(12) United States Patent

Diamant

US006983337B2
10y Patent No.: US 6,983,337 B2
45) Date of Patent: Jan. 3, 2006

(54) METHOD, SYSTEM, AND PROGRAM FOR
HANDLING DEVICE INTERRUPTS

(75) Inventor: Nimrod Diamant, Kfar-Saba (IL)

(73) Assignee: Intel Corporation, Santa Clara, CA
(US)

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 1 day.

(21) Appl. No.: 10/323,244
(22) Filed: Dec. 18, 2002

(65) Prior Publication Data
US 2004/0122986 Al Jun. 24, 2004
(51) Int. CL

GOGF 3/00 (2006.01)
(52) US.CL ..., 710/48; 710/47; 710/29;
710/8
(58) Field of Classification Search 710/48,

710/8, 29, 36—47
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
5,375,225 A * 12/1994 Dean et al. 703/25
5,535,397 A * 7/1996 Durante et al. 7107267
5,875,343 A * 2/1999 Binford et al. 710/263
5,881,296 A * 3/1999 Williams et al. 710/263
6,356,963 B1 * 3/2002 Maguire et al. 710/48

OTHER PUBLICAITONS

Brooks, Lame. “RE: Message Signalled Interrupt Support™.
lonline|, Mar. 24, 2000. [Retrieved on Nov. 26, 2002].
Retrieved from the Internet at <URL: http:/www.pcisig.

com/reflector/msg02868.html>.

Motorolla, “Interrupt Controller”, MCF5307 User’s

Manual. Chapter 9, pp. 9-1-9-8.

PCI Special Interest Group, “PCI Local Bus Specification”,
© 2002 PCI Special Interest Group. Revision 2.3, Mar. 29,
2002, pp. 218-225.

U.S. Patent Application for Intel Case No. P15007, filed
Dec. 18, 2002, entitled “Method, System, and Program for

Handling Interrupt Requests”, mnvented by N. Diamant.

Venturcom, “Tech Notes Detail: PCI/CompactPCI Interrupt
Routing Impacting RTX”. © 2002 Venturcom, Inc. [online],
|Retrieved on Nov. 26, 2002]. Retrieved from the Internet at
<URL.: http://support.vci.com/support/Technotes/tech-
note:_detail.asp?TechNoteID=78>.

* cited by examiner

Primary Examiner—Jellrey Gallin
Assistant Examiner—Alan Chen

(74) Attorney, Agent, or Firm—David W. Victor; Konrad
Raynes & Victor LLP

(57) ABSTRACT

Provided are a method, system, and program implemented
by a device driver executing in a computer for handling
interrupts from an associlated device, wherein the device
driver 1s capable of interfacing with the associated device.
The device driver receives a call requesting whether an
mterrupt received from a device 1s from the associated
device and reads interrupt status information i memory
within the computer to determine whether the associated
device transmitted the mterrupt, wherein the device writes
the 1nterrupt status information to the memory. If the asso-
clated device transmitted the interrupt, then the device driver
requests resources from the operating system to handle the
interrupt.

32 Claims, 9 Drawing Sheets

Claim
Interrupt

U.S. Patent Jan. 3, 2006 Sheet 1 of 9 US 6,983,337 B2

FIG. 1
Computer .
. oo)
| [Memory , \
| N l/—)z
Device Operating | |
| Driver System |
List - J
- O/S Interrupt Service .
18a | Routine (ISR) | 8 l |
| _F) o 18b - |
20a | IDevice Driverl Device Driver Device Driver | | |
Device [Device || Device on|
24a | | || Driver ISR | Driver ISR Driver ISR ‘
DPC DPC | DPC

| (ﬂ | - | 4n |
| 24 | Bus Driver }’ l
& Bus ——I — ‘
T wa B T)o

r—

Device | Dewce Device

14 -
Status | | 14 Status Status
Register | Register

Register

FIG. 2 2 2

l

Request Claim
i Interrupt
DPC Flag | Flag

U.S. Patent

FIG. 3

Jan. 3, 2006 Sheet 2 of 9 US 6,983,337 B2

Receive interru pt
request on bus.
\/J 2
Context switch into

interrupt handling mode.

-

|

Determine first device
dn'\Er in device griver list.

l 108
Call dete}rnined
device driver's ISR.

k

06

1

| 110
Receive response from
called device driver ISR.
) |) 114
. o

jAssign DPC
Yes-» to responding |

Did
device driver

request . .
OPC? device driver.
_—i 124
N
16 |

Determine next
device driver on hst.

Yesj

122

Did |
responding device
driver ¢claim

interrupt?

No
118 |

Are there
urther device
drivers on
list?

Acknowledge
system interrupt.
) 20

Context switch out of
interrupt handling mode.

U.S. Patent Jan. 3, 2006 Sheet 3 of 9 US 6,983,337 B2

FIG. 4

150

Receive call from
operating system ISR
on interrupt.

. 192
Set the request DPC and the
claim interrupt flags to “off".
l 54

Read device interrupt
status register.

No device send

ferrup

160

Yes

l

ves Write to device status register to clear
interrupt indication and write to mask
register to disable device interrupts.

| |

162
No

l__E;ta-l request DPC flag to "on”,
| leave claim interrupt flag “off".

|

N, A

tRe?pond with flags to operating
system ISR to respond to call.

164

U.S. Patent Jan. 3, 2006 Sheet 4 of 9 US 6,983,337 B2

-]

FIG. 5 Computer 04
! CPU /Z
202] fzos |
| B |

Memory -
[} | 12
l | .
Device Operating
- Driver System
List I |
| O/S Interrupt Service
218a Routine (ISR) 9
Cl) . ~218b
2903 Device Driver | Device Driver Device Driver
[Device | |' Device |.1240P Device
| Driver ISR | Driver ISR © 7 1 Driver ISR
2242 DPC | DPC 220 DPC | |
' -]] 24b
l 238a 2313 224n 238n
ICR |m€--i£lefj 240a ﬁCR Image ICR Image
— -~ 240b On
| ICR_lma;___Save l ICR_Im;E;“Save l ICR_Image_Save 'ﬁ
') | 215
| ‘ | Bus Driver —}\} |
208) |
_:::th ““EhJS — -

a B | 210n
2/10 . E?Ob 5
236a] Device 236h_| Device 236q | Device

Device Logic‘J Device Logic I Device Logiz—l

214a i - I 214Db | . . I 14n | _ l:
| Status \ Status Status
Registers Registers Registers
230a R 230b—| | IR 230 cR |
T l ICR_Copy .

232a ICR_Copy 232 | ICR Copy 232n | LR
234a IRQ_Required 234 IRQ Required! ‘ 234F:§‘~F’IRQ_Rec£ired

— i
pr

p— e A

U.S. Patent Jan. 3, 2006 Sheet 5 of 9 US 6,983,337 B2

FIG. 7

320
300
Check ICR Check IRQ >_
registers. Required flag.

