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1
TURBO DECODER PROLOG REDUCTION

This application claims priority under 35 USC §119(¢e)(1)
of Provisional Application No. 60/332,27/0, filed Nov. 14,
2001.

TECHNICAL FIELD OF THE INVENTION

The technical field of this ivention 1s forward error
correction and more particularly turbo decoders.

BACKGROUND OF THE INVENTION

Turbo codes provide forward error correction for many
types of communication systems such as wireless applica-
tions, satellites, and hard disk drives. Turbo decoding
achieves an error performance close to the Shannon limit.
The performance 1s achieved through decoding on multiple
iterations. Each iteration results 1in additional performance
and additional computational delay. Making the turbo
decoder as small and as simple as possible 1s very important
for VLSI implementations.

Turbo encoding 1s accomplished by means of concatena-
tion of convolutional codes. FIG. 1A illustrates an example
of a prior art rate 1/3 parallel-concatenated turbo encoder.
The notation rate 1/3 refers to the configuration of FIG. 1A
in which a single mput bit stream x, 1s converted by the
encoder 1nto a 3-component bit stream. Input data stream
100 passes unmodified to multiplexer input 106. Two recur-
sive systematic convolutional (RSC) encoders 102 and 103
function 1n parallel to transform their input bit streams. The
resulting bit streams after transformation by RSC encoder
102 forms multiplexer input 107 and after transformation by
RSC encoder 103 forms multiplexer input 108. Block 101 1s

an interleaver (I) which randomly re-arranges the informa-
fion bits to decorrelate the noise for the decoder. RSC
encoder 102 generates a p1, bit stream and RSC encoder 103
generates a p2, bit stream. Under control of a turbo control-
ler function multiplexer 104 reassembles the separate bit
streams X, 106, p1, 107 and p2, 108 into the resulting output
bit stream x,/pl1,/p2, 111.

FIG. 1B 1illustrates an example of the RSC encoder
function which 1s a part of the blocks 102 or 103. Input data
stream 120 passes unmodified to become output x, 131.
After transformation by the RSC encoder the resulting bit
streams 131, 132 and 133 1n prescribed combinations form
multiplexer inputs 107 and 108 of FIG. 1A. The precise
combinations are determined by the class of turbo encoder
being implemented, 1/2, 1/3, or 1/4 for example. The action
of the circuit of FIG. 1B 1s depicted by a corresponding
trellis diagram which 1s illustrated 1n FIG. 4 and will be
described 1n the text below.

This transmitted output bit stream 111 of FIG. 1A can be
corrupted by transmission through a noisy environment. The
function of the decoder at the receiving end 1s to reconstruct
the original bit stream by tracing through multiple passes or
iterations through the turbo trellis function.

FIG. 2 illustrates the functional block diagram of a prior
art turbo decoder. A single pass through the loop of FIG. 2
1s one iteration through the turbo decoder. This iterative
decoder generates soft decisions from two maximum-a-
posteriori (MAP) blocks 202 and 203. In each iteration MAP
block 202 gencrates extrinsic information W, 206 and
MAP block 203 generates extrinsic iformation W, , 207.
First MAP block 202 receives the non-interleaved data x,
200 and data p1, 201 as mputs. Second MAP decoder 203
receives data p2, 211 and interleaved x, data 210 from the
interleaver block 208.
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FIG. 3 1llustrates the functional block diagram of a prior
art MAP block. The MAP block of FIG. 3 includes circuit

functions similar to those illustrated in FIG. 2. The MAP
block calculates three vectors: beta state metrics, alpha state
metrics and extrinsics. Both alpha block 302 and beta block
303 calculate state metrics. It 1s useful to define the function
gamma as:

I =X P W) [1]
where: X, 1s the systematic data; P, 1s the parity data; and W,
1s the extrinsics data.

