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SYSTEM AND METHOD FOR EXTRACTING
REFLECTION AND TRANSPARENCY
LAYERS FROM MULTIPLE IMAGES

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates in general to stereo recon-
struction, and i1n particular, to a system and method for
extracting structure from multiple 1mages of a scene by
representing the scene as a group of image layers, including
reflection and transparency layers.

2. Related Art

Many natural images contain mixtures of reflected (reflec-
tions) and transmitted light (transparencies). Many natural
images will typically contain one or both, 1.e., contain
mixtures of reflected and transmitted light. For example,
shiny or glass-like surfaces typically create a reflected image
of other surfaces i1n its immediate environment. Also, sur-
faces like glass and water are (at least partially) transparent,
and hence will transmit the light from the surfaces behind it.
Although 1t should be noted that the transmitted light 1s
usually attenuated to some degree by the glass (or frontal
surface), and thus, the notion of partial transparency or
“translucency” 1s more general. However, following com-
mon usage 1n the field, the term “transparency” 1s used to
indicate both complete transparency and translucency.

As such, many natural 1images are composed of reflected
and transmitted 1mages, which are super-imposed on each
other. When viewed from a moving camera, these compo-
nent layer 1images appear to move relative to each other.
Techniques to recover the multiple motions are commonly
referred to as multiple motion recovery techniques. The
problem of multiple motion recovery and the reflection and
transmission of light on surfaces in visual 1mages has been
addressed 1n several physics-based vision studies. Likewise,
a number of techniques for recovering multiple motions
from 1mage sequences have been developed.

These techniques can recover multiple motions even in
the presence of reflections and transparency. A subclass of
these techniques also extract the individual component layer
image from the mput composite sequence, but only in the
absence of reflections and transparency (i.e., all the layers
are opaque). Although several studies locked onto each
component motion, they actually created a “reconstructed”
image of each layer through temporal integration and fell
short of being a proper extraction of the component layers.
This 1s because the other layers were not fully removed, but
rather appeared as blurred streaks.

The detection of transparency 1n single 1images has been
studied, but these studies do not provide a complete tech-
nique for layer extraction from general images. Thus, cur-
rent and previous systems have not demonstrated how to
accurately recover the component 1images themselves and
the extraction of component layers 1mages 1n the presence of
reflections and transparency remains a problem. Therefore,
what 1s needed 1s an optimal approach to recovering layer
images and their associated motions from an arbitrary num-
ber of composite images. Also, there 1s a need for techniques
that estimate the component layer images given known
motion estimates.

SUMMARY OF THE INVENTION

To overcome the limitations in the prior art described
above, and to overcome other limitations that will become

apparent upon reading and understanding the present speci-
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2

fication, the present invention 1s embodied 1n a system and
method for extracting structure from multiple 1mages of a
scene by representing the scene as a group of 1image layers,
including reflection and transparency layers.

In general, the present invention performs layer extraction
from multiple 1mages containing reflections and transparen-
cies. The present invention includes an optimal approach for
recovering layer images and their associated motions from
an arbitrary number of composite 1mages. The present
invention includes image formation equations, the con-
stramned least squares technique used to recover the compo-
nent 1mages, a novel method to estimate upper and lower
bounds on the solution using min- and max-composites, and
a motion refilnement method.

Specidically, the present invention includes two different
techniques for estimating the component layer images given
known motion estimates. The first approach uses con-
strained least squares to optimally recover the layer images.
The second approach iteratively refines lower and upper
bounds on the layer images using two novel compositing
operations, namely minimum and maximum composites of
aligned 1mages. These layer extraction techniques are com-
bined with a dominant motion estimator and a subsequent
motion refinement stage. This produces a completely auto-
mated system that recovers transparent images and motions
from a collection of iput 1mages.

In one embodiment, the present invention involves first
computing a primary motion estimate, second estimating a
primary layer associlated with the primary motion estimate,
third computing a secondary motion estimate, fourth esti-
mating a secondary layer associated with the secondary
motion estimate and then iteratively refining lower and
upper bounds on the primary and secondary layers to
estimate the layers. In another embodiment motion estimates
are 1mproved by using motion re-estimation. Also, estimat-
ing the layers can be accomplished by using constrained
least squares to optimally recover the layer images.

The present invention as well as a more complete under-
standing thereof will be made apparent from a study of the
following detailed description of the invention 1n connection
with the accompanying drawings and appended claims.

BRIEF DESCRIPTION OF THE DRAWINGS

Referring now to the drawings in which like reference
numbers represent corresponding parts throughout:

FIG. 1 1s a block diagram illustrating an apparatus for
carrying out the ivention;

FIG. 2 1s an overview block diagram of the present
mvention;

FIGS. 3A-3E show a constrained least square 1llustration
using a one-dimensional example;

FIGS. 4A-4H show a min/max alternation illustration
using a one-dimensional example;

FIG. 5 shows the operational and functional details of the
present 1nvention;

FIG. 6 shows additional details for processing the first
layer of FIG. 3 of the present invention;

FIG. 7 shows additional details for processing the second
layer of FIG. 3 of the present 1nvention; and

FIG. 8 shows additional details for recovering component
images of FIG. 3 of the present invention.
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DETAILED DESCRIPTION OF THE
INVENTION

In the following description of the invention, reference 1s
made to the accompanying drawings, which form a part
hereof, and 1n which 1s shown by way of illustration a
specific example 1n which the invention may be practiced. It
1s to be understood that other embodiments may be utilized
and structural changes may be made without departing from
the scope of the present invention.