FIG. 6

Does ICR =

¢ Yes—<__ICR_Copy?
I
Yes No 304
S o Vos
Set ICR_Copy to value of ICR. I 4

indicate interrupt No

Send interrupt
message.

| Send message (o computer l

to write ICR_Copy to 328
ICR Image in computer
| memeny. Set IRQ Required
[- to False.

510
IEet IRQ Required
to True. J

U.S. Patent

FIG. 8

Jan. 3, 2006 Sheet 6 of 9

Receive call from OS
ISR to handle interrupt.

Y

354

v 352
Read ICR image for
device driver -

US 6,983,337 B2

50

ICR_Image
NULL?

No 6

Set
ICR_Image_Save |
to ICR_Image

358
Y

Set ICR_Image t:a
NULL.

el

Send message to device to
acknowledge current interrupt with
ICR Image_Save content and

I

message to disable device's interrupts.

Claim interrupt and request DPC
from operating system ISR. |

e

—_—

Exit ISR. >

| s

U.S. Patent Jan. 3, 2006 Sheet 7 of 9 US 6,983,337 B2

400

Initiate DPC to perform the
interrupt related work.

]

v 402

Perform device work
related to the interrupt.

. FIG. 9

| ‘f&ead ICR_Image in memory.

\

408

4006

IS
ICR_image
null?

Enable device |
interrupts |

Yes

410

r

No 412
| (" Exit DPC.

l- Set
ICR_Image_Save
to ICR_Image

414

Set ICR_Image to
NULL.

L 16

Send message to device to
acknowledge current interrupt with
ICR_Image_Save content and

message to disable device's interrupts.

U.S. Patent Jan. 3, 2006 Sheet 8 of 9 US 6,983,337 B2

FIG. 10

510

Device _Z_——— l

51
Device Logic

514 -
Status
Registers
53(
-3 ICR Copy

ICR Required
03¢ AckAndMask

|

U.S. Patent

Jan. 3, 2006 Sheet 9 of 9

FIG. 11

Initiate operation to
acknowledge and claim
interrupt

Set the request DPC and the
claim interrupt flags to oﬁ”

v

84
oy
Read ICR _Image register
in local memory.

]
588 |
Write ICR_Image_Save value
to MaskAndAck register.
N
5
No

Set the request DPC to ""true""'I

and the claim interrupt flags
to “true”.

(Exit IS?>‘——*

80

US 6,983,337 B2

US 6,953,337 B2

1

METHOD, SYSTEM, AND PROGRAM FOR
HANDLING DEVICE INTERRUPTS

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to a method, system, and
program for handling device interrupts.

2. Description of the Related Art

In many operating systems, such as Microsoft
Windows®, Linux®, Unix®, etc. multiple devices may
communicate over a bus interface with the operating system
interrupt service routine (ISR) using a single interrupt line.
(Microsoft and Windows are registered trademarks of
Microsoft Corporation, Linux 1s a registered trademark of
Linus Torvalds, UNIX 1s a registered trademark of The Open
Group). One of multiple devices using an interrupt line,
would assert an interrupt on the bus to the interrupt line
assigned to that device to request or transmit data to the
operating system. The operating system would further
execute various device driver programs that provide a soft-
ware 1nterface between the operating system and the device.
A device driver includes device specific commands to com-
municate with and control one attached device. Upon receiv-
ing a device interrupt, the operating system ISR would poll
each device driver interrupt service routine (ISR) running in
the operating system to identify the device driver ISR
assoclated with the device that asserted the interrupt.

In response to receiving the polling request from the
operating system ISR asking the device driver ISR whether
the interrupt 1s from the device driver’s device, the device
driver ISR communicates with the associated device and
reads an interrupt status register in the device to determine
whether the driver’s device sent the interrupt request. In
Microsolt® Windows® operating systems, 1f the driver’s
device status registers indicate that the device did send an
interrupt request, then the device driver ISR responds to the
operating system ISR by claiming the mterrupt and request-
ing a deferred procedure call (DPC) to process the device
request that 1s the subject of the interrupt request. In oper-
ating systems other than Windows, such as Linux® and
Unix®, upon claiming the interrupt, the device driver ISR
does not 1ssue a request for a DPC and instead directly
performs the work. The device driver will further write to the
device’s mask register to disable the device’s interrupts to
cause the device to deassert the interrupt request line and
will separately write the read interrupt status to the device’s
interrupt status register to acknowledge the device’s inter-
rupt. If a device driver ISR responds that the interrupt 1s not
from the device associated with the driver, then the operating
system ISR determines a next device driver in a chain of
device drivers to poll and sends the request to the next
device driver ISR 1n the chain. The operating system ISR
continues polling device driver ISRs 1n the list until one
device driver ISR claims the interrupt and requests DPC
rESOurces.

When the device driver ISR reads the device status
registers to determine whether the driver’s device generated
the interrupt, the processor must delay processing until the
device register 1s read and the device driver ISR responds to
the polling request. Reading a device status register over an
[/O bus may take a relatively significant amount of time,
thus increasing the latency of the device driver ISR
operations, which 1n turn reduce processor performance.

For these reasons, there 1s a need 1n the art to provide
improved techniques for handling device interrupt requests.

10

15

20

25

30

35

40

45

50

55

60

65

2
BRIEF DESCRIPTION OF THE DRAWINGS

Referring now to the drawings in which like reference
numbers represent corresponding parts throughout:

FIG. 1 illustrates a computing environment in which
aspects of the mvention are 1implemented;

FIG. 2 illustrates flags set by a device driver 1n response

to determining whether the associated device transmitted the
iterrupt 1n accordance with described implementations of

the 1nvention;

FIG. 3 illustrates operations performed by the operating
system to handle an interrupt request i accordance with
described implementations of the invention;

FIG. 4 1illustrates operations performed by the device
driver to handle an interrupt request in accordance with
described implementations of the invention.

FIG. § illustrates an alternative computing environment in
which further aspects of the invention are 1implemented;

FIGS. 6 and 7 1llustrate operations performed 1n a device
to generate an interrupt signal i accordance with 1mple-
mentations of the invention;

FIGS. 8, 9 and 11 illustrate operations performed by the
device driver to handle an interrupt request in accordance
with described implementations of the invention; and

FIG. 10 1illustrates an alternative implementation of the
device and status registers 1n accordance with described
implementations of the mmvention.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

In the following description, reference 1s made to the
accompanying drawings which form a part hereof and which
illustrate several embodiments of the present invention. It 1s
understood that other embodiments may be utilized and
structural and operational changes may be made without
departing from the scope of the present imvention.

