(12) United States Patent

US006985483B2

Mehrotra et al.

(10) Patent No.:

45) Date of Patent:

US 6,985,483 B2

Jan. 10, 2006

(54) METHODS AND SYSTEMS FOR FAST
PACKET FORWARDING

(75)

(73)

(*)

(21)
(22)

(65)

(60)

(51)
(52)

(58)

(56)

Inventors: Pronita Mehrotra, Raleigh, NC (US);

Assignee:

Notice:

Appl. No.:

Filed:

US 2003/0091043 Al

Paul D. Franzon, Holly Springs, NC
(US)

North Carolina State University,
Raleigh, NC (US)

Subject to any disclaimer, the term of this
patent 15 extended or adjusted under 35

U.S.C. 154(b) by 917 days.
09/981,858

Oct. 18, 2001

Prior Publication Data

May 15, 2003

Related U.S. Application Data
Provisional application No. 60/308,941, filed on Jul.

31, 2001.

Int. CI.

GO6F 12/00 (2006.01)

US.Cl .., 370/389; 370/400; 707/3;
7097238

Field of Classification Search 370/389,

370/392, 393, 400, 707/3; 709/238

See application file for complete search history.

5,491,694
5,566,170
5,598,410
5,787.430
5,790,546
5,909,440
5,917,820
5,920,886

References Cited

U.S. PATENT DOCUMENTS

g e i i

Oliver et al.
Bakke et al.
Stone
Doeringer et al.

2/1996
10/1996
1/1997
7/1998

5,083.223
5,991,299
6,011,795
6,014,659
6,018,524
6,052,683
6,058,431
6,081,440
6,119,171
6,128,664
6,141,738
6,147,976
6,154,446
6,157,955
6,173,384
6,181,698
6,192,051

* 1171999
11/1999
1/2000

* 172000
1/2000
4/2000
5/2000
6/2000
9/2000
10,2000
10/2000
11/2000
11/2000
12/2000
1/2001
1/2001

A
A
A
A
A
A
A
A
A
A
A
A
A
A
B
B
B’ 2/2001

Perlman
Radogna et al.
Varghese et al.
Wilkinson et al.
Turner et al.
[rwin

Srisuresh et al.
Washburn et al.
Alkhatib

Yanagidate et al.

Munter et al.
Shand et al.

Kadambz et al.
Narad et al.
Weaver
Hariguchi
Lipman et al.

(Continued)
OTHER PUBLICATTONS

Lampson et al., “IP Lookups Using Multiway and Multi-
column Search,” IEEE, p. 1248-1256, (1998).

(Continued)

Primary Fxaminer—Min Jung
(74) Attorney, Agent, or Firm—IJenkins, Wilson & Taylor,

P.A.

(57)

ABSTRACT

Methods and systems for fast packet forwarding include
traversing a trie data structure stored in on-chip memory
based on bits 1n an mput address. The bits in the input
address result 1n a predetermined location 1n the data struc-
ture. The number of bits that have a first value and that are
located before the determined location i1s calculated. The
calculated number of bits corresponds to an offset 1n a
second memory device of an address to which the packet
having the input address 1s to be forwarded. The address can

be extracted using a single access to an of

-chip memory

20 Claims, 20 Drawing Sheets

8/1998 Dobbins et al. device
6/1999 Ferguson et al. '
¥ 6/1999 Rekhteroovvvvvvvvvnnnnnn. 370/392
7/1999 Feldmeier
INITTIALIZE START POINTER
PAgTﬁEgHﬁJgETFEJR}ES%RE S
L
Bﬁrﬁf}%ﬂ}sﬁ — 51z
L
UJSE FIRST log, {X)
- FRDE{HTESS?ERE’)FP;{S}ED}I‘TER &3
IN THE X-BIT PATTERN

Al?

MOVE START
POINTER T
NEXT LEVEL

— 5T5

L]

CALCULATE NEW
POSITION OF START
POINTER USING
SUM OF ONES IN
LEVEL AND
MULTIPFLYING BY X

'

MOVE START
POINTER TC
CALCULATED
POSITION

—— ST6

—- 877

IS BIT
LOCATED AT
OFFSET

END SEARCH
AND
CALCULATE
NUMBER OF
ONES

%

EXTRACT NEXT
HOF ADDRESS
LOCATED AT
STY —— OFF-CHUIP MEMORY
LOCATION
INDICATED BY
CALCULATED
NUMBEE OF ONES

!

SEND PACKET TOQ

ST10 —DUTPUT INTERFACE

CORRESE. TO NEXT
Q0P ADDRESS

ST —

US 6,985,483 B2
Page 2

U.S. PATENT DOCUMENTS

6,212,183 Bl 4/2001 Wilford

6,212,184 Bl 4/2001 Venkatachary et al.

6,216,168 Bl 4/2001 Dev et al.

6,223,172 Bl 4/2001 Hunter et al.

6,237,061 Bl 5/2001 Srinivasan et al.

6,243,720 Bl 6/2001 Munter et al.

6,396,842 B1* 5/2002 Rochberger 370/408
6,522,632 B1* 2/2003 Waters et al. 370/254
6,571,313 B1* 5/2003 Filippi et al. 711/108
6,697,363 B1* 2/2004 Carrccocevveeeninennnnnn. 370/389
6,711,661 B1* 3/2004 Zabarsk: et al. 711/202
6,877,005 B2* 4/2005 Hunter et al. 707/10

OTHER PUBLICAITONS

Waldvogel et al., “Scalable High Speed IP Routing Look-
ups,” ACM, p. 25-36, (1997).

Degermark et al., “Small Forwarding Tables for Fast Rout-
ing Lookups,” ACM, p. 3-14, (1997).

Michigan University and Merit Network, “Internet
Performance Measurement and Analysis Project,” http://nic.
merit.edu/ipma, p. 1-17, (2002).

Nick McKeown, “How Scalable 1s the Capacity of
(Electronic) IP Routers,” Optical Fiber Communication
Conference, p. 1-36, (Mar. 2001).

Chiueh et al.,, “Cache Memory Design for Networking
Processors,” Proceedings of Sixth International Symposium

on High-Performance Computer Architecture, p. 1-10,
(2000).

Yazdani et al., “Fast Scalable Schemes for the IP Address
Lookup Problem,” Proc. IEEE Conference on High
Performance Switching and Routing, p. 83-92, (2000).
Wei et al., “Just-In-Time Signaling for WDM Optical Burst
Switching Networks,” Journal of Lightwave Technology,
vol. 18 (No. 12), p. 2019-2037, (Dec. 2000).

Listanti et al., “Architectural and Technological Issues for
Future Optical Internet Networks,” IEEE Communications
Magazine, p. 82-92, (Sep. 2000).

Chiueh et al., “High-Performance IP Routing Table Lookup
Using CPU Caching,” Proc. IEEE INFO-COM °99, p.
1421-1428, (1999).

McKeown et al., “High Performance Switches and Routers:
Theory and Practice,” Hot Interconnects Tutorial Shides,
http://tiny-tera.standford.edu/nickm/talks/index.html, p. 1-
126, (1999).

Nilsson et al., “IP-Address Lookup Using LC-Tries,” IEEE
Journal on Selected Areas in Communications, vol. 17 (No.
6), p. 1083-1092, (Jun. 1999).

Huang et al., “A Novel IP-Routing Lookup Scheme and
Hardware Architecture for Multigigabit Switching Routers,”
IEEE Journal on Selected Areas in Communications, vol. 17
(No. 6), p. 1093-1104, (Jun. 1999).

Gupta et al., “Routing Lookups in Hardware at Memory
Access Speeds,” Proc. IEEE INFOCOM’98 | p. 1240-1247,

(1998).

J.M. Rabney, “Digital Integrated Circuits, A Design Perspec-
tive,” Prentice Hall, Ch. 8, p. 446-454, (1996).

Keith Sklower, “A Tree-Based Packet Routing Table for
Berkeley Unix,” Technical Report, p. 1-14.

* cited by examiner

US 6,985,483 B2

Sheet 1 of 20

Jan. 10, 2006

U.S. Patent

[‘Dld

US 6,985,483 B2

Sheet 2 of 20

Jan. 10, 2006

U.S. Patent

II!.I..—I.I!II_I[-III

_ Kk kokokokokok ok S Kokkokkk _

ugm N/ &

Iillllil

_************* X
|

Ve

|

L

US 6,985,483 B2

¢ DA
_ _*wvﬂ*wmm*wmw*.wwm* _
2 901 /4\\
% PO
; SRR KK L L L LXK

L

w N\

U.S. Patent

US 6,985,483 B2

Sheet 4 of 20

Jan. 10, 2006

U.S. Patent

7 Old

|
H!///,<W\\1
O[]
01

kkskkkokokk L L L LKk

LN\

|
|

— o

.L_ _A.,.