I. Exemplary Operating Environment

FIG. 1 and the following discussion are intended to
provide a brief, general description of a suitable computing,
environment 1 which the invention may be implemented.
Although not required, the invention will be described 1n the
general context of computer-executable mstructions, such as
program modules, being executed by a computer. Generally,
program modules include routines, programs, objects, com-
ponents, data structures, etc. that perform particular tasks or
implement particular abstract data types. Moreover, those
skilled 1n the art will appreciate that the invention may be
practiced with a variety of computer system configurations,
including personal computers, server computers, hand-held
devices, multiprocessor systems, microprocessor-based or
programmable consumer electronics, network PCs, mini-
computers, mainframe computers, and the like. The 1mnven-
fion may also be practiced in distributed computing envi-
ronments where tasks are performed by remote processing
devices that are linked through a communications network.
In a distributed computing environment, program modules
may be located on both local and remote computer storage
media including memory storage devices.

With reference to FIG. 1, an exemplary system for imple-
menting the invention includes a general purpose computing
device 1 the form of a conventional computer 100, includ-
ing a processing unit 102, a system memory 104, and a
system bus 106 that couples various system components
including the system memory 104 to the processing unit 102.
The system bus 106 may be any of several types of bus
structures 1ncluding a memory bus or memory controller, a
peripheral bus, and a local bus using any of a variety of bus
architectures. The system memory includes computer stor-
age media in the form of read only memory (ROM) 110 and
random access memory (RAM) 112. A basic input/output
system 114 (BIOS), containing the basic routines that helps
to transfer information between elements within computer
100, such as during start-up, 1s stored in ROM 110. The
computer 100 may include a hard disk drive 116 for reading
from and writing to a hard disk, not shown, a magnetic disk
drive 118 for reading from or writing to a removable
magnetic disk 120, and an optical disk drive 122 for reading
from or writing to a removable optical disk 124 such as a CD
ROM or other optical media. The hard disk drive 116,
magnetic disk drive 128, and optical disk drive 122 are
connected to the system bus 106 by a hard disk drive
interface 126, a magnetic disk drive interface 128, and an
optical drive 1nterface 130, respectively. The drives and their
assoclated computer-readable media provide storage of
computer readable instructions, data structures, program
modules and other data for the computer 100. Although the
exemplary environment described herein employs a hard
disk, a removable magnetic disk 120 and a removable
optical disk 130, it should be appreciated by those skilled in
the art that other types of computer readable media can store
data that 1s accessible by a computer. Such computer read-
able media can be any available media that can be accessed
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4

by computer 100. By way of example, and not limaitation,
such computer readable media may comprise communica-
fion media and computer storage media. Communication
media typically embodies computer readable instructions,
data structures, program modules or other data in a modu-
lated data signal such as a carrier wave or other transport
mechanism and includes any information delivery media.
The term “modulated data signal” means a signal that has
one or more of its characteristics set of changed 1n such a
manner as to encode information in the signal. By way of
example, and not limitation, communication media includes
wired media such as wired network or direct wired connec-
tion, and wireless media such as acoustic, RFE, infrared and
other wireless media. By way of example, and not limitation,
communication media includes wired media such as a wired
network or direct wired connection, and wireless media such
as acoustic, RF, infrared and other wireless media. Computer
storage media includes any method or technology for the
storage of information such as computer readable 1nstruc-
fions, data structures, program modules or other data. By
way ol example, such storage media includes RAM, ROM,
EPROM, flash memory or other memory technology, CD-
ROM, digital video disks (DVD) or other optical disk
storage, magnetic cassettes, magnetic tape, magnetic disk
storage or other magnetic storage devices, or any other
medium which can be used to store the desired information
and which can be accessed by computer 100. Combinations
of any of the above should also be 1ncluded within the scope
of computer readable media.

A number of program modules may be stored on the hard
disk, magnetic disk 120, optical disk 124, ROM 110 or RAM
112, including an operating system 132, one or more appli-
cation programs 134, other program modules 136, and
program data 138. A user may enter commands and infor-
mation 1nto the computer 100 through mput devices such as
a keyboard 140 and pointing device 142. Other 1input devices
(not shown) may include a microphone, joystick, game pad,
satellite dish, scanner, or the like. These and other input
devices are often connected to the processing unit 102
through a serial port interface 144 that 1s coupled to the
system bus 106, but may be connected by other interfaces,
such as a parallel port, game port or a universal serial bus
(USB). A monitor 146 or other type of display device is also
connected to the system bus 106 via an interface, such as a
video adapter 148. In addition to the monitor 146, computers
may also include other peripheral output devices (not
shown), such as speakers and printers.