Interrupt Polling of Device Drivers

FIG. 1 1illustrates a computing environment in which
aspects of the mvention may be implemented. A computer 2
includes one or more central processing units (CPUs) 4, a
volatile memory 6, a bus interface 8 on which devices
communicate data and interrupts to the computer 2. A
plurality of devices 10a, 1056 . . . 10n communicate data and
interrupts to the computer 2 via a bus interface 8. The bus
interface 8 may be implemented using any Input/Output
(I/O) bus technology known in the art, such as the Peripheral
Component Interconnect (PCI), Industry Standard Architec-
ture (ISA), the Video Electronics Standards Association
(VESA), Micro Channel Architecture (MCA), Extended
ISA, and any other known bus technology known 1n the art.
The devices 10a, 106 . . . 10x may comprise any I/O device
known in the art, such as storage devices (e.g., tape drive,
hard disk drive, optical disk drive, memory card reader, etc.),
network adaptor card, video devices, printers, etc. The
devices 10a, 105 . . . 10n include one or more status registers
14a,14b . . . 14n that indicate, among other things, whether
the device has asserted an interrupt on the bus 8. Although
FIG. 1 only shows one bus 8, the computer 2 may include
multiple busses to enable communication with the devices
connected to such additional busses.

The computer 2 further includes an operating system 12,
which may comprise any operating system known 1n the art,
such as a Microsoft Windows® operating system, Linux®,
a Unix® type operating system, etc. A bus driver 15 com-

US 6,953,337 B2

3

prises a program that provides an interface between the
operating system 12 and the bus 8 to enable communication
between the operating system 12 and the devices 10a,
1056 . . . 107 that communicate on the bus 8. The operating
system 12 includes an interrupt service routine (ISR) com-
ponent 16 that handles interrupt requests received from the
devices 10a, 106 . . . 107 transmitted across interrupt lines
(not shown) of the bus 8. The operating system 12 further
loads 1into memory 6 and executes one device driver 184,
1856 ... 18n for each device 10a, 10b . . . 10x1 recognized by
the operating system 12. The device drivers 18a,18b . . . 18#
cach include device specific code to enable communication
between the operating system 12 and the devices 10a,
106 . . . 10n. The device drivers 18a, 185 . . . 18#n each
include an interrupt service routine (ISR) 20a, 206 20x
component to handle interrupt requests from the associated
device 10a, 106 . . . 10n. The operating system ISR 16
utilizes a device driver list 22 that identifies all the loaded
device drivers 18a, 18b . . . 18n registered with the operating
system 12.

Further, in Microsoft® Windows® operating systems, the
operating system ISR 16 may assign a deferred procedure
call (DPC) 24a,24b . . . 24n to a device driver 18a, 18bH . . .
18#n to perform device related work. In non-Windows®
operating systems, there 1s no DPC.

FIG. 2 illustrates data that the device driver ISR 20a,
206 . . . 20n communicates to the operating system ISR 16
in response to an mterrupt polling request. A request DPC
flag 30 indicates whether the device driver ISR 20a, 2056 . . .
207 1s requesting a DPC 24a, 24b . . . 24n to handle device
mterrupt related work. A claim imterrupt flag 32 indicates
whether the device driver 184, 18b . . . 18#n 1s claiming the

mterrupt after determining that the interrupt was generated
by the driver’s device 10a, 106 . . . 10xn.

FIG. 3 1llustrates operations performed by the code of the
operating system ISR 16 to handle an interrupt from a device
10a, 1056 . . . 10n. Control begins at block 100 with the
operating system ISR 16 receiving an interrupt from one
device 10a, 105 . . . 10n over the bus 8. In response, the
operating system ISR 16 performs (at block 102) a context

switch to interrupt handling mode. The operating system
ISR 16 then determines (at block 106) from the device driver

list 22 the first listed device driver and calls (at block 108)
the determined device driver ISR 20a, 2056 . . . 20n to poll
whether the device managed by the determined device driver
18a, 186 . . . 18n mitiated the interrupt. Control then
proceeds to block 150 in FIG. 4.

FIG. 4 illustrates operations performed by code of the
device driver ISRs 20a, 2056 . . . 207 1n response to receiving
(at block 150) the call from the operating system ISR 16
ogenerated at block 108. In response, the device driver ISR
20a, 206 . . . 20n sets (at block 152) the request DPC 30 and
the claim interrupt 32 flags (FIG. 2) to “off”. The called
device driver ISR 20a, 205 . . . 20# then issues (at block 154)
a read request over the bus 8 to read the device interrupt
status register 14a, 14b . . . 14n of the driver’s device 104,

106 . . . 10n. If the read status register 14a, 146 . . . n
indicates (at block 156) that the driver’s device 10a, 105 . . .
107 submitted an interrupt request, then the called device
driver ISR 20a, 206 . . . 20n writes (at block 160) to the
device status register 14a, 14b . . . 14n to clear the interrupt
and writes to the mask register to disable the interrupt.
Disabling the interrupt by writing to the mask register

prevents the device 10a, 105 . . . 10n from generating any
further interrupts. The device driver ISR 20a, 206 . . . 20#x
then sets (at block 162) the request DPC flag 30 to “on” and

leaves the claim interrupt flag 32 (FIG. 2) “off” and responds

10

15

20

25

30

35

40

45

50

55

60

65

4

(at block 164) with the flags 30 and 32 to the operating
system ISR 16 that called the device driver ISR 204, 205 . . .
20n.

If (at block 156) the device 10a, 106 . . . 10# did not send
an 1terrupt, then the device driver ISR 20qa, 206 . . . 20n
determines (at block 158) whether there is work to do not
necessarily related to an interrupt. The work that 1s deter-
mined may or may not relate to a device iterrupt. For
instance, the device driver ISR 20a, 206 . . . 201 may read

descriptors of packets to determine whether the device 104,
106 . . . 10x# may soon send an interrupt. Additionally, to
determine whether there i1s available work to perform, the
device driver ISR 20qa, 206 . . . 201 may read a register that
counts a number of packets, where the number of packets
may 1ndicate that there 1s work to perform. Other techniques
may be used to anticipate any work that may be performed
in the near future which will require DPC resources. In this
way, the device driver ISR 20a, 206 . . . 20n submits a
request for a DPC resource as part of an opportunistic search
for anticipated work or interrupts that are likely to be
generated. Implementations that require DPC resources con-
cern the Microsoft® Windows® operating system.
However, certain non-Windows operating systems do not
utilize DPCs, and in such systems, the device driver ISR
20a, 2056 . . . 20n performs the work 1tself without requesting
a DPC. In such non-Windows implementations, the device
driver ISR may respond by not claiming the interrupt and
then proceeding to perform the work.

This opportunistic determination saves resources because
an mterrupt message 1s avolded by handling the work before
the interrupt 1s requested. Further, the described implemen-
tations conserve operating system resources because a con-
text switch to interrupt handling mode is avoided. If (at
block 158) there is no anticipated work, control proceeds to
block 164 to transmit the flags 30, 32 (FIG. 2) that are both

set 1n the “off” state.

