(12) United States Patent
Ukai et al.

US006993638B2

US 6,993,638 B2
Jan. 31, 2006

(10) Patent No.:
45) Date of Patent:

(54) MEMORY ACCESS DEVICE AND METHOD
USING ADDRESS TRANSLATION HISTORY
TABLE

(75) Inventors: Masaki Ukai, Kawasaki (JP); Aiichiro
Inoue, Kawasaki (JP)

(73) Assignee: Fujitsu Limited, Kawasaki (JP)

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 145 days.

(21) Appl. No.: 10/163,573
(22) Filed: Jun. 7, 2002

(65) Prior Publication Data
US 2002/0184430 A1 Dec. 5, 2002

Related U.S. Application Data

(63) Continuation of application No. PCT/JP99/06910,
filed on Dec. 9, 1999.

(51) Int. CI.

GOGF 12/00 (2006.01)
(52) US.CL ..., 711/210; 711/204; 711/205;
711/313
(58) Field of Classification Search 711/213,

711/204, 205, 3, 210; 712/215
See application file for complete search history.

FOREIGN PATENT DOCUMENTS

IP A-59-056278 3/1984
IP A-59-075482 4/1984
IP A-59-172044 9/1984
IP A-02-024718 1/1990
IP A-04-277846 10/1992
IP A-06-19793 1/1994
IP A-07-036693 2/1995
IP A-07-191911 7/1995

OTHER PUBLICATTONS

Japanese Patent Office, Abstract JP-A-07-191911, Jul.
28,1995,

Japanese Patent Office, Abstract JP-A-02-024718, Jan. 26,
1990.

International Preliminary Examination Report International
Application No. PCT/JP99/06910.

* cited by examiner

Primary Fxaminer—Kevin Verbrugge
(74) Attorney, Agent, or Firm—Staas & Halsey LLP

(57) ABSTRACT

If a base register value, an index register value and a
displacement value are given in the case of operand access,
these values are inputted to an arithmetic unit to generate a
correctly calculated logical address. Simultaneously, a logi-
cal address predicting unit predicts a logical address. An
absolute address 1s predicted based on the predicted logical
address by using an absolute address history table. Access to
a cache memory (LBS) based on an absolute address is made
using the predicted absolute address to obtain cache data.
Then, the arithmetic unit calculates a correct absolute
address using the correctly calculated address using a TLB
and checks 1f the correct absolute address coincides with the
predicted absolute address so as to perform result confirma-
tion of the cache data read from the LBS. In the case of
mstruction fetch, similar processing 1s carried out except
that the calculation of a logical address 1s not performed.

18 Claims, 26 Drawing Sheets

TLB

(24)
RESULT
CONFIRMATION

CACHE DATA

(25)

(56) References Cited
U.S. PATENT DOCUMENTS
5,148,538 A * 9/1992 Celtruda et al. 7117205
5,377,336 A * 12/1994 Eickemeyer et al. 7127207
5,381,533 A * 1/1995 Peleg et al. 7127215
5,392,410 A 2/1995 Liu
5418922 A * 5/1995 Lill weveevveereerrereeerrerennnn, 711/3
6,138,215 A * 10/2000 Check et al. 711/137
6,138,223 A * 10/2000 Check et al. 7117204
6,173,392 B1* 1/2001 Shinozaki 7127207
(19)
[T T }
} :
| R |
|
| OP-EAG :
| — :
l |
3 I
] lLocicaL i
| L REDIGTING | |
|
(18) 1 |uNIT E
: (21) | I
: (22)
[AAHT H LBS
B i I
(20)
A LT

- R

U.S. Patent Jan. 31, 2006 Sheet 1 of 26 US 6,993,638 B2

MS B LSB
19120
LOGICAL
ADDRESS
SEGMENT PAGE BYTE
INDEX INDEX INDEX

PHYSICAL
ADDRESS

FI G, |

US 6,993,638 B2

Sheet 2 of 26

Jan. 31, 2006

U.S. Patent

(1)

dc 914

Ve 914

US 6,993,638 B2

Sheet 3 of 26

Jan. 31, 2006

U.S. Patent

d¢ 914

VE 914

US 6,993,638 B2

Sheet 4 of 26

Jan. 31, 2006

U.S. Patent

}

(9) ..._.fr;,.....
‘o) A (G) "~ () B I_AO—V
Gy e () (2) ~ (1)

gt 9 |4

VP 914

U.S. Patent Jan. 31, 2006 Sheet 5 of 26 US 6,993,638 B2

FI1G. 5A -5°
(15) ADRS
(16)

F1G. 5B LB

(17)

DATA
OuUT

O 914

US 6,993,638 B2

< (6 2)
a (02)
-
Ne P TETT T TEET eeee ...m
g “
7 Viva 3HOVD LHVY “
|
. (LZ) |
X I
LINN
s |
i qwoieot| |! | 981G
= : |
= X
NOILYINSIINOD . m 3g
17nS3y) 9v—dU |
_
|
lllllllllllll —]

U.S. Patent

US 6,993,638 B2

Sheet 7 of 26

Jan. 31, 2006

U.S. Patent

A P

© M~
NN

=
s
=
mU
w o
't ol ¢/|
lllllllllllllllllllllllllllllllllll |
! 10 _
“ o
_ |
“ o O :
| |
! |
_ _
! |
_ o 0 _
I @ o _
1 7Y A1 N Y TS QN “
! ~’ ~ :
| |
| |
| |
Al A i
| OO (o)) o) 9 “
25 Y S T _
o] o
R Y Y, Y “
I “
B _
|
e |
I !
|
e e e e e e e e e e ————————————— _
7\ 7\ D
™MD O
VI
xr o o O r
m X O Mo
& NANA

(33)

(3 4)

FI1G. 7

US 6,993,638 B2

Sheet 8 of 26

Jan. 31, 2006

U.S. Patent

e C. A
I
pIeA

.E
(6 ©)
TS TX " yg+ .h . AI
Ve
Al
P1]®A

(8 ©)

(L €)

(9 €)

(S€)

U.S. Patent Jan. 31, 2006 Sheet 9 of 26 US 6,993,638 B2

(4 0) ' ' 31

(4 1)
33
(4 2)
. (46)
+D ISP x<0>
+DISP x<1>

(4 4)

|
. 36
(45) '
: . (4 7)
|
+DISP_x<0> —
+DISP_x<1> —
|
L

FI1 G, S

U.S. Patent Jan. 31, 2006 Sheet 10 of 26 US 6,993,638 B2

OP _EAG_x
(48)
(49)

DISP x<0:11>

(50)

(51)
(52)

(5 3)
(54)

(55)

F1G. 10

U.S. Patent Jan. 31, 2006 Sheet 11 of 26 US 6,993,638 B2

S~
1

o8

o’

Q0 o) =
_
I

A [\

ala n-!in,n

(8 2)
(83)
(84)

—
™ NP
N NI P " R M. N M
= e —
llllllll
5) 2t
\Q’ T e Y
- S| @
,.&.,, . — L 1Ll
~ () (0 =
N T 20 | T)
o -
® !LO l(p | °
o, | 9 0 S N\ o 'o
Y2 /\ D™ e N ol S o
00 = ><
| + - ueu;f

(7 4)
B
4 r_-_—“

-
shimias ey ek deees Ssls Bk s SN ek Wil yisiel sy ek verees. Eapl TEEEY TEEEE PR TS

)
- >
.=
li
'

D
F 1 G.

7 91

L

(6 7)
+38R 1 SEL

U.S. Patent Jan. 31, 2006 Sheet 12 of 26 US 6,993,638 B2

» (91)

(90}
+BR_x_SEL—
»

+XR_X_SEL

Fl1 G 12

U.S. Patent Jan. 31, 2006 Sheet 13 of 26 US 6,993,638 B2

(92) 80
] way (95) S
owayt
AAHT MI— (96)
way3d Jff
{15: 19>

(93)

FI1G 13

U.S. Patent Jan. 31, 2006 Sheet 14 of 26 US 6,993,638 B2

(97)
90

(98) - . (101)
91

(99) = . (102)
92

(100)- (103)

F1 G 14

U.S. Patent Jan. 31, 2006 Sheet 15 of 26 US 6,993,638 B2

(97)
93
|,
(98) - DG (101)
94
IH
(99) - D Q (102)
95
(104)= (105)

FI1G. 15

U.S. Patent

(106)
(107)

(108)
(109)

(110)

(111)
(112)

(113)
(114)

Jan. 31, 2006

F 1 G.

Sheet 16 of 26

1 6

US 6,993,638 B2

(115)

U.S. Patent Jan. 31, 2006 Sheet 17 of 26 US 6,993,638 B2

(117)
(”9)(118)

(120)

FI1G. 17

U.S. Patent Jan. 31, 2006 Sheet 18 of 26 US 6,993,638 B2

>

F I G.

US 6,993,638 B2

Sheet 19 of 26

Jan. 31, 2006

U.S. Patent

cl 914

(L) +-— (V)

+
(9)
V (€) (L21)
illillhftli

(¥)
_ — NON
JON3AIIONIOD —-N (e) V o1)

US 6,993,638 B2

Sheet 20 of 26

Jan. 31, 2006

U.S. Patent

O 9O 14
(L) =——— (¥)
(o)
(g) (S) V (e) (Lz1)
m|+|||ml_|||l._.l_|ll<l_
(¥) (1en)
]

U.S. Patent Jan. 31, 2006 Sheet 21 of 26 US 6,993,638 B2

(132) AR 2 (139)

(8:14> 101
(134) I_ Tog Match
Eretls

(141)

{15: 19>

(138)

FI1G 21

U.S. Patent Jan. 31, 2006 Sheet 22 of 26 US 6,993,638 B2

FI1G. 22

U.S. Patent Jan. 31, 2006 Sheet 23 of 26 US 6,993,638 B2

‘ 120

il ol LB

0:-+| 3
n 121

(158) »

way O

D

way 1

—F

way 2

—1c

way 3

D

(160)

(161)

i G 23

US 6,993,638 B2

Sheet 24 of 26

Jan. 31, 2006

U.S. Patent

NOILVINYIINOD
L1NS3y

ol

re O 4

e

viva 3HOVD -
151
| gL
(¥2) (£2)
£el

HOLVYINIO
ALINOIYd

¢Cl

Ot

(02)

(e91)

U.S. Patent Jan. 31, 2006 Sheet 25 of 26 US 6,993,638 B2

________ 135
I
<1:31>
|AR_A :
| 136
AR B | £1:31>
=
|
AR O el S1:31> I
|
|
el |
|
I
|

<15:19> II

_asae 1]
s]

Illll-
<o I
Casae][

aas
_asas][]
N et 139

i

GENERATOR I I l I

<16:19>

AART#OC T
<16:19> > 187

AAHT£0? e18:192 I

_|
-
l:u
.

-
k=
o

11 (167)
' 1>
<16:19> >
10 —
—
<138

U.S. Patent Jan. 31, 2006 Sheet 26 of 26 US 6,993,638 B2

— l .
s
ARB <1:31>
.
s
~ <1:31> n
_asie]
RSl
Casie]

!

I

{

:

:

|

, _
il 109
E

|

:

{

(164)

5| |3

TIAR_A

as:19]
<1:31> i

llll-
TIAR G <{:31> I““
|
|
esy L <tn [
: IIIIIII

e e e e e 139
PRIOR ITY
GENERATOR (168)

reos L<16:18>
YTy 619>

TIAR_B

T
O 137

<16-195 RERE I
T#OZ 1R
111 (167)

11 <
1< 140

AA]-IT#31 <18: 19} |

(170) .

(169)

FI1G. 26

US 6,993,638 B2

1

MEMORY ACCESS DEVICE AND METHOD
USING ADDRESS TRANSLATION HISTORY
TABLE

CROSS REFERENCE

This application 1s a continuous application based on an

international application number PCT/JP99/06910, filed on
Dec. 9, 1999,

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present mvention relates to both a device and a
method for accessing a cache memory based on a real
address according to the memory access mstruction of a
virtual address (logical address) in an information process-
ing apparatus with a logical address designation.