901

N 4\\ N

US 6,985,483 B2

Sheet 5 of 20

Jan. 10, 2006

U.S. Patent

¢ DIA

I[!Il[lllllilr-r lll.lil-llll:-.r]!]ill[

nnnphnnnhbnhnnnﬂz*********m******_
|

| | _

—_— e — LAV S
M: //<\ \ M: /«\\
801 FOT

T

illllli"lll.!

_ kokkokkokkok L LT Lok

LN

R

X

L —

US 6,985,483 B2

Sheet 6 of 20

Jan. 10, 2006

U.S. Patent

9 DIA

gl @ A 00 bl GG el el 0 Eaa——,,,,) 2SR TS ey el AT el St kg s daaaasF T kit U Tl e

_hnnhnhnmnnnnnnnmz _*%*******m******_

N\ /4 TN /48

sy el -_---S ey O hlaeess O aaEEees 0 ekl

_********m LT LK

LN

X |
|

———— . — — — — — — -

_@Q@@@@m@@@m@mmmm

TN\ /4

- - - = L

_mmmmmmmm@mm@m@mm

N

Ny AT Sl SEETEL A, e, S——— lellllllllilllli!l! —_—— ey TESeees DSk TS O el TEEE———— Wy Yl S

mmmommmmmammmmoa _nhhhhhhhhhhhhhhﬁ_ _***%%****m******_

i [/~ [/ s\

pepeass—s pullEmresy 02 SppeehlEE 0 S Cgeeye—LLUEEE

_*V_C_A*V_C_Ow 6 LT LKX *_

i\ /4

L DIA

US 6,985,483 B2

Sheet 7 of 20

Jan. 10, 2006

L

U.S. Patent

US 6,985,483 B2

Sheet 8 of 20

Jan. 10, 2006

U.S. Patent

iy $#Penal: @ Seeesiel el AT e TS T .S sl Ol e———

mmmmmmmmmmammmmm,

v N\ - 3 DI
0cl

llllllll - T T

mmmmammmmmammmmm

Al @ meesklas Y W LU O e S Sy L (S A # pDeaaaaa @ aEmeeeslk el Seaaaasbd 0 L 0 e 0 ekl A EEE— SR —

_mmmmmmmmmmmmmamm _hbmhhhmhhmhhhhhm~_*M****w%%m*****%_

MM / « / \ ..,.. Q [] / «\ \ % 4 // «\ \

US 6,985,483 B2

Sheet 9 of 20

Jan. 10, 2006

U.S. Patent

mmmmmmmmmmmmmmmm

i\ 6o
Ocl

IIIIIII T T

mmmamaommomammmm

1Eiiliiilli

mmmmmmmmmmmmommm_ABBNBBBBBthhhth:_*********m**%***

N\ TN TN
ol SO01 Ol

—] 1

KRRk E € €06 LT LAkKAKX

» \WY

L —

US 6,985,483 B2

Sheet 10 of 20

Jan. 10, 2006

U.S. Patent

— — —— — -

mmmmmmmmmammmmmm

Ol DId

6666666666660666

T— e Bessildl 0 TGSy S, 0 9 sssyaaaae aneehESea l[l]

I!Ii[ll‘.ll.!

_woomwwowmcoowmo@__mmmoammmmmam@mmm_

N\
ozl W/
rcl

=

24 /«\\ orl /«\\ 901 //«\\
I 801 PO

el B I e T —

gy TS ssliaas Tl WS kR Sl L U skl Sl

nnhhhnnmnbhnhnnm:_*********m******_

_w_o_n**m ¢ 00N LT LK V_AJ_

» / /4

US 6,985,483 B2

Sheet 11 of 20

Jan. 10, 2006

U.S. Patent

CEETEECEEECEEEEE||6666666666665SSS |
|

— — FAII —

1 11 'OId
pEl /<\\ zcl //4\\

z€] 0z1
CCCECECEEEEEEEe|16666666666666666
_ |1__
o1 /«\\ AN / «\\
.wmeoowwwm@mw@@wﬂ_m@amw@mm@mm@o@owq_nmmMMmNMmeMMMNMmﬁww%%meﬁwmwﬁwwﬁMJ
T e L_ ! \ _
971 //«\ pI 1 / «\ \ Q: //< \ wS //

pCT _ P01

EL—— -

"****mmm@mmmn *_

NS / 4\\

N el

e A e T | i = i — el J — E—— —— — — e —

¢ THAAT 0000000000000000,,0000000000000000

S St S S R S

US 6,985,483 B2

HET A rO 7S
¢l ‘DIA
. - T i T .]
S ¢ THATT | 000000000000000T “ooooooooocoiooo,
g\ |
Yo
= OS] 9I T 8 mm
=
7 » _
IIIII.\’!IIII..' - 1 —_— = - = ‘- T /T — I!:I"
< [THAZT | 0001000000000000 _ooooooooooooooi 110000000000000000,0000000000000000,
m L o T . |
=] \ 1 \
- 9zT P 901
=

0 THAH']

U.S. Patent
Q
S

U.S. Patent Jan. 10, 2006 Sheet 13 of 20 US 6,985,483 B2

136

138 XXXX%X72796333x%kXX
140 KKK KKK 5 XKEKXKKXKEK KX

142 12777777777777777
144 099099999990990G999 .
146 6666666666663666
148 99999699999999999

150 3333333333333333

152 5555999999999999
154 3333333333332333

FI1G. 13

U.S. Patent Jan. 10, 2006 Sheet 14 of 20 US 6,985,483 B2

INITIALIZE START POINTER

TO POINT TO FIRST X-BIT ST1
PATTERN IN DATA STRUCTURE

READ log 5 (X)
BITS OF ADDRESS 51z

USE FIRST log, (X)
BITS AS AN OFFSET
FROM THE START POINTER
IN THE X-BIT PATTERN

ST3

ST4

IS BIT
LOCATED AT

OFFSET
Al?

END SEARCH

AND
| MOVE START STS CALCULATE
POINTER TO STS NUMBER OF

NEXT LEVEL ONES

| CALCULATE NEW

EXTRACT NEXT

| {POSITION OF START HOP ADDRESS
| POINTER USING 5T6 LOCATED AT
SUM OF ONES IN ST9 OFF-CHIP MEMORY
LEVEL AND LOCATION
MULTIPLYING BY X INDICATED BY
CALCULATED
NUMBER OF ONES

MOVE START
POINTER TO ST7

CALCULATED
POSITION STI10

SEND PACKET TO
OUTPUT INTERFACE
CORRESP. TO NEXT
HOP ADDRESS

FIG. 14

U.S. Patent Jan. 10, 2006 Sheet 15 of 20 US 6,985,483 B2

1010
0101 1001

FI1G. 15A

l‘l R
1| 1010 [0101 1001

L |
o .

FIG. 15B

U.S. Patent Jan. 10, 2006 Sheet 16 of 20 US 6,985,483 B2

Ol
J
I iom 0101 1001 1 %010 0101 1001
SI SI
FIG. 16 F1G. 17
Ol Ol 02
A |
1 1010 0101 }001: 1 rlo 0101 }001
SI s SI S2
FI1G. 18 FIG. 19

Sum Bit Pattern

-OXOOOO 0x2980 l Level

0x0000 | 0x0000 0x0000 0x8000 0x0008| Level 1

0x0000| 0x1000 0x8000 Level 2
0x0000 | 0x0000 0x0000 Level 3

FIG. 20

US 6,985,483 B2

17 TT19VIL ONILNOY
902 (14

S ZIC fc 0C
=
—
3 ONITNAFHOS | | ONICYVAYO4
o »

AIVO ANIT
= A1/
Q Iz 907
=
=
= ONITNAIHDS | |ONICIVAMIO0A Olddvd

HOLIMS

= @IV ANI'T
&)
-
S
g POC
= 00Z

1C DId

717 00 g7

ONITOAHHODS | | ONIQE VA0

IV HNI']

clc e §50¢C

ONI'TNAAHDS | [ONICHVMd0d

US 6,985,483 B2

Sheet 18 of 20

Jan. 10, 2006

U.S. Patent

¢ DIH
90€
ndo
AIOWHN
JIHO-NO
0l§
AAOWAN
dTHD-I40 JOLV LIV MOLVYANID
SHNO SISVIA
10 INNS
pOE
Z0€

/!/fi;Qcm.

