ESTALE error condition when used with a handle cor-
responding to a deleted record. A real-time retrieve operation
may return EWOULDBLOCK 1if the data to be read 1s not
in memory on the local node yet.

In the basic API, the cluster configuration repository
recognizes elementary, string and raw data types. The col-

UsS 7,010,617 B2

9

umns composing a record are considered as occupying a row
in the table. Rows all have the same composition and are
described by the data schema for a given table.

The following example illustrates what a schema defini-

tion looks like:

<cluster configuration repositoryI'BL. name="usertable” key="“channel”>

<COL name=*“channel” title=*“Channel Name” type=“char”
<COL name=“frequency’” fitle="Channel Frequency” type="int32_t~
<COL name="category” title=*“Category Name” type=“char”
<COL name="“flags” title=“Attributes™ type=“uint16__t”
<COL name="“encrypt” title=“Encryption key” type="“uint8_ t”
<COL name="“sector” title=“Sector” type=“char”

</cluster configuration repositoryI'BL>

The declaration key="“channel” indicates that the column
named channel 1s the key of the record. The attribute title 1s
optional and can be used to add a text description for the
column. The attribute type 1s one of the supported data types,
as described above. If the field 1s an array, its size 1s specified
by the option attribute size (default value is 1).

The above XML definition corresponds to the following,
table structure:

sector
(14 char)

channel
(12 char)

frequency
(int32__t)

category
(10 char)

flags
(uint16_ t)

cncrypt
(uint8__t)

A schema 1s provided as ASCII text. A parser reads the
text and decodes the composition.

Within the cluster configuration repository, data 1s orga-
nized 1 tables. The table i1dentifier type used by the API 1s
ccr table t. One entry of a given table 1s a record. All the
records 1ncluded 1n a table share the same type and size
specified when the table 1s created.

Tables are referred to by their context and name within the
global name space. An empty table can be created by using
the ccr table create() primitive. ctx specifies the context
where the table 1s to be created and table name 1s the name
of the table in that context. The client must have write
permission for the context ctx. The schema parameter points
to a buffer containing the schema text. The parameter
specifies the number of pre-allocated records 1n the table and
the number of hash buckets used to index the table. If the
operation 1s successiul, the table 1s created and desc 1s its
identifier. The ccr table create() call 1s blocking.

The ccr table unlink() primitive deletes the table
tabl name in the context ctx. The client must have write
permission for the context ctx. This operation will effec-
tively remove the table data when the table 1s no longer open
by any processes.

The ccr table open() primitive gives access to the table
table name 1n the context ctx. If the operation is successtul,
the table identifier 1s returned 1n desc. This 1dentifier’s scope
1s the process calling this primitive. This call 1s blocking.

The ccr table close() primitive removes the access to the
table specified by desc. In other words, after this operation,
subsequent operations using desc or its associated handles
return an error.

The ccr stat() primitive fills in the stat structure with
information about the table specified by desc. The fields uid,
o1d are the credentials of the creator of the table, and mode
1s the protection mode specified during creation. flags 1s the
current flag status of the table. Part of it 1s mherited from

10

creation (O PERSISTENT), part i1s dynamic
(O CACHED). rows is the number of records in the table.
If the table 1s persistent and stored on disk, disk size is the
number of bytes occupied by the 1image of the table on the
file system. If there 1s no 1mage of the table on a file system,

size=“12" />

size=“10" />

size=“12" />
size=“14" />

20

25

30

35

40

45

50

55

60

65

disk size 1s set to 0. schema size 1s the size in bytes of the
XML text describing the schema of the table.

The ccr get XML() primitive returns in the buffer
xml buffer of size buffer size the ASCII text describing the
schema of the table specified by desc, as passed during the
ccr table create() call. The buffer xml buffer must be large
enough to receive the full text. The ccr stat() call can return
the size of the XML schema description.

Records may be retrieved from the repository by using
their key. Columns of a given record can be retrieved by
specifying the key of the record and the names of the
columns, 1n any order. The operation 1s non-blocking.

The ccr record kget() primitive finds in the table speci-
fied by desc the record whose key value matches the key
parameter and if found, copies in the locations pointed by
the column values array the values of the columns specified
by the column names array. The column names 1n this array
must be column names defined by the table schema, 1n any
order. This primitive i1s blocking.

A “put” operation takes a number of columns of a single
record and commits them to a given cluster configuration
repository table. Atomicity is ensured on a per-record basis.
First, a lookup 1s performed to find out 1f another record with
the same key already exists. If such a record exists, it 1s
overwritten. If it does not exist and specific arguments are
given, a new record (new row) is created, and this may result
in a memory (and storage space) allocation operation. In the
new record, the columns not specified 1n the put operation
are mitialized to default values: integer types have a default
value of 0, raw data filled with O and strings have O as first
character (empty strings). A “put” operation is blocking and
returns only when the write 1s committed to the repository.
From the return of the call and on, read operations are
guaranteed to return the updated values.