2. Description of the Related Art

In a cache memory system based on a logical address (or
called “virtual address™), if there 1s a synonym problem,
specifically, 1f a plurality of logical addresses point to the
same real address, the same memory content must always be
maintained 1 a location corresponding to each logical
address 1n the cache memory, which 1s a troublesome
problem in cache memory management.

When a cache memory system based on a real address
(absolute address) is organized, time delay in the translation
from a logical address to a real address becomes a problem.

Theretfore, there 1s a solution 1n which a previous trans-
lation history from logical addresses to real addresses, called
an “absolute address history table” is stored and by retriev-
ing data from this table, the time delay 1s reduced.

According to this solution, 1n the case of operand access,
the cache memory 1s retrieved based on a logical address
obtained by adding a register value and a displacement value
(in one case, the total of a plurality of register values and a
displacement value, in another case, only a register value
and in another case, only an immediate value (displacement
value)). In this case, which register should be used, the
displacement value (immediate value) and the like can be
judged when an instruction 1s decoded. Therefore, 1f a
register value 1s already determined, sometimes the absolute
address history table can be retrieved by calculating a logical
address, with time allowance.

However, according to an instruction control method,
such as a superscalar method, an out-of-order method or the
like, the relevant instruction 1s executed before register
modification by an instruction string that 1s executed prior to
the relevant mstruction for operand access 1s determined. In
this case, for example, the register value 1s bypassed from an
arithmetic unit or a cache memory instead of reading the
register value from a register file, and the relevant mstruc-
fion 1s tentatively executed.

Alternatively, if function improvement by a recent high-
clock or short-latency request 1s aimed for, sometimes it
takes too much time to calculate a logical address and then
to retrieve data from the absolute address history table even
if the register value 1s determined.

Therefore, 1n such a case, even 1f a register value or a
displacement value that 1s used 1s known, retrieving data
from the register, calculating a logical address by adding up
the values and retrieving data from the absolute address
history table based on a logical address causes great function
loss due to time delay.

However, since there 1s a tendency that a displacement
value 1s small 1n the calculation of an operand address, first,

10

15

20

25

30

35

40

45

50

55

60

65

2

in an architecture with a virtual memory, 1nstead of sepa-
rately locating a series of logical addresses 1n a real memory
for each byte, a specific block (usually a powered value of
2) of logical addresses are collectively located properly in an
real memory (hereinafter the minimum unit of this bock is
called a “page”). For example, as shown in FIG. 1, since the
low-order byte index of 20 bits or more of a real address 1s
the same as that of a logical address, both a higher-order
segment index (1 bit to 11 bits) and a higher-order page
index (12 bits to 19 bits) are translated into a real address.

Therefore, 1t 1s not a low-order bit, that 1s, a byte 1mndex
value, but higher-order bits (segment index and page index
values) that are needed for cache access. Therefore, for a
retrieval address, not the calculated address, but the middle-
order bit part of a register value, which 1s the basis of the
calculation, 1s used.

As described above, a problem 1n retrieving data from the
table based on a register is page cross (carry) caused when
adding a displacement value to a register value. A logically
adjacent page 1s not always located adjacently. If carry
occurs and a logically adjacent page 1s retrieved, cache
retrieval always fails. Therefore, a time delay results.

However, it takes too much time to retrieve data from the
absolute address history table using a result obtained by
accurately adding a register value and a displacement value,
including a case with a bypass, which 1s a problem.

There are also a variety of kinds of mstruction fetch
requests on an 1nstruction fetch side. It also takes to much
time to determine which instruction fetch request 1s 1ssued
from these many requests, to select a corresponding logical
address and to retrieve data from the absolute address
history table, which 1s also a problem.

SUMMARY OF THE INVENTION

It 1s an object of the present invention to provide an access
memory control device for reducing processing delay, and a
method thereof.

The device of the present invention comprises an address
history table storing 1n a pair at least a partial bit string of a
logical address and bits needed as a retrieval key of a
memory based on an absolute address, of an absolute
address corresponding to the partial bit string of the logical
address, a retrieval unit retrieving data from a register file 1n
the case of memory access, reading a value corresponding to
the register number of the register file and retrieving data
from the address history table using the value as a logical
address and using the partial ageregate of the logical
address, a memory access unit accessing the memory using,
a predicted absolute address obtained by retrieving data
from the address history table, an acquisition unit obtaining
a correct absolute address from the logical address and a
memory access result confirmation unit assuring the result of
memory access made using the predicted absolute address,
by checking the coincidence between the predicted absolute
address and the correct absolute address.

The method of the present invention comprises (a) storing
in a pair at least a partial bit string of a logical address and
bits needed as a retrieval key of a memory based on an
absolute address, of the absolute address corresponding to
the partial bit string of the logical address; (b) retrieving data
from a register {ile 1n the case of memory access, reading a
value corresponding to the register number of the register
file and retrieving data from the memory content stored in
(a) using the value as a logical address and using the partial
aggregate of the logical address; (c) accessing a memory
using a predicted absolute address obtained in (b); (d)

US 6,993,638 B2

3

obtaining a correct absolute address from the logical
address; and (¢) assuring the result of memory access made
using the predicted absolute address, by detecting that the
predicted absolute address and the correct absolute address
are the same.

According to the present invention, the synonym problem
can be solved using a memory to be accessed as an absolute
address base. Furthermore, an absolute address used to
access the memory 1s predicted from a register value and the
memory 1s accessed while a logical address 1s calculated
based on the register value, after an instruction i1s decoded.
Whether the prediction succeeds or fails 1s judged by
comparing the absolute address correctly obtained from the
calculated logical address with the predicted absolute
address. If the prediction succeeds, the process cycle 1s
shortened, since the result of a memory access based on the
predicted absolute address can be used without performing,
another process. If the prediction fails, the process 1s delayed
since the memory 1s accessed using the correctly obtained
absolute address. However, compared with the conventional
memory access based on a logical address, higher-speed
memory access can be implemented since there 1s no syn-
onym problem.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows one example configuration of both a logical
address and a physical address;

FIGS. 2A and 2B show a conventional cache access cycle
based on a logical address and the cache access cycle based
on an absolute address of the preferred embodiment of the
present invention, respectively;

FIGS. 3A and 3B show a cache access cycle based on an
absolute address, with a conventional configuration in which
absolute addresses are not calculated 1n parallel and the
cache access cycle of the preferred embodiment of the
present mvention, respectively;

FIGS. 4A and 4B show a conventional cache access cycle
based on an absolute address 1n which absolute addresses are
not calculated in parallel and the cache access cycle of the
preferred embodiment of the present invention, respectively,
for the purpose of comparison;

FIGS. 5A and 5B show address input to a cache memory
and address mput to a TLB, respectively;

FIG. 6 shows the entire process tlow of the preferred
embodiment of the operand access unit of the present
mvention;

FIG. 7 shows the configuration of the preferred embodi-
ment of an operand access unit;

FIG. 8 shows one example configuration of a page reg-
ister/index register selector (selector 16 shown in FIG. 7);

FIG. 9 shows the configuration of the first preferred
embodiment of a carry predicting unit;

FIG. 10 shows the configuration of the second preferred
embodiment of a carry predicting unit (No. 1);

FIG. 11 shows the configuration of the second preferred
embodiment of a carry predicting unit (No. 2);

FIG. 12 shows one example configuration of a logical
address generator used to retrieve data from an absolute
address history table;

FIG. 13 shows a configuration for selecting the entry of an
absolute address history table and outputting a predicted
absolute address;

FIG. 14 shows one example configuration of a register-
pair history based on a logical address;

FIG. 15 shows one example configuration of a register-
pair history based on an absolute address;

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 16 shows one example configuration of a register-
pair/address history selector used when both a base register
value and an index register are large;

FIG. 17 shows one example configuration of the real
address output generator of a register-pair/absolute address
history;

FIG. 18 shows one example configuration of a circuit for
outputting the logical address of a register-pair/logical
address history;

FIG. 19 shows the execution cycle 1n the case of a TLB
fallure 1n the cache unait;

FIG. 20 shows the execution cycle 1n the case where
prediction failure 1s known 1n advance;

FIG. 21 shows one example configuration of a circuit for
determining a writing way;

FIG. 22 shows one example configuration of the way
selector 106 shown 1n FIG. 21;

FIG. 23 shows one example configuration of an absolute
address history table data writing unait;

FIG. 24 shows the entire configuration of the preferred
embodiment of the present invention in the case of an
mstruction fetch;

FIG. 25 shows the configuration of an instruction fetch
unit; and

FIG. 26 shows the configuration of the preferred embodi-
ment 1n the case where a configuration for using a branch
destination address for the purpose of operand access 1s
incorporated 1nto the configuration shown 1n FIG. 285.

For descriptions of codes in parentheses in the drawings,
see “Explanation of the Codes” attached at the end of the
drawings.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

The respective preferred embodiments of the instruction
fetch and operand access of the present invention are
described below.

In the case of operand access, the use of an absolute
address table based on a register largely has the following
problems.

Both a register value to be used for memory retrieval and

a displacement value to be added usually vary depend-
Ing on an instruction to request Memory access.

Sometimes the 1mmediately preceding instruction
rewrites a register value to be used for memory
retrieval. In that case, 1f the execution of the current
instruction must be waited for until the register value 1s
determined, a large time delay 1s incurred.

In a specific kind of architecture, a plurality of registers to
be used for memory retrieval and a displacement value
can be designated. In that case, a total value obtained by
adding these values must be designated as a logical
address to be used for memory retrieval.

When a register to be used for memory retrieval and a
displacement value are added, sometimes the total
value indicates a page different from that indicated by
the original register value.

In order to solve these problems, some of the followings
methods can be combined and used.

If no time delay problem occurs because of the hardware
conilguration of a processor, even when calculation 1s
performed across pages, that 1s, when carry calculation
1s performed, the carry calculation 1s performed using
both a logical address and all the bits of a displacement
value.

US 6,993,638 B2

S

In particular, if carry calculation 1s delayed, such as when
bypassing 1s made 1n a state where a register value 1s
not yet determined, partial carry calculation 1s per-
formed using both a logical address and a part of a
displacement value or carry prediction 1s performed
using a carry history storing the previous carry history
and the like. The accuracy 1s also improved as long as
time delay permits.

If a plurality of registers are designated, the appropriate
one 1s selected or another absolute address history table
1s retrieved. In particular, if two registers are desig-
nated, 1n many cases, one of them 1s located 1n a byte
index corresponding range. In this case, it 1s efficient to
select a register located out of the byte mdex.

Alternatively, all these methods can be combined and
used. Alternatively, only especially efficient methods can be
selected and used for the reasons of time loss, circuit cost
and the like.

In particular, if a register value 1s used for memory
retrieval and 1f an instruction string 1s locally viewed, there
are only several specific registers that the instruction string
can use for memory retrieval. If a displacement value or
another register are further added, in most cases, only few
registers Cross pages.

However, in a specific application (for example, if the
array index of an application for performing a vector opera-
tion 1s allocated to a register), sometimes both of two
register values are large and they are used to indicate two
logically separated pages. However, for example, 1n such an
operation, the number of register pairs to be combined 1is
fairly limited. In this case, 1f each of these pairs 1s registered
in a separate absolute address history table, in many cases,
the problems are successfully solved.

By reducing as much as possible the number of errors at
the time of table retrieval by the combination of these
methods, by comparing the result of the table retrieval with
the results of TLB (Translation-Lookaside Buffer) retrieval,
if an incorrect result (or invalid result) is outputted despite
such an effort and by immediately performing cache
retrieval again 1f 1t 1s found that the result of the table
retrieval 1s incorrect and simultaneously writing back a
correct result 1 the table, a cache system based on a real
address without function degradation can be organized.

In the case of an instruction fetch, there 1s no complex
logical address calculation, which 1s different from the
operand access. However, since 1n the recent instruction
fetch method, branch prediction, pre-fetch and the like are
mtroduced, memory access 1s performed by selecting an
appropriate request from both ordinary instruction fetch
requests and these fetch requests.

Since 1n the recent architecture, this priority selection 1s
complicated, a time delay problem occurs if an absolute
address history table 1s also retrieved based on the complex
selected resullt.