§0¢

JOLOVALXH
114

SsHAAAV

US 6,985,483 B2

Sheet 19 of 20

Jan. 10, 2006

U.S. Patent

CC DIA
T]
| = |
¢ | 2 | g
v ” o
x A
S >
~ _] m g _
oo S |
| e — %
A
1363
¢ DId
SU 79 SU {9 SU $9

AJOWHWN
dIHD-NO NI
8-¢ "THAH']
HSHHAV AL

AJOWHIN
dIHO-440 WO d4d
dOH LXAN dVHd

oS c0s

AJOWHN
dIHO-NO NI
b-1 "THAH']
ASHHAVYL

00&

¢ DIA

SHNO 40 IS
HLOdNOD

JISVIN ALV IINHD

IS

MO AJONIIN
dIHD-NO dVvdd

S1Id SSHAAdV
LOVILXH

0S

US 6,985,483 B2

Sheet 20 of 20

Jan. 10, 2006

U.S. Patent

US 6,985,453 B2

1

METHODS AND SYSTEMS FOR FAST
PACKET FORWARDING

RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional
Patent Application Ser. No. 60/308,941 filed Jul. 31, 2001,

the disclosure of which 1s incorporated herein by reference
in 1its entirety.

GRANT STATEMENT

This work was supported by grant number 10093.002
from the National Security Agency (NSA). Thus, the United
States Government has certain rights in the invention.

TECHNICAL FIELD

The present invention relates to methods and systems for
fast packet forwarding. More particularly, the present 1nven-
tion relates to methods and systems for fast packet forward-
ing wherein a location obtained 1n a data structure based on
bits 1n an input address 1s used to determine the interface
corresponding to the next node to which a packet 1s to be
forwarded.

BACKGROUND ART

Internet tratfic increases by a factor of 10 every year while
the number of hosts on the Internet increase by a factor of
3 every 2 years. This means that in order to maintain the
same performance levels, packets now need to be forwarded
faster despite there bemng a larger forwarding database.
Larger databases increase the number of memory accesses
required to determine the address of the next node to which
a packet 1s to be forwarded. Such an address 1s commonly
referred to as a next hop address.

In order to meet the demands of high-speed routing, such
as gigabit or terabit routing, it i1s desirable that address
lookups be performed 1 hardware. Currently, the fastest
software approaches still take hundreds of nanoseconds on
average 1n order to perform address lookups, which 1s
unsuitable for such high-speed forwarding. One problem
with performing address lookups 1in hardware 1s that larger
forwarding tables will not fit in the memory of the chip that
performs the address lookup. One problem with performing,
address lookups in hardware 1s that large amounts of
memory are required to store the required tables. Thus, the
table 1s stored 1n large, slow, usually off-chip memories. In
addition, address lookups require multiple accesses to the
table. Access to the full table, generally stored in a large
slow, usually off-chip, memory, greatly increases the time
for performing an address lookup. Thus, the number of slow,
full table accesses should be reduced 1n a fast address lookup
scheme.

Another important factor in fast address lookups 1s the
need for a constant address lookup time. Having a constant
address lookup time 1s especially important for emerging
applications, such as optical burst switching (OBS). In
optical burst switched networks, the signaling 1s performed
out of band. Only the signaling channel goes through
optical/electrical/optical (O/E/O) conversion. The signaling
message 1s sent before the data burst and 1s interpreted at
cach of the nodes along the path. In response to the signaling
message, the nodes establish a path for the data burst before
the data burst arrives. The data burst 1s sent after a prede-
termined delay without receiving confirmation from the

10

15

20

25

30

35

40

45

50

55

60

65

2

network nodes regarding the available path. The delay 1s
dependent of the number of nodes along the path. If the setup
fime at each node 1s variable, the delay 1s unpredictable and
leads to an 1neflicient network. Accordingly, it 1s desirable
that the mechanism used to perform the network address
lookup achieve a fast, constant lookup time.

The lookup to determine the next hop address of a packet
1s the most time critical part 1 packet forwarding. The
problem of searching in large databases 1s compounded by
the fact that routing tables store variable length prefixes and
their corresponding next hop addresses. In order to forward
a packet, routers need to find the longest prefix 1n the routing
table that matches the destination address 1 a packet to be
forwarded. Table 1 shown below 1illustrates an exemplary
routing table.

TABLE 1

Sample Routing Table with Prefixes and Next Hops

Prefix Next Hop

0010*
10*
01*

0111

1011

011101

11001

O = = L D ND D

* K * =®

In Table 1, the entries of the left hand side are network
address prefixes to be compared with bits 1n a destination
address field of a packet to be forwarded. In Table 1, the “*”
character represents a wildcard. The right hand column 1in
table 1 represents an 1dentifier corresponding to the node or
network 1nterface to which the packet 1s to be forwarded. For
example, most routers have several network interfaces, one
interface corresponding to each node to which the router is
directly connected. The 1dentifiers 1n the next hop column of
Table 1 may correspond to these interfaces.

If a router using Table 1 as its routing table receives a
packet having a destination network address in which the
first 8 bits are 01110101, multiple prefixes 1n Table 1 match
this address. For example, the addresses 01*, 0111%*, and
011101* match the destination address. Of these matching
addresses, the longest match i1s the entry with the prefix
011101*. The 1identifier corresponding to the next hop
address 1s 1.

A number of approaches have been developed to search
for longest matching prefixes. Most approaches fall under
the categories of either search tries or search trees. In
conventional search tries, each bit in the address of a
received packet 1s used to determine a path through the trie.
A ‘0’ points to the left half of a sub-tree within the trie and
a ‘1’ points to the right half of a sub tree within the trie. The
lookup proceeds by traversing the trie until a leaf node 1s
located. The trie data structure includes nodes that store
pointers to child nodes. All leaves and some 1nternal nodes
contain next hop information. Some 1mplementations
require only leaves to store next hop iformation in which
case the internal nodes store only pointers to child nodes. In
most conventional implementations, the entire trie structure
that includes the next hop addresses 1s stored 1n one memory.
In tree-based lookups, the value of the destination address in
a packet to be forwarded 1s compared with the median value
of each sub-tree 1n the tree data structure. If the value 1s less
than the median value, the search proceeds to the left half of
the sub-tree. If the value 1s greater than the median value, the

US 6,985,453 B2

3

scarch proceeds to the right half of the sub-tree. Again, the
entire data structure 1s stored 1n one memory only and the
scarch leads to an entry that also stores the next hop entry.

One problem with both trie-based address lookups and
tree-based address lookups i1s the fact that conventional
approaches store pointers to the child nodes at all internal
nodes. Storing pointers at the nodes increases the size of the
data structure. As routing tables become larger, such data
structures will not {it entirely 1n on-chip memories. As a
result, off-chip memory accesses are required. Because
multiple off-chip memory accesses are required, the goals of
fast and constant network address lookups cannot be
achieved. Accordingly, there exists a need for methods and
systems for fast address lookups that avoid the ditficulties
assoclated with conventional tree-based and ftrie-based
lookup schemes.

DISCLOSURE OF THE INVENTION

According to one aspect, the present invention includes a
method for determining an output port corresponding to the
next node to which a packet 1s to be directed 1n a computer
network. The method includes constructing a data structure
based on variable-length network address prefixes. The data
structure 1s stored 1n a memory device. A set of output port
identifiers corresponding to the network address prefixes 1s
stored 1n another memory device. The data structure 1is
traversed based on bits 1in an mput address to determine a
location corresponding to the longest network address prefix
that matches the imput address. The location 1n the data
structure 1s used to determine an offset 1n the second
memory device for the output port 1dentifier corresponding
to the 1mnput address.

Because the longest matching prefix can be determined
based on the location obtained 1n the data structure, there 1s
no requirement that pointers be stored at nodes 1n the data
structure. As a result, the size of the data structure and
consequently the memory requirements are reduced. The
data structure will thus {it in an on-chip memory, which
reduces lookup time.

Accordingly, 1t 1s an object of the mvention to provide
methods and systems for fast address lookups that avoid the
difficulties of conventional algorithms that require storing
pointers at the internal nodes.

It 1s yet another object of the invention to provide methods
and systems for fast network address lookups that calculate
an olilset for locating a next hop address based on a location
in a forwarding table data structure obtained based on an
mnput address.

Some of the objects of the mvention having been stated
hereinabove, other objects will become evident as the
description proceeds when taken i1n connection with the
accompanying drawings as best described hereinbelow.