Input 300 to the alpha state metrics block 302 and 1nput
301 to beta state metrics block 302 are referred to as a-priori
inputs. The beta state metrics are generated by beta state
metrics block 303. These beta metrics are generated 1n
reverse order and stored in the beta state random access
memory (RAM) 304. Next, alpha state metrics are generated
by alpha state metrics block 302. The alpha state metrics are
not stored because the extrinsic block 305 uses this data as
soon as 1t 1s generated. The beta state metrics are read from
beta RAM 304 1n a forward order at the same time as the
alpha state metrics are generated. Extrinsic block 305 uses
both the alpha and beta state metrics 1n a forward order to
generate the extrinsics W, - 306.

The variables for the MAP algorithm are usually repre-
sented by the natural logarithm of probabilities. This allows
for simplification of very large scale integration (VLSI)
implementation. The recursive equations for the alpha and
beta state metrics are as follows:

Aks = 111[2 exp{Ar—1 + 1 }]
S

Bﬁ;ps = IH[Z E:Kp{Bk_l + Fk }]
S

where: s 1s the set of states 1n the trellis; and I, 1s as stated
in equation [1] above.

To more clearly understand the operation of the decoder
it 1s helptul to review the operations of the encoder. The data
input to the encoder 1s 1 the form of blocks of ‘n’ 1nfor-
mation bits (n=5114=frame size) and the encoding proceeds
from the zero state of the trellis. After n cycles through the
trellis the encoder ended at some unknown state.

In an encoder without sliding windows, the frame size of
the block contains nxsxd bits. For a frame size n of 5114, a
number of trellis states s of 8 and a number of bits of data
precision d equal to 8 bits, then nxsxd=327,296 bits and N
cycles through the trellis. With sliding windows, the pro-
cessing of each window 1nvolves r+p cycles and rxsxd bats,
where: r 1s the size of the reliability portion of the sliding
window; and p 1s the prolog size. This requires r 1terations
through the trellis. Consider the example where r=128. Then
for the sliding windows case, processing 1nvolves
rxsxd=8192 bits and r+p=j cycles where: j=n/r. Clearly, the
decoder memory size requirements are greatly reduced
through the use of sliding windows at a cost of more cycles.

During encoding a number of tail bits t are appended to
the encoder data stream to force the encoder back to the zero
state. For a constraint length k code, where t=k-1, there are
systematic tail bits for each RSC encoder. Consider the
example of an eight state code where k=4 and t=3. The alpha
state metric block will process the received data from O to
n+2 and the beta state metric block will process the data
from to n+2 to 0.
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In FIG. 3, both the alpha state 302 and beta state 303
metric blocks calculate state metrics. Both start at a known
location 1n the trellis, the zero state. The encoder starts the
block of n information bits, where n 1s the frame size of
5114, at the zero state. After n cycles through the trellis, the
encoder ends at some unknown state.

The beta state metrics are generated first by block 303.
These beta metrics are generated 1n reverse order and stored
in beta state metric RAM 304. Next, the alpha state metrics
are generated by block 302. The alpha state metrics are not
stored because the extrinsic block uses this data as soon as
it 15 generated. The beta state metrics are read from the
memory 1n a forward order at the same time as the alpha
state metrics are generated. The extrinsic block 305 uses
both the alpha and beta state metrics 1n a forward order to
generate the extrinsics W, - 306.

FIG. 4 illustrate a trellis diagram for an 8-state state
encoder depicting the possible state transitions from each
possible state S, =ABC. For example, for state S, ,,
ABC=001. These states are represented 1 FIG. 1B by the
state of the three registers A 121, B 122 and C 123,
respectively. In the decoder, the generation of the alpha state
metrics requires processing the data in a forward direction
through this trellis and the generation of the beta state
metrics requires processing the data in a reverse direction
through this trellis. Initial states in the trellis for forward
traversal are labeled S, . and next states are labeled S, ..
Conversely, 1nitial states in the trellis for reverse direction

traversal are labeled S, . and next states are labeled S, .
The nomenclature X/DEF of 403 and 404 of FIG. 4 refers to

the next bit ‘Y’ inserted at the input X,, 120 of FIG. 1B,
followed by the forward slash, followed by the next three
bits D, E and F generated respectively at the nodes 131, 132,
133 of FIG. 1B.