The computer 100 may operate 1n a networked environ-
ment using logical connections to one or more remote
computers, such as a remote computer 150. The remote
computer 150 may be a personal computer, a server, a router,
a network PC, a peer device or other common network node,
and typically includes many or all of the elements described
above relative to the personal computer 100, although only
a memory storage device 152 has been 1llustrated in FIG. 1.
The logical connections depicted 1n FIG. 1 include a local
area network (LAN) 154 and a wide area network (WAN)
156. Such networking environments are commonplace 1n
offices, enterprise-wide computer networks, intranets and
Internet.

When used 1n a LAN networking environment, the com-
puter 100 1s connected to the local network 154 through a
network interface or adapter 158. When used in a WAN
networking environment, the computer 100 typically
includes a modem 160 or other means for establishing
communications over the wide area network 156, such as the
Internet. The modem 160, which may be internal or external,
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1s connected to the system bus 106 via the serial port
interface 144. In a networked environment, program mod-
ules depicted relative to the computer 100, or portions
thereol, may be stored 1n the remote memory storage device.
It will be appreciated that the network connections shown
are exemplary and other means of establishing a communi-
cations link between the computers may be used.

II. General Overview

FIG. 2 1s an overview block diagram of the present
invention. The present mvention 1s embodied 1in a system
and method for extracting structure from multiple 1mages of
a scene by representing the scene as a group of 1mage layers,
such as reflection and transparency layers. A scene or an
original 1mage sequence 200 can contain mixtures of
reflected (reflections) and transmitted light (transparencies)
as component layers 212, 214 (a primary layer 212 and n
layers 214), which can be super-imposed on one another.
When viewed from a moving camera, these component
layers 212, 214 can appear to move relative to each other to
create multiple motions.

As such, 1t 1s desirable to extract the component layers
212, 214 1n the presence of any reflections and transparen-
cies and recover the multiple motions. The present invention
accurately extracts the component image layers 212, 214
and then recovers their associated motions from an arbitrary
number of composite 1mages. ExXtracting structure from
multiple 1mages of the scene 200 by representing the scene
as a group of 1mage component layers 212, 214 1s accom-
plished by the systems and methods described below.

In general, first, a primary motion estimate 1s computed
(step 220) for the scene 200. Second, based on this primary
motion estimate, a primary layer associated with the primary
motion estimate 1s determined (step 222). Third, the scene
200 1s analyzed and a secondary motion estimate 1s com-
puted (step 224). Fourth, a secondary layer associated with
the secondary motion estimate is estimated (step 226) based
on the secondary motion estimate. Next, the primary and
secondary layers are recovered by iteratively refining lower
and upper bounds on the primary and secondary layers (step
228). Although the above description and the description
that follows refer to primary and secondary layers (or
dominant and non-dominant layers), it should be noted that
more than two layers could be recovered by the present
ivention.

In addition, once the motion 1s known or for the case when
the 1nput composite 1mages can be modeled as an additive
mixture of the component layers (such a model applies when
the light from one surface is reflected by another), a con-
strained least-square technique can be used to recover the
layers from the known motions. It should be noted that this
case applies to an arbitrary number of layers. Further, a
complete technique that combines the layer extraction step
together with an automatic multiple motion technique to
recover the layers and their motions from the mnput images
1s preferably used.

In this case, for a complete solution, first, a dominant
motion (for example, of the desired layer) for the sequence
1s computed using 1mage alignment against a current min-
composite. Second, a difference 1image calculation 1s com-
puted between stabilized 1mages and the min-composite.
Third, non-dominant motion 1s computed by aligning the
difference 1image calculation with a max-composite of the
images. Fourth, 1nitial layer estimates of the dominant and
non-dominant motion estimates are used and the motion
estimates are improved using motion re-estimation. Last,
unconstrained least-squares are computed as an 1nitial value

10

15

20

25

30

35

40

45

50

55

60

65

6

and positivity constraints are used to solve a quadratic
related to the layer extraction. The embodiments described
above are provided as high level descriptions of the general
operation of the present invention and will be discussed 1n
detail below.

III. Details of the Components and Operation
A. Image Formation:

This section presents the general problem formulation,
including the 1image formation equations. In “Ordinal char-
acteristics of transparency”’, AAAI-90 Work Qualitative
Vision, pp. 77-81, 1990, by E. H. Adelson and P. Anandan
a recursive process was proposed as the generative model
for obtaining a composite 1mage from component layers. At
cach pixel, assuming a given spatial ordering of layers
relative to the viewpoint, each layer partially attenuates the
total amount of light coming from all the layers “behind 1t”
and adds 1ts own light to give an output signal. The final
composite 1mage 1s the result of applying this process to all
layers 1n a back to front fashion. This process can be
summarized in terms of the following modified form of the
over operator used 1n 1mage compositing, as described by J.