BRIEF DESCRIPTION OF THE DRAWINGS

Preferred embodiments of the invention will now be
explained with reference to the accompanying drawings of

which:

FIG. 1 1s a trie data structure diagram in which leaf nodes
point to default next hop addresses;

FIG. 2 1s a trie data structure diagram in which a next hop
address has been added to the trie data structure illustrated

m FIG. 1;

FIG. 3 1s a trie data structure diagram in which a next hop
address has been added to the trie data structure illustrated

i FIG. 2;

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 4 1s a trie data structure diagram 1n which a next hop
address has been added to the trie data structure illustrated

m FIG. 3;

FIG. 5 15 a trie data structure diagram 1n which a next hop
address has been added to the trie data structure illustrated

i FIG. 4;

FIG. 6 1s a trie data structure diagram 1n which a next hop
address has been added to the trie data structure illustrated

m FIG. 5;

FIG. 7 1s a trie data structure diagram 1n which a next hop
address has been added to the trie data structure illustrated

i FIG. 6;

FIG. 8 15 a trie data structure diagram 1n which a next hop

address has been added to the trie data structure illustrated
m FIG. 7;

FIG. 9 15 a trie data structure diagram 1n which a next hop

address has been added to the trie data structure illustrated
m FIG. §;

FIG. 10 15 a trie data structure diagram in which a next

hop address has been added to the trie data structure 1llus-
trated 1in FIG. 9;

FIG. 11 1s a trie data structure diagram in which a next hop

address has been added to the trie data structure illustrated
m FIG. 10;

FIG. 12 1llustrates a bit pattern for storing a forwarding
table data structure 1n an on-chip memory according to an
embodiment of the present invention;

FIG. 13 1s a memory diagram illustrating storage loca-
tions of next hop addresses 1in an off-chip memory device
according to an embodiment of the present invention;

FIG. 14 1s a flow chart illustrating exemplary steps for
determining a next hop address in a trie data structure
according to an embodiment of the present mvention;

FIG. 15A 15 a data structure diagram 1illustrating a trie data
structure storing next hop addresses;

FIG. 15B 1s a b1t pattern illustrating a location obtained 1n
the data structure in FIG. 15A when performing an address
lookup according to an embodiment of the present inven-
tion;

FIG. 16 1s a bit pattern 1llustrating the position of the start
pointer when performing a network address lookup after one
step of a lookup algorithm according to an embodiment of
the present mvention;

FIG. 17 1s a bit pattern 1llustrating the position of the start
pointer and the offset 1n performing a network address
lookup according to an embodiment of the present inven-
tion;

FIG. 18 1s a bit pattern 1llustrating the positions of the start
pointer, the ofiset, and the new position of the start pointer
in performing a network address lookup according to an
embodiment of the present invention;

FIG. 19 1s a bit pattern 1llustrating the positions of the start
pointer, the offset, the new position of the start pointer, and
the new position of the offset in per forming a network
address lookup according to an embodiment of the present
mvention;

FIG. 20 1s a memory diagram 1llustrating the data struc-
ture 1n FIG. 12 stored in hexadecimal format according to an
embodiment of the present invention;

FIG. 21 1s a block diagram illustrating a router in which
the methods and systems for fast packet forwarding accord-
ing to embodiments of the present invention may be prac-
ticed;

FIG. 22 1s a block diagram of a fast packet forwarding
engine according to an embodiment of the present invention;

US 6,985,453 B2

S

FIG. 23 15 a state diagram 1llustrating exemplary states in
determining a next hop address based on a location obtained
in a data structure according to an embodiment of the present
mvention;

FIG. 24 1s a flow chart 1llustrating exemplary steps and
worst-case time estimates for determining a next hop
address according to an embodiment of the present mnven-
tion;

FIG. 25 1s a block diagram of mask generation module
312 illustrated 1n FIG. 22;

FIG. 26 1s a circuit diagram of mask generator 602
illustrated 1n FIG. 2§; and

FIG. 27 1s a block diagram 1llustrating sum of 1s generator
314 illustrated 1in FIG. 28.

DETAILED DESCRIPTION OF THE
INVENTION

Preferred embodiments of the invention will now be
explained with reference to the accompanying drawings.
First, an exemplary method for constructing a data structure
suitable for fast network address lookups and that does not
require pointer storage at internal nodes will be described.
Next, a method for performing fast network address lookups
using the data structure will be described. Finally, a discus-
sion of exemplary hardware on which the mnvention may be
implemented will be described.

Building a Fast Network Address Lookup Data
Structure

According to one aspect, the present invention includes a
method for storing a forwarding table data structure in
on-chip memory. Such a method does not require the storage
of pointers at the internal nodes. As a result, the data
structure can be smaller and will be more likely to fit 1n an
on-chip memory. In one embodiment, the data structure 1s a
tfric data structure. An example constructing a tric data
structure based on a set of network address prefixes. Table
2 shown below 1llustrates exemplary address prefixes and
identifiers corresponding to next hop addresses. The prefixes
in Table 2 may correspond to IP addresses. For example, the
prefix 10* 1n the first entry of Table 2 may correspond to an
IP address of 128.0.0.0. However, the present invention 1s
not limited to IP addresses. The methods and systems
described herein may be used for fast packet forwarding 1n
any scheme 1n which address lookups are pertormed based
on variable-length prefixes. Examples of applications of the
present 1nvention include IP forwarding and optical burst
switching.

TABLE 2

Database of Prefixes and Their Assoclated Next Hops

Prefix Next Hop

10*

1000*

1000 1100*

1000 1100 0000 1100%*
01*

0100 Q000*

0010 0110

0111°*
0111 0000 0011 0O*
0101+

—i
3 n O Lh -] o O

10

15

20

25

30

35

40

45

50

55

60

65

6

In order to build a trie data structure, the prefixes are
preferably sorted 1n ascending order. A prefix of shorter
length 1s considered smaller if two prefixes have the same
value. For example, the prefix 10* would be considered
smaller than 100*. Table 3 shown below 1illustrates the

prefixes 1n Table 2 after sorting 1n ascending order.

TABLE 3

Prefixes Sorted 1in Ascending Order

Prefix Next Hop

010 0110*
:_=+=
100 0000 1
101*

111*

111 0000 0011 00*

10%*

1000*

1000 1100%*

1000 1100 0000 1100*

0
0
0
0
0
0

3 o Oy L U D B I = N

Once the prefixes are sorted, the next step 1s to start
building the trie data structure. In building the trie data
structure, triec completion 1s performed where 1t 1s necessary
to ensure that only leaves represent valid prefixes. In the
figures described hereinbelow, the digits beside each leaf 1n
the trie data structures represent the next hop addresses.
These addresses are shown in the figures for illustration
purposes only. A trie data structure according to the present
invention does not require that the next hop addresses or
pointers to next hop addresses be stored at the leaf nodes. It
1s a feature of the invention that only a single bit may be
stored 1n memory for each node.

FIG. 1 illustrates a trie data structure at initialization. In
FIG. 1, the trie data structure includes a root node 100 and
a plurality of leaf nodes 102. In the 1llustrated example, there
are 16 leal nodes because a 16-way trie has been used 1n the
implementation described herein. The leal nodes are
referred to as children of root node 100 because they are
directly connected to root node 100 without crossing another
node. Each leaf node 102 1s initialized to point to the default
next hop address, represented by an asterisk.

Once root node 100 1s mitialized, each entry from the
sorted list in Table 3 1s added to the trie. The first entry in
Table 3 1s 00100110*. FIG. 2 1illustrates the trie data struc-
ture after adding this entry. The first 4 bits of the prefix
(0010) point to bit 2 of root node 100. In FIG. 2, bit 2 of root
node 102 1s represented by the third child node 102 from the
left. Since the prefix 1s longer than 4 bits, an additional node
104 1s added to the third child of root node 100. Leat nodes
106, which are children of node 104, inherit the next hop
entries of their parent (root node 100). The next 4 bits of the
prefix (0110) point to child 6 of newly added node 104.
From Table 3, the next hop address corresponding to the

entry 1s 5. As a result, the next hop address corresponding to
the sixth child of node 104 1s changed to 5.

The next entry 1n the table to be added to the data structure
1s 01* with a next hop of 7. FIG. 3 illustrates the result of
adding this entry to the trie data structure. Children of root
node 100 that fall within the range of prefixes represented by
01* are 0100, 0101, 0110, and 0111. Accordingly, the next
hop addresses 1s associated with the fourth, fifth, sixth, and
seventh children of root node 100 are changed from the
default route to 7.

The next entry 1n Table 3 to be added to the data structure
1s 01000000*. The next hop address corresponding to this

US 6,985,453 B2

7

entry 1s 12. FIG. 4 illustrates the data structure after addition
of this entry. In FIG. 4, a new node 108 1s added to the fourth
child of root node 100, corresponding to the first four bits
(0100) of the entry. Children of node 108 inherit the next hop
address of 7 from the parent of node 108. The next 4 digits
of the entry (0000) correspond to the 0° child of node 108.
Accordingly, the next hop address of the 07 child is changed
from seven to 12.

The next entry from Table 3 to be added to the data
structure 1s 0101* with a next hop address of 2. FIG. 5

illustrates the data structure after adding this entry. In FIG.
5, the next hop address of the fifth child of the root node 100
1s changed from 7 to 2.

The next prefix to be added to the data structure from
Table 3 1s 0111* with a next hop of 9. FIG. 6 illustrates the
result of adding this entry to the data structure. In FIG. 6, the
next hop address of the seventh child of root node 100 is
changed from 7 to 9.

