(12) United States Patent

US006978327B1

10y Patent No.: US 6,978,327 Bl

Ishida et al. 45) Date of Patent: Dec. 20, 2005
(54) DATA TRANSFER CONTROL DEVICE AND 6,108,718 A * 8/2000 Fujimori et al. 710/9
ELECTRONIC EQUIPMENT FOR 6,185,622 B1* 2/2001 Satoceoeeevvrrerennnnnnn 709/233
PERFORMING DATA 6,219,697 B1* 4/2001 Lawande et al. 709/221
6,304,553 B1* 10/2001 Gehman et al. 370/235
(75) IHV@HtOfS: Takuya Ishida? Sapporo (JP)? 6?3475097 Bl * 2/2002 Dﬁllg 370/498
Yoshiyuki Kamihara? Sapporo (JP) 6?3665964 Bl * 4/2002 Shima et al. ..oovvvvvennnn.... 710/8
6,628,607 B1* 9/2003 Hauck et al. 370/216
(73) Assignee: Seiko Epson Corporation, Tokyo (JP) FOREIGN PATENT DOCUMENTS
(*) Notice: Subject to any disclaimer, the term of this EP 0939 530 A2 9/1999
patent 1s extended or adjusted under 35
U.S.C. 154(b) by 454 days. (Continued)

(21) Appl. No.: 09/787,077

(22) PCT Filed: Jul. 12, 2000

(86) PCT No.:

§ 371 (c)(1),
(2), (4) Date:

PCT/JP00/04637

Mar. 14, 2001
(87) PCT Pub. No.: W0O01/06708
PCT Pub. Date: Jan. 25, 2001

(30) Foreign Application Priority Data
Jul. 15,1999 (JP) e 11-201248

(51) Imt. CL7 ..o, GO6F 13/00; GO6F 3/00;

GO6F 15/16

(52) US.CL .., 710/100; 710/3; 710/4;
710/9; 710/33; 709/206; 709/236; 709/233

(58) Field of Search 710/3, 4,29, 32,
710/33, 40, 58, 59, 240, 9, 100; 709/236,

709/206, 233, 9

(56) References Cited

U.S. PATENT DOCUMENTS

5499374 A * 3/1996 Di Giulio et al. 710/240
5,559,801 A * 9/1996 Lo .covrviiiriiiiiiiininnnnn, 370/412
5,590,124 A * 12/1996 Robinscoeevveneen. 370/258
5,724 517 A * 3/1998 Cook et al. 7097227
6,038,625 A * 3/2000 Ogino et al. 710/104

OTHER PUBLICATTONS
U.S. Appl. No. 09/787,129, filed Mar. 14, 2001, Ishida.

(Continued)

et e

Primary Examiner—lJeflrey Gaihin

Assistant Examiner—Angel L. Casilano
(74) Attorney, Agent, or Firm—OIiff & Berridge, PLC

(57) ABSTRACT

The objective of the present mvention 1s to provide a data
transfer control device that enables a reduction in the
processing load on the firmware during the occurrence of a
bus reset, and electronic equipment using the same. A data
transfer control device 1n accordance with the IEEE 1394
standard generates a bit BT that toggles whenever one
received packet and the next received packet are received in
different bus reset intervals, and comprises that BT 1n the
header of each packet stored in RAM. Bus reset pointers (a
bus reset header pointer and a bus reset ORB pointer) that
indicate a bus reset boundary in RAM are provided, enabling
simple differentiation between a packet received before a
bus reset occurred and a packet received after the reset. If
transmission has been halted by the occurrence of the bus
reset, the bus reset transmission halt status 1s passed to the
firmware via a register.

14 Claims, 28 Drawing Sheets

APPLICATION LAYER (SOFTWARE)

|

BUS MANAGER

ISOCHRONOUS
RESQURCE MANAGER
(IRM)

NODE
CONTROL

SERIAL BUS
MANAGEMENT

—

TRANSAGCTION LAYER
{(FIRMWARE, HARDWARE)

_{

||

LINK LAYER (HARDWARE)

PACKET| [PACKET| [CYCLE
TRANS-! |REGEP-| | CON-
MISSION| | TION TROL

|

PHYSICAL LAYER
{HARDWARE)

US 6,978,327 Bl

Page 2
FOREIGN PATENT DOCUMENTS WO WO 00/25215 5/2000
WO PCT/IP00/04639 3/2001

EP 1 006 449 A2 6/2000
JP 09282263 A * 10/1997 GO6F 13/14 OTHER PUBLICATIONS
JP A 2000-032005 1/2000
JP A 2000-032010 1/2000 U.S. Appl. No. 09/737,760, filed Dec. 18 , 2000, Matsunaga
JP 2000078156 A * 3/2000 ... HO4L 12/28 et al.
JP A 2000-134229 5/2000
JP

A 2000-172457 6/2000 * cited by examiner

U.S. Patent Dec. 20, 2005 Sheet 1 of 28 US 6,978,327 Bl

HG.1

APPLICATION LAYER (SOFTWARE)

TRANSACTION LAYER
(FIRMWARE, HARDWARE)

BUS MANAGER

ISOCHRONOUS
RESOURCE MANAGER

(IRM)

LINK LAYER (HARDWARE)