F. Blinn. Jim Blinn’s corner: i “Compositing, part 1:
Theory”, IEEE Comp. Gr. and Appl., 14(5): 83-87, Septem-
ber 1994,

FAB=F+(1-a,)B, (1)
where F and B denote the colors of the foreground and the
background images. The standard definition of the over
operator uses foreground colors that are premultiplied by the
opacities of the foreground layer, hence, the R, G, and B
values that must be =a. In this case, this restriction 1s
removed 1n areas of reflection, 1n order to handle additive

composition.

For the purposes of the present mmvention, it 1s assumed
that each component layer (indexed by 1=0, . . . L-1) is
defined by a signal or 2D image f(x), (where f; denotes layer
1 and x will 1s used to index both 1-D signals and 2-D
images), which 1s warped to the current image (indexed by
k) coordinate system via a warping operator W,,, which
resamples the pixels. Also, W, ,“f, denotes the warped 1mage.
Hence, the composite image (or the original image
sequence) 1s given by the equation:

m=Wifo - - Wk(L—l)GfL—l (2)

Next, it 1s assumed that W, 1s an 1invertible global paramet-
ric motion (where W,, denotes the motion parameters of
layer 1 and frame k), such as translation, rotation, affine, or
perspective warp. Also, it is initially assumed that the W*
are known (it should be noted that this assumption is
removed in Section III. D below).

Image formation and pure additive mixing of 1mages can
be expressed as:

L-1 (3)
my (X) = Z Wi fi(x).
=0
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An alternative way of writing the 1image formation equations
is to look at the discrete image pixels written in (rasterized)
vector form,

I (4)
my = Z Wi fi-
=0

The above formula is equivalent to the first (continuous)
formula if the images are sampled without aliasing (below
their Nyquist frequency) and the warping does not unduly
compress the layer images (thereby causing aliasing). The
W matrices are very sparse, with only a few non-zero
coefficients in each row (i.e., the interpolation coefficients
for a given pixel sample). In addition to the image formation
equations, 1t 1s known that the original layer 1mages are
non-negative, 1.€., f(x)Z0. As will be described below, this
provides very important (and useful) constraints on the
solution space.

For real images, there 1s a chance that the 1mages may be
saturated (i.e., m,(x)=255 for 8-bit images) in some regions.
An accurate model of the mixing process can be generated
with a photo-metrically calibrated camera, 1.€., cameras
where the radiance to pixel-value transfer curve 1s known, as
described by Paul E. Debevec and Jitendra Malik, 1n
“Recovering high dynamic range radiance maps from pho-
tographs™, SIGGRAPH 97, pp. 369-378, August 1997. For
the description that follows, however, it 1s assumed that the
mixing process 1s linear, but that the observed mixed signal
values m, are clipped to 255. The extension to a truly
calibrated camera 1s straightforward, but may require a
level-dependent noise process to be added.

B. Recovering Component Images with Constrained
Least Squares

This section presents the constrained least squares algo-
rithm that 1s used to recover the component 1mages and that
was described generally above. Given a set of images m, the
layer images I, can be recovered. Since the image formation
equations are linear, constrained least squares,

(3)

[—1 2

min E Z Wuﬁ — Ny
{=0

k

s-1- f =0,

can be used. Such a least squares estimator 1s statistically
optimal if the measured input 1mages are corrupted by
uniform independent (white) Gaussian noise. The least
squares problem 1s constrained, since 1t 1s required that all of
the elements 1n the {, 1mages be non-negative. Also, for any
pixel in m, that is saturated (255), only the mismatch
between m, and the mixed layers 1s penalized 1f the pre-
dicted value 1s below 255.

This least squares problem is very large (one term or
linear equation per measured input pixel), and very sparse
(only a few non-zero coefficients per equation). Iterative
techniques, such as variants of gradient descent or conjugate
oradient, should be used. For instance, for a 1-D signal, 1t
should be usually possible to form a narrow-banded problem
by interleaving the layer pixel. These 1D examples will be
discussed below for illustrative purposes.

For the current implementation of the present invention,
a two stage approach 1s preferably used for solving the
constrained least-squares problem and 1s discussed with the
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entire system with reference to FIGS. 5-8 below. Generally,
first, the problem 1s solved without constraints using a
Preconditioned Conjugate Gradient (PCG) method. Any
standard mathematical technical computing environment for
combining, for example, numeric computation, advanced
oraphics and visualization, and a high-level programming
language can be used. The mathematical computing envi-
ronment can have functions for the PCG for data analysis
and visualization, numeric and symbolic computation, engi-
neering and scientific graphics, modeling, simulation, and
prototyping, programming, application development, and
GUI design. Using the PCG method as an initial estimate, a
Quadratic Programming (QP) technique can be used with
the positivity constraints enabled (again using a standard
function in the mathematical technical computing environ-
ment) to obtain the constrained optimal solution.

The constrained least-square problem posed in Equation 5
has a unique solution unless the set of relative motions
between the component layers 1n the 1nput composites 1s
degenerate (or poorly conditioned) in some fashion. Under
the general (non-degenerate) condition, given known
motion, the component layers from the input composites can
be recovered. In practice, although it 1s usually not assumed
that the motions are known, indeed the estimation of the
motion 1s an 1mportant part of the overall technique. This
will be discussed further 1n sections III. D.