The next entry from Table 3 to be added to the data
structure 1s 01110000001100*. The next hop address asso-
ciated with this entry 1s 5. FIG. 7 1llustrates the data structure
after adding this entry. In FIG. 7, the first 4 bits of the entry
(0111) result in the addition of node 112 to the data structure.
Children 114 of node 112 inherit the next hop address of 9
from the parent of node 112. The next 4 bits of the entry
(0000) result in the addition of node 116 to the data structure.
Children 118 of node 116 inherit the next hop address of 9
from the parent of node 116. The next 4 bits 1n the data
structure (0011) result in the addition of node 120 to the data
structure. Children 122 of node 120 inherit the next hop
address of 9 from the parent of node 120. Finally, the last 2
bits of the entry (00*) result in the next hop addresses of the

children 0000, 0001, 0010, and 0011 of node 120 being
changed from 9 to 5.

The next entry from Table 3 to be added to the data
structure 1s 10* with a next hop of three. FIG. 8 illustrates
the data structure after adding this entry. This entry results
only 1n changes to children of leat node 100. In particular,
the next hop addresses associated with children 1000, 1001,
1010, and 1011 are changed from a default value (*) to 3.

The next entry from Table 3 to be added to the data
structure 1s 1000*. The next hop address associated with this
entry 1s six. FIG. 9 1llustrates the data structure after adding
this entry. From FIG. 9, 1t can be seen that this entry results
only 1n the updating of next hop address associated with the
cighth child of root node 100. This also illustrates the
importance of putting 10* before 1000* 1n the sorting. If the
reverse had been done, the next hops of children 102 of root

node 100 would have been 1incorrectly set to
RARRTTDTQIZIEEAE

The next entry from Table 3 to be added to the data
structure 1s 10001100*. The next hop address corresponding
to this entry 1s 3. FIG. 10 illustrates the data structure after
adding this entry. The first four bits of the entry (1000) cause
a new node 124 to be added to the eighth child of root node
100. Children 126 of node 124 inherit the next hop address
of 6 from the parent of node 124. The next 4 bits of the entry

(1100*) cause the next hop address associated with the
twelfth child of node 124 to be changed from 6 to 3.

The final entry from Table 3 to be added to the data
structure 1s 1000110000001100*. The next hop address
corresponding to this entry 1s 3. FIG. 11 illustrates the results
of adding this entry to the data structure. The first 4 bits of
the entry (1000) correspond to the eighth child of root node
100. However, because node 124 has already been added to
the data structure, these bits do not change the data structure.

10

15

20

25

30

35

40

45

50

55

60

65

3

The next 4 bits 1n the prefix (1100) point to the twelfth child
of node 124. A new node 128 1s added and the children 130
of node 128 inherit the next hop address of 3 from the parent
of node 128. The next four bits in the entry (0000) point to
the 07 child of node 128. As a result of these bits, a node 132
1s added. Children 134 of node 132 inherit the next hop
address of 3 from the parent of node 132. The next 4 bits of
the address (1100*) result in the next hop address associated
with the twelfth child of node 132 being changed from 3 to
2.

Thus, FIG. 11 1llustrates a trie data structure based on the
entries 1n Table 3. As stated above, although the next hop
addresses are shown 1n FIG. 11 and in the figures that led up
to FIG. 11, according to an important aspect of the invention,
these next hop addresses are omitted from the actual data
structure stored 1n memory of a processor that performs the
address lookups. The next hop addresses are shown adjacent
to the leaf nodes in FIGS. 1-11 merely for illustration
purposes to explain the process of constructing the data
structure more clearly.

Once the trie data structure has been constructed, a bit
pattern to be stored 1in an on-chip memory can be constructed
from the trie data structure by performing a breadth first
traversal of the trie data structure. For example, 1n the data
structure 1llustrated in FIG. 11, a node with children may be
represented 1n the on-chip memory by a 1 and a node
without children may be represented by a 0. Thus, the bit
pattern representing children 102 of root node 100 may be
represented by the bit pattern 0010100110000000. Bit pat-
terns may be generated for the remaining children 1llustrated
in FIG. 11. No additional information, such as pointers or
next hop addresses, 1s required to be stored for each node. As
a result, a forwarding table data structure according to the
present mvention 1s smaller than conventional forwarding
table data structures and therefore more likely to fit 1n an
on-chip memory

FIG. 12 1llustrates an exemplary bit pattern that may be
stored 1n on-chip memory for the trie data structure accord-
ing to an embodiment of the present 1invention. The refer-
ence numerals 1llustrated 1n FIG. 12 respond to the reference
numerals of the children or leaf nodes illustrated in FIG. 11.
It can be seen from FIG. 12 that neither pointer nor next hop
address information 1s stored with each leaf node. Each node
can be represented by a single bit 1n on-chip memory. As a
result, a data structure according to an embodiment of the
present invention 1s compact 1n size and will likely fit 1n an
on-chip memory.

The next hop addresses may be stored in an off-chip
memory device. FIG. 13 1llustrates an exemplary method for
storing the next hop addresses 1n an off-chip memory device.
In FIG. 13, block 136 represents an off-chip memory device,
such as a DRAM. Rows 138 through 154 in the memory
device 136 cach store a set of next hop addresses corre-
sponding to children illustrated 1in FIG. 11. For example, row
0, indicated by reference numeral 138, stores the next hop
addresses corresponding to children 102 of root node 100.
Similarly, row 1, indicated by reference numeral 140, stores
the next hop addresses of children 106 of node 104. Each of
the remaining rows 1n memory device 136 stores a set of
next hop addresses. The positions of the next hop addresses
in each row of the data structure illustrated mm FIG. 13
correspond to the positions of the corresponding children in
the forwarding table data structure stored in the on-chip
memory. For example, in FIG. 11, the next hop address of
the fourth child of root node 100 i1s 7. Accordingly, in FIG.
12, 7 1s stored in the fourth position of row 138 1n the
off-chip memory.

US 6,985,453 B2

9

Scarching the Data Structure

A network address lookup according to an embodiment of
the present invention may be performed 1n two stages. The
first stage 1nvolves an on-chip lookup where the longest path
corresponding to the address 1n a received packet 1s deter-
mined from the bit pattern stored in the on-chip memory.
The row and column address in the off-chip memory where
the corresponding next hop address 1s stored 1s calculated
from the data structure stored in the on-chip memory. In the
second stage, a single off-chip lookup 1s performed based on
the calculated address, and the next hop address is read.
Only a single off-chip access 1s required 1n this embodiment,
which reduces the network address lookup time over con-
ventional lookup methods. The two stages can be pipelined
to give a result every 60-65 nanoseconds, given current
access times for DRAMSs, which may be used for the
off-chip memory. Such a scheme would result in over 15
million lookups per second. To improve speed even further,
multiple DRAMS containing identical information can be
used 1n parallel.

FIG. 14 illustrates exemplary steps 1n searching a data
structure and determining a next hop address according to an
embodiment of the present invention. Referring to FIG. 14,
in step ST1, a start pointer 1s initialized to point to the first
X-bit pattern 1n the data structure i the on-chip memory
where X 1s the degree of the trie. For example, 1n the data
structure 1illustrated in FIG. 11, the degree of the trie 1s 16.
Accordingly, the start pointer would point to the first 16-bit
pattern 1n the data structure. Next, in step ST2, the first
log(X) bits of a destination address in a packet to be
forwarded are read. In step ST3, the first log,(X) bits are
used as an offset from the start pointer 1in the X-bit pattern.

In step ST4, it 1s determined whether the bit located at the
offset 1s a O or a 1. If the bit 1s a 1, in step STS, the start
pointer 1s moved to the next level. In step ST6, a new
position 1s calculated for the start pointer using the sum of
1 sin the current level and multiplying by X. In step ST7, the
start pointer 1s moved to the calculated position. Steps ST2
through ST7 are repeated until the bit located at the offset
becomes 0. In step ST8, if the step pointed to by the oifset
becomes a 0, the search 1s terminated and the total number
of 1s up to and i1ncluding the 1 that led to the final position
of the offset 1s calculated. This number of 1s corresponds to
the row 1n the off-chip memory that stores the next hop
address. The final position of the offset in the forwarding
table address lookup corresponds to the column in the
off-chip memory that stores the next hop address. In step
ST9, the next hop address located in the calculated off-chip
memory location 1s extracted. In step ST10, the packet is
sent to an output interface corresponding to the next hop
address.