Therefore, since the address of each instruction fetch
request 1s known 1n advance or can be calculated with small
time loss, cache memory access based on a real address 1s
performed by retrieving data from the absolute address
history table 1n advance for each request and selecting the
retrieval result of the absolute address history table 1in
advance as 1n address selection by a selection signal.

In the following description of this preferred embodiment,
it 1s assumed that the memory for one page 1s four kilobytes,
in other words, the width of a byte index 1s 12 bits. It 1s also
assumed that a logical address has a width of 31 bats.

It 1s assumed that there are 16 general-purpose registers
and 1n the case of operand access of an instruction, a

10

15

20

25

30

35

40

45

50

55

60

65

6

maximum of two registers (a base register and an index
register) can be designated from these general-purpose reg-
isters depending on an instruction and that if a register No.
0 1s designated 1n register designation, the register 1s not
used. It 1s assumed that as a displacement value used

together with these registers, an integral constant of 12 bits
(0 to 4095) can be designated.

An mstruction fetch unit 1s provided with three instruction
fetch ports, and it 1s assumed that subsequent instruction
fetch for each port, branch destination instruction fetch for
branch prediction from each port, branch destination instruc-
tion fetch bypassed from a branch history, re-instruction
fetch at the time of branch failure from a branch instruction
processing mechanism and instruction fetch at the time of
start, interruption and the like are requested.

FIG. 2 compares the cache access cycle based on an
absolute address of the preferred embodiment of the present
invention with the conventional cache access cycle based on
a logical address.

In either the instruction fetch case or operand access case,
cache access 1s performed 1n the cycle shown 1 FIG. 2B.
FIG. 2A shows an execution example 1n the conventional
cache system based on a logical address for the purpose of
comparison. In either case, if a cache failure, an address
non-coincidence or the like occurs, result confirmation,
which should occur 1n cycle R, 1s not performed and only an
operation for returning correct data (for example, access to
the second cache, etc.) 1s performed. However, since this
operation 1s the same as that of the prior art, the description
1s omitted here.

In the case of the conventional cache access based on a
logical address shown 1n FIG. 2A, first, in cycle A, a logical
address to be fetched 1s generated. Then, 1n cycle T, an
absolute address 1s calculated by retrieving data from a TLB
using this logical address and simultaneously both the tag
and data of an LBS (Local Buffer Storage: a cache memory)
are read. Then, in cycle B, the absolute address obtained by
retrieving data from the TLB 1s used for the second cache
access and simultaneously the read LBS data are set in a
buffer depending on the coincidence check between the
logical address generated 1n cycle A and the logical address
of the read LBS tag, exception check and way selection.
Then, m cycle R, result confirmation i1s performed.

However, 1n the preferred embodiment of the present
invention shown in FIG. 2B, 1 cycle A, a logical address to
be fetched 1s generated and simultancously an absolute
address used to access a cache memory 1s predicted. Then,
in cycle T, both an LBS tag and LBS data are read using the
predicted absolute address. In parallel with these operations,
in cycle T, a real absolute address 1s calculated by retrieving
data from a TLB using the logical address. Then, 1n cycle B,
exception check, way selection or setting of the LBS data in
a buffer are conducted depending on the read results of the
LBS tag and LBS data. Furthermore, 1in cycle B, the coin-
cidence between the absolute address calculated by retriev-
ing data from the TLB and the predicted absolute address 1s
checked. Then, 1f 1n cycle R it 1s judged that as a result of
the absolute address coincidence check that the prediction is
correct, result confirmation 1s performed. If 1t 1s judged that
the prediction i1s not correct, a correct address correspon-
dence 1s written back 1n the absolute address history table
(AAHT).

As 1s clearly seen when comparing FIG. 2A with FIG. 2B,
by adopting this preferred embodiment, even 1n the case of
a cache system based on an absolute address, there 1s no time
loss compared with that based on a logical address. They

US 6,993,638 B2

7

differ only when the prediction of an absolute address fails.
This difference 1s described later.

FIG. 3 compares the cache access cycle of the preferred
embodiment of the present mmvention with a cache access
cycle based on an absolute address in the conventional
conilguration 1in which absolute addresses are not calculated
in parallel.

FIG. 3A shows the conventional configuration. In this
case, 1n cycle A, a logical address to be fetched 1s generated
and simultaneously an absolute address 1s calculated by
retrieving data from the absolute address history table
(AAHT). In cycle T, another absolute address is calculated
by retrieving data from a TLB using the generated logical
address. Both the LBS tag and LBS data are read using the
absolute address obtained by retrieving data from the AAHT.
Then, mm cycle B, the coincidence between the absolute
address obtained i cycle A and the absolute address
obtained 1n cycle T 1s checked and simultaneously both the
exception check/method selection that are based on the LBS
tag and the setting of the LBS data 1n a buifer are performed.
Then, if 1n cycle R, as a result of the absolute address
coincidence check, a coincidence 1s detected, result confir-
mation 1s performed. If 1t 1s judged that there 1s no coinci-
dence, a correct address correspondence 1s written back in
the AAHT.

FIG. 3B shows the process cycle of this preferred embodi-
ment shown 1n FIG. 2B. The detailed description 1s omitted
here.

As 1s clearly seen when comparing FIGS. 3A and 3B,
since 1n the case of FIG. 3A, the work amount 1n one cycle
increases and as a result, intervals between cycles are
prolonged and the process speed 1s reduced. In this way, by
adopting this preferred embodiment, the process speed can
be improved compared with the conventional cache mecha-
nism based on an absolute address.

FIG. 4 compares this preferred embodiment with the
conventional cache access based on an absolute address that
does not calculate a plurality of absolute addresses in
parallel.

FIG. 4A shows the prior art. As shown 1n FIG. 4A, first,
in cycle A, a logical address to be fetched 1s generated, and
in cycle T, an absolute address 1s calculated by retrieving
data from a TLB. Then, mm a newly provided cycle D, both
the LBS tag and LLBS data are read. Then, in cycle B, the
exception check, the way selection, the setting of the LBS
data 1n a buffer or the like 1s performed, and 1n cycle R, result
coniirmation 1s performed.

Since FIG. 4B shows the preferred embodiment described
with reference to FIG. 2B, the description 1s omitted.

When comparing FIGS. 4A and 4B, the processing of
FIG. 4A 1s delayed by one clock compared with that of the
preferred embodiment, since FIG. 4A 1s provided with a new
cycle D.

As described above, according to the cache access method
based on an absolute address of the preferred embodiment,
the process 1s performed at the same process speed as that of
the conventional cache access based on a logical address and
simultaneously the process 1s performed at a higher speed
than that of the conventional cache access method based on
an absolute address, which 1s an advantage. Furthermore,
since this preferred embodiment adopts cache access based
on an absolute address, there 1s no synonym problem,
compared with cache access based on a logical address,
which 1s another advantage. Although in the description
ogrven above, the conventional cache access based on a
logical address and the preferred embodiment have the same
process speed, the process speed of the preferred embodi-

10

15

20

25

30

35

40

45

50

55

60

65

3

ment 1s higher than that of the cache access based on a
logical address as a whole since 1n the case of cache access
based on a logical address, there 1s process delay due to the
synonym problem, which 1s another advantage.

It 1s assumed that 1n this preferred embodiment, a cache
mechanism comprises a TLB, LBS_ DATA and LBS_ TAG.
It 1s assumed that the TLB and LBS are composed of 512
and 1024 lines, respectively, and that one block of the LBS
1s 64 bytes. Then, 1n this configuration, the address bit of
LBS access 1s <16:25>. Since this configuration adopts a
cache based on an absolute address, 1n the case of <20:25>,
an absolute address and a logical address are matched.
Theretfore, 1n the case of <20:25>, a logical address output
1s used. In the case of <16:19>, the predicted absolute
address output of the preferred embodiment 1s used.

Simultaneously, TLB access 1s performed using a logical
address partly 1n order to confirm the prediction. If the TLB
1s 512 lines, the logical address bit <11:19> 1s used. In other
words, 1n the cache unit, the addresses outputted according

to the preferred embodiment are used, as shown in FIG. §.
Specifically, LBS__TAG (LBS tag) and LBS__DATA

(LBS data) are stored in the LBS shown in FIG. SA. As
described above, to the address terminal ADRS of the LBS,
both an absolute address ABS__ADRS<16:19> and a logical
address LOGICAL__ADRS<20:25> are mnputted, and from
a data output terminal DATAOUT, a variety of cache con-

tents are outputted.
To the address terminal ADRS of the TLB shown 1n FIG.

5B, a logical address LOGICAL__ADRS<12:19> 1s 1put-
ted, and from the data output terminal DATAOUT, an
absolute address corresponding to the logical address 1s
outputted.

FIG. 6 shows the entire process flow of the preferred
embodiment of the operand access unit of the present
invention.

First, as the original data of address calculation, a base
register value BR, an index register value XR and a dis-
placement value DISP are mputted to an operand access unit.
These pieces of data are used to calculate a logical address
in an address arithmetic unit OP-EAG. The logical address
outputted from the OP-EAG 1s a logical address that is
correctly calculated. This correctly calculated logical
address 1s mputted to the TLB and a corresponding absolute
address 1s outputted.

The base register value BR, index register value XR and
displacement value DISP are also inputted to a logical
address predicting unit, and a predicted logical address 1s
outputted. This predicted logical address i1s 1nputted to the
absolute address history table AAHT, and a predicted abso-
lute address 1s generated. The predicted absolute address 1s
inputted to the LBS, which 1s a cache based on an absolute
address, and cache data are outputted.

The predicted absolute address 1s inputted to a coinci-
dence check unit together with the absolute address from the
TLB, and a judgment result of whether the predicted abso-
lute address coincides with the absolute address from the
TLB 1s outputted as result confirmation. The absolute
address outputted from the TLB 1s inputted to the absolute
address history table AAHT, and the correspondence i1s
written back as a correct correspondence between a logical
address and an absolute address.

FIG. 7 shows the configuration of the preferred embodi-
ment of the operand access unit.

It 1s assumed that an absolute address history table for
operand access adopts a 32-linex4-way set associative
method and that for line access, the <15:19> of a logical
address 1s used. It 1s also assumed that each entry 1s

US 6,993,638 B2

9

composed of an absolute address bit to be paired with a
logical address <16:19> (ABSOLUTE__ADRS<16:19>: If a
logical address bit <15:19> i1s mnputted to the AAHT, a
predicted absolute address<16:19> is outputted), the bit of a
logical address <8:14> (LOGICAL ADRS TAG<8:14>)
that 1s used to judge whether an address hits in the set
assoclative method, that 1s, 1s used for address coincidence
check, a replacement flag (LAST ACCESS_FLAG) and
+VALID 1ndicating that the entry 1s valid. A person having
ordinary skill in the art can easily understand that generally
other configurations than this i1s also easily available.

If an 1nstruction decoded by an instruction decoder 1s
accompanied by memory access requiring an access desti-
nation address calculation, the imnstruction decoder transfers
information needed for the address calculation (a register
number and a displacement value) to the address arithmetic
unit (OP__ EAG). Specifically, a base register value BR<1:
31>, an mdex register value XR<1:31> and a displacement
value DISP<0:11> are mputted to the OP__EAG. The dis-
placement value<(:11> 1s added to the bit<20:31> of the
base register value <1:31> or index register value XR<1:
31>

The address arithmetic unmit OP__ EAG judges whether a
register file should be retrieved or a unit for rewriting (for
example, the cache unmit if the register 1s loaded from a
memory and an arithmetic unit 1f the register 1s rewritten by
an operation), 1s bypassed, depending on whether a register
file needed for the calculation 1s rewritten by the 1nstruction
being currently executed, and a logical address 1s calculated
using the value. Specifically, 1 the register file 1s bypassed,
BYPASS_ BR<1:31> or BYPASS_ XR<1:31> 1s inputted
from the cache unit or arithmetic unit. Although 1 FIG. 7,
it 1s i1ndicated by broken lines that BYPASS BR and
BYPASS_ XR are mnputted to carry predicting units 10 and
11, respectively, 1t indicates that BYPASS BR and
BYPASS_ XR can be used to retrieve data from the AAHT
instead of the ordinary BX and XR, if requested, depending
on the hardware configuration.