Namely, the positivity constraints on the component sig-
nals (images) restrict the solution to be in a convex sub-
space. Therefore, the quadratic programming program posed
in Equation 5 does not suffer from multiple local minima.
Without the constraints, the solution 1s not unique. This can
be seen even without analyzing the particular structure of the

W, matrices, based on the following reasoning. If {f} is a set
of component layer signals (images) that minimizes the
least-squares error defined 1n Equation 5, since each input
image 1s simply a sum of warped and resampled versions of
these components, a constant image can be subtracted to one
of the layers. This amount can be distributed (added) among
the other layers without changing the sum. The new set of
layer thus obtained 1s also a valid solution to the uncon-
stramned minimization problem posed in Equation 5. This
implies that the system of equations 1s degenerate.

FIGS. 3A-E 1llustrate this degeneracy, using a one-
dimensional example. FIGS. 3A and 3B show the plots of
the two 1nput component layers. Five mixed signals were
created by shifting these two relative to each other by
different (known) amounts and adding random Gaussian
noise. As an example, one of these five mixed signals 1s
shown 1n FIG. 3C. The solid curves 1n FIGS. 3D and 3E
show the recovered component layers signals obtained by
solving the unconstrained least-squares problem, using a
“pseudo-inverse” (minimum norm) technique. Note that the
recovered signal (solid line) i1s offset from the true signal
(similar results are obtained in the noise-free case as well).
For the two layer case, the amount of this offset 1s equal to
half the difference between the mean foreground and back-
oground layers values.

In practice, this degeneracy 1s not too critical, since it
leads to stmply a DC offset of the signals. Moreover, if each
layer has at least one pixel that is black (i.e., signal value of
zero), this degeneracy can be removed using the positivity
constraint. This 1s because subtracting an offset from any of
the layers will lead to at least one negative valued pixel,
which violates the positivity constraint. The result of solving,

the constrained least-square problem 1s shown as the upper
curve 1n FIG. 3D and the lower curve 1n FIG. 3E. As shown,
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these reconstructed signals differ from the input signals only
by small random noise. In other words, solving the optimi-
zation problem with constraints appears to fix the degen-
eracy 1n the system. It should be noted, however, if there 1s
some layer that has no black pixel (1.e., f,Zc, where ¢>0), the
solution can only be determined up to an offset of c.

In practice, in 2D 1mages, there may also be additional
source of degeneracy or poor conditioning due to the struc-
ture of the warping matrix W,,. In the case when the relative
motion between the component layers consists of shifts
purely 1n the horizontal (or vertical) direction. In this case,
the overall problem decouples mto a set of independent
problems corresponding to each row (or column). Each row
will be determined only up to an arbitrary but different DC
offset. To 1mpose the positivity constraint and obtain a
unique solution, each row 1n each layer must have a black
pixel, which may be unrealistic. Hence, even the use of the
positivity constraints may not guarantee the correct recovery
of component layers. In summary, the constrained least-
square problem posed 1 Equation 5 has a unique solution
unless the set of relative motions between the component
layers in the input composites is degenerate (or poorly
conditioned) in some fashion, as discussed above.

C. Estimating Upper and Lower Bounds with Min/Max
Alternation

This section 1llustrates estimating upper and lower bounds
on the solution using min- and max-composites. In order to
run the constrained least-squares algorithm, the motions for
all of the layers must be known. Unfortunately, in many
image sequences, only the dominant motion can be reliably
estimated at first. Thus, estimating the non-dominant motion
(s) 1s important to the overall problem. In this section, a
novel algorithm 1s proposed that iteratively re-estimates
upper and lower bounds on two component layers. This
estimation can be interleaved with layer motion estimation.

The present technique 1s based on the following obser-
vation. Once the dominant motion has been estimated, an
estimate for the layer corresponding to this motion can be
obtained by forming a mosaic from the stabilized image
sequence. However, unlike conventional mosaics, where
cither an average or median 1s used to form the estimate
(sometimes with appropriate feathering near the edges), the
present 1nvention computes the minimum pixel value across
all images 1n the stabilized sequence.

The min-composite estimate 1s computed because the
contributions from other layers can only add to the intensity
at a given pixel. Therefore, the min across all mixed images
grves an upper bound on the possible value for the dominant
layer. More formally, let

-1

Se = Wigmy = fo + Z W Wi, f,
=1

6)

be the set of images stabilized with respect to layer 0. Then,

L—1

1 (7)
énaxﬂ]iﬂSk = f{] +ZH]EHW&) Wk;ﬁ
=1

k

1s an upper bound on 1.
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Once an estimate for layer 0 1s found, the di
images can be computed

‘erence

dy=s,—fo"

(8)

These difference 1mages give the Iluminance that 1is
accounted for by the other layers (where s, denotes the
stabilized 1mage sequence with respect to layer 0, £,
denotes the MIN composite and d, denotes the difference
sequence).

Now, distributing this residual error among the remaining
layers 1s important. For this reason, the two layer (fore-
ground/background) case is described. This is not a big
limitation 1n practice, since multiple reflections/transmis-
sions are relatively rare.