Two examples of searching a data structure using the steps
illustrated 1n FIG. 14 will now be described. In the first
example, a 4-way trie will be searched. In the second
example, a 16-way trie will be searched. FIGS. 15A and 15B
respectively 1llustrate an exemplary 4-way trie and a for-
warding table bit pattern used to store the 4-way trie in
on-chip memory according to an embodiment of the present
invention. This data structure will be searched using an
example 1nput address of 1001110. Referring back to FIG.
14, 1n step ST1, a start pointer 1s 1nitialized to point to the
first X-bit pattern in the data structure, where X 1s the degree
of the tree. Since the degree of the tree 1s four, the start
pointer 1s 1nitialized to point to the first 4-bit pattern in the
data structure or 1010. The 1nitial 1, corresponding to the
root node can be 1gnored. FIG. 16 1llustrates the first position

10

15

20

25

30

35

40

45

50

55

60

65

10

S1 of the start pointer after execution of step ST1 1llustrated
in FIG. 14. In step ST2, the first log,(4) bits of the address

are read. Since log,(4)=2, the first 2 bits (10) of the address
are read. In step ST3, the first log, X bits are used as an offset
from the start pointer 1n the X-bit pattern. In this example,
the offset 1s 2. Accordingly, the offset 1s located 2 bits from
the start pointer. FIG. 17 illustrates the first positions S1 and
O1 of the start pointer and the offset after execution of step
ST3 in FIG. 14.

In step ST4, 1t 1s determined whether the bit located at the
oifset 1s a 1. In the example illustrated 1n FIG. 17, the bat
located at the position O1 of the offset 1s a 1. Accordingly,
in step ST3J, the start pointer 1s moved to the next level. The
new position of the start pointer in the next level 1s calcu-
lated using the sum of 1s in the previous level before the
position of the offset 1n the next level are skipped then
multiplying by X. Since there 1s one 1 1n the first level before
position 01, the first 1x4=4 bits in the next level are skipped.
FIG. 18 illustrates the position of S2 the start pointer after
execution of steps ST5-ST7 m FIG. 14.

Control then returns to step ST2, where the next 2 bits of
the address or 01 are read. Step ST3 1s then executed and the
offset 1s moved 1 bit from the current position of the start
pointer. FIG. 19 1illustrates the positions S2 and O2 of the
start pointer and the offset after execution of step ST3. From
FIG. 19, 1t can be seen that the bit pointed to by the offset
1s a 0. Accordingly, control proceeds to step ST8 where the
search 1s terminated and the number of 1s 1s calculated. The
number of 1s 1s equal to the total number of 1s 1n the data
structure or bit pattern before the current position of the
oifset, including the 1 that led the current 0. As 1llustrated in
FIG. 15A, the total number of 1s before and including
position O1 1s 2. Thus, the off-chip memory row 1s 2, where
the row numbers start from 0. The column in the off-chip
memory 1s determined by the position O2. O2 1s located in
the first position (starting from zero) from the start of the bit
pattern, 1n the forwarding table data structure. Accordingly,
the next hop address may be extracted from row 3, column
1 1n the off-chip memory

An example of a search will now be described using the
data structures constructed 1n FIGS. 1-13. FIG. 20 illustrates
an exemplary arrangement of the data structure illustrated 1n
FIG. 12 1n on-chip memory. In FIG. 20, the bits of the data
structure are represented 1n hexadecimal format. Each row 1n
FIG. 20 represents a row 1n the on-chip memory. Each row
also stores a sum value indicating the sum of 1s 1n the current
level from previous rows. In this example, since the bait
pattern of each level fits into a single row, all of the sum bits
are 0. However, the present invention may be implemented
using larger data structures in which levels span more than
one row. In such an example, the sum value would indicate
the number 1s 1n previous rows corresponding to a given
level.

The off-chip memory data structure for this example 1s
illustrated 1n FIG. 13. In order to 1illustrate the functionality
of locating a next hop address, an exemplary input address
of 112.48.32.248 will be used. The corresponding binary
representation of this address 1s 0111 0000 0011 0000 0010
0000 1111 1000. The first 4 bits of the input address (0111)
lead to bit 7 (starting from bit 0) in the bit pattern for level
O of the data structure. As 1llustrated in FIG. 12, this bit 1s
a 1. Since the bit pointed to by the offset 1s a 1, the start
pointer 1s moved to the next level. The position of the start
pointer 1n the next level 1s calculated using the sum of 1s 1n
level O before the current position of the offset and multi-
plymg by 16, the degree of the tree. As illustrated in FIG. 12,
it can be seen that there are two 1s in level O before bit 7.

US 6,985,453 B2

11

Accordingly, the new position S2 for the starter pointer 1s
located at 2x16=bit 32 1n level 1.

The next 4 bits of the input address are 0000. Accordingly,
the position O2 of the offset corresponds to the position S2
of the starter pointer. Since this bit 1s set to a 1, starter pointer
1s moved to the next level. Since there are no 1s before the
present 1 1n level 1, the new value of the starter pointer 1s the
first 0 1n level 2. This position 1s indicated by S3 1n FIG. 12.
The next 4 bits of the input address are 0011. Accordingly,
the new position for the offset O3 1s the third bit 1n level 2
of the data structure. Since the value pointed to by the
current position of the offset 1s a 1, the start pointer moves
to level 3. Since there are no 1s before O3 1n level 2, no bits
need to be skipped 1n level 3. Accordingly, the location S4
of the start pointer corresponds to the 07 bit in FIG. 4. The
next 4 bits 1n the mput address are 0000. The offset 1s thus
0, and the position O4 of the offset in level 4 corresponds to
the position S4 of the starter. Thus, the search ends. The total
number of 1s up to and including the 1 located at position O3
1s 7. Since the total number of 1s 1s 7, the next hop address
1s located 1n row 7 of the off-chip memory. Since the final
position O4 of the offset 1s position 0, the next hop address
1s located at column O 1n row 7 of the off-chip memory.
Referring to FIG. 13, the next hop address located at position
0 in row 8 15 5. Because the present invention allows the
exact position of the next hop address to be determined
based on the location obtained 1n the on-chip memory, only
a single off-chip memory access 1s required to obtain the
next hop address. As a result, lookup times are faster and
more likely to be constant.

Insertion and Deletions of Entries From On-Chip
Data Structure

Any 1nsertion or deletion of an entry results in a different
pattern in on-chip memory. Thus, updating an entry requires
reconstruction of the trie data structure. However, 1n most
practical implementations, updates to a routing table do no
occur as frequently as Searches In addition, multiple updates
can be batched to 1improve efficiency.

Exemplary Hardware Implementation

FIG. 21 1s a block diagram 1llustrating a router including
forwarding engines 1n which the methods and data structures
according to the present invention may be implemented. In
FIG. 21, router 200 1ncludes line cards 202, a switch fabric
204, and a processing unit 206. Each line card 202 mcludes
a forwarding table 208 copied from a routing table 210. Each
line card 202 also includes a scheduler 212 that schedules
and conflgures switch fabric 204. Each line card includes 1ts
own processor for performing the forwarding and schedul-
Ing operations.

In operation, when a packet 1s received by one of the line
cards 202 of router 200, a lookup 1s performed in a for-
warding table 208 to determine the address of the output port
identifier corresponding to the next hop address. Once the
output port identifier 1s determined, the packet 1s forwarded
through the switch fabric to the line card associated with the
appropriate output port.

The data structures and address lookup algorithms accord-
ing to the present invention may be performed on a line card
or alternatively on a centralized processor that performs
routing lookups. Because performing lookups on the line
cards 1ncreases lookup speed, the data structures and lookup
methods according to the present mmvention are preferably
implemented on line cards.

10

15

20

25

30

35

40

45

50

55

60

65

12

FIG. 22 illustrates an exemplary forwarding engine that
may be implemented on a line card according to an embodi-
ment of the present invention. In FIG. 22, forwarding engine
300 includes an ASIC 302 for storing and performing the
lookup 1n the trie data structure, an off-chip memory 304 for
storing the next-hop addresses, and a CPU 306 for updating
routing and forwarding tables. ASIC 302 includes a bat
extractor 308, a mask generator 310, a sum of Is calculator
312, and an on-chip memory device 314. Bit extractor 308
extracts bits from an imput address. Mask generator 310
generates a mask used to compute the sum of 1s up until a
current bit position. Sum of 1s generator 312 calculates the
current sum of 1s and feeds this information back to bit
extractor 308 1n order to calculate the position of the offset.
On-chip memory 314 stores the trie data structure.

In the 16-way trie example discussed above, the input
address 1s processed in units of 4 bits. Accordingly, bit
extractor 308 extracts bits from the input address 1n 4-bit
secgments. Bit extractor 308 outputs this information along
with the offset to mask generator 310. Mask generator 310
generates a mask that 1s used to compute the sum of 1s. Sum
of 1s calculator 312 receives the mask 1n the current on-chip
memory row to determine the next offset. Once traversal in
the on-chip memory 1s complete ASIC 302 generates a read
request to off-chip memory 304 using the calculated value.
In one off-chip access time, the next hop address 1s available.