Turbo decoder processing 1s an iterative process requiring,
multiple cycles until a low bit-error ratio (BER) solution is
obtained. Because the state of the trellis at the start of
processing 1s unknown the probability of the occurrence of
all the states 1n the trellis 1s mnitialized to a uniform constant.
For each pass through the trellis, the probability of occur-
rence of a given state will increase or decrease as conver-
gence to the original transmitted data proceeds. After pro-
cessing through the trellis a number of times a set of states
corresponding to the original transmitted data becomes
dominant and the state metrics become reliable.

FIG. 5 1illustrates a diagram in which the block of size n
1s broken into several smaller pieces. Each piece 1s called a
sliding window (sw) and is composed of two parts. These
two parts are the reliability (r) section 501 and the prolog (p)
section 502. Normally the encoded block starts the trellis 1n
the O state and ends 1n the O state. S 1s the number of states
where S=2" and v 1s the number of encoder memory regis-
ters. The tail bits, are labeled t S03 1n FIG. § where v=t tail
bits are appended to the encoded block to force this condi-
tion.

Decoder processing 1s an iterative process requiring mul-
tiple cycles until a low bit-error ratio solution 1s obtained.
The sliding windows 1n general start at some random
unknown state. The exception i1s the sliding window that
ends with the tail bits. Due to the fact that the 1nitial state 1s
unknown 1t 1s necessary to add additional computations
through the trellis to achieve good starting results. Because
the state of the trellis at the start of the prolog 1s unknown
except that the last beta sliding window 1s terminated with
the tail bits, the probability of the occurrence of all the states
in the trellis 1s 1mitialized to a uniform constant. For each
pass through the trellis, the probability of occurrence of a
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ogrven state will increase or decrease during convergence to
the original transmitted data. After processing through the
trellis a number of times equal to p, the prolog size, a set of
states corresponding to the origimnal transmitted data
becomes dominant and the state metrics become reliable.

Recommended sizes for p are 4 to 6 times the constraint
length of the trellis.

For example, if n=4096, r=128, S=16 and the code rate 1s
1/3, then there are 32 slhiding windows and p=30. For
punctured codes such as code rate 1/2, the prolog must grow
for equivalent performance. In this example, the prolog
would grow from 30 to 48. This solution reduces the

memory from 64 k bytes to 2 k bytes at a cost of increasing
the number of trellis stages from 4096 to (128+48)x31+

(128+4)=5588.

Prolog reduction techniques are directed to reducing the
number of passes required through the trellis function to
achieve an acceptable bit error ratio (BER). For voice data
an acceptable BER might be 1000:1, but for data transmis-
sion an acceptable BER 1s more likely 1n the range of
1,000,000:1. The crux of the problem i1s how does the
optimum system 1initialize the states as 1t proceeds through
the successive states 1n the trellis.

Some proposed 1nitialization guidelines are:

1. Setting all zeros as the starting state. This requires no
memory and operates with prolog p=48.

2. Saving all states a and 3 setting the prolog between
the limits p=0 through p=48. This requires a very large
memory.

FIG. 6 1llustrates 1nitialization of all states of the proceed-
ing beta sliding window. For the first iteration of swA 601,
the states are 1nitialized with a uniform distribution. Sliding
window swA 601 1s processed. For the first iteration of swB
602, the states are 1nitialized with a uniform distribution and
swB 602 1s processed. The final value of the states of swB
602 arec stored into memory. This procedure 1s repeated for
the remaining sliding windows. During the second iteration,
swA 601 is initialized with the stored values of swB 602, and
swA 601 1s processed. During the second iteration, swB 602
1s 1nitialized with the stored values of swC 603 and swB 602
1s processed. This sequence of initialization continues for
cach iteration.

Static state 1nitialization works and gives good results but
it does have difficulties. Because the first iteration 1s 1nitial-
1zed with a uniform distribution and there 1s no prolog, the
first 1teration results are sub-optimum. It will take more
iterations using this technique to achieve the same bit error
rate as with a prolog section. Another difficulty 1s conver-
ogence. I the channel noise i1s too high, then the sliding
window 1nitializations might be incorrectly set leading to
Non-convergence.