In the two layer case, the difference images d, are a partial
estimate (lower bound) on the amount of light in layer 1.
These 1mages can be stabilized using a parametric motion
estimator (assuming that the motion is not known a priori),
and thereby compute W,,. Let

™

=W Weod =AW W (fo—£7). (9)

be the set stabilized of difference 1mages. A max-composite
can then be computed of the stabilized differences,

min

= m]_kaxrk = fi +n‘ﬁ{axW@l Wil fo — fo" ). (10)

Since f,—f,**=0, each t, is an underestimate of f,, and ;"
is the tightest lower bound on {, it can be computed (where

t, denotes the stabilized difference sequence, and f/"
denotes the MAX composite).

With the improved lower bound estimate for f, (it should
be noted that {;20 was an initial value), a better estimate
(tighter upper bound) for f, can be recomputed. Instead of
stabilizing the original input images m,, the corrected
images can be stabilized

cr=my—W /"

(11)

to obtain

$k=Wio k=l Wio Wl f™") (12)
The amount of overestimate 1n each stabilized image s, 1s
now proportional to the difference between the lower bound
on f, and its true value.

Thus, an improved estimate for ;“* can be obtained, and
this can be used to obtain an improved estimate for £,
This 1teration eventually leads to the correct solution. Under
ideal conditions (to be defined below), the min/max alter-
nation algorithm described above will compute the correct
estimates for 1, and {,. The time required to do so depends
on the diameter of the largest non-zero region 1n the fore-
ground layer (f;) divided by the diameter of the shifting
operation seen in all input images (to be defined below).

For the above, 1t 1s assumed that at least one pixel 1n the
foreground layer 1s zero. If not, then min/max alternation
will compute the best lower bound on f; it can (which will
contain at least one zero value) and stop. Also, it 1s assumed
that there is only one isolated region (otherwise, the above
applies to each region independently). The ideal conditions
mentioned above come 1n two parts. First, the entries in the
W, and W~ matrices are non-negative and second, there
1s no 1maging noise. The first condition 1s, 1n general, only
attainable 1f the layers are shifted by integral amounts. The
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second condition 1s, of course, not attainable 1n practice. But

these 1deal conditions can be compensated for, as will be
discussed below.

For the improved estimate, as described above, x 1s set to
be the coordinate of some pixel where [(x)=0. Let x'eN(x)
be the shift-induced neighborhood of x, 1.e., the set of pixels

in the m, images that are formed using f(x). Then, since
min, W, {(x)=0 for any pixel in N(x), {,"“(x")=f,(x"), 1.¢.,
the upper bound is exact at these pixels. Further, the differ-
ence signals at these pixels 1s exact (the lower bound
matches the true value of the shifted £, signal). Therefore, the
pixels in f, where x"eN'(x"), 1.e., the pixels being re-estimated
using at least one correct element 1n f,, will have the correct
estimated value, f"7(x")=f(x").

This process will grow regions of correct estimates out
from pixels 1n the foreground that are black. These regions
can grow quickly and can eventually cover the entire 1mage.
For example, x'eN(x) can be analogized as a morphological
dilation operator that spreads good pixels (initially, the black
ones) in f; into good estimates of f,. Similarly, x"eN'(x") is
the morphological dilation operator that spreads good pixels
in f 1nto good pixels in f,. Each dilation operation eats away
at the borders of the regions that have potentially erroneous
estimates of {, and f,. The number of operations required 1s
the (outside) diameter of the largest such region divided by
the (inside) diameter of the dilation operator.

FIGS. 4C and 4D show the results of running our min/
max technique on a simple 1-D signal with +1 shifts in x.
The solid curve shows the background (and foreground)
signals after 1 iteration, the dashed after 2 iterations, and the
phantom curve 1s after 3 iterations. Note that convergence
has already been achieved after 3 iterations. Also, 1t should
be noted that the technique described above 1s for computing,
upper bounds for one layer, and lower bounds for another.
The process could also be run the other way around (once
motion estimates are known for both layers) to simulta-
neously compute upper and lower bounds.

1. Noise and Resampling

The min-max technique 1s powerful 1n that it guarantees
oglobal convergence. However, the 1deal conditions men-
tioned above should be satisfied. When noise 1s present, the
upper and lower bounds computed by min/max may become
erroncous at each 1iteration, leading to a divergence away
from the correct solution. This behavior can be seen in FIGS.

4FE and 4F.

Similarly, the subpixel interpolation involved 1n the resa-
mpling process can also lead to a bad solution. There are two
potential problems when resampling the 1images. The first 1s
that some entries in the W,, and W,, ' matrices may be
negative (for a positive interpolants W, such as bilinear or
B-splines, the inverse warp will have negative sidelobes). In
these cases, the upper/lower bound estimates ;" and/or
7" computed in Equations 7 and 10 may be invalid (too
tight). These errors propagate from iteration to iteration, and
can eventually come up with global solutions that are 1nvalid
(that may not satisfy the constraints).