The ccr record kput() primitive commits new column
values of a record to the cluster configuration repository.
Atomicity 1s guaranteed on a per-record basis. The desc
parameter specifies the table of data previously opened. By
default, ccr record kput() is used to update existing
records, but 1t can also be used to create a new record by
passing a new Key and setting the bit CCR PUT EXCREAT
of the parameter put flags.

Record destruction 1s performed by calling the ccr re-
cord delete() primitive. When cer record delete() returns,
the record specified by its key has been removed from the
cluster configuration repository table. The ccr record de-
lete() primitive removes the data record identified by key
from the repository. Handles associated to the record
become obsolete. A call to the ccr record delete() primitive
1s blocking.

UsS 7,010,617 B2

11

The cluster configuration repository publishes events on
event channels upon modifications to tables of the reposi-
tory. Using the event API, an application can subscribe to an
event channel to be notified of table changes. There is at
most one event channel where the cluster configuration
repository publishes nofifications for a given table. An
application can ask the cluster configuration repository what
the channel for a particular table 1s, provided it has read
permission on the table. An application can set the event
channel used for the notifications on a table (it associates an
even channel to a table). It needs to have read and write
permissions on the table to do so.

Event channels are managed by the applications (creation,
deletion, etc . . .), therefore access permissions to the
channel are up to the application which creates it. As event
channels are global to the cluster, 1f an application sets the
event channel for a table, other applications on other nodes
can see it and subscribe to it (if they have the proper
permissions). The same event channel can be used for the
notifications of several tables.

The cluster configuration repository exports a default
notification channel. This well-known channel allows to
avold an unnecessary channel declaration when noftifications
on a given table are not subject to any visibility restriction.

When an application removes the association between a
table and a channel, an event of type CCR NOTIFICA-
TION END 1s published to notity all the subscribers. It 1s up
to the subscribers to stop listening, set a new channel for the
table, or ask the cluster configuration repository if a new
assoclation has been made.

The ccr channel get() primitive returns in the buffer
channel the full name of the event channel where the cluster
conflguration repository publishes notifications of table
changes for the table called table name 1n the context ctx. It
there 1S no current association, an error 1S returned. Pro-
cesses can then subscribe to the channel to start receiving
notifications. The caller must have read permissions on the
table. The maximum size of the channel name 1s the maxi-
mum size of a compound name as defined in the naming

APL.
The call 1s blocking.

Upon return from the ccr channel set() primitive, the
cluster configuration repository publishes on the channel
events related to the table table name 1n the context ctx. The
specified event channel must have been created before and
the caller must have read and write permissions on the table.
If an event channel 1s already associated to the table and

channel 1s not CCR NO CHANNEL, an error 1s returned.

Failure of the event subsystem may prevent a notification
of record change from being delivered to a subscribing
application. In such cases, the application will eventually
receive a notification that an event about a change to table
X may have been lost. Then it 1s up to the application to
check whether the records it 1s interested 1n 1n table X have
changed.

The real-time API should only be used on nodes where the
accessed tables are cached.

Data retrieval may be performed in 2 phases: 1) lookup
phase and 2) actual read phase. During lookup phase, the
application specifies the table descriptor and the key of the
record 1t wants to access to obtain a handle on this record.
A handle 1s therefore specific to a table descriptor. Also, it
obtains a column 1dentifier from the column name. A handle
and a column ID defines a “cell” in the table. During the
second phase, the application needs to use the RT API to
obtain the content of the cell.

10

15

20

25

30

35

40

45

50

55

60

65

12

A column ID cannot become stale (unless the table is
deleted and re-created), whereas a handle can become stale
(when the record is deleted). For a handle to be valid, the
table needs to be open. When the table 1s closed, all handles
on that table become 1mmediately stale.

The ccr handle get() primitive performs a lookup in the
table specified by desc and returns a handle to the record
specifled by key. This call 1s blocking.

The ccr handle status() primitive checks the status of
hdl. This call 1s non-blocking.

The ccr cid get() primitive provides column identifiers
from column names in the table specified by desc.

The ccr record hget() primitive copies from the record
specified by hdl the value of the columns specified by cid to
the location specified by the column value pointer array.

The ccr record hput() primitive writes at the columns
specified by the cid array of the record specified by hdl with
the values at the locations pointed by column value. Though
it uses handles and column identifiers, the
ccr record hput() primitive is blocking and does not pro-
vide a real-time write operation.