The memory access device of this preferred embodiment
1s 1nstalled accompanymg the address arithmetic unit
OP__EAG. Specifically, the device predicts the partial bat
string of a real address in parallel with logical address
calculation. Although 1n a system adopting a superscalar
method and the like, a plurality of address arithmetic units
OP__EAG for memory retrieval are installed, most of the
devices of this preferred embodiment can be shared by the
plurality of address arithmetic units OP_ EAG.

It 1s assumed that this preferred embodiment comprises
two address arithmetic units OP__EAG for cache access.
However, 1n the following description, the units are repre-
sented by and described as EAG__x except when a plurality
of the units must be described. If a plurality of the units are
described, they are described, for example, like EAG__ 0 and

EAG_1.
To OP_EAG, BR/XR or BYPASS_BR/BYPASS__ XR
are inputted, and a logical address

EAC_x_ LOGICAL_ADRS<1:31> 1s outputted. The
bit<8:19> of BR and XR (also BYPASS BR and
BYPASS XR depending on the hardware configuration)

and a displacement value DISP<0:11> are also inputted to a
retrieval unit 12. The bit<8:19> of BR and XR are obtained

by combining the logical address<15:19> used for line
access and logical address<8:14> used for address coinci-
dence check.

In the retrieval unit 12, both BR<8:19> and a wvalue
obtained by adding “1” to BR<8:19> are inputted to a
selector 13. Similarly, both XR<8:19> and a value obtained

10

15

20

25

30

35

40

45

50

55

60

65

10

by adding “1” to XR<8:19> are 1nputted to a selector 14.
Both BR<20:31> and DISP<0:11> are mputted to the carry
predicting unit 10, and it 1s judged whether carry 1s caused,
in other words, whether a page to be accessed 1s carried. The
selector 13 1s controlled based on this judgment, and BR<S8:
19>, as 1t 1s, or a value obtained by adding “1” to BR<8:19>
1s selected.

Quite similarly, both XR<8:19> and a value obtained by
adding “1” to XR<8:19> are iputted to the selector 14, and
cither XR<8:19> or a value obtained by adding “1” to
XR<8:19> 15 selected and outputted according to a carry
prediction made by a carry predicting unit 11, based on both
XR<20:31> and DISP<0:11>.

To a selector 16, BR<1:19>, XR<1:19>,
BR_x NUM<0:3>, which 1s a BR number, and
XR__x NUM<0:3>, which 1s an XR number, are mputted,
and 1t 1s judged which should be 1nputted to the AAHT, the
base register value BR or index register value XR, or
whether neither the base register value BR nor the index
register value XR 1s mputted. The address value outputted
from the selector 15 1s mputted to the absolute address
history, and a predicted absolute address value
EAG_x_ ABS__ADRS<16:19> 1s outputted.

The details of both the carry predicting units 10 and 11
and selector 16 are described later.

FIG. 8 shows an example configuration of a base register/
index register selector (selector 16 shown in FIG. 7).

Since 1n this preferred embodiment, address width 1s
assumed to be 31 bits, and at least one of the higher-order 19
bits (=31-12) is “17, a value of 4096 or more is stored. In
other words, 1t 1s found that the value 1s large and exceeds
the range of a byte index.

If both a base register value (+BR__x DATA) and an
index register value (+XR_x DATA) are large, the
retrieval of the absolute address history table using one
register value always fails. Therefore, 1n this case, neither
the base register value nor index register value 1s selected.
If only one of the base register value or index register value
is large or valid (if the register number designation is not
“0), the larger (or valid) one 1s selected. If both the base
register value and an index register value are 1invalid, neither
the base register value nor the index register value 1is
selected.

By this circuit, a register that retrieves data from the
absolute address history table 1s determined.

Specifically, i FIG. 8, a base register number
(+BR_x NUM<0:3>) and an index register number
(+XR__x_ NUM<0:3>) are inputted to OR circuits 20 and
21, respectively. In this case, only when both the base
register number and index register number are “07, 1s a
signal “0” outputted from each of the circuits 20 and 21, and
1s mputted to AND circuits 24 and 25, respectively. There-
fore, 1f “0” 1s set for a register number, the respective outputs
of the AND circuits 24 and 25 become 0, and no signal for
selecting the register value of a register with register number
“0” 1s outputted.

If the register number 1s not “0” and neither of the
higher-order bits of the register value (+BR__x DATA«I:
19>and +XR_x_ DATA<1:19>) is “07, signals “1” are
outputted from each of the OR circuits 22 and 23. Accord-
ingly, both the AND circuits 24 and 25 become “1”. If the
output of either of the AND circuits 24 and 25 1s “1” and that
of the other 1s “07, for example, if the output of the AND
circuit 24 1s “1” and that of the AND circuit 25 1s “07, the
output of the AND circuit 25 1s converted to “1” by an
mverter 27 and a base register selection signal

(+BR__x_ SEL) is outputted from an AND circuit 28. In the

US 6,993,638 B2

11

reverse case, the output of the AND circuit 24 becomes “0”
and the output of the AND circuit 25 becomes “17, and an
index register selection signal (+XR__x SEL) is outputted

from an AND circuit 30. If a signal “1” 1s outputted from
cach of the AND circuits 24 and 25, a signal

(+BR+XR_x [LARGE) indicating that no register should
be selected 1s outputted from an AND circuit 29.

Next, the carry predicting unit 1s described. In order to
finish a real address prediction, including carry prediction,
the prediction processes are performed 1n parallel.

FIG. 9 shows the configuration of the first preferred
embodiment of the carry predicting umnit.

In this preferred embodiment, carry prediction 1s per-
formed by adding only the respective two higher-order bits
in the byte 1ndex sections of base register data

(+BR__x_DATA) and index register data (+XR__x_ DATA)

specifically, it 1s predicted that 1f adding the respective two
higher-order bits in the byte index section of the selected
register and a displacement value causes carry to the third
bit, carry occurs.

Specifically, first, an OR circuit 31 judges whether the
base register number 1s “0”. If the base register number 1s
“07, the output of an AND circuit 33 becomes “0” and the
carry prediction signal of the base register value
(+BR_x CARRY__PREDICT) is not generated. If the base
register number 1s not “0”, both the two higher-order
bits<20> and <21> 1n the byte 1ndex section of the base
register value (+BR__x_DATA) and the two higher-order
bits<0> and <1> of the displacement value (+DISP) are
inputted to a judgment <circuit 32. If both
+BR_x DATA<20> and +DISP<0> are “17, if both
+BR_x DATA<20> and +DISP<0>/<1> are “1” or if both
+BR__x_ DATA<20>/<21> and +DISP<1> are “17, carry 1s
caused 1n the judgment circuit 32. Therefore, 1n these cases,
a signal “1” 1s outputted from the judgment circuit 32. Since
the base register number 1s not currently “0”, the output of
an AND circuit becomes “1” and the carry prediction signal

of the base register value (+BR_x CARRY_ PREDICT) is
outputted.

The circuit for an index register value shown in the lower
part of FIG. 9 1s the same as that of the base register value
described above. Specifically, an OR circuit 34 judges
whether the 1ndex register number 1s “0”. A judgment circuit
35 judges whether carry will be caused, using both the two
higher-order bits 1n the byte index section of the index
register data (+XR__x_DATA) and the two higher-order bits
of the displacement DISP. If the index register number 1s not
“0” and 1f 1t 1s judged that carry will be caused, the carry
prediction signal of the 1dex register value

(+XR__x_ CARRY__PREDICT) is outputted from an AND
circuit 36.

Although 1n the preferred embodiment described above,
carry 1s predicted using only both the two higher-order bits
of the byte index section and the two higher-order bits of the
displacement value, the greater number of bits or all the bits
of both the base register data and 1ndex register data can also
be used for the carry prediction 1f there 1s room for calcu-
lation time 1n the hardware configuration. In this case, both
the greater number of bits or all the bits of the base register
data and the greater number of bits or all the bits of the
displacement value are inputted to the judgment circuit 32,
and both the greater number of bits or all the bits of the index
register data and the greater number of bits or all the bits of
the displacement value are inputted to the judgment circuit
34. Then, the bits are added and 1t 1s judged whether carry

10

15

20

25

30

35

40

45

50

55

60

65

12

will actually be caused. A person having ordinary skill in the
art can easily implement the specific configuration for that
PUrpose.

FIGS. 10 and 11 show the configurations of the second
preferred embodiment of the carry predicting unit.

First, FIG. 10 shows the configuration of the reader of the
carry predicting unit. It 1s assumed that this preferred
embodiment stores a maximum of two register numbers 1n
which carry has been caused before by adding a register
value and a displacement value. In the following description,
this register number storage part 1s called carry register #(
and carry register #1. In the present invention, the number of
carry registers 1s not restricted.

In this preferred embodiment, 1t 1s assumed that 1f a value
stored 1n a carry register 1s “07, it means that the memory
content 1s invalid. By doing so, there 1s no need to provide
a special valid signal and, accordingly, circuit costs can be
reduced.

First, a base register number BR__x NUM<0:3>, an
index register number XR__x NUM<(0:3> and a displace-
ment value DISP_ x<0:11> are inputted from the address
arithmetic umit OP__ EAG__x. Both the base register number
or an 1ndex register number stored 1n the carry register #0
CARRY__REG_0_NUM<0:3>, and the byte index value of
the logical address stored 1n the carry register #0
CARRY_REG_0_BYTE<20:31> are imnputted from the
carry register CARRY__REG#(0. Similarly, both
CARRY_REG_1_BYTE<20:21> and
CARRY_REG_1_NUM<0:3> are mputted from the carry
register #1.

Comparison units 40 and 41 performs the same compari-
son process for the carry registers #0 and #1, respectively. A
comparator 42 first compares base register numbers
BR_x NUM and CARRY_REG_0_NUM. If they are
matched, “1” 1s outputted. A comparator 43 compares
XR_x_ NUM with CARRY__REG_0_NUM. If they are
matched, “1” 1s outputted. An OR circuit 44 judges whether
CARRY_REG_0_NUM 1s “07. If 1t 1s not “07, “1” 1s
outputted. Furthermore, a comparator 45 compares DISP__x
with a byte index value obtained by logically inverting the
byte index of CARRY__RG__0__BYTE. The comparator 45
indicates that 1if DISP__ x 1s larger than the logical inversion
of CARRY__REG_ 0__BYTE, carry will be caused. In this
case, a carry signal 1s designated to be “1”. Then, this signal
1s 1inputted to both AND circuits 46 and 47. Therefore, 1f the
register number and the base register number that are stored
in the carry register #0 are matched, if the register number
stored 1n the carry register #0 1s not “0” and 1f the displace-
ment value 1s larger than the inverted value of the byte index
value stored 1n the carry register #0, the carry predicting
value of the base register value
+BR__x_ REG__CARRY__PREDICT 1s generated. The
same fact also applies to a carry register #1 side. If carry
prediction 1s available 1n either of carry registers #0 and #1,
+BR__x_ REG__ CARRY__PREDICT 1s generated. Simi-
larly, 1f as for an index register value, XR__x NUM coin-
cides with CARRY_REG_0_NUM Or
CARRY_REG_1_NUM, if CARRY_REG_0_NUM or
CARRY_REG_1 NUMisnot“0” and if DISP_ x1s larger
than 1nverted CARRY_REG_0_BYTE or inverted
CARRY_REG 1 BYTE, the carry predicting signal of
the ndex register +XR_x_ REG__ CARRY_ PREDICT 1s
generated by an OR circuit 49.

FIG. 11 shows the configuration of the carry register
registering unit of the carry predicting unit.

First, it 1s assumed that the carry (in this preferred
embodiment, bit digit carry from<20>to <19>) signal of the

US 6,993,638 B2

13

byte index value generated in the calculation of EAG_ x 15
+EAG__x_ PAGE__CROSS. If both the base register value

and index register value are large, registration 1s meaning-
less. Therefore, 1t 1s judged whether the calculation result of
cach EAG should be registered by inverting a signal
+BR+XR x LLARGE and taking the AND of

+EAG_x_ PAGE_CROSS and the 1nverted signal
+BR+XR__x [LARGE.