The second potential problem 1s that an approximation to
W, ! is being used. This happens quite often, for example
when bi-linear or bi-cubic filtering 1s used 1n conjunction
with a hardware or software perspective warping algorithm
(in both directions). If in this case, while the entries in W,
and W,* (the approximate inverse) may be non-negative,
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Equation 7 1s no longer valid. Instead, the equation should
read

(13)

L—1
max

0 = WEH Wkgf[} + Z mﬁzin ngwkj fl-
=1

There 1s no longer any guarantee that the first term 1s not less
than {,. In practice, 1t 1s observed that the algorithm starts to

diverge rather quickly (FIGS. 4G and 4H).

D. Motion Refinement: Re-Estimating the Layer Motions

This section presents the motion refinement technique of
the present invention, as described 1n general above. Once
layer estimates are found (starting with one iteration of the
min/max algorithm to compute the initial dominant and
non-dominant motions, and optionally followed by an 1nitial
solution of the constrained least squares), the motion esti-
mates can be refined.

The refinement technique of the present invention 1s
similar to parametric motion estimations. Namely, expand-
ing equation 5 using a Taylor series 1in the motion parameters
P.;, the following 1s obtained

&

1 1 L1 12
Z z Z J1 X (x5 pri)) —my(x)
k& X =1 -

1 1 i L-1 @x“
Ar(X)+ D>V fi(xei(x; pri))=——V pus
Zk‘Z‘ _ ;‘ 4 P OPry g _

The errors Ay (x) are then computed (difference between
predicted and observed signals). The gradients Vi, are com-
puted for each layer separately, and used to compute that
layer’s motion.

E. Complete Solution for Estimating the Component
Layer Images and their Associated Motions.

Based on the above, a complete solution can be formu-
lated that estimates the component layer images and their
assoclated motions, 1n accordance with the present mmven-
tion. The complete solution can be summarized as follows

with reference to FIGS. 5-8:

1. Compute a dominant motion for the sequence using
image alignment against the current min-composite

£,

2. Compute the difference 1mages d, between the stabi-
lized 1mages and the min-composite £,"".

3. Compute the non-dominant motion by aligning the
difference 1mages d, with a max-composite of these
Images.

4. Usmg the mmitial layer guesses, improve the motion
estimates using the motion re-estimation algorithm.

5. Compute the unconstrained least-squares solution.

6. Using this result as the mitial value, solve the quadratic-
programming problem with the positivity constraints.

7. Optionally alternate the least-squares optimization of
layer values with motion re-estimation.

FIG. 5 shows the operational and functional details of the
present mvention. For the case when the imnput composite
images can be modeled as an additive mixture of the
component layers (such a model applies when the light from
one surface is reflected by another), a constrained least-
square technique can be used to recover the layers from
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known motions. Further, a complete technique that com-
bines the layer extraction step together with an automatic
multiple motion technique to recover the layers and their
motions from the mput 1mages 1s preferably used.

In general, referring to FIG. §, along with FIG. 6, first, an
nitial layer 510 of the original image sequence 200 of FIG.
2 1s processed. From this processing, motion parameters 512
of the mnitial layer 510 are produced along with a difference
sequence 514. Preferably, the initial layer 510 1s the desired
layer that contains the dominant motion 600 of the image
sequence 200. Also, a stabilized image sequence 516, with
respect to the 1nitial layer, along with a min composite 518
can be optionally produced. The min composite 518 can
serve as an 1nitial guess for the constrained least square
calculation of FIG. 7. The dominant motion estimation 600
for the sequence can be computed using 1mage alignment
against the current min-composite 518. The difference image
calculation 1s computed between the stabilized 1mages and
the min-composite 518.

Next, the difference sequence 514 1s used to process a
secondary layer 520 of the original 1mage sequence 200 of
FIG. 2. Referring to FIG. 4 along with FIG. 7, with respect
to the secondary layer 520, motion parameters 522 of the
secondary layer are produced. The secondary layer contains
the non-dominant motion 700 of the 1mage sequence 200.
Also, a stabilized image sequence 524 along with a max
composite 526 can optionally be produced. The max com-
posite 526 can serve as an 1nitial guess for the constrained
least square calculation of FIG. 8. The non-dominant motion
700 can be computed by aligning the difference image
calculation with the max-composite 526 of the images.
Initial layer estimates of the dominant and non-dominant
motion estimates 600, 700 are then used to improve the
mofion estimates using motion re-estimation.

A constrained least squares technique 530 can be then
used to recover the component layers 532, 534. Referring to
FIG. 4 along with FIG. 8, namely, the constrained least
squares technique 3530 can receive as input the original
image sequence 200, the motion parameters of the 1nitial and
secondary layers 510, 520 and the min and max composites
518, 526. The constrained least-square calculation 3530
solves for the layers by first performing a preconditioned
conjugate gradient (PCG) 800 and then it enforces a posi-
fivity constraint by using a quadratic programming module
814. In other words, the preconditioned conjugate gradient
800 with unconstrained least-squares can be computed for
producing initial value estimates 810, 812 and the positivity
constraints can be used to solve a quadratic with the qua-
dratic programming module 814 that 1s related to the layer
extraction to extract the 1nitial and secondary layers 816,
818. Alternatively, instead of running PCG, the MIN/MAX
composites can be used as initial guess to the quadratic
programming. Finally, the entire process can be repeated for
a couple of times to refine the result.