Links are used to express references between records of
possibly different tables. Links are a cluster configuration
repository internal optimization which allows the repository
to memorize the result of a lookup on one node.

The ccr link resolve() primitive performs a lookup to
find 1n the table 1dentified by destTable the record whose key
value 1s the one 1n the record specified by srcHdI at the
column specified by srcCid. The result of the lookup 1is
stored 1n the administrative data of the cluster configuration
repository and it will be used to avoid further lookups if
ccr link resolve() is called again from any process on the
same node. This call 1s blocking.

The ccr bulkupdate start() primitive indicates that the
process will subsequently 1ssue several modifications to the
repository. The caller may prevent other processes from
making any updates by setting the writer parameter accord-
ingly. The modifications are done using the usual primitives
as described above. However, their effects may not be
propagated immediately throughout the cluster upon return
from these primitives. This means that read operations on
some nodes may return the values as they were before the
modifications. During a bulk update, nofifications are not
sent by the update operations.

To simplily the management of concurrent modifications
by other processes, only one process in the cluster can
engage a bulk update at a time, and other processes will get
an error code when calling this primitive.

The ccr bulkupdate end() primitive completes the bulk
update operation, previously started by the same process by
calling ccr bulkupdate start(). It returns when all the modi-
fications issues after the ccr bulkupdate start() are effective
in the cluster, and a bulk update event is sent. It also allows
a new bulk update to be i1ssued. If a process terminates for
any reason (exit or crash) and it was in the middle of a bulk
update operation, an implicit bulk update end operation 1s
performed.

The browsing API allows exploration of a table. Starting,
from the beginning of the table, it returns an array of keys
of existing records. Then assuming the table schema 1is
known, the record content can be read using the get primi-
fives. Successive calls to a browsing primitive start at the
location of the table where the previous call finished.

The ccr table list() primitive initializes the browser
structure for browsing the table specified by desc. After
initialization, browsing starts at the beginning of the table.
The ccr browse next() primitive copies keys of existing

UsS 7,010,617 B2

13

records to the buffer specified by butfer, from the table and
starting from a position implicitly defined by browser. It
writes at most count keys 1n the buffer, or stops if the end of
the table 1s reached. Keys are strings, therefore their length
1s variable, but all keys take the same space in the buflfer,
which 1s the maximum size for a key defined 1n the table
schema. The return value 1s the actual number of keys
written to the bufler. The browser structure 1s updated to the
new browsing state.

The ccr-debug utility 1s a command-line tool to analyze a
table representation in memory and on a disk (if applicable).
It allows to detect and correct any anomalies 1n a table
content. ccr debug interacts with the cluster configuration
repository to execute the command on the record designated
by key of the table table name.

It 1s be apparent to those skilled 1n the art that various
modifications and variations can be made 1n the system for
providing real-time cluster configuration data within a clus-
tered computer network of the present invention without
departing from the spirit or scope of the mvention. Thus, 1t
1s intended that the present invention cover the modifications
and variations of this mvention provided they come within
the scope of the appended claims and their equivalents.

™

What 1s claimed 1s:

1. A system for providing real-time cluster configuration
data within a clustered computer network comprising a
plurality of clusters, comprising:

a primary node in each cluster wherein said primary node
includes a primary repository manager and a primary
data repository, the primary repository storing a first set
of cluster configuration data in the primary data reposi-
tory;

a secondary node 1n each cluster wherein said secondary
node includes a secondary repository manager and a
secondary data repository, the secondary repository
manager storing a second set of cluster configuration
data 1n the secondary data repository; and

at least one additional node 1n each cluster, wherein said
additional node runs a repository agent, wheremn said
repository agent forwards all write/update requests to
said primary repository manager, and wherein said
additional node includes a client application using the
repository agent as an interface to the primary reposi-
tory manager when accessing the first set of cluster
conilguration data;

wherein said secondary repository manager cooperates
with said primary repository manager to maintain the
second set of cluster configuration data at said second-
ary node consistent with the first set of cluster configu-
ration data maintained at said primary node;

wherein the write/update requests are sent only to said
primary repository manager;

wherein the write/update requests are written by said
primary repository manager and said secondary reposi-

tory manager 1n said first and said second set of cluster
conilguration data, respectively; and

wherein validating of completion of entry of said write/
update requests 1s performed only when imnformation 1s
successfully written by both said primary repository
manager and said secondary repository manager.

2. The system of claim 1, wherein said primary node
further comprises primary services.

3. The system of claim 2, wherein said secondary node
further comprises secondary services providing functional-
ity of the primary services.