Saving all states requires a large amount of memory. For
example 1f S=256, n=4096, w=128, and a fixed-point size of

8 bits, then (4096+128)x256x8x2MAPsx2=262K bits must
be saved.

Saving the states with optimum probability, both alpha
and beta, h=arg(maxXB, ), and storing value h lowers the
memory size required. For S=256, 1t takes 8 bits to store h.
Using this static value for initialization 1s attractive for VLSI
implementation due to the smaller memory requirements.

For the above example only (4096+128)
x8x2MAPsx2=1024 bits are required. The 1mitialization of
the state metrics 1s done by setting the starting state metric
to the highest value and the other states to a lower value. For
example, 1f h=3, then s|3|=16, s[0]=s[1]=s|2]|=s[4]=s][5]=. .
. =s[255]=0.
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These first two approaches use either a full prolog section
or no prolog section. Using a full prolog section requires the
most computational overhead per MAP decode, but 1t gives
the best bit error rate (BER). Using no prolog section
requires the fewest number of operations per MAP; but 1t
ogrves the worst bit error rate.

SUMMARY OF THE INVENTION

Turbo decoders normally have implementations that make
use of sliding windows 1n the calculation of state metrics and
typically apply the sliding windows only to the beta metrics
block. These sliding windows often have both a reliability
component and a prolog component. Use of the prolog
component, while requiring additional decoder hardware,
acts to effectively 1nitialize the successive 1terative processes
directing them to stronger convergence. Reduction of prolog
size to an optimized value has a strong influence on the
improving decoder performance with respect to bit error
rati1o and lowest possible iterations required.

This mnvention optimizes the results of metrics calcula-
tions by: (a) adding a small amount of prolog hardware that
is initialized with data from the previous iteration; and (b)
dynamically scaling prolog initialization through the moni-
toring of extrinsic signal to noise ratio (SNR). This invention
improves bit error ratio (BER) using initialization in the
added prolog section, provides for parallel implementation
of sliding windows decoding and the formation of improved
stopping criteria results.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other aspects of this invention are illustrated in
the drawings, 1n which:

FIG. 1A 1llustrates the block diagram of a prior art turbo
encoder function;

FIG. 1B illustrates the circuit diagram of an RSC encoder
function used 1n the implementation of a turbo encoder of
the prior art;

FIG. 2 1llustrates a lower level functional block diagram
of a conventional turbo decoder of the prior art;

FIG. 3 1llustrates a functional block diagram of a MAP
decoder of the prior art;

FIG. 4 1llustrates breaking a block of size ‘n” into sliding
window blocks of size ‘r’ of the prior art;

FIG. § 1llustrates breaking a frame 1nto sliding windows
for beta metrics calculation of the prior art;

FIG. 6 illustrates a sliding windows 1nitialization tech-
nique of the prior art;

FIG. 7 illustrates a prolog reduction technique;

FIG. 8 1llustrates turbo prolog reduction bit error ratios
techniques;

FIG. 9 illustrates average number of iterations versus
prolog reduction;

FIG. 10 1llustrates ending magnitudes of one window;

FIG. 11 1llustrates starting magnitudes of adjacent win-
dow for next iteration.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS

This mvention describes techniques that may be used to
improve the performance and efficiency of turbo decoder
designs. These techniques act to optimize the results of
metrics calculations by: (a) adding a small amount of prolog
hardware that 1s initialized with data from the previous
iteration; and (b) dynamically scaling prolog initialization
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through the monitoring of extrinsic SNR. An important
aspect of the invention 1s the careful evaluation and opti-
mization of three additional possible approaches to decoder
initialization. These are:

1. Saving best state with optimum probability and use
static values for imnitialization;

2. Saving best state with optimum probability but use
dynamic values for 1nitialization; and

3. Saving best state with optimum probability but use
difference between top two states as value for mitialization.

The present invention proposes a new method that com-
bines the prolog imitialization with a small prolog section.
The required length of the uniform initialized prolog section
of the sliding window normally 1s 4 to 6 times the constraint
length of the encoder. The proposed smaller prolog length
will be 1 the range from 42 to 2 times the constraint length.
The smaller prolog section can be initialized and processed
with good performance. The technique of prolog initializa-
fion with a smaller prolog section can be applied to both the
beta metrics and alpha metrics blocks.