In one example, the on-chip memory traversal may be
implemented as a finite state machine (FSM). FIG. 23 is a
state diagram 1llustrating exemplary states for traversing the
on-chip data structure according to an embodiment of the
present invention. In the illustrated example, finite state
machine 400 includes two states, SO0 and S1. In state S0,
forwarding engine 300 extracts address bits and reads the
current on-chip memory row. The state machine then tran-
sitions to state S1 where the state machine generates the
mask and computes the sum of 1s. In one exemplary
implementation that will be described below, each state
takes e1ght nanoseconds to complete. As a result, traversal of
cach level 1n the on-chip memory can occur 1n as little as 16
nanoseconds.

If the addresses bemng looked up are a 32-bit IPv4
addresses, there are eight levels of storage in the on-chip
memory. Accordingly, 1t would take 128 nanoseconds to
traverse the on-chip memory. The state machine illustrated
in FIG. 23 can be unrolled and pipelined to increase through-
put. FI1G. 24 1llustrates a pipelined example of implementing
a fast address lookup according to an embodiment of the
present 1nvention. In FIG. 24, block 500 represents the
traversal of levels 1-4 1n an on-chip memory, such as on
SRAM. Block 502 represents the traversal of levels 5—8 1n
the on-chip memory. Finally, block 504 represents the off-
chip memory lookup. As illustrated 1n FIG. 24, the total
lookup time 1s 192 nanoseconds. The lookup times 1n blocks
500 and 502 match the lookup 1n off-chip memory indicated
by block 504.

The most important block used m the design of a for-
warding engine according to an embodiment of the present
invention 1s blocks that generate the mask and calculate the
sum 1s. An exemplary designed for these blocks will now be
described 1n detail.

Generating the Mask

To compute the sum of 1s until a certain bit position, a
mask must be generated to remove unwanted bits from the
row 1n the on-chip memory. For example, 1n row 0 of the
on-chip memory structure illustrated in FIG. 12, the sum of

US 6,985,453 B2

13

1s up to bit 7 was required to be calculated. Bits following,
bit 7 are unwanted. Accordingly, the corresponding mask
required to be generated to remove the unwanted bits 1s 1111
1110 0000 0000. This mask may be bitwise ANDed with the
on-chip memory row to give (1111 1110 0000 0000) AND
(0010 1001 1000 0000)=(0010 1000 0000 0000). The result
obtained after bitwise ANDing with the on-chip memory
row 1s 1nput to sum of 1s calculator 312 to calculate the sum
of 1s.

FIG. 25 illustrates an exemplary hardware implementa-
tion of mask generator 310 1llustrated in FIG. 22. In FIG. 285,
mask generator 310 includes a decoder 600 and a mask
generator circuit 602. Decoder 600 decodes the bit position
of the offset. Depending on the bit position, one of the
outputs of decoder 600 1s set. The output of the decoder 1s
input to mask generator circuit 602, which generates the bit
pattern for the mask. For example, 1if the offset 1s located at
bit 7 in an on-chip memory row, the seventh output of
decoder 600 would be set and mask generator circuit 602
would generate a mask of 1111 1110 0000 0000.

FIG. 26 1s an exemplary internal block diagram of mask
generator circuit 602 1llustrated 1n FIG. 25. Inputs in0—1n127
are connected to decoder 600. Outputs 0127 output a
128-b1t mask. Inputs in0—nl27 are connected to outputs
0-127 to generate a mask corresponding to the bit position.
For example, if bit 126 1s the current position of the offset,
all output lines including and lower than 126 will be high
and output line 127 will be low.

The delay through the mask generator 602 1s the maxi-
mum delay at line 127 with a fan-out of 128. In the example
illustrated m FIG. 25, decoder 600 comprises an 8:128 bit
decoder. Using current hardware, this decoder takes around
0.7 nanoseconds to decode. Mask generator takes about 0.6
nanoseconds to generate the appropriate mask.

Computing the Sum of 1s

Computing the sum of 1s according to embodiments of
the present invention can be performed in any number of
ways. One simple way 1s to use a bank of adders. FIG. 27
illustrates an exemplary adder bank that may be used to
compute the sum of 1s for a 128-bit wide on-chip memory
row. In FIG. 27, sum of 1s calculator 312 includes eighteen
7:3 compressors 700, nine 3-bit adders 702, five 4-bit adders
704, two 5-bit adders 706, one 6-bit adder 708, and one 7-bit
adder 710. 7:3 compressor 700 can be thought of as a
counter that counts up the number of 1s in the input. A
128-bit mnput requires 18 of these compressors. The eighteen
3-bit results obtained after this stage can be added 1n the next
stage using nine 3-bit adders 702 as illustrated in FIG. 27.
The output of 3-bit adder 702 1s nine 4-bit results. This
process 1s repeated using adders 704—710 until an 8-bit
result 1s output. The total number of adder stages 1llustrated
in FIG. 27 1s thus 6. For a 0.18u technology, a 32-bit adder
requires about 0.6 nanoseconds to add. Assuming a similar
budget for the smaller adders, which take less time to add,
the worst-case time estimate required to compute the sum
would be less than 4 nanoseconds. In all, the total time to
compute the sum of 1s 1s well under the budget time of 8
nanoseconds for each state illustrated in FIG. 23.

Performance Analysis

The fast-lookup algorithm was executed on Internet rout-
ing tables from “Michigan University and Merit Network.
Internet Performance Management and Analysis (IPMA)
Project.” (http://nic.merit.edu/ipma). The results have been

10

15

20

25

30

35

40

45

50

55

60

65

14

summarized 1n Table 4, which shows the amount of memory
required for these routing tables.

TABLE 4

Memory Requirements for Various Routing Tables

Trie
No of DRAM Memory
Site Entries SRAM (kB) (MB) (MB) Bytes/entry
MaeEast 23,113 24.4 11.43 24.28 1.08
MaeWest 35,752 34.75 16.32 34.683 1.99
PacBell 42,655 37.62 17.67 37.54 0.9
Paix 17,641 20.5 9.63 20.46 1.19
AADS 31,958 32.25 15.15 32.18 1.03

For instance, the MacEast routing table with over 23,000
entries takes around 25 kB of SRAM to store the bit pattern
and around 12 MB of DRAM to store the next hop
addresses. In a conventional trie implementation, around 25
MB of DRAM memory (the second last entry in the table)
would be required. The last entry 1n the table shows the
amount of compaction that can be achieved in the on-chip
SRAM. For all of the routing tables, approximately one byte
of SRAM memory per entry was required. This gives very
ogood scalability, which 1s important as routing table sizes
Increase.

Compaction

The overall compaction of the forwarding table achieved
1s much higher than conventional schemes. The required
SRAM is sufficiently small (500xto smaller than the DRAM
memory) to fit on a single chip, given current fabrication
technology. This compaction 1s advantageous, especially for
IPv6, which may require larger routing tables or multiple
tables for different hierarchies. As stated above, according to
the present invention, the data 1s compacted to around 1 byte
for every entry in the forwarding table. In comparison, the

forwarding table described in Degermark et al., M. Deger-
mark A. Brodnik, S. Carlson, and S. Pink, “Small Forward-

ing Tables for Fast Routing Lookups,” in Proc. ACM SIG-
COMM, vol. 27, pp. 3—14, October 1997, uses 5—6 bytes per
entry. The implementation described in Huang et al., N.-F.
Huang and S.-M. Zhao, “A Novel IP-Routing Lookup
Scheme and Hardware Architecture for Multigigabit Switch-
ing Routers,” IEEE Journal on Selected Areas in Commii-
nications, vol. 17, pp. 1093-1104, June 1999, has an even
larger forwarding table. Also, the overall memory consump-
tion (SRAM and DRAM) using this scheme is almost half of
that required 1n conventional implementations. The static

instruction count for building the tree 1s 170 and the total
CPU time taken to build the SRAM data and the DRAM data

1s on the order of 100 ms on a SUN Ultra 5 with a 333 MHz
processor. Since most forwarding tables need to be updated
only about once every second, building the entire database
from scratch 1s not an 1ssue.

The number of memory accesses 1n the exemplary imple-
mentation described herein 1s 8 SRAM accesses and 1
DRAM access. The number of SRAM accesses can be
reduced further by splitting the SRAM and performing a
direct lookup on the first 16 bits. The number of accesses
would then be 5 SRAM accesses and 1 DRAM access. By
implementing queues and multiple DRAMSs 1n parallel, a
much higher throughput can be obtained. In the exemplary
implementation described herein a lookup can be done every
64 ns which gives over 15 million lookups per second. In a

US 6,985,453 B2

15

conventional 1mplementation, the number of memory
accesses that would be required 1s 8 DRAM accesses, and
DRAM accesses are quite expensive. For example, accord-
ing to “128 MB DDR SDRAM Datasheet” (http://www.mi-
cronicom/products/datasheets] ddrsdramds.html), DRAM
access costs are 60 ns per random read/write. Thus, con-
ventional implementations that require multiple DRAM
accesses are much slower than the present invention.