10

15

20

25

30

35

40

45

50

55

60

65

14

4. The system of claim 1, wherem said repository agent
includes a software cache of repository data, wherein said
repository data may be quickly accessed by the client
application.
5. The system of claim 1, wherein said primary repository
manager manages the storage of repository data comprising
the first set of cluster configuration data on a first computer-
readable medium, the maintenance of repository data on
memory, and the synchronization of repository updates.
6. The system of claim 5 wherein said secondary reposi-
tory manager manages the storage of repository data on a
second computer-readable medium, and the maintenance of
repository data on memory.
7. The system of claim 6 wherein the repository data in
sald secondary node 1s synchronously up-dated so as to
remain consistent with the repository data of said first node.
8. The system of claim 6 wherein said first and second
computer-readable mediums each include a disc.
9. The system of claim 1, wherein the client application
registers an interest in a portion of the first set of cluster
configuration data and the primary repository manager auto-
matically notifies the client application of any changes 1n the
portion of the first set of cluster configuration data.
10. A method of providing real-time cluster configuration
data within a clustered computer network comprising a
plurality of clusters, comprising the steps of;
choosing a primary node 1n each cluster wherein said
primary node includes a primary repository manager;

choosing a secondary node 1n each cluster wherein said
secondary node includes a secondary repository man-
ager;

causing sald secondary repository manager to cooperate

with said primary repository manager to maintain infor-
mation comprising secondary cluster configuration data
at said secondary node consistent with information
comprising primary cluster configuration data main-
tained at said primary node;

providing a repository agent for each additional node of

cach cluster, wherein the repository agent interfaces
with the primary repository manager 1n its cluster to
access the primary cluster configuration data;

sending write/update information from a client only to

said primary repository manager;
causing said write/update information to be written by
said primary repository manager and said secondary
repository manager 1n said primary and secondary
cluster configuration data, respectively; and

validating completion of the entry of said write/update
information only when the information successtully 1s
written 1n both said primary repository manager and
sald secondary repository manager.

11. A computer program product comprising a computer
uscable medium having computer readable code embodied
theremn for providing real-time cluster configuration data
within a clustered computer network comprising a plurality
of clusters, the computer program product adapted when run
on a computer to effect steps mcluding:

choosing a primary node in each cluster wherein said
primary node mncludes a primary repository manager;

choosing a secondary node 1n each cluster wherein said
secondary node includes a secondary repository man-
ager;

causing sald secondary repository manager to cooperate
with said primary repository manager to maintain infor-
mation comprising secondary cluster configuration data
at said secondary node consistent with information

UsS 7,010,617 B2

15

comprising primary cluster configuration data main-
tamned at said primary node;

providing a repository agent for each additional node of
cach cluster, wherein the repository agent interfaces
with the primary repository manager 1n its cluster to
access the primary cluster configuration data;

sending write/update information from a client only to
sald primary repository manager;

causing said write/update information to be written by
said primary repository manager and said secondary
repository manager 1n said primary and secondary
cluster configuration data, respectively; and

validating completion of the entry of said write/update
information only when the information successtully 1s
written 1n both said primary repository manager and
said secondary repository manager.

12. A computer program product comprising a computer

useable medium having computer readable code embodied
therein for providing real-time cluster configuration data
within a clustered computer network comprising a plurality
of clusters, the computer program product comprising:

means for choosing a primary node in each cluster
wherein said primary node includes a primary reposi-
tory manager;

means for choosing a secondary node in each cluster
wherein said secondary node includes a secondary
repository manager;

10

15

20

25

16

means for causing said secondary repository manager to
cooperate with said primary repository manager to
maintain nformation comprising secondary cluster
configuration data at said secondary node consistent
with information comprising primary cluster configu-
ration data maintained at said primary node;

means for sending write/update information from a client
only to said primary repository manager:

means for causing said write/update mmformation to be
written by said primary repository manager and said
secondary repository manager in said primary and
secondary cluster configuration data, respectively; and

means for validating completion of entry of said write/
update information only when the information success-
fully 1s written by both said primary repository man-
ager and said secondary repository manager.

13. The computer program product of claim 12, further

comprising;

means for providing a repository agent for each additional
mode of each cluster, wherein the repository agent

interfaces with the primary repository manager in 1ts
cluster.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. :7,010,617 B2 Page 1 of 1
DATED : March 7, 2006
INVENTOR(S) : Mark A. Kampe et al.

It is certified that error appears in the above-identified patent and that said Letters Patent Is
hereby corrected as shown below:

Title page,
Item [73], Assignee, “Pala Alto, CA” should be -- Palo Alto, CA --.

Signed and Sealed this

Sixteenth Day of May, 2006

JON W. DUDAS
Director of the United States Patent and Trademark Office

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