With respect to FIG. 3, the operating system ISR 16, upon
receiving (at block 110) the response from the device driver
ISR 20a, 205 . . . 201, determines (at block 112) whether the
DPC request flag 30 1s “on”, indicating the device driver ISR

20a, 206 . . . 20n 1s requesting a DPC. If so, the operating
system ISR 16 assigns (at block 114) DPC resources 24a,

24b . . . 24n to the responding device driver ISR 20a, 2056 . . .
207. From the no branch of block 112 or block 114, control
proceeds to block 116 where the operating system ISR 16
determines whether the responding device driver ISR 204,
206 . . . 20n claimed the interrupt, 1.e., whether the claim
interrupt flag 32 (FIG. 2) is “on”. If so, then the operating,
system ISR 16 acknowledges (at block 118) the system
interrupt and then context switches (at block 120) out of the
interrupt handling mode. If (at block 116) the responding
device driver ISR 20a, 206 . . . 20n did not claim the
interrupt and if (at block 122) there are further device drivers
18a, 186 . . . 187 not yet checked on the device driver list
22, then the next device driver on the list 22 1s determined
(at block 124) and control proceeds to block 108 to call that
next determined device driver ISR 20a, 2056 . . . 20# to check
whether the device managed by that next determined device
driver ISR 20a, 206 . . . 20n 1nitiated the interrupt. If (at
block 122) there are no further device drivers on the list 22,
then control proceeds to block 118 to end the interrupt
handling.

With the described implementations, the device driver
ISRs 20a, 206 . . . 20n claim an interrupt by requesting a
DPC 24a, 24b . . . 24n, but not formally claiming the
interrupt to the operating system ISR 16. This causes the
operating system ISR 16 to assign the claiming device driver

US 6,953,337 B2

S

ISR 20a, 206 . . . 20n sufhicient DPC 24q, 24b . . . 24n
resources to service the interrupt. However, because the
interrupt was not claimed, the operating system ISR 16
continues to check device drivers in the list 22, thereby
allowing the operating system ISR 16 to handle a subsequent
mterrupt request for a device driver 10a, 106 . . . 10x lower
down the list 22 without having to ufilize processor
resources to context switch to interrupt handling mode.
Further, with the described implementations, the device
driver ISR 20a, 2056 . . . 20n may anticipate work to perform
and request DPC resources 24a, 24b . . . 24n even when the
driver’s device did not initiate the interrupt in order to
handle an anticipated interrupt request from the device 104,
105 . . . 10n 1n a manner that relieves the operating system
ISR 16 of the burden of having to handle the interrupt,
thereby further conserving operating system resources.

Maintaining Device Interrupt Status Registers in
Local Memory

FIG. 5 illustrates an alternative implementation of the
computing environment of FIG. 1. In FIG. §, a computer 202
includes one or more central processing units (CPU) 204, a
volatile memory 206, a bus interface 208 on which devices
communicate data and interrupts to the computer 202. A
plurality of devices 210a, 21056 . . . 210n communicate data
and interrupts to the computer 202 via the bus 208. The bus
208 may be implemented using any Input/Output (I/O) bus
technology known 1n the art, such as the Peripheral Com-

ponent Interconnect (PCI), Industry Standard Architecture
(ISA), the Video Electronics Standards Association (VESA),

Micro Channel Architecture (MCA), Extended ISA, and any
other known bus technology known 1n the art. The devices
210a, 21056 . . . 210n may comprise any I/O device known
in the art, such as storage devices (e.g., tape drive, hard disk
drive, optical disk drive, memory card reader, etc.), network
adaptor card, video devices, printers, etc. The devices 210a,
21056 . . . 210n 1nclude one or more status registers 214a,
214b . . . 214# that indicate, among other things, whether the
device has asserted an interrupt on the bus 208. Although
FIG. § only shows one bus 208, the computer 202 may
include multiple busses to enable communication with the
devices connected to such additional busses.

The computer 202 further includes an operating system
212, which may comprise any operating system known in
the art, such as a Microsolt Windows® operating system,
Linux®, a Unix® type operating system, etc. A bus driver
215 comprises a program that provides an interface between
the operating system 212 and the bus 208 to enable com-
munication between the operating system 212 and the
devices 210a, 2106 . . . 210x that communicate on the bus
208. The operating system 212 mcludes an mterrupt service
routine (ISR) component 216 that handles interrupt requests
received from the devices 210a, 2105 . . . 210x transmitted
across an interrupt line (not shown) of the bus 208 or
transmitted using an interrupt message, such as a Message
Signaled Interrupt (MSI). The operating system 212 further
loads mto memory 206 and executes one device driver 2184,
218b . . . 218n for each device 210a, 2106 . . . 210#n
recognized by the operating system 212. The device drivers
218a, 218b . . . 218n include device speciiic code to enable
communication between the operating system 212 and the
devices 210a, 2106 . . . 210xn. The device drivers 218a,
218b . . . 218n each include an interrupt service routine (ISR)
220a,2205b . . . 2201 component to handle mterrupt requests
from the associated device 210a, 2106 . . . 210xn. The
operating system ISR 216 utilizes a device driver list 222
that i1dentifies all the loaded device drivers 218a,

10

15

20

25

30

35

40

45

50

55

60

65

6

2186 . . . 218n registered with the operating system 212.
Further, as discussed, in Microsoft® Windows® operating

systems, the operating system ISR 216 may assign a
deferred procedure call (DPC) 224a, 224b . . . 224n to a
device driver 218a, 2185 . . . 2187 to perform device related

work. In non-Windows® operating systems, there 1s no
DPC.

The device status registers 214a, 2146 . . . 214n may each

include the following information:

Interrupt Cause/Status Registers (ICR) 230a, 2306 . . .
230n: provides interrupt status information, such as
whether an interrupt 1s pending, a priority of a pending
interrupt, etc.

ICR__ Copy 232a,232b . . . 232n: a copy of the ICR 230a,
2306 . . . 230n value used during operations.

IRQ__Required 234a, 234b . . . 234n: flag indicates
whether an interrupt request (IRQ) signal needs to be
sent to the operating system 212 to notify the operating
system 212 of a read/write request to be sent.

FIGS. 6 and 7 illustrates operations performed by device
logic 236a, 236b . . . 236n implemented 1n each device 2104,

2106 . . . 210n to signal the operating system 212 of
interrupts in accordance with implementations of the inven-
tion. Control begins at block 300 with the device logic 2364,
236b . . . 236n checking ICR status registers 214a, 2145 . . .