[V. CONCLUSION

In summary, the present invention extracts a set of com-
ponent layers from a collection of composite images. While
the problem of recovering the multiple motions from such
sequences has been extensively studied (at least when the
motions are parametric), the problem of extracting the layer
images 1n the presence of reflections and transparency has
not been adequately treated until now.

The present invention 1s embodied 1n a system and
method for recovering the layer images and their motions
from the mnput sequence. For the case when the input
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composite 1mages can be modeled as an additive mixture of
the component layers (such a model applies when the light
from one surface is reflected by another), a constrained
least-square technique can be used to recover the layers from
known motions. Further, a complete technique that com-
bines the layer extraction step together with an automatic
multiple motion technique to recover the layers and their
motions from the input images has been described.

The foregoing description of the invention has been
presented for the purposes of 1llustration and description. It
1s not 1mntended to be exhaustive or to limit the invention to
the precise form disclosed. Many modifications and varia-
tions are possible in light of the above teaching. It is
intended that the scope of the invention be limited not by this
detailed description, but rather by the claims appended
hereto.

What 1s claimed 1s:

1. Amethod for performing layer extraction from multiple
images containing reflections and transparencies, compris-
ng:

computing a primary motion estimate, wherein computing,

the primary motion estimate includes computing a
dominant motion for the sequence using image align-
ment against a current min-composite;
estimating a primary layer associated with the primary
motion estimate, wherein estimating the primary layer
includes computing a difference 1mage calculation
between stabilized 1mages and the min-composite;

computing a secondary motion estimate, wherein com-
puting the secondary motion estimate includes com-
puting non-dominant motion by aligning the difference
image calculation with a max-composite of the images;

estimating a secondary layer associated with the second-
ary motion estimate; and

iteratively refining lower and upper bounds on the pri-

mary and secondary layers to estimate the primary and
secondary layers.

2. The method of claim 1, further comprising improving
the motion estimates using motion re-estimation.

3. The method of claim 1 further comprising stabilizing
the 1mages with respect to the primary layer.

4. The method of claim 3, further comprising aligning the
images against a current min-composite and computing a
difference 1mage calculation between the stabilized 1images
and the min-composite to produce the 1nitial layer estimate.

5. The method of claim 3, wherein iteratively refining
includes recovering the primary layer and the secondary
layer of the images.

6. The method of claim 1, wherein estimating the layers
includes using constrained least squares to optimally recover
the layer 1mages.

7. The method of claim 6, further comprising alternating
the least-squares optimization of layer values with motion
re-estimation.

8. The method of claim 7, further comprising computing,
an unconstrained least-squares solution and using the result
of the least squares computation as the initial value and
solving the quadratic-programming problem with positivity
constraints.

9. The method of claim 6 wherein using constrained least
squares to optimally recover the layer 1images, comprises:

using known motion parameters to compute a precondi-

tioned conjugate gradient without constraints to deter-
mine gradient parameters; and

estimating the components based on the gradient param-

cters.
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10. The method of claim 9, further comprising using
positivity constraints to solve a quadratic related to the
extracted 1mages.

11. The method of claim 10, wherein the motion param-
cters are determined by computing a dominant motion for
the sequence using 1mage alignment against a current min-
composite; computing a difference 1mage calculation
between stabilized 1mages and the min-composite;

and computing non-dominant motion by aligning the

difference 1mage calculation with a max-composite of 10

the 1mages.
12. A computer-readable medium having computer-ex-
ecutable instructions for performing the method recited 1n
claim 9.

13. The method of claim 1, wherein the multiple 1mages 15

form a video sequence containing reflections and transpar-
encies.

14. The method of claim 1, further comprising using
mnitial layer estimates of the dominant and non-dominant

motion estimates and improving the motion estimates using 20

motion re-estimation and computing unconstrained least-
squares as an initial value and using positivity constraints to
solve a quadratic related to the layer extraction.

16

15. A computer-readable medium having computer-ex-
ecutable 1nstructions for performing the method recited 1n
claim 1.

16. The method of claim 1 wherein the upper and lower

5 bounds are refined by the process actions of:

aligning the 1mages against a current minimum CoOmMpPoOS-

ite;

computing a difference image calculation between the

images and the minimum composite; and

aligning the difference 1mage calculation with a maximum

composite of the 1mages.

17. The method of claim 16, further comprising continu-
ally performing the method a predefined amount to 1tera-
tively refine lower and upper bound parameters of the
Images.

18. The method of claam 16, computing unconstrained
least-squares as an 1nitial value and using positivity con-
straints to solve a quadratic related to the extracted images.

19. A computer-readable medium having computer-ex-
ecutable 1nstructions for performing the method recited in
claim 16.




	Front Page
	Drawings
	Specification
	Claims