The amount of memory used 1n embodiments of the
present 1nvention 1s more than the 3—4 MB of Patricia and
basic binary schemes as described in B. Lampson and G. V.
V. Srinivasan, “IP Lookups using Multiway and Multicol-
umn Search,” in Proc. IEEE INFOCOM'98, vol. 3, (San
Francisco, Calif.), pp. 1248-1256, 1998. This increased
memory usage 1s because some embodiments of the present
invention use a 16-way trie 1n order to reduce the depth of
the trie, and trie completion takes up extra memory. One
advantage of using a 16-way trie, in addition to the reduction
in depth, 1s that a smaller SRAM memory 1s required. There
1s more redundancy 1in the DRAM data as seen 1n FIG. 13;
however, using extra off-chip DRAM memory 1n order to
reduce DRAM accesses 1s a better alternative.

A wider SRAM, such as a 512 or 1024 bit-wide SRAM,
can be used in the design. This would not change the
performance of the system but would reduce the memory
overhead used 1n the forwarding engine. In the current
implementation, 20 bits are used to hold the sum of 1s value
for every 128 bits of data in the SRAM row. The memory
overhead in the design 1s an additional 15-16%. By utilizing
512-bit-wide SRAM, the memory overhead can be reduced
to less than 4%. The number of memory accesses would
remain the same. Using a wider SRAM 1n the design would
require additional hardware to compute the sum of 1°s,
though the timing constraints would still be met using
current technology.

CONCLUSIONS

An address lookup scheme that is easy to implement 1n
hardware 1s described. The present invention limits time-
intensive oif-chip DRAM accesses. In one implementation,
only 1 DRAM access per lookup 1s required. This 1is
achieved by having a small on-chip SRAM, which contains
additional path-related information. The amount of SRAM
required 1s quite small and a compaction of around 500 times
the DRAM memory can be achieved. On practical routing
tables, 1 byte of SRAM memory 1s required per entry in the
table. The operation of the SRAM and DRAM 1s pipelined
such that a lookup can be done every 64 ns, resulting 1n a
lookup rate of over 15 million lookups per second.

Delay Calculations and Assumptions

To determine the delays discussed above for the mask
generator circuit, the maximum load (C;) on an input is
128*C. ., where C, 1s the mput capacitance of a receiver. A
multiple stage buifer with each stage being larger than the
previous stage by a factor (u) is required to drive the load.

The number of stages in the buffer 1s N, where

C, =xC, =u"C,

ifl

It can be shown that the optimum stage ratio 1s equal to

e (2.7182). (J. M. Rabaey, Digital Integrated Circuits: A
Design Perspective, ch. 8, Prentice-Hall Inc., 1996). Taking
the stage ratio to be 3 1n the design of the buffer, the total
delay given by

T,=N*u*t 0

10

15

20

25

30

35

40

45

50

55

60

65

16

where t , 1s the delay across the minimum size transistor. t
1s approximately 40 ps 1 0.254 CMOS technology, making
the total delay for the mask generator to be 0.6 ns.

It will be understood that various details of the invention
may be changed without departing from the scope of the
invention. Furthermore, the foregoing description is for the
purpose of 1illustration only, and not for the purpose of
limitation—the 1nvention being defined by the claims.

What 1s claimed 1s:

1. Amethod for determining an output port corresponding
to the next node to which a packet 1s to be directed in a
computer network, the method comprising;:

(a) constructing a data structure based on a plurality of
variable-length network address prefixes;

(b) storing the data structure in a first memory device;

(c) storing, in a second memory device, a set of output
port 1dentifiers corresponding to the network address
prefixes;

(d) traversing the data structure in the first memory device
based on bits 1n an input address to determine a location
in the data structure corresponding to the longest net-
work address prefix that matches the 1input address; and

(¢) determining, based on the location in the data struc-
ture, an offset 1n the second memory device for the
output port 1dentifier corresponding to the 1nput
address.

2. The method of claim 1 wherein constructing a data
structure 1ncludes constructing a trie data structure and
storing a bit pattern indicative of the trie data structure in the
first memory device.

3. The method of claim 2 wherein traversing the data
structure comprises:
(a) initializing a start pointer to point to a first X-bit
pattern 1n the bit pattern stored in the first memory
device, the first X-bit pattern corresponding to a first

level 1n the trie data structure, X being an integer equal
to the degree of the trie data structure;

(b) reading the first log,(X) bits of the input address and
calculating an offset in the bit pattern stored 1n the first
memory device based on the value of the first log,(X)
bits;

(c) determining whether a bit pointed to by the offset has
a first value or a second value;

(d) in response to determining that the bit has a first value,
incrementing the current level of the start pointer,
calculating an offset based on a number of bits having
the first value before the offset in the previous level of
the trie data structure, advancing the start pointer to
point to a new bit position in the current level based on
the number of bits having the first value, and repeating,
steps (b)—(d) for each log,(X) bits 1in the input address
until step (c) results in the offset pointing to a bit having
the second value; and

(¢) in response to determining that the bit pointed to by the
oifset has the second value, calculating the total number
of bits having the first value up to and including the bat
that led to the current position of the offset, wherein the
total number of bits having the first value calculated
corresponds to the offset in the second memory device
for extracting the output port identifier.

4. The method of claim 2 wherein storing the data
structure 1n a first memory device includes storing a single
bit for each node 1n the trie data structure in the first memory
device.

US 6,985,453 B2

17

5. The method of claim 2 wherein storing the data
structure 1n a first memory device includes omitting next-
hop address pointer mmformation from the first memory
device.

6. The method of claim 1 wherein the data structure
comprises a trie structure 1n which bits of a first value
represent nodes having children and bits of a second value
represent nodes having no children and wherein determining
an offset in the second memory device based on the location
obtained in step (d) comprises:

(a) counting the number of bits having the first value

before the location; and

(b) calculating an offset in the second memory device
corresponding to the output port identifier based on the
number of bits having the first value.

7. The method of claim 1 wherein the first memory device

has a shorter access time than the second memory device.

8. A method for determining an output port i1dentifier
corresponding to a network address of the next node to
which a packet 1s to be routed, the method comprising:

(a) traversing a trie data structure based on bits in an input
network address and determining a location in the data
structure based on the bits 1 the input network address;

(b) maintaining a count of a number of bits having a first
value up to and including the location;

(¢) determining, based on the number of bits having the
first value, an offset for exftracting an output port
identifier from a memory device; and

(d) extracting the output port identifier using the offset.

9. The method of claim 8 wherein traversing a tile data
structure based on bits 1n an mnput network address includes
fraversing a bit pattern stored 1n a first memory device and
wherein extracting the output port idenfifier comprises
extracting the output port 1dentifier from a second memory
device of lower speed than the first memory device.

10. The method of claim 8 wherein determining a location
in the trie data structure includes locating an offset with no
children 1n the trie data based on all of the bits 1n the 1nput
network address.

11. The method of claim 8 wherein steps (a)—(d) are
implemented 1n hardware.

12. The method of claim 8 wherein steps (a)—(d) are
implemented 1n software.

13. The method of claim 8 wherein steps (a)—(d) are
implemented 1n a combination of hardware and software.

10

15

20

25

30

35

40

138

14. A fast packet forwarding engine for performing fast
lookups for output port identifiers corresponding to network
addresses, the fast packet forwarding engine comprising:

(a) a first memory device storing a trie data structure
corresponding to a plurality of variable-length network
address prefixes, the trie data structure including a
plurality of leaf nodes at locations corresponding to
variable-length network address prefixes;

(b) a second memory device storing a plurality of output
port 1dentifiers; and

(c) a processor for determining the location of a leaf node
in the trie data structure in the first memory device
based on bits 1n an 1nput address, and for determining
an oifset for extracting an output port identifier from the
second memory device based on the location.

15. The fast packet forwarding engine of claim 14
wherein the trie data structure includes leaf nodes, and
pointer information 1s not stored at the leafl nodes.

16. The fast packet forwarding engine of claim 14
wherein the first memory device has a shorter access time
than the second memory device.

17. The fast packet forwarding engine of claim 14
wherein the first memory device stores a bit pattern indica-
tive of the trie data structure, wherein each node 1n the trie
data structure 1s represented by a single bit 1n the bit pattern.

18. The first packet forwarding engine of claim 14
wherein the first memory device and the processor are
located on a first chip.

19. The first packet forwarding engine of claim 18
wherein the second memory device 1s located on a second
chip separate from the first chip.

20. The fast packet forwarding engine of claim 14
wherein the processor comprises:

(a) a bit extractor for extracting bits from the input

address;

(b) a mask generator for masking bits generating a mask
used to calculate a sum of bits having a first value
corresponding to the offset in the second memory
device; and

(c) an offset calculator for summing the number of bits
having the first value using the mask and the bits

extracted from the input address, wherein the offset
corresponds to the sum.

	Front Page
	Drawings
	Specification
	Claims