214#. This checking operation at block 300 may be 1nitiated
at periodic intervals or 1n response to a change 1n one of the

ICR 2304, 230b . . . 230n registers. If the ICR 230a, 2305 . . .
2307 value 1s equal to the ICR__ Copy 232a, 232b . . . 232n

value, then there has been no change to the interrupt status
at the device and control proceeds back to block 300.
Otherwise, 1f there has been a change to the interrupt status
as indicated by the difference between the ICR 230a,
23056 . . . 230n value and ICR_ Copy 232a, 232b . . . 232n
value, then the ICR__Copy 232a, 2325 . . . 2325 is set (at
block 304) to the value of the ICR 230a, 2305 . . . 230n
register. If (at block 306), the ICR_ Copy 232a, 2326 . . .
232n value 1s null, or some other value indicating that there
1s no pending interrupt at the device 210a, 2106 . . . 210n,
then control proceeds back to block 300 to periodic interrupt
checking. Otherwise, if (at block 306) the ICR__Copy 2324,

2326 . . . 232n value 1ndicates that an interrupt 1s pending,
then the device logic 236a, 236b . . . 236n sends (at block
308) a message to the operating system 212 over the bus 208
to write the ICR__ Copy 232a, 232b . . . 232n value to the
ICR__Image 238a, 238b . . . 238n value in the computer
memory 206. As mentioned, an ICR__Image 238a, 2385 . . .
2387 and ICR__Image_ Save 240a, 2400 . . . 240n values are
maintained 1n the computer memory 206 for each initialized
device 210a, 21056 . . . 210n. The IRQ_ Required flag 2344,
234b . . . 234n is then set (at block 310) to “true”, indicating
that an 1interrupt needs to be sent to the operating system 212.
The result of the operations of FIG. 6 1s that the ICR 2304,
2306 . . . 230n register value at the device 210a, 2105 . . .
2107 1n the interrupt state 1s copied to the computer memory
206 for use by the device driver 218a, 2185 . . . 2187 when
handling the device interrupt. This allows the device driver
218a, 2185 . . . 218n to access the ICR status information
from local memory 206 using a local memory bus (not
shown) and avoid having to read the device status registers
214a, 214b . . . 214n over the bus 208. In further
implementations, the device may transmit information in
addition to the described ICR register values to store 1n local
memory 206 to relieve the device driver ISR from having to
consume resources to read such additional information from

the devices.
With respect to FIG. 7, control begins at block 320 with
the device logic 236a, 2360 . . . 2367 periodically checking

US 6,953,337 B2

7

the IRQ_Required flag 234a, 2345 . . . 234n. If (at block
322) the IRQ__Required flag 234a, 234b . . . 234n is “true”
and if (at block 324) the ICR 2304, 2305 . . . 2307 indicates
that an interrupt 1s pending, then the device logic 2364,
236D . . . 2361 sends (at block 326) an interrupt message,
which may include additional information and status, to the
operating system 212 over the bus 208 and sets (at block
328) the IRQ__ Required flag 234a, 234b . . . 234n to “false”.

In certain implementations, the message sent at block 326
may comprise a Message Signaled Interrupt (MSI) as
described 1in Section 6.8 of the “PCI Local Bus
Specification”, Rev. 2.3, published by the PCI Special
Interest Group (Mar. 29, 2002), which publication 1s incor-
porated herein by reference 1n 1its entirety. In MSI
messaging, the device 210a, 2105 . . . 210x sends a unique
vector via a write transaction to a system address. The device
210a, 2100 . . . 210n would encode the message with a
unique address that the operating system 212 had assigned
to the device 210a, 21056 . . . 210#x during initialization to
enable the operating system 212 to distinguish which device
210a, 21056 . . . 210n 1nitiated the message. Alternative
techniques known 1n the art for signaling the mterrupt may
be used.

FIG. 8 illustrates operations performed by the device
driver ISR 220a, 2206 . . . 220#1 1n accordance with imple-
mentations of the invention. Control begins at block 350
with the device driver ISR 220a, 22056 . . . 220x receiving a
call from the operating system ISR 216 to handle an inter-
rupt for the driver’s device 210a, 2105 . . . 210#x. In certain
MSI implementations, the operating system 212 can deter-
mine the device driver 218a, 2185 . . . 218# that 1nitiated the
interrupt because the operating system 212 associates a
unique address with each device 210a, 21056 . . . 210x. In
alternative implementations, such as those where an inter-
rupt signal 1s generated on the bus 208 to a non-unique
mterrupt line, the operating system ISR 216 may poll each
device driver 218a, 2186 . . . 218n to determine the driver
for the device 210a, 21056 . . . 210n that initiated the
interrupt. After bemg called to handle the interrupt, the
device driver ISR 220a, 2205 . . . 2207 reads (at block 352)
its ICR__Image 238a, 2385 . . . 238n value from local
memory 206. If (at block 354) the driver’s ICR_ Image
238a,238b . ..238n value 1s null, or otherwise indicates that
there 1s no pending 1nterrupt for the device 10a, 106 . . . 10n,
then control ends because the called driver’s device did not
initiate the interrupt. Otherwise, 1f the ICR__Image 2384,
238b . . . 238 1s not null, and 1ndicates a pending interrupt,

then the device driver ISR 220a, 2205 . . . 220n sets (at block
356) the ICR__Image Save 240a, 2406 . . . 240n value to
the read ICR__Image 238a, 238b . . . 238x value and sets (at
block 358) the ICR_Image 238a, 238bH . . . 238n value to
NULL to indicate that there 1s no longer a pending interrupt
that needs to be serviced.

The device driver ISR 220a, 2205 . . . 220n then sends (at

block 360) a message to the driver’s device 210a,

2105 . . . 210# over the bus 208 to acknowledge the current
interrupt with the ICR__Image_ Save 240qa, 24006 . . . 240n
value and a message for the device 210a, 2105 . . . 210n to

disable certain of the device’s interrupts, such as those
indicated in the ICR 230a, 23056 . . . 230n register. This
acknowledgment message may include the ICR status read
from the ICR__Image_ Save 240a, 2405 . . . 240x1 value 1n
local memory 206, which causes the device 210a, 2105 . . .
210# to deassert the interrupt request line. The device driver
ISR 220a, 2206 . . . 220n then claims (at block 362) the
interrupt and requests a DPC from the operating system ISR
216 to process the interrupt request and exits.

10

15

20

25

30

35

40

45

50

55

60

65

3

FIG. 9 1llustrates operations the DPC 224a,224b . . . 224n
requested by the device driver ISR 220q, 2206 . . . 220n
performs to handle the interrupt. Upon initiating (at block
400) the process to invoke the DPC 224a, 224b . . . 224n to
handle the interrupt, the DPC 224a, 224b . . . 224n performs
(at block 402) device work related to the interrupt. For
instance, if the device 210a, 2106 . . . 210n comprises a
network adaptor, such as an Ethernet adaptor, then the
device related work performed by the DPC 224a, 224b . . .
224n may mclude processing receive and transmit buffers
and performing link level error correction processing. After
processing the interrupt, the device driver DPC 224a,
224b . . . 224n reads (at block 404) the ICR__Image 238a,
238b . . . 238n value 1n local memory 206 to determine
whether the device 210a, 21056 . . . 210x has 1nitiated a
subsequent interrupt, which would have been indicated by
the device writing (at block 308 in FIG. 6) a new ICR
register value to the local memory copy of the ICR value in
the ICR__Image 238a,238b . . . 238n while the device driver
ISR 220a, 2206 . . . 2201 or device driver DPC 2244,
224b . . . 224n 1s processing the current interrupt. If (at block
406) the ICR_Image 238a, 23856 . . . 238~ is null, or
otherwise indicates that no new interrupt has been received,
then the device driver DPC 224a, 2245 . . . 224n enables (at
block 408) the device 210a, 2105 . . . 210n interrupts by
writing the appropriate data over the bus 208 and then exits
(at block 410) the DPC 224a, 224b . . . 224n.