The register numbers to be stored (+BR_ x_ NUM<0:3>
and +XR__x NUM<0:3>) and the byte index section of the
corresponding register values (+BR__x_ DATA<0:3> and
+XR_x DATA<0:3>) are selected by a base/index register
selection signal (+BR_x SEL, +XR_x_ SEL). The
devices 50 and 51 described as ANS circuits in FIG. 11 are
selectors or gates for judging whether a register number
should be outputted by +BR__x SEL and +XR_ x_ SEL,
respectively. If both EAG_0 and EAG_ 0 use the same
register and 1f as a result of the judgment described above,

both should be registered, the operation of the registration
circuit of EAG__0 is suppressed (AND circuit 52) and the

Write
request

SOUTICC

10

15

EAG_0

0
1

1

number of this commonly used register 1s written 1n a carry
register by the registration circuit of EAG_ 0.

In this preferred embodiment, a flag
(+REPLACE_FLAG) for selecting a carry register to be
updated (to be rewritten) from these two carry registers 1s
provided. A number to be rewritten 1s determined based on
the value of this flag. For example, 1if this flag 1s set to “07,
the carry register #0 1s rewritten. If this flag 1s set to “17, the
carry register #1 1s rewritten. Every time a carry register 1s
rewritten, the value 1s changed by taking the exclusive OR

(EOR) of the value and the flag. Therefore, the other side
that was not immediately rewritten before 1s rewritten.

However, 1f the same register 1s already registered when
rewriting 1s attempted, writing 1s performed for the register
instead of determining the writing destination using
+REPLACE_ FLLAG. This operation 1s performed by a
circuit for checking the coincidence with
+CARRY__REG_n_ NUM<0:3> and a gate located after
the circuit in FIG. 11 (part described as 53 enclosed with
broken lines in FIG. 11). If both EAG_ 0 and EAG__ 0 cause
carry, this gate 1s designed so that the carry information of
EAG_ 0 and that of EAG__1 can be written in registers #(

and #1, respectively. For example, EAG__0 #1 located near

EAG_1

0

0

0

45

50

55

60

65

14

the center of FIG. 11 1ndicates that the result from EAG_ 0
is written in the carry register #1 (circuit device (selector or

gate) described as 55 in FIG. 11). Devices 55 to 64 described
as AND circuits in FIG. 11 are actually selectors or gates for
outputting data in response to signal input, and devices 65 to
68 described as OR circuits are actually gates for outputting,
data 1f any of a plurality of pieces of data 1s inputted. AND
circuits and OR circuits to which data of a plurality of bits
and a signal of one bit are inputted, of the circuit devices
shown 1n FIG. 11, are gates and the like for outputting data
in response to the signal 1nput.

Generally speaking, instead of such a method, a writing
destination can also be determined by another algorithm.

Table 1 shows the logic of the writing destination deter-
mination circuit part of the carry register developed shown
in FIG. 11. “~” in Table 1 represents “Either” (either “0” or
“1” is acceptable). CR#n represents the carry register #n of
this preferred embodiment. REPL represents the value of

+REPLACE_ FLLAG. Table 1—a logic of the selection unit
shown 1n FIG. 11.

Writing
Coincidence Coincidence destination
with CR#0 with CR#1 From From
EAG 0 EAG 1 EAG 0 EAG 1 EAG 0 EAG 1
— — — — not not
written written
0 — 0 — REPL not
written
1 — 0 — CR#0) not
written
0 — 1 — CR#1 not
written
— 0 — 0 not REPL
written
— 1 — 0 not CR#0
written
— 0 — 1 not CR#1
written
— — — — CR# CR#1

A plurality of carry predictions by these methods can also
be simultaneously used. In this case, it 1s acceptable 1if the

logical OR of the respective prediction signals 1s designated
as a carry prediction signal.

A logical address for retrieving data from the absolute
address history table (PREDICT LAR_x<8:19>) can be
calculated using the carry prediction/carry register selector.

FIG. 12 shows an example configuration of a logical
address generation circuit for retrieving data from the abso-
lute address history table.

However, 1f a register pair/logical address history, which
1s described later, 1s used, either a value obtained by a circuit
provided 1n relation to OP__EAG_ 0 and that obtained by a
circuit provided 1n relation to OP__EAG 1 1s selected by a
signal +BR+XR__x [LARGE and 1s used as a necessary
logical address equivalent value.

The absolute address history table is retrieved using the
logical address equivalent value calculated in this way, and
necessary bits of the real address are outputted.

FIG. 12 1s described below. A circuit for base register data
and one for index register data are the same. Since devices

US 6,993,638 B2

15

70 and 71 output either base register data or index register
data later (takes the OR), only the circuit for base register
data 1s described.

An address value +BR__x DATA<8:19> stored in the
base register 1s 1nputted from the base register.
+BR__x_ DATA<8:19> 1s directly imnputted to a selector 72
and simultaneously a value obtained by an adder adding “1”
to the address value 1s also mputted to the selector 72. Which
address 1S outputted 1S determined by
+BR__x_ CARRY__PREDICT, which 1s the output value of
the circuit shown 1n FIG. 9. If there 1s no carry, the original
address 1s outputted. If there 1s carry, the value obtained by
an adder adding “1” to the original address 1s outputted.

Then, the output value +BR__x_ SEL of the circuit shown
in FIG. 8 1s inputted to a device 73, and the address value
from the selector 72 i1s outputted. As 1s known from the
circuit shown 1m FIG. 8, both +XR_ x SEL and
+BR__ x_ SEL do not simultaneously become “1”. There-
fore, only one of the address values based on a base register
or that based on an index register 1s inputted to a device 70,

and a logical address wvalue for AAHT retrieval
+PREDICT LAR_x<8:19> 1s outputted. Since either

+BR__ x_ SEL or +XR_ x_ SEL 1s outputted, a signal indi-
cating prediction validity + PREDICT __VALID_ x 1s output-
ted through an OR circuit 71.

FIG. 13 shows the configuration for selecting an entry to
the absolute address history table and outputting a predicted
absolute address.

It 1s assumed that this preferred embodiment adopts a
4-way set assoclative method.

Data of 32 lines are outputted from the AAHT. A selector
80 sclects the data and outputs the data to four ways using

the bit<15:19> of PREDICT_ILAR_X obtained by the
circuit shown 1n FIG. 12. The bit<8:14> of the address data
outputted to ways 0 to 3 1s inputted to each comparator 82
and 1s compared with the bit<8:14> of PREDICT_LAR_ x.
The valid signals +VALID of the AAHT entry outputted to
ways 0 to 3 are mputted to a comparator 83, the selection
signal of the valid entry of ways in which the comparator 82
judges that the bit<8:14> of the address data coincides with
the bi1t<8:14> of PREDICT__LLAR_ X, 1s generated. Then, a
selector 81 outputs the absolute address of the selected way
ABSOLUTE_ADRS<16:19> as a predicted absolute
address EAG__x_ ABS__ADRS<16:19>.

If 1t 1s judged that both the index register value and base
register value are large, the retrieval of the absolute address
history table fails. In this case, a write-back suppression
signal can also be transmitted to the cache unit. By trans-
mitting this signal, the writing-back of the correct logical
address/real address pair can be suppressed. If this method
1s adopted, 1n the same case, the table cannot be correctly
retrieved 1n the future when both the index register value and
base register value are large. Therefore, even it the result 1s
written back, there 1s a low possibility that the pair may be
used 1n the future. In other words, by not writing back such
a pair that 1s not used, the table use efficiency can be
improved.

FIG. 14 shows an example configuration of a register pair
history based on a logical address.

In the circuit shown in FIG. 14, the base register number
BR__x NUM, index register number XR_x_ NUM and

logical address calculated by OP__EAG
(+EAG__x_ LLOGICAL__ADRS) are inputted to latches 90,
99 and 92, respectively, using a signal

(-BR+XR__x [LARGE) obtained by logically inverting the
output of the circuit shown 1 FIG. 8 as a trigger and are

10

15

20

25

30

35

40

45

50

55

60

65

16

outputted as +LARGE__BR__x_ NUM,
+LARGE_BR_x NUM and +LARGE_LAR_ x, respec-
fively.

Each of the signals outputted from the circuit shown in
FIG. 14 1s used 1n a circuit, which 1s described later.

FIG. 15 shows an example configuration of a register pair
history based on an absolute address.

The circuit shown 1n FIG. 135 1s basically the same as that
shown mm FIG. 14. -BR+XR_x . ARGE<BR__x_ NUM
and XR__x_ NUM are inputted to each of latches 93 and 94.
Then, +LARGE_BR_ x NUM
and+LARGE_XR_x NUM are outputted using
+LARGE_BR_ x_ LLARGE as a trigger.

To a latch 95, instead of the logical address from
OP__EAG, an absolute address (+TLB__x ABS_ADRS)

obtained by translating this logical address by a TLB 1s
inputted and 1s outputted as +LARGE__ABS ADRS_x.

These output signals are also used 1n a circuit, which 1s
described later.

FIG. 16 shows an example configuration of a register
pair/address history selector used in the case where both a
base register value and an 1ndex register value are large.

A comparator 96 compares a base register number
(+BR_x NUM) with +LARGE BR_0_NUM, and also
compares an index register number (+XR__x NUM) with
+LARGE__ XR_ 0__NUM. If each of the pairs 1s matched, a
signal “1” 1s outputted. Similarly, a comparator 97 compares
+BR x NUM with +LARGE BR 1 NUM, and also

compares +XR_x NUM with +LARGE__XR_1 NUM.
If each of the pairs 1s matched, a signal “1” 1s outputted.

Then, the outputs of the comparators 96 and 97 are
inputted to AND circuits 98 and 99, respectively, and
simultaneously +BR+XR__ x_ LARGE 1s inputted to each of
the AND circuits 98 and 99. Therefore, if +BR_x NUM
comncides with +LARGE BR 0 NUM,if +XR_ x NUM
coincides with+LARGE__XR_ 0__NUM and if
+BR+XR__x_ [LARGE 1s mputted, the AND circuit 98 out-
puts +USE_ x_ REG__PAIR__HISTORY_ 0 indicating that
a register #X uses a pair history #0. Similarly, 1f
+BR__x_ LARGE coincides with
+LARGE BR 1 NUM, +XR x NUM coincides with
+LARGE_XR_1 NUM and if +BR+XR_x [ARGE is
inputted, the AND circuit 99 outputs
+USE__x_ REG__PAIR__HISTORY__1 indicating that a

register #X uses a pair history #1.

FIG. 17 shows an example configuration of the real
address output generator of the register pair/absolute address
history.

The register pair/absolute address history (see FIG. 15)
stores both a pair of a base register number and an 1ndex
register number 1n the case where both the base register
value and index register value are large, and the correspond-
ing real address (partial bit string).

Therefore, as shown m FIG. 17, 1if the
+USE__x_ REG__PAIR__HISTORY__ 0 of the circuit shown
in FIG. 16 1s inputted, +LARGE__ABS__ADRS_ 0<8:19>,
which 1s the real address output shown 1n FIG. 15 1s selected.
Similarly, if the +USE__x_ REG_ PAIR__HISTORY_ 0 of

the «circuit shown m FIG. 16 1s inputted,
+LARGE_ABS__ADRS_ 1<8:19> 1s outputted. The real

address signal outputted 1n this way 1s outputted as
+PREDICT _ABS_x PAIR<8:19> and 1s used as a pre-

dicted absolute address.

FIG. 18 shows an example configuration of a circuit for
outputting the logical address output of the register pair/
logical address history.

US 6,993,638 B2

17

As shown n FIG. 18, 1f the
+USE__x_ REG__ PAIR__HISTORY__ 0 of the circuit shown
in FIG. 16 1s mputted, +LARGE_ LAR_ 0<8:19>, which 1s
the logical address output shown m FIG. 14, 1s selected.
Similarly, if the +USE__x REG_ PAIR__HISTORY_ 0 of

the «circuit shown m FIG. 16 1s 1nputted,
+LARGE_LAR_1<8:19> is outputted.