FIG. 7 1llustrates his technique for the beta metrics block.
For the first iteration of swA 701, the states are initialized
with a uniform distribution. Sliding window swA 701 1s
processed. For the first iteration of swB 702, the states are
mnitialized with a uniform distribution and swB 702 1is
processed. The final value of the states of swB 702 are stored
into memory. This procedure 1s repeated for the remaining
sliding windows. During the second 1teration, the prolog p ot
swA 701 1s initialized with the stored values of swB 702, and
swA 701 1s processed. During the second iteration, the
prolog of swB 702 1s imitialized with the stored values of
swC 703 and swB 702 1s processed. This sequence of
initialization continues for each iteration.

FIG. 8 1llustrates the simulation results using different
sizes of prolog according to this invention. Both the beta and
alpha prolog 1nitializations were included 1n these simula-
tions. Three different sizes of prologs were tested: 48, 8, and
2. The plots show both the bit error rate (BER) and the frame
error rate (FER) for 8 iterations, n=1024, w=128 and S=16.
The best results are for a prolog size of 48 and the worst
results are for a prolog size of 2. Clearly, a prolog size of 0
would even be worse. These plots show good performance
using the prolog static 1nitialization technique with a prolog
length of 12 to 2 times the constraint length.

The previous section briefly mentioned how to initialize
the states. The desired state was given a high probability-
related value and the other states were given uniform smaller
values. The difference between the high value and the lower
values 1s important. The magnitude of the difference repre-
sents the probability that the sliding window i1s in the correct
state. The larger the difference, the higher the probability the
system assigns that the sliding window 1s 1n the correct state.
Small differences represent smaller probabilities that the
sliding windows are 1n the correct state. If the difference 1s
zero, then the system has no information regarding the
correctness of the state.

To determine the difference 1n state value magnitudes for
the prolog 1nitialization the system proceeds to initialize the
prolog 1n one of two obvious ways with the correct state or
the 1mcorrect state. If the 1nitialization difference 1s large and
the correct state initialization 1s made, then the sliding
window will decode well. If the 1nitialization difference 1s
large and the incorrect state initialization 1s made, an unfor-
tunate result will follow. It will take many trellis stages of
calculations for the decoder to recover and determine the
correct state. If the channel noise 1s high, then the decoder
could easily fail and not converge to a solution.
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If the 1nitialization difference 1s small and the correct state
initialization 1s made, then the decoding process will pro-
ceed properly. But, the stopping criteria by which a com-
pleted process 1s evaluated will not work optimally because
the extrinsic variance will be larger than expected. If the
initialization difference 1s small and the incorrect state
mitialization 1s made, then the decoder takes several trellis
stages of calculations before it can determine the correct
state. A smaller starting difference will result 1n a more rapid
convergence than a larger starting difference for incorrect
initializations.

There are well known proposed stopping criteria for
measuring the signal to noise ratio (SNR) of the extrinsics
generated from each MAP decode. The calculated SNR 1s a
measure of the probability of the extrinsics. This measure
can be used to dynamically scale the prolog initialization. If
the calculated SNR 1s low, then set the difference of the
prolog initialization to a small value. This will allow the
decoder the ability to correct the incorrect mitialization 1n a
few trellis stages. As the SNR 1ncreases, the prolog 1nitial-
ization differences can also increase. Larger SNR values
represent better probabilities that the decoder i1s 1n the
correct state. One possible dynamic scaling 1s shown 1n

Table 1.

TABLE 1

Extrinsic Value Value
Signal to Assigned to Assigned to
Noise Ratio Best State Other States
X <1 2.0 0.0

1.0 = x <5.0 4.0 0.0

50 &£ x «10.0 3.0 0.0
10.0 = x 16.0 0.0

The trellis state having the highest value 1s detected. This
trellis state 1s the best state. For the next iteration the prolog
section 1s 1itialized with the best trellis state having the
value shown 1 Table 1. This value 1s higher when the
extrinsics signal to noise ratio 1s higher. Other trellis states
are 1nitialized to a uniform value of zero.