If (at block 406) the ICR_ Image 238a, 238b . . . 238n
value 1s not null, nor otherwise indicates that a new interrupt
has been received, then the device driver ISR 220a, 22056 . . .
220n sets (at block 412) the ICR_Image Save 240aq,
2405 . . . 240n value to the ICR__Image 238a, 238b . . . 238n
value and then sets (at block 414) the ICR_ Image 238a,
238b . . . 238n value to NULL to indicate that the interrupt
has been handled. The device driver ISR 220a, 2205 .
2207 then sends (at block 416) a message to the drwer S
device 210a, 2105 . . . 210n over the bus 208 to acknowledge
the current mterrupt and to disable the device’s interrupts 1n

the manner described above with respect to block 360 in
FIG. 8. The described logic of FIG. 9 has the device driver

DPC 224a, 224b . . . 224n check whether a subsequent
interrupt has arrived by the copy of the interrupt information
from the local memory 206. In this way, the device driver
224a,224b . . . 224n avoids having to read the ICR register
value from the device 210a, 21056 . . . 2107 over the bus 208,
which takes significantly longer.

The described implementations thus reduce the time for

the device driver ISR 220a, 22056 . . . 2201 or DPC 2244,
224b . . . 2245 to handle an interrupt by having the device

driver ISR 220a, 22056 . . . 220#n or DPC 224a,224b . . . 224n
access ICR status and other information from local memory
206, mstead of having to read ICR status information over
the bus 208 from the device status registers 214a, 214H . . .
214#n. This improved performance of the device driver ISR
220a, 2206 . . . 220n or DPC 224a, 224bH . . . 224n further
improves the general CPU 204 processing performance by
minimizing mterrupt handling delays.

In certain 1mplementations, the device driver 220a,
2206 . . . 220n or DPC 224a, 224b . . . 224n when
acknowledging the interrupt and disabling the device’s
interrupts, such as performed at block 360 in FIG. 8 and

block 420 in FIG. 9, may 1ssue two separate write
transactions, one to write the ICR value to the ICR 2304,

2306 . . . 230n register of the device 210a, 210b . . . 210#x
to cause the device to deassert the interrupt request line and
1ssue a second write to the interrupt mask register to disable
the device interrupts.

US 6,953,337 B2

9

FIG. 10 illustrates an implementation of a device’s 510
status registers 514 as mcluding the ICR 530, ICR_ Copy
532, and IRQ__Required 534a, 534b . . . 534n registers such
as described above with respect to registers 230a, 2305 . . .
230n,232a,232b . . .232n, and 234a,234b . . . 234n m FIG.
5. The status registers 514 of FIG. 10 further includes a
single acknowledgment and mask (AckAndMask) register
536 to 1indicate 1n a single register whether an interrupt was
acknowledged and whether the interrupts are disabled. In
certain 1implementations, such as at block 360 1n FIG. 8 and

block 420 1n FIG. 9, the device driver ISR 220a, 22056 . . .
2201 or DPC 224a, 224b . . . 224n may 1ssue a single write
request to the AckAndMask register 536 to the ICR__
Image Save 240qa, 2400 . . . 240x, which 1s the status value,
to both acknowledge the interrupt and to disable the device’s
interrupts. By consolidating the acknowledgment and dis-
able interrupts 1n a single write message, both CPU utiliza-
tion 204 and bus 208 (FIG. 4) bandwidth are conserved and
optimized.

In 1implementations, where the device transmits an inter-
rupt message using a shared interrupt line, the operating
system must poll each device driver, such as described above
with respect to FIG. 3, to determine the device driver of the
device that 1nitiated the request.

FIG. 11 illustrates logic implemented 1n the device driver
ISRs 220a, 22056 . . . 220#x to claim an interrupt and request
DPC resources to handle the iterrupt processing 1n accor-
dance with described implementations. The operations of
FIG. 11 may be mitiated i response to a call from the
operating system ISR 216 polling the device drivers 2184,
218b . . . 218n to determine the driver associated with the
device 210a, 2105 . . . 210#x that imitiated the request. Upon
being invoked (at block 580), the device driver ISR 220aq,
2206 . . . 220n sets (at block 582) the request DPC 30 and
the claim interrupt 32 flags (FIG. 2) to “off”. The called
device driver ISR 220a, 22056 . . . 220n then reads (at block
584) the ICR__Image 238a, 238b . . . 238 value from local
memory 206 to read the current ICR status information of
the driver’s device 20a, 2056 . . . 20n. It the read ICR__Image
238a,238b . .. 238n indicates (at block 586) that the driver’s
device 210a, 2105 . . . 2107 submitted an mterrupt request,
then the called device driver ISR 220a, 2205 . . . 22071 writes
(at block 588) the read ICR value from local memory to the
device’s AckAndMask register 536 over the bus 208 to
disable and clear the interrupt indicator so that the device
mask status register no longer indicates that an interrupt was
sent. As discussed, writing to the AckAndMask register 536
both acknowledges the interrupt and disables the device’s
interrupts with a single write. The device driver ISR 2204,
2206 . . . 220n then sets (at block §90) the request DPC flag
30 and claim interrupt flag 32 (FIG. 2) to “on” and exits. The
operating system ISR 216 upon detecting the value of these
flags, would then stop polling the device drivers because the
currently polled device driver 218a, 218b . . . 218n claimed
the mterrupt and would assign a DPC 224a, 2245 . . . 224n
resource to the acknowledging device driver 218a, 2185 . . .
218# to handle the interrupt. In additional implementations,
at block 5§90, the device driver ISR 220a, 2205 . . . 220 may
implement the logic of FIG. 4 to set the claim interrupt 32
flag (FIG. 2) to “off” to allow the operating system ISR 216
to continue to poll device driver ISRs 220a, 22056 . . . 220#x
in the manner discussed above with respect to FIGS. 3 and
4 to improve mterrupt handling performance.

Described implementations provide improved techniques
for handling interrupts by having the device write 1nterrupt
status information to local memory where the information is
available to the device driver. This allows the device driver

10

15

20

25

30

35

40

45

50

55

60

65

10

to access the information locally and avoid having to read
the data from the device’s registers over a bus.