If a logical address corresponding to a register pair 1s
stored (in the case of a register pair/logical address history),
the absolute address history table 1s retrieved using the
logical address of the output shown 1n FIG. 18. If the logical
OR of the output shown 1n FIG. 18 and that shown 1n FIG.
12 1s taken, the circuit can be incorporated into the preferred
embodiment 1 the case where only one register 1s used.

Compared with the case where the real address 1s stored,
which 1s described earlier, 1n this case, there 1s no need to
store 1nformation about a register pair and the like in the
fetch port of the cache unit. Therefore, a circuit configura-
tion 1s simplified.

The cache unit (LBS (Local Buffer Storage)) is provided
with a management arca allocated for each access request
(hereinafter called a “fetch port™).

The correct absolute address obtained by retrieving data
from a TLB and the predicted absolute address are com-
pared. If they are not matched, a corresponding fetch port
performs controls to retrieve data from an LBS 1n a cycle as
shown 1n FIG. 19 by securing the priority of LBS access. For
this retrieval address, the absolute address obtained as a
retrieval result of the TLB, which 1s known to be correct, can
be used. Alternatively, the correct address pair of the TLB
retrieval result can be written 1nto the absolute address
history table.

Specifically, in FIG. 19, a logical address to be fetched in
cycle A 1s generated and simultaneously an absolute address
1s predicted. In cycle T, an absolute address 1s calculated by
retrieving data from the TLB using the fetched logical
address. Simultaneously, both an LBS tag and LBS data are
read using the predicted absolute address. Then, when 1n
cycle B, the predicted absolute address and correct absolute
address obtained from the TLB are compared, non-coinci-
dence occurs. Then, 1n cycle R, a correct address correspon-
dence 1s written back 1n the AAHT and simultaneously a
new process starts. Specifically, in the cycle T of the new
process, both an LBS tag and LBS data are read. Then, in
cycle B, exception check, way selection, the setting of LBS
data 1n a buffer or the like 1s performed and in cycle R, the
result 1s confirmed.

If 1t 1s known 1n advance that absolute address prediction
will fail, specifically, if the absolute address history i1s not
hit, or 1f 1t 1s judged that both index/base register values are
large, as described earlier), it 1s known in advance that the
result is discarded even if an LBS is retrieved (However, it
1s assumed that a register pair history 1s not used. If a register
pair history 1s used, there 1s a high possibility that prediction
succeeds. Therefore, usually there 1s no exception process.
Therefore, an exception process 1n the case where a register
pair history 1s not used or in the case where even 1f a register
pair history 1s used, prediction failure can be anfticipated in
advance for other reasons, as described with reference to
FIG. 20). In this case, the control described with reference
to FIG. 20, 1n other words, an intra-cache operation without
TLB retrieval can also be performed in parallel by not
retrieving data from an LBS. For example, if there 1s an
incorrect absolute address prediction two clocks before,
such a parallel operation 1s possible.

Alternatively, if it 1s judged that both index/register values
arc large, the fact can be stored in the fetch port and

10

15

20

25

30

35

40

45

50

55

60

65

138

writing-back the TLB retrieval result 1n the absolute address
history table can be suppressed.

Specifically, in FIG. 20, 1n cycle A, a logical address to be
fetched 1s generated and simultaneously an absolute address
1s predicted. Then, when the failure of the absolute address

prediction 1s determined, the priority and the like of cache
retrieval 1n which the absolute address 1s determined, is
secured, 1n cycle T, both the LBS tag and LBS data are read
and subsequent processes are performed. As for an instruc-
tion, the absolute address prediction of which fails, 1n cycle
T, an absolute address 1s calculated by retrieving data from
a TLB, and, 1n cycle B the absolute address 1s determined.
Then, 1n cycle R, a correct address 1s written back 1n the
AAHT. In this case, 1f 1t 1s judged that both BR and XR are
large, the writing-back 1s suppressed. Furthermore, when 1n
cycle B the absolute address 1s determined, another process
starts. Specifically, in cycle A, the absolute address obtained
by retrieval from a TLB 1s determined. Then, as usual, 1n
cycle T, both an LBS tag and LSB data are read; 1n cycle B,
exception check, way selection, the setting of data 1n a buifer
or the like 1s performed; and i1n cycle R, the result is
confirmd.

Next, an absolute address history table writing unit 1s
described.

FIG. 21 shows an example configuration of a circuit for
determining a writing way.

If both an absolute address ABSOLUTE__ADRS<16:19>
and a logical address LOGICAL__ADRES<8:19> are mput-
ted from a TLB, the bit<15:19> of LOGICAL ADRS 1s used
for the AAHT to select a line, and a logical address tag, a
valid flag and an immediately preceding access flag are
outputted to four ways. A comparator 100 compares the
logical address tag outputted to ways 0 to 4 with the
bit<8:14> of the logical address mputted from the TLB, and
outputs a signal “1” to the way 1n which the tag coincides
with the bit. If there 1s at least one way 1n which the tag
coincides with the bit, of the four ways, a signal Tag Match
1s nputted to selectors 102 to 105. Furthermore, the valid
flag of the data of the ways 0 to 3 outputted from the AAHT
is inputted to a way selector 106 (see FIG. 22). The way
selector 106 determines a way to perform a new write and
controls each of selectors 102 to 105. If there 1s a way 1n
which the tag coincides with the bit and if the way 1s a
destination to write, the destination selector 106 outputs the
write-valid signal of a specific way WAYx_ WRITE_ VAL.
The way selector 106 also generates a signal for setting the
last access flag SET LASTACC_FLAG and outputs the

signal together with both an absolute address
ABSOLUTE__ADRS<16:19> and

LOCAL__ADRS__TAG<8:14>. The bit<8:14> of the logical
address inputted from the TLB 1s also outputted as an AAHT
line selection signal AAHT__LINE<0:4>.

Specifically, if there 1s a matching logical address 1n
which a tag bit coincides with an access bit, 1n the absolute
address history table when data to write are mputted from
the TLB, the data are overwritten on the logical address. It
there 1s no matching logical address and if there 1s an 1nvalid
entry, a new entry 1s generated there. If there 1s no 1nvalid
entry, a writing way 1s determined based on the previous
access history and the like, and the old entry 1s replaced with
a new entry (see FIG. 22). Since a circuit for selecting a
writing way based on the previous access history (replace-
way selector 110 shown in FIG. 22) is already publicly
known 1n a set associative cache system and the like, the
details are not described here.

FIG. 22 shows an example configuration of the way

selector 106 shown 1n FIG. 21.

US 6,993,638 B2

19

To a way selector 106, both the valid signal of each way
(+WAYx_ VALID) and an immediately preceding access
flag (+WAYx_ LASTACC_ FLAG) are inputted from the
AAHT. A selector 111 outputs a signal for searching for a
way that becomes i1nvalid from the valid signals of ways ()
to 3 and selecting the way as a way candidate to write. If
there 1s even one 1nvalid way, an OR circuit 112 inputs a
signal EXIST__INVALID indicating that there 1s an 1nvalid
entry, to selectors 115 to 118. Furthermore, the way selector
106 1nputs the immediately preceding access flags of ways
0 to 3 to a replace-way selector 110 used to select a way 1n
the conventional set associative method, makes the replace-
way selector 110 generate a rewrite-way selection signal,
inputs the signal to selectors 115 to 118 and outputs an
immediately preceding access flag set signal
(+SELECT _LASTACC_FLAG). If there is an invalid way
and the way matches a way selected by the replace-way

selector, the selectors 115 to 118 outputs a way selection
signal (+WAYx_ WR_SEL NO_MATCH) to be supplied

to the selectors 102 to 105 shown m FIG. 21.

If the circuits described above select a way, each piece of
data 1s written 1n the selected way, as shown i FIG. 23.

FIG. 23 shows an example configuration of an absolute
address history table data writing unit.

AAHT LINE<0:4> (LOGICAL __ADRS<15:19>, which
1s the output shown in FIG. 21 1s inputted to a decoder 120
and a signal mstructing to which line of the 32 lines the
output should be written is outputted. FIG. 21 shows the
configuration of only one line of the 32 lines. The signal
from the decoder 120 is inputted to a device 121 (although
this 1s described as an AND circuit, 1t functions as either a
selector or a gate), and SET_ LASTACC_FLAG,
ABSOLUTE _ADRS, LOGICAL_ADRS_ TAG and
VALID (=1, a valid signal) are selected/outputted. Then,
these pieces of data are inputted to the line #n of the AAHT
composed of latches. To the AAHT, a write-valid signal
(+WEAYx_ WRITE VAL) from FIG. 21 1s inputted. In the
AAHT of only away 1n which a write-valid signal becomes
“17, a signal to be mputted to an IH terminal becomes “0”.
Theretore, mnputted data are stored.

FIG. 24 shows the enfire configuration of the preferred
embodiment of the present invention i1n the case of an
instruction fetch.

In the case of an 1nstruction fetch, there 1s no need for a
process as 1n the case of an operand operation. Therefore, an
mstruction address IAR, a branch destination instruction
address TIAR and the like that are needed for a fetch are
inputted, the IAR and TIAR of which are logical addresses,
are mputted to a selector 130. In order to access a cache LBS
based on an absolute address, these logical addresses are
inputted to the absolute address history table AAHT, are
translated 1nto a predicted absolute address and are inputted
to a selector 131. The output priority of the logical/absolute
addresses 1nputted to the selectors 130 and 131 are deter-
mined by a priority generator 132, and are outputted from
the selectors 130 and 131, respectively. The logical address
outputted from the selector 130 1s inputted to a TLB, 1s
translated 1nto an absolute address and 1s inputted to a
coincidence check umt 133.

After being outputted from the selector 131, the absolute
address predicted by the AAHT 1s inputted to an LBS and 1s
used for cache access. Simultaneously, the absolute address
1s mputted to the coincidence check unit 133, 1s compared
with the correct absolute address obtained by the TLB and
1s used for result confirmation.

FIG. 25 shows the configuration of the preferred embodi-
ment of an instruction fetch unit.

5

10

15

20

25

30

35

40

45

50

55

60

65

20

In FIG. 25, ecach of IAR__A, IAR_ B and IAR_ C stores
the subsequent address of each instruction fetch port (the
subsequent address 1n an instruction string that already
issued an instruction fetch request). Since each of TIAR A,
TIAR__B and TIAR__C exists 1n the instruction string of

cach fetch mstruction port, each of TIAR__A, TIAR__B and

TIAR__C stores a branch destination address in the case
where 1t 1s predicted that a branch mstruction will branch. In
particular, BRHIS__TIAR indicates a branch destination
address obtained by the latest branch prediction (bypass
from a branch prediction mechanism). IARX stores an
interruption return address, a start address and the like. In
particular, RSBR_TOQ_ TIAR 1s a branch destination
address of a branch instruction 1n a branch processing
mechanism and becomes valid 1n the bypass of re-mstruc-
tion fetch. These addresses are simply examples, and gen-
erally speaking, the present invention i1s not limited to such
a conflguration.

This preferred embodiment uses a direct-map absolute
address history table for the purpose of simplifying the
description. Any person having ordinary skill in the art can
casily understand the set associative method, which 1is
described with reference to the operand access unit, or a full
associative method can also be used.

In FIG. 25, a logical address <1:31> 1nputted from an
address source 135 1s mputted to a selector 136, 1s selected
according to the instruction of a priority generator 139 and

1s outputted as an 1nstruction fetch logical address
IF__LOGICAL ADRS<1:31>.

The bit<15:19> of the logical address from each address
source 135 1s 1nputted to the line selector 138 of the AAHT
and the selected absolute address<16:19> 1s inputted to a
selector 137. Like the selector 136, the selector 137 1s
controlled by the prionty generator 139 and the signal is
outputted as an 1nstruction {fetch absolute address
IF__ABS__ADRS<16:19> 1n a prescribed priority. Since the
configuration of the priority generator 139 1s publicly
known, the detailed description 1s omitted.

As shown 1n FIG. 25, if the priority generator 1s greatly
delayed, the absolute address (together with the logical
address) 1s selected based on the output of the priority
ogenerator after an absolute address i1s selected by each
request address.