FIG. 9 1llustrate the results of this selection. FIG. 9
illustrates the average number of iterations for the turbo
decode process to converge to the correct data versus signal
to noise ratio (SNR) in dBs for three examples for prolog
length and dynamic versus static prolog initialization. Curve
900, where the prolog length 1s 48 with dynamic prolog
initialization, gives the best BER results with a small num-
ber of average number of iterations. For curve 901, where
the prolog length 1s 8 with static prolog initialization, the
average number of iterations i1s always 8. This 1s due to the
large variance in the extrinsics even when the extrinsics have
converged to the correct result. Curve 902 illustrates the case
where the prolog length 1s 8 and 1ncluding dynamic prolog,
initialization. Curve 902 gives virtually 1dentical BER per-
formance as compared with the curve 900, but 1ts average
number of 1terations 1s similar to curve 900.

Another method of dynamic scaling i1s to save both the
index of the best state and the difference between the two
states with the highest values. Both of these values are stored
for every beta and/or alpha sliding window for each MAP
decode. Each pair of data will be used to initialize the
adjacent beta and/or alpha sliding window for the next
iteration. The adjacent sliding window initialization tech-
nique 1s the same as described above. All the states except
for the most likely state (referred to as state h) will be
initialized to a constant value. State h will be 1nitialized with
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the difference value saved from the previous iteration. As the
decoding gets better, the difference between the two highest
magnitudes will continue to grow. This dynamic scaling will
provide stronger estimates of the correct starting states for
cach independent sliding window.

FIG. 10 and FIG. 11 illustrate an example of this type of
dynamic scaling for a decoder. FIG. 10 shows the ending
state value magnitudes of one of the shiding windows. S, ;
has the highest magnitude and S, ¢ has the second highest.
Difference S; ;-S; 5 1001, which 1s 3, 1s saved. FIG. 11
shows the starting state value magnitudes of the adjacent
sliding window for the next iteration after initialization.
Notice that the best state S, ; 1101 is mitialized with the
largest value.

This method has the potential to give better results than
the first method of dynamic scaling. Each window 1is
dynamically scaled independently of each other as compared
with the first method 1n which one difference 1s used for all
sliding windows. This will allow windows with fewer errors
a chance to output bigger differences than windows with
more errors. Because of the iterative nature of turbo decod-
ers, this method could achieve better BER results.

Turbo decoder implementations clearly are simplified
using the sliding window technique. Three 1implementation
ideas have been described here with regard to the efficient
use of the number of iterations required in the processing.
Secondly, shortening the prolog section and initializing 1t
with data from a different sliding window 1s effective.
Thirdly, dynamic scaling of the prolog initialization accord-
ing to the SNR of the extrinsics or the differences between
the magnitudes of the two best states improves results.

What 1s claimed 1s:

1. A method of forward error correction employing turbo
decoding comprising the steps of:

receiving a transmitted bit stream;

iteratively calculating alpha state metrics employing

maximum-a-posteriori (MAP) blocks having a prede-
termined constraint length in a plurality of sliding
windows, each sliding window having a prolog section
and a reliability section, said prolog section having a
length between one half said predetermined constraint
length and twice said predetermined constrain length;
iteratively calculating beta state metrics employing maxi-
mum-a-posteriori (MAP) blocks having said predeter-
mined constraint length 1 a plurality of sliding win-
dows, each sliding window having a prolog section and
a reliability section, said prolog section having a length
between one half said predetermined constraint length
and twice said predetermined constrain length;
measuring a signal to noise ratio for said extrinsics
calculated from each alpha metric sliding window and
a corresponding beta metric sliding window;
cach of said steps of iteratively calculating alpha state
metrics and 1teratively calculating beta state metrics
includes
initializing trellis state probabilities to a uniform level
for said prolog section of a first sliding window, and
initializing trellis state probabilities for said prolog
section of shiding windows after said first sliding
window dependent upon said trellis states at the end
of a prior sliding window and said measured signal
to noise ratio for said extrinsics of said prior sliding
window;

calculating extrinsics from said alpha state metrics and

said beta state metrics; and

reconstructing an original bit stream from said calculated

eXtrinsics.
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2. The method of claim 1, wherein:

cach of said steps of iteratively calculating alpha state
metrics and iteratively calculating beta state metrics
wherein 1nitializing trellis state probabilities for said
prolog section of sliding windows after said first sliding
window 1nitializes a trellis state having the highest
value 1 said prior sliding window to a first value
directly proportional to said measured signal to noise
ratio for said extrinsics of said prior sliding window
and 1nitializes other trellis states to a uniform second
value lower than said first value.