Additional Embodiment Details

The described techniques for handling device interrupts
may be implemented as a method, apparatus or article of
manufacture using standard programming and/or engineer-
ing techniques to produce software, firmware, hardware, or
any combination thereof. The term “article of manufacture”™
as used herein refers to code or logic implemented 1n
hardware logic (e.g., an integrated circuit chip, Program-
mable Gate Array (PGA), Application Specific Integrated
Circuit (ASIC), etc.) or a computer readable medium, such
as magnetic storage medium (e.g., hard disk drives, floppy
disks, tape, etc.), optical storage (CD-ROMs, optical disks,
etc.), volatile and non-volatile memory devices (e.g.,
EEPROMs, ROMs, PROMs, RAMs, DRAMs, SRAMs,
firmware, programmable logic, etc.). Code in the computer
readable medium 1s accessed and executed by a processor.
The code 1n which preferred embodiments are 1mplemented
may further be accessible through a transmission media or
from a file server over a network. In such cases, the article
of manufacture 1 which the code 1s 1mplemented may
comprise a transmission media, such as a network transmis-
sion line, wireless transmission media, signals propagating
through space, radio waves, 1nfrared signals, etc. Thus, the
“article of manufacture” may comprise the medium in which
the code 1s embodied. Additionally, the “article of manufac-
ture” may comprise a combination of hardware and software
components 1n which the code 1s embodied, processed, and
executed. Of course, those skilled i1n the art will recognize
that many modifications may be made to this configuration
without departing from the scope of the present invention,
and that the article of manufacture may comprise any
information bearing medium known 1n the art.

In the described implementations, the bus interrupt han-
dling implementations are included in a computer to handle
interrupts from devices coupled to the bus enabling com-
munication with the computer. In alternative
implementations, the bus interrupt handling implementa-
fions may be 1implemented 1n any type of electronic device
communicating with other devices, such as a hand held
computer, a palm top computer, a laptop computer, a net-
work switch or router, a telephony device, a network
appliance, a wireless device, eftc.

In the described embodiments, certain operations were
described as being performed by the operating system ISR
and device driver. In alterative embodiments, operations
described as performed by the operating system ISR may be
performed by the device driver ISR, and vice versa.

In the described implementations, the devices communi-
cated an interrupt signal for an I/O request over an interrupt
line of the bus. In alternative implementations, the devices
may signal an interrupt in a different manner than through a
bus interrupt signal.

FIGS. 1, 5, and 10 1illustrate certain information main-
tained 1n registers within the device and computer memory.
In alternative implementations, additional or different types
of information may be maintained.

The 1llustrated operations of FIGS. 3,4,6,7,8,9, and 11
show certain events occurring 1n a certain order. In alterna-
tive embodiments, certain operations may be performed in a
different order, modified or removed. Morever, steps may be
added to the above described logic and still conform to the
described embodiments. Further, operations described
herein may occur sequentially or certain operations may be

US 6,953,337 B2

11

processed 1n parallel. Yet further, operations may be per-
formed by a single processing unit or by distributed pro-
cessing units.

The foregoing description of various embodiments of the
invention has been presented for the purposes of illustration
and description. It 1s not intended to be exhaustive or to limait
the mvention to the precise form disclosed. Many modifi-
cations and variations are possible m light of the above
teaching. It 1s 1intended that the scope of the invention be
limited not by this detailed description, but rather by the
claims appended hereto. The above specification, examples
and data provide a complete description of the manufacture
and use of the composition of the invention. Since many
embodiments of the invention can be made without depart-
ing from the spirit and scope of the invention, the mvention
resides 1n the claims hereinafter appended.

What 1s claimed 1s:

1. A method performed by a device for transmitting an
interrupt signal to a computer including a memory, com-
Prising;:

determining whether a new interrupt 1s pending at the

device for an Input/Output (I/O) request;

transmitting interrupt status information to the computer
to write to the computer memory 1f the new interrupt 1s
pending;

if the new interrupt 1s pending, transmitting an interrupt
signal to the computer to cause the computer to use the
interrupt status information written to the computer
memory to handle the new interrupt and the I/O request
assoclated with the new interrupt; and

receiving a request to write to a register, wherein the write
to the register acknowledges the new interrupt and
disables interrupts at the device.
2. A method for transmitting an interrupt signal to a
computer mncluding a memory, comprising;:

determining whether a new interrupt 1s pending for an
Input/Output (I/O) request by determining whether a
first 1nterrupt status register content equals a second
interrupt status register content, wherein 1f the first and
second 1nterrupt status register contents are equal, then
the new 1nterrupt 1s not pending, and wherein 1if the first
and second interrupt status register contents are not
cequal, then the new interrupt 1s pending;

transmitting interrupt status information to the computer
to write to the computer memory 1f the new interrupt 1s
pending; and

if the new interrupt 1s pending, transmitting an interrupt
signal to the computer to cause the computer to use the
interrupt status information written to the computer
memory to handle the new interrupt and the I/O request
assoclated with the new interrupt.

3. The method of claim 2, further comprising;:

setting the second interrupt status register content to the
first interrupt status register content if the first and
second 1nterrupt status register contents are not equal.
4. The method of claim 2, further comprising:

setting an mterrupt request flag to indicate to transmit the
interrupt signal 1f the new interrupt 1s pending, wherein
the interrupt signal 1s transmitted if the iterrupt request
flag 1s set to indicate to transmit the interrupt signal.
5. A method implemented by a device driver executing in
a computer including an operating system for handling
mnterrupts from an associlated device, wheremn the device
driver 1s capable of interfacing with the associated device,
and wherein the device driver performs:

10

15

20

25

30

35

40

45

50

55

60

65

12

receving a call requesting whether an interrupt received
from a device 1s from the associlated device;

reading interrupt status information in memory within the
computer to determine whether the associated device
transmitted the interrupt, wherein the associated device
writes the interrupt status information to the memory;
and

if the associated device transmitted the mterrupt, then
requesting resources from the operating system to
handle the interrupt.

6. The method of claim 5, further comprising:

claiming the interrupt if the associated device transmitted
the interrupt.
7. The method of claim §, further comprising:

if the associated device transmitted the interrupt, then

indicating that the associated device did not transmait
the interrupt.
8. The method of claim §, further comprising;:

sending at least one message to the device to acknowledge
the mterrupt and disable the associated device’s inter-
rupts.

9. The method of claim 8, wherein sending the at least one
message comprises sending a single message to acknowl-
edge the interrupt and disable the associated device’s inter-
rupts.

10. The method of claim 9, wherein the single message
writes to one register of the associated device to indicate
acknowledgment of the interrupt and disable the associated
device’s interrupts.

11. The method of claim 5, wherein the requested oper-
ating resources perform:

processing an Input/Output (I/O) request associated with
the received interrupt;

after processing the 1/O request, reading interrupt status
information in the memory to determine whether the
associated device transmitted a subsequent interrupt;
and

if the associated device transmitted the interrupt, then
requesting resources from the operating system to
handle the subsequent interrupt.
12. A device coupled to a computer including a memory,
comprising:
control logic 1mplemented in the device, wherein the
control logic performs:

(1) determining whether a new interrupt is pending at
the device for an Input/Output (I/O) request;

(i1) transmitting interrupt status information to the
computer to write to the computer memory 1if the
new Interrupt 1s pending;

(i11) if the new interrupt is pending, transmitting an
interrupt signal to the computer to cause the com-
puter to use the mterrupt status information written
to the computer memory to handle the new interrupt
and the I/0 request associated with the new interrupt;
and

(iv) receiving a request to write to a register, wherein
the write to the register acknowledges the new
interrupt and disables interrupts at the device.