Since the branch destination address 1s generated based on
a base register value, an 1ndex register value and a deviation
value like the address of an operand access, an absolute
address can be predicted as i1n the address in the case of
operand access. FIG. 26 shows an example configuration of
this case.

In FIG. 26, the same codes are attached to the same
constituent components as those shown 1n FIG. 25, and the
detailed descriptions are omitted.

The logical address from the address source 135 1s
outputted as IF_ LOGICAL ADRS<1:31> according to the
instructions of the priority generator 139 from the selector
136. The predicted absolute address 1s selected from the
AAHT by a line selector 138, 1s outputted from the selector
137 under the control of the priority generator 139 and 1s
inputted to a selector 140. To the selector 140, the predicted
absolute address of the branch destination instruction
address RSBRTIAR__ABS__ADRS<16:19> inputted from
the circuit described with reference to FIG. 7 1s inputted.
Then, the predicted absolute address 1s selected/outputted as
a signal IF__ABS__ADRS<16:19> from the selector 140

according to the instruction of the priority generator 139.

US 6,993,638 B2

21

Since the writing of the signal mm an absolute address
history table 1s basically the same as that of the operand
access unit, the description 1s omitted.

In the case of operand access, according to the simulation
result, a prediction failure rate 1n the case where a logical
address 1s calculated and an absolute address history table 1s
retrieved using the logical address 1s approximately 1%,
while the prediction failure rate of this preferred embodi-
ment 1s approximately 2%. In the case where a logical
address 1s calculated and a table 1s retrieved using the logical
address, one extra clock is always (even in the case of a
cache hit) required, compared with the retrieval method of
the preferred embodiment. In the case of a pipeline method,
it goes without saying that this clock difference directly
influences the CPI (Clock Per Instruction). Even in the case
of an out-of-order method, this clock difference directly
influences the CPI (Clock Per Instruction). However, the
difference 1n loss due to the increased prediction failure rate
in the generation of prediction failures between them 1s only
1%. Even if the time delay of the prediction failure due to
this difference takes an extra six clocks, compared with the
case where a logical address 1s calculated and a table is
retrieved using the logical address, the loss that influences
the CPI 1s at most 6x0.01=0.06. The difference between the
present 1nvention and the case where a logical address 1s
calculated and a table is retrieved using the logical address
1s clear.

In the case of instruction fetch, there 1s no need to 1ncrease
the number of clocks, as shown 1n FIG. 2, if the method of
this preferred embodiment 1s adopted, as long as the content
of an absolute address history is correct (a method for
retrieving data after selecting a logical address always takes
one extra clock). Therefore, the method of the present
invention contributes to the improvement of the function.
According to the simulation result, a higher-accuracy pre-
diction 1s possible with a fewer number of tables than that of
the operand access, and the difference 1n the CPI between the
present mvention and a cache system based on a logical
address 1s negligible.

Since there 1s no synonym problem 1n this system, com-
pared with this preferred embodiment, the effect of the
present mvention 1s also great 1n this respect.

The present invention can 1implement high-speed memory
access 1n a device requiring high-speed operation, such as an
information processing device adopting a superscalar
method and the like. The mmformation processing device 1s
applicable to a large-scale data process problem, such as
weather forecast and the like, by improving the process
speed of the mmformation processing device.

Explanation of the Codes 1n the Drawings
(1) Generates a logical address to be fetched.

(2) Calculates an absolute address by retrieving data from
the TLB.

(3) Reads an LBS tag.

(4) Reads LBS data.

(5) Exception check and the like

(6) Way selection

(7) Buffer setting

(8) Result confirmation

(9) (For the second cache access)

(10) Predicts an absolute address.

(11) Coincidence check of absolute addresses

(12) Writes back correct address correspondence in the
AAHT.

(13) Coincidence check of logical addresses

10

15

20

25

30

35

40

45

50

55

60

65

22

(14) Calculates an absolute address by retrieving data from
the AAHT.

15) ABS__ADRS<16:19>

16) LOGICAL ADRS<20:25>

17) LOGICAL _ADRS<12:19>

18) Address calculation original data

19) Operand access unit

(20) Writes back correct logical address/absolute address
correspondence

(21) Predicted logical address

(22) Predicted absolute address

(23) Correctly calculated logical address
(24) Corresponding absolute address
(25) Cache based on an absolute address
(26) BYPASS_BR<1:31>

(27) BYPASS__ XR<1:31>

(28) Carry-Prediction

(29) Select-Circuit

(30) BR_x NUM<0:3>

(31) XR_x NUM<0:3>

(32) EAG_x_ LOGICAL ADRS<1:31>
(33) EAG_x_ ABS ADRS<16:19>

(34) Absolute Address History Table (AAHT)
(35) +BR_x NUM<0:3>

(36) +BR_x_ DATA<1:19>

(37) +XR_x_ NUM<0:3>

(38) +XR_x DATA<1:19>

(39) +BR+XR_x_ ILARGE

PN SN S

(40) +BR_x NUM<0:3>
(41) +BR__x_ DATA<20>
(42) +BR_x DATA<21>
(43) +XR_x NUM<0:3>
(44) +XR_x_ DATA<20>
(45) +XR_x DATA<21>
(46) +BR_x_ CARRY_ PREDICT
(47) +XR_x_CARRY_PREDICT

(48) BR_x NUM<0:3>

(49) XR_x NUM<0:3>

(50) CARRY__REG#0

(51) CARRY_REG_0_NUM<0:3>
(52) CARRY_REG_0_BYTE<20:31>
(53) CARRY__REG#1

(54) CARRY_REG 1 BYTE<20:31>
(55) CARRY_REG 1 NUM<0:3>
(56) +BR_x REG_CARRY_ PREDICT
(57) +XR_x REG_CARRY_PREDICT
(58) +EAG_0__PAGE__CROSS

(59) +BR+XR_0 IL.ARGE

(60) +EAG 1 PAGE__CROSS

(61) +BR+XR_1 T.ARGE

(62) +BR_ 0 NUM<0:3>

(63) +XR_0__NUM<0:3>

(64) +CARRY_ REG_0_ NUM<0:3>
(65) +CARY__REG_1_NUM<0:3>
(66) +REPLACE_ FLLAG

(67) +BR_1_NUM<0:3>

(68) +XR 1 NUM<0:3>

(69) +CARRY_REG_1 NUM<0:3>
(70) +CARRY_REG_0_NUM<0:3>
(71) +REPLACE_FLAG

(72) REPLACE_FLAG

(73) +REPLACE_FLAG

(74) +EAG_0__PAGE__CARRY

(75) +BR_ 0 DATA<20:31>

(76) +XR_0_DATA<20:31>

(77) +EAG_1 PAGE_ CARRY

(78) +BR_1 DATA<20:31>

23

(79) +XR 1_DATA<20:31>

(80) CARRY__REG#0

(81) CARRY__REG#1

(82) +CARRY_ REG_ 0 NUM<0:3>
(83) +CARRY_ REG_ 0 BYTE<20:31>
(84) +CARRY_ REG 1 NUM<0:3>
(85) +CARRY_REG_1 BYTE<20:31>
(86) +BR_x DATA<8:19>

(87) +BR_x CARRY_ PREDICT

(88) +XR_x DATA<8:19>

(89) +XR_x_ CARRY__PREDICT
(90) +PREDICT_ AR x<8:19>

(91) +PREDICT__VALID_ x

(92) 32line. 4way

(93) PREDICT_LAR_ x<8:19>

(94) LOGICAL__ADRS__TAG

(95) ABSOLUTE __ADRS<16:19>

(96) EAG_x ABS ADRS<16:19>
(97) -BR+XR_x LARGE

(98) BR_x NUM<0:3>

(99) XR_x_ NUM<0:3>

(100) +EAG_x_ LLOGICAL ADRS<8:13>
(101) +LARGE_BR_x NUM<0:3>
(102) +LARGE_XR_ x NUM<0:3>
(103) +LARGE_IL.AR_ x<8:19>

(104) +TLB_x_ ABS__ADRS<8:19>
(105) +LARGE__ABS__ADRS_ x<8:19>
(106) +BR_ x_ NUM<0:3>

10

15

20

25

US 6,993,638 B2

24

(140) ABSOLUTE __ADRS<16:19>

PN SN SN SN SN SN ST SN SN SN SN SN NSNS

LOGICAL__ADRS_ TAG<8:14>

141) WAY0_WRITE VAL

142) WAY1 WRITE VAL

143) WAY2 WRITE VAL

144) WAY3 WRITE VAL

145) Way selector

146) +WAY0_ LASTACC FLAG

147) +WAY1_ LASTACC_ FLAG

148) +WAY2 LASTACC FLAG

149) +WAY3 LASTACC FLAG

150) Replace-way selector

151) EXIST _INVALID

152) +WAY0_WR_SEL. NO__MATCH
153) +WAY1_WR_SEL.__NO__MATCH
154) +WAY2 WR_SET NO__MATCH
155) +WAY3 WR_SEL._NO_MATCH
156) +SET_LASTACC FLAG

157) AAHT LINE<0:4>(=LOGICAL__ADRS<15:19>)
158) SET_LASTACC_ FLAG

ABSOLUTE ADRS
LOGICAL__ADRS_ TAG
VALID (=1)

159) +WAY0_WRITE VAL
160) +WAY1 WRITE VAL
161) +WAY2_ WRITE__ VAL
162) +WAY3 WRITE__VAL
163) Address calculation original data group

(107) +LARGE_BR_0_NUM<0:3>

(108) +XR_x NUM<0:3> 30

(109) +LARGE _XR_ 0 NUM<0:3>

(110) +BR+XR_x LARGE

(111) +BR_x NUM<0:3>

(112) +LARGE_BR_1 NUM<0:3>

(113) +XR_x_ NUM<0:3> 35

(114) +LARGE_XR_ 1 NUM<0:3>

(115) +USE_x_REG_ PAIR_HISTORY_ 0

(116) +USE_x_ REG_ PAIR_HISTORY 1

(117) +LARGE__ABS_ADRS_0<8:19>

(118) +USE__x_ REG_ PAIR__HISTORY_ 0 40

(119) +LARGE_ABS__ADRS_ 1<8:19>

(120) +USE_ x REG_ PAIR__HISTORY_ 1

(121) +PREDICT ABS_ x PAIR<8:19>

(122) +LARGE_LAR_0<8:19>

(123) +USE_x REG_PAIR HISTORY_ 0 45

(124) +LARGE LAR_ 1<8:19>

(125) +USE_x REG_PAIR_ HISTORY_ 1

(126) +PREDICT LAR_ x PAIR<8:19>

(127) Absolute address obtained by TLB retrieval

(128) Determines an absolute address. 50

(129) Writes back correct address correspondence in the from the address history table;
AAHT (If both BX and XR are large, suppress the write a Translation-Lookaside Buffer (TLB) obtaining the cor-
back) rect absolute address using the logical address;

(130) A failure 1s determined to have occurred. a memory access result confirmation unit checking for

(131) Secures the priority of cache retrieval in which an 55 coincidence between the predicted absolute address
absolute address 1s determined, etc. and the correct absolute address and confirming a result

(132)S-Unit (TLB) of memory access made using the predicted absolute

(133) ABSOLUTE ___ ADRS<16:19> address; and

(134)LOGICAL__ADRS<8:19> a prediction unit judging whether carry crossing pages 1s

164) RSBR__TOQ_ TIAR (Bypass)

165) BRHIS_TIAR (Bypass)

166) 1F_LOGICAL ADRS<1:31>

167) 1F_ABS_ADRS<16:19>

168) RSBR__TOQ_SELECT

169) RSBR__TIAR _ABS ADRS<16:19>

170) OP__EAG(for RSBR__TOQ_ TIAR) unit

What 1s claimed 1s:

1. A device comprising,

an address history table storing in a pair at least a partial
bit string of a logical address and bits of an absolute
address corresponding to the partial bit string of the
logical address that are needed as a retrieval key of a
memory based on an absolute address;

a retrieval unit retrieving data from a register file 1n the
case of memory access, reading a value corresponding,
to a register number of the register file and retrieving
data from the address history table using the value as
the logical address and using a partial aggregate of the
logical address;

a MEmOry access unit accessing a memory using a pre-
dicted absolute address obtained by retrieving data

PN SN SN TN TSN SN SN SN SN

(135)AAHT (32line/4way) 60 caused from a register value as a result of the addition

(136) Logical AddressTag in a case where a value obtained by adding a displace-
Valid_ Flag ment value to the register file value 1n memory access
LastAccessFlag, 1s designated as a memory access value.