3. The method of claim 2, wherein:

cach of said steps of iteratively calculating alpha state
metrics and 1teratively calculating beta state metrics
wherein 1nitializing trellis state probabilities for said
prolog section of sliding windows after said first sliding
window 1nitializes said trellis states as follows:

Extrinsic Value Value
Signal to Assigned to Assigned to
Noise Ratio Best State Other States
X <1 2.0 0.0
1.0=x <50 4.0 0.0

50 = x <« 10.0 8.0 0.0
10.0 = x 16.0 0.0

where said best state 1s the trellis state of said prior shiding
window having the highest value.

4. A method of turbo decoding comprising the steps of:
receiving a transmitted bit stream;
iteratively calculating alpha state metrics employing
maximum-a-posteriori (MAP) blocks having a prede-
termined constraint length 1 a plurality of shding
windows, each sliding window having a prolog section
and a reliability section, said prolog section having a
length between one half said predetermined constraint
length and twice said predetermined constrain length;
iteratively calculating beta state metrics employing maxi-
mum-a-posteriori (MAP) blocks having said predeter-
mined constraint length 1in a plurality of sliding win-
dows, each sliding window having a prolog section and
a reliability section, said prolog section having a length
between one half said predetermined constraint length
and twice said predetermined constrain length;
cach of said steps of iteratively calculating alpha state
metrics and iteratively calculating beta state metrics
includes
initializing trellis state probabilities to a uniform level
for said prolog section of a first sliding window, and
after each sliding window determining a trellis state
having a highest value and a difference wvalue
between said trellis state having said highest value
and a trellis state having a second highest value, and
mnitializing trellis state probabilities for said prolog
section of sliding windows after said first sliding
window by 1nitializing trellis states other than said
trellis state having the highest value to a uniform first
value and initializing said trellis state having the
highest value 1n said prior sliding window to a
second value equal to said first value plus said
difference value;
calculating extrinsics from said alpha state metrics and
said beta state metrics; and
reconstructing an original bit stream from said calculated
eXtrinsics.
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5. A rate 1/3 turbo decoder comprising:

a first maximum-a-posteriori block having a first 1input, a
second 1nput receiving a first encoded portion of a rate
1/3 multiplexed transmitted bit stream, a third input
receiving an unencoded portion of a rate 1/3 multi-
plexed transmitted bit stream and an output;

a first interleaver having an input receiving said output of
said first maximume-a-posteriorl block and an output;

a second 1nterleaver having an mput receiving an uned-
coded portion of a rate 1/3 multiplexed transmitted bat
stream and an output;

a second maximum-a-posteriori block having a first input
connected to said output of said first interleaver, a
second 1nput receiving a second encoded portion of a
rate 1/3 multiplexed transmitted bit stream, a third
input connected to said output of said second inteleaver
and an output;

a deinterleaver having an input connected to said output
of said second maximume-a-posterior:1 block and an
output connected to said first input of said first maxi-
mum-a-posteriori block;

cach of said first maximum-a-posteriort block and said
second maximume-a-posteriort block operable to:
iteratively calculate alpha state metrics having a pre-

determined constraint length 1n a plurality of sliding,
windows, each sliding window having a prolog
section and a reliability section, said prolog section
having a length between one halt said predetermined
constraint length and twice said predetermined con-
strain length,
iteratively calculate beta state metrics having said pre-
determined constraint length 1n a plurality of sliding
windows, ecach sliding window having a prolog
section and a reliability section, said prolog section
having a length between one half said predetermined
constraint length and twice said predetermined con-
strain length,
measure a signal to noise ratio for said extrinsics
calculated from each alpha metric sliding window
and a corresponding beta metric sliding window,
iteratively calculate alpha state metrics and iteratively
calculate beta state metrics by
initializing trellis state probabilities to a uniform
level for said prolog section of a first shiding
window, and
imitializing trellis state probabilities for said prolog
section of sliding windows after said first sliding
window dependent upon said trellis states at the
end of a prior sliding window and said measured
signal to noise ratio for said extrinsics of said prior
sliding window, and
calculate extrinsics from said alpha state metrics and
said beta state metrics.