13. A device coupled to a computer including a memory,
comprising:
control logic 1mplemented in the device, wherein the
control logic performs:

(1) determining whether a new interrupt is pending for
an Input/Output (I/O) request by determining
whether a first interrupt status register content equals

US 6,953,337 B2

13

a second 1nterrupt status register content, wherein it
the first and second interrupt status register contents
are equal, then the new interrupt i1s not pending, and
wherein 1f the first and second interrupt status reg-
1ster contents are not equal, then the new interrupt 1s
pending;

(i1) transmitting interrupt status information to the
computer to write to the computer memory if the
new 1nterrupt 1s pending; and

(i11) if the new interrupt is pending, transmitting an
interrupt signal to the computer to cause the com-
puter to use the mterrupt status information written
to the computer memory to handle the new interrupt
and the I/O request associated with the new interrupt.

14. The device of claim 13, wherein the control logic
further performs:

setting the second interrupt status register content to the

first interrupt status register content if the first and

second 1nterrupt status register contents are not equal.

15. The device of claim 13, wherein the control logic
further performs:

setting an mnterrupt request flag to indicate to transmit the
interrupt signal if the new interrupt 1s pending, wherein
the interrupt signal 1s transmitted if the mterrupt request
flag 1s set to indicate to transmit the interrupt signal.
16. A system for handling interrupts from a device,
wherein the system 1s 1n communication with the device,
comprising;
a Processor;
a memory accessible to the processor;
an operating system executed by the processor; and

a device driver capable of interfacing with the device,
wherein the processor executes the device driver to
perform:

(1) receiving a call requesting whether an interrupt
received from a device 1s from the associated device;

(i1) reading interrupt status information in memory
within the computer to determine whether the asso-
clated device transmitted the interrupt, wherein the
assoclated device writes the interrupt status informa-
tion to the memory; and

(i11) if the associated device transmitted the interrupt,
then requesting resources from the operating system
to handle the interrupt.

17. The system of claim 16, wherein the processor

executes the device driver to further perform:

if the associated device transmitted the interrupt, then

indicating that the device did not transmait the 1nterrupt.

18. The system of claim 16, wherein the processor
executes the device driver to further perform:

sending at least one message to the device to acknowledge
the mterrupt and disable the associated device’s inter-
rupts.

19. The system of claim 18, wherein sending the at least
one message comprises sending a single message to
acknowledge the interrupt and disable the associated devic-
€s’s 1nterrupts.

20. The system of claim 19, wherein the single message
writes to one register of the device to mdicate acknowledg-
ment of the iterrupt and disable the associated device’s
interrupts.

21. The system of claim 16, wherein the system comprises
one of a personal computer, a workstation, a server, a
mainirame, a hand held computer, a palm top computer, a
laptop computer, a network switch, a router, a telephony
device, a network appliance, and a wireless device.

10

15

20

25

30

35

40

45

50

55

60

65

14

22. An article of manufacture implemented 1n a device for
transmitting an interrupt signal from the device to a com-
puter including a memory, wherein the article of manufac-
ture causes operations to be performed, the operations
comprising:

determining whether a new interrupt 1s pending at the

device for an Input/Output (I/O) request;

transmitting interrupt status information to the computer
to write to the computer memory 1f the new interrupt 1s
pending;

if the new interrupt 1s pending, transmitting an interrupt
signal to the computer to cause the computer to use the
interrupt status information written to the computer
memory to handle the new interrupt and the 1/0 request
associated with the new interrupt; and

receiving a request to write to a register, wherein the write
to the register acknowledges the interrupt and disables
interrupts at the device.

23. An article of manufacture implemented 1n a device for
transmitting an interrupt signal from the device to a com-
puter including a memory, wherein the article of manufac-
ture causes operations to be performed, the operations
comprising:

determining whether a new interrupt 1s pending for an

Input/Output (I/O) request by determining whether a
first interrupt status register content equals a second
interrupt status register content, wherein 1if the first and
second 1nterrupt status register contents are equal, then
the new 1nterrupt 1s not pending, and wherein 1if the first
and second interrupt status register contents are not
equal, then the new interrupt 1s pending;

transmitting 1nterrupt status information to the computer
to write to the computer memory 1f the new interrupt 1s
pending; and
if the new 1nterrupt 1s pending, transmitting an interrupt
signal to the computer to cause the computer to use the
interrupt status information written to the computer
memory to handle the new interrupt and the 1/0 request
associated with the new interrupt.
24. The article of manufacture of claim 23, further com-
prising:
setting the second interrupt status register content to the
first 1nterrupt status register content if the first and
second 1nterrupt status register contents are not equal.
25. The article of manufacture of claim 23, further com-
prising:
setting an interrupt request flag to indicate to transmit the
interrupt signal if the new interrupt 1s pending, wherein
the interrupt signal 1s transmitted if the interrupt request
flag 1s set to 1ndicate to transmit the mterrupt signal.
26. An article of manufacture for handling interrupts 1n a
computer including an operating system from a device,
wherein the article of manufacture 1s capable of causing
operations to be performed, the operations comprising;:

receving a call requesting whether an interrupt received
from the device 1s from the device;

reading interrupt status information in memory within the
computer to determine whether the device transmitted
the interrupt, wherein the device writes the interrupt
status 1nformation to the memory; and

if the device transmitted the interrupt, then requesting,
resources from the operating system to handle the
interrupt.
27. The article of manufacture of claim 26, further com-
prising:

US 6,953,337 B2

15

claiming the mterrupt if the device transmitted the inter-

rupt.

28. The article of manufacture of claim 26, further com-
Prising;:

if the device transmitted the interrupt, then indicating that

the device did not transmit the interrupt.

29. The article of manufacture of claim 26, further com-
Prising;:

sending at least one message to the device to acknowledge

the interrupt and disable the device’s mterrupts.

30. The article of manufacture of claim 29, wherein
sending the at least one message comprises sending a single
message to acknowledge the interrupt and disable the
device’s interrupts.

31. The article of manufacture of claim 30, wherein the
single message writes to one register of the device to

5

10

15

16

indicate acknowledgment of the interrupt and disable the
device’s interrupts.

32. The article of manufacture of claim 26, wherein the
requested operating resources perform:

processing an Input/Output (I/O) request associated with
the received interrupt;

after processing the I/O request, reading interrupt status
information 1n the memory to determine whether an
associated device transmitted a subsequent interrupt;
and

if the associated device transmitted the iterrupt, then
requesting resources from the operating system to
handle the subsequent interrupt.

	Front Page
	Drawings
	Specification
	Claims