(137) Valid 2. A device according to claim 1 wherein 1f the predicted

[astAccess 65 absolute address does not coincide with the correct absolute
(138) SET_LASTACC_FLAG address as a result of the coincidence check, a memory 1s

(139) AAHT LINE<0:4> accessed again using the obtained absolute address.

US 6,993,638 B2

25

3. A device, comprising:

an address history table storing 1n a pair at least a partial
bit string of a logical address and bits of an absolute
address corresponding to the partial bit string of the
logical address that are needed as a retrieval key of a
memory based on an absolute address;

a retrieval unit retrieving data from a register file 1 the
case of memory access, reading a value corresponding
to a register number of the register file and retrieving
data from the address history table using the value as
the logical address and using a partial ageregate of the
logical address;

a MEmMOry access unit accessing a memory using a pre-
dicted absolute address obtained by retrieving data
from the address history table;

a Translation-Lookaside Buffer (TLB) obtaining the cor-
rect absolute address using the logical address;

a memory access result confirmation unit checking for
coincidence between the predicted absolute address
and the correct absolute address and confirming a result
of memory access made using the predicted absolute
address;

a prediction unit judging whether carry crossing pages 1s
caused from a register value as a result of the addition
in a case where a value obtained by adding a displace-
ment value to the register file value 1n memory access
1s designated as a memory access value; and

a memory unit storing one or more register numbers of
register flles 1n each of which carry 1s caused when
adding the displacement value to the register value 1n
the previous carry prediction.

4. The device according to claim 3, wheremn 1f the
predicted absolute address does not coincide with the correct
absolute address as a result of the coincidence check, a
correct pair of the logical address and the absolute address
1s registered again 1n the address history table.

5. A device, comprising:

an address history table storing 1n a pair at least a partial
bit string of a logical address and bits of an absolute
address corresponding to the partial bit string of the

logical address that are needed as a retrieval key of a
memory based on an absolute address;

a retrieval unit retrieving data from a register file 1 the
case of memory access, reading a value corresponding
to a register number of the register file and retrieving
data from the address history table using the value as
the logical address and using a partial aggregate of the
logical address;

a MEmOory access unit accessing a memory using a pre-
dicted absolute address obtained by retrieving data
from the address history table;

a Translation-Lookaside Buffer (TLB) obtaining the cor-
rect absolute address using the logical address; and

a memory access result confirmation unit checking for
coincidence between the predicted absolute address
and the correct absolute address and confirming a result
of memory access made using the predicted absolute
address;

wherein 1n a case where a value obtained by adding a
plurality of register values 1s designated as a memory
access address and no more than one register value 1s
determined as valid, said address history table 1is
retrieved by selecting one of the plurality of register
values if neither of the plurality of register values 1s
invalid.

10

15

20

25

30

35

40

45

50

55

60

65

26

6. A device comprising;:

an address history table storing in a pair at least a partial
bit string of a logical address and bits of an absolute
address corresponding to the partial bit string of the
logical address that are needed as a retrieval key of a
memory based on an absolute address;

a retrieval unit retrieving data from a register file 1n the
case of memory access, reading a value corresponding,
to a register number of the register file and retrieving
data from the address history table using the value as
the logical address and using a partial aggregate of the
logical address;

a MEmMOry access unit accessing a memory using a pre-
dicted absolute address obtained by retrieving data
from the address history table;

a Translation-Lookaside Buffer (TLB) obtaining the cor-
rect absolute address using the logical address; a
memory access result confirmation unit checking for
coincidence between the predicted absolute address
and the correct absolute address and confirming a result
of memory access made using the predicted absolute
address,

wheremn 1 a case where a value obtained by adding a
plurality of register values 1s designated as a memory
access address, registration to said address history table
of a translation result from a logical address to the
absolute address 1s suppressed if none of the plurality
of register values 1s mnvalid.

7. A device, comprising:

an address history table storing in a pair at least a partial
bit string of a logical address and bits of an absolute
address corresponding to the partial bit string of the
logical address that are needed as a retrieval key of a
memory based on an absolute address;

a retrieval unit retrieving data from a register file 1n the
case of memory access, reading a value corresponding
to a register number of the register file and retrieving,
data from the address history table using the value as
the logical address and using a partial aggregate of the
logical address;

a MEmMOry access unit accessing a memory using a pre-
dicted absolute address obtained by retrieving data
from the address history table;

a Translation-Lookaside Buffer (TLB) obtaining the cor-
rect absolute address using the logical address;

a memory access result confirmation unit checking for
coincidence between the predicted absolute address
and the correct absolute address and confirming a result
of memory access made using the predicted absolute
address; and

a second address history table storing both a register
number pair of the register and the absolute address
corresponding to the register number pair that 1s
obtained as a result of address translation 1n a case
where a value obtained by adding a plurality of register
values 1s designated as a memory access address if
none of the plurality of register values 1s mvalid.

8. A device, comprising:

an address history table storing i a pair at least a partial
bit string of a logical address and bits of an absolute
address corresponding to the partial bit string of the
logical address that are needed as a retrieval key of a
memory based on an absolute address;

a retrieval unit retrieving data from a register file 1n the
case of memory access, reading a value corresponding
to a register number of the register file and retrieving

US 6,993,638 B2

27

data from the address history table using the value as
the logical address and using a partial aggregate of the
logical address;

a MEmMOry access unit accessing a memory using a pre-
dicted absolute address obtained by retrieving data
from the address history table;

a Translation-Lookaside Buffer (TLB) obtaining the cor-
rect absolute address using the logical address;

a memory access result confirmation unit checking for
coincidence between the predicted absolute address
and the correct absolute address and confirming a result
of memory access made using the predicted absolute
address; and

a third address history table storing both a register number
pair of the register and the logical address that 1s
obtained by adding register values corresponding to the
register number pair 1n a case where a value obtained
by adding a plurality of register values 1s designated as
a memory access address if none of the plurality of
register values 1s mnvalid,

wherein the third address history table retrieves data from
said history table using the logical address.

9. A device, comprising:

an address history table storing 1n a pair at least a partial
bit string of a logical address and bits of an absolute
address corresponding to the partial bit string of the
logical address that are needed as a retrieval key of a
memory based on an absolute address;

a retrieval unit retrieving data from a register file 1 the
case of memory access, reading a value corresponding
to a register number of the register file and retrieving
data from the address history table using the value as
the logical address and using a partial aggregate of the
logical address;

a MEmory access unit accessing a memory using a pre-
dicted absolute address obtained by retrieving data
from the address history table;

a Translation-Lookaside Buffer (TLB) obtaining the cor-
rect absolute address using the logical address;

a memory access result confirmation unit checking for
coincidence between the predicted absolute address
and the correct absolute address and confirming a result
of memory access made using the predicted absolute
address; and

a retrieval unit retrieving data from the address history
table 1n advance for each of one or more pieces of
instruction fetch that might be requested;

a priority generator selecting an instruction fetch address
to be used for memory access; and

a memory access unit accessing a memory using an
absolute address corresponding to the mnstruction fetch
address selected by the priority generator.

10. A method, comprising:

storing 1n a pair at least a partial bit string of a logical
address and bits of an absolute address corresponding
to the partial bit string of the logical address that are
needed as a retrieval key of a memory based on an
absolute address;

retrieving data from a register file 1n the case of memory
access, reading a value corresponding to a register
number of the register file and retrieving data from the
memory content stored using the value as a logical
address and using a partial aggregate of the logical
address;

accessing a memory using a predicted absolute address
that 1s obtained 1n the retrieving data;

10

15

20

25

30

35

40

45

50

55

60

65

23

obtaining a correct absolute address using the logical
address; and

checking for coincidence between the predicted absolute
address and the correct absolute address and confirming,
a result of memory access executed using the predicted
absolute address;

retrieving data from the memory content stored 1n
advance for each of one or more pieces of mstruction
fetch that might be requested;

selecting an 1nstruction fetch address to be used for
memory access; and

accessing the memory using the absolute address corre-
sponding to the mstruction fetch address selected 1n the
selection step.

11. A computer-readable storage storing a computer-

readable program that controls a device to access a memory,
by a method comprising:

storing 1n a pair at least a partial bit string of a logical
address and bits of an absolute address corresponding,
to the partial bit string of the logical address that are
needed as a retrieval key of a memory based on an
absolute address;

retrieving data from a register file 1n the case of memory
aCCess;

reading a value corresponding to a register number of the
register file and retrieving data from the stored memory
content using the value as a logical address and using,
a partial aggregate of the logical address;

accessing a memory using a predicted absolute address
that 1s obtained 1n the retrieving data;

obtaining a correct absolute address using the logical
address; and

checking for coincidence between the predicted absolute
address and the correct absolute address and confirming,
a result of memory access executed using the predicted
absolute address.

12. A computer-readable storage storing a computer-

readable program that controls a device to access a memory,
by a method comprising:

storing 1n a pair at least a partial bit string of a logical
address and bits of an absolute address corresponding,
to the partial bit string of the logical address that are
needed as a retrieval key of a memory based on an
absolute address;

retrieving data from a register file 1n the case of memory
access;

reading a value corresponding to a register number of the
register file and retrieving data from the stored memory
content using the value as a logical address and using
a partial aggregate of the logical address;

accessing a memory using a predicted absolute address
that 1s obtained 1n the retrieving data;

obtaining a correct absolute address using the logical
address;

checking for coincidence between the predicted absolute
address and the correct absolute address and confirming,
a result of memory access executed using the predicted
absolute address;

retrieving data from the stored memory content stored 1n
advance for each of one or more pieces of instruction
fetch that might be requested;

selecting an 1nstruction fetch address to be used for
memory access; and

accessing the memory using the absolute address corre-
sponding to the instruction fetch address selected.

US 6,993,638 B2

29

13. A method of accessing a cache, comprising:

generating a logical address to be fetched;

predicting an absolute address used to access the cache;

reading a local buffer store (LBS) tag and LBS data using
the predicted absolute address;

calculating a real absolute address by retrieving data from
a translation-lookaside bufifer using the generated logi-
cal address; and

conducting one of an exception check, a way selection, or
a setting of the LBS data 1n a buffer depending upon the
read results of the LBS tag and LBS data,

wherein the predicting 1s either a predicting based on a
priority generator selecting an instruction fetch address
to be used for memory access and accessing a memory
using an absolute address corresponding to the mstruc-
tion fetch address selected by the priority generator or
a predicting based on a carry or addition result.

14. The method according to claim 13, further compris-

Ing:

comparing the calculated real absolute address and the
predicted absolute address; and

coniirming a result or writing back 1n an absolute address
history table a correct address based on the comparison.

15. The method according to claim 13, wherein the

predicting the absolute address i1s performed substantially
simultaneously with the generating the logical address to be

fetched.

16. A method of memory access, comprising:
inputting a plurality of register values to an access unit
and to a logical access predicting unit;

30

calculating a logical address using the inputted register
values;

predicting a predicted logical address using the nputted
register values;

> generating a predicted absolute address based upon the
predicted logical address using an address history table;
and
inputting the generated predicted absolute address to a
0 local buffer store.

17. The method according to claim 16, wherein each entry
of the address history table 1s a absolute address bit to be
paired with a logical address.

18. A method of memory access, comprising:

15 1nputting a plurality of register values to an access unit
and to a logical access predicting unit;

calculating a logical address using the inputted register
values;

predicting a predicted logical address using the mputted
20 register values;

generating a predicted absolute address based upon the
predicted logical address using an address history table;

inputting the generated predicted absolute address to a
local buffer store; and

25
adding only respective two-higher order bits 1n a byte

index section of base register data and index register
data to carry predict.

	Front Page
	Drawings
	Specification
	Claims