6. The rate 1/3 turbo decoder of claim 5, wherein:

cach of said first maximum-a-posteriori block and said
second maximum-a-posteriori block 1s further operable
to:
iteratively calculate alpha state metrics and 1teratively

calculate beta state metrics by nitializing trellis state
probabilities for said prolog section of sliding win-
dows after said first sliding window 1nitializes a
trellis state having the highest value in said prior
sliding window to a first value directly proportional
to said measured signal to noise ratio for said extrin-
sics of said prior sliding window and initializes other
trellis states to a uniform second value lower than
said first value.
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7. The of rate 1/3 turbo decoder claim 6, wherein:

cach of said first maximum-a-posteriort block and said
second maximum-a-posteriorl block 1s further operable
to:

iteratively calculate alpha state metrics and 1iteratively
calculate beta state metrics by initializing trellis state
probabilities for said prolog section of sliding windows
after said first sliding window 1nitializes said trellis
states as follows:

Extrinsic Value Value
Signal to Assigned to Assigned to
Noise Ratio Best State Other States
X <1 2.0 0.0

1.0 =x <5.0 4.0 0.0

50 =x <« 10.0 8.0 0.0
10.0 = x 16.0 0.0

where said best state 1s the trellis state of said prior sliding,
window having the highest value.

8. A rate 1/3 turbo decoder comprising:

a first maximume-a-posteriori block having a first input, a
second 1nput receiving a first encoded portion of a rate
1/3 multiplexed transmitted bit stream, a third input
receiving an unencoded portion of a rate 1/3 mulfi-
plexed transmitted bit stream and an output;

a first interleaver having an mput receiving said output of
said first maximume-a-posteriori block and an output;

a second interleaver having an input receiving an uned-
coded portion of a rate 1/3 multiplexed transmitted bit
stream and an output;

a second maximum-a-posteriori block having a first input
connected to said output of said first interleaver, a
second 1nput receiving a second encoded portion of a
rate 1/3 multiplexed transmitted bit stream, a third
input connected to said output of said second 1nteleaver
and an output;

a demterleaver having an mput connected to said output
of said second maximum-a-posteriori block and an
output connected to said first input of said first maxi-
mum-a-posteriori block;
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cach of said first maximum-a-posterior: block and said
second maximume-a-posteriort block operable to:

iteratively calculate alpha state metrics having a pre-
determined constraint length 1n a plurality of sliding,
windows, each sliding window having a prolog
section and a reliability section, said prolog section
having a length between one half said predetermined
constraint length and twice said predetermined con-
strain length,

iteratively calculate beta state metrics having said pre-
determined constraint length 1n a plurality of sliding
windows, cach sliding window having a prolog
section and a reliability section, said prolog section
having a length between one half said predetermined
constraint length and twice said predetermined con-
strain length,

iteratively calculate alpha state metrics and 1teratively
calculate beta state metrics by

imitializing trellis state probabilities to a uniform
level for said prolog section of a first sliding
window,

after each sliding window determining a trellis state
having a highest value and a difference value
between said trellis state having said highest value
and a trellis state having a second highest value,
and

imtializing trellis state probabilities for said prolog
section of sliding windows after said first shiding
window by 1nitializing trellis states other than said
trellis state having the highest value to a uniform
first value and 1nitializing said trellis state having
the highest value 1n said prior sliding window to a

second value equal to said first value plus said
difference value; and

calculate extrinsics from said alpha state metrics and
said beta state metrics.



	Front Page
	Drawings
	Specification
	Claims