PACKET| [PACKET
TRANS—]| | RECEP-
MISSION TION
NODE
CONTROL
PHYSICAL LAYER
SERIAL BUS

(HARDWARE)
MANAGEMENT

U.S. Patent Dec. 20, 2005 Sheet 2 of 28 US 6,978,327 Bl

FIG.2A
REQUESTING-SIDE RESPONDING-SIDE
TRANSACTION TRANSACTION
LAYER LAYER
TRANSACTION

(READ, WRITE. OR LOCK)

REQUEST \

TRANSACTION
INDICATION

o— TRANSACTION

RESPONSE

TRANSACTION
CONFIRMATION

FIG.28

REQUESTING-SIDE RESPONDING-SIDE
LINK LAYER LINK LAYER

LINK REQUEST

T~

LINK INDICATION

‘ﬂ(RESPONSE

LINK
CONFIRMATION

U.S. Patent Dec. 20, 2005 Sheet 3 of 28 US 6,978,327 Bl

HG.3

APPLICATION LAYER

l

o
TRANSACTION LAYER -

LINK LAYER
PHYSICAL LAYER

[EEET1394

A 10H 99 1d9

G6

Hd3T104INOD

NOILVZINOYHONAS

JOV4431NI NdO

US 6,978,327 Bl

1dNHYILNI V1va
89 9 09 L6 £9
M90S
431SIH3Y ANIWTOV] 1y31 5193y
NETRY VA
-H3Y
ot

-
2 Y
N (3) _-—_umm“mr‘-——
=) L O4did
7 = - T

L1}

& Amou_v

W (4.L1) QY@
= o 04l

- 5
« 001 201 41V
S 404
> (41V) OVAQ
= 0414

oL 02 0g =201
YION3INOD3IS | | NOILYHLIEHY | HIOVNVYW ¥344N8
V4 a4 oLl OL

(SNV3IW IDVHOLS 1IMOVd) AV

08

U.S. Patent

d4300030 SS34AaV

43151034
A id -
d04

A, 0%

H415103d

¢l

06

TO APPLICATION-LAYER DEVICE

149 =

U.S. Patent Dec. 20, 2005 Sheet 5 of 28 US 6,978,327 Bl

FIG.5
AR
PAGE TABLE AREA FOR HW
| RECEPTION HEADER AREA AR2
FOR HW
TRANSMISSION HEADER AREA AR3
FOR HW
RECEPTION HEADER AREA AR4
(RING BUFFER)
RECEPTION ORB (DATA) AREA ARD
(RING BUFFER)
ARS
TRANSMISSION HEADER AREA
| TRANSMISSION ORB (DATA) AREA | — AR/
TRANSMISSION STREAM (DATA) ARS

AREA
(RING BUFFER)

RECEPTION STREAM (DATA) AREA ARS

(RING BUFFER)

RAM (PACKET STORAGE MEANS)

(4)
0414
306
30IA3IQ J0Vd 41D 3OV

US 6,978,327 Bl

ad o1 ~431NI 3400 MNI gy ~431NI NdD
o AHd NdD
a 226 0c6
-
o
E
o
s (41V)
04l
\f)
m 006 206 06 OL6 2 L6
—3 Veo
L\
3
-
NV
v L6

U.S. Patent

O DI

U.S. Patent Dec. 20, 2005 Sheet 7 of 28 US 6,978,327 Bl

PHY DEVICE 930

FIG. 7

922
DATA
TRANSFER
S
CONTROL 32
DEVICE
920
914 024
RAM CPU 912
926
APPLICATION-
LAYER 934

DEVICE

U.S. Patent Dec. 20, 2005 Sheet 8 of 28 US 6,978,327 Bl

PHY DEVICE 122

F1G.8

DATA
TRANSFER

RAM CONTROL

DEVICE

96
120

66

90
CPU

APPLICATION-
124 LAYER
DEVIC

U.S. Patent Dec. 20, 2005 Sheet 9 of 28 US 6,978,327 Bl

TRANSACTION
f'——_—/;_ T

REQUEST RESPONSE

REQUESTING RESPONDING
NODE NODE

FIG.OB

BUS RESET———I—*—*—

TRANSACGCTION

A
r N

-7 I
REQUEST : RESPONSE :

REQUESTING / RESPONDING

NODE o NODE
REQUEST RESPONSE
A REQUESTING RESPONDING

Co NODE NODE

US 6,978,327 Bl

Sheet 10 of 28

Dec. 20, 2005

U.S. Patent

(SNV3IW FOVHOLS 13XM0Vd) AvYH

H 8+N 1L3aXOVvd

|
- 13534 SN

.LE 13534 SN8

[1] v iwovd
AL 13S34 sng
| [o] Nimovd

G1D
N 1300Vd
19
4/ LLD
| | | | |
| | | _ |
1 “ L “ 0 | 1 _ 0 | 16
| | |
_ _ | | |
| | | |
[8+N] [2+nN] [o+n], o lsn) o [ean]leanN]EanN]i [EN]ON] S
| | | _ _
_ _ | | |
7+ N &+ N add L+ N M 13S3Y4 sSng
| | | L |
b+ TYAYILNI e+ IVAYILNT ! Z+W IVAYIUNT ! 1 +IN TVAYTLN] T WIVAMALNT
13834 SN9 13534 SNg 13534 SNg 13S3Y4 SN\ 13539 SNg
Ol Bl

U.S. Patent Dec. 20, 2005 Sheet 11 of 28 US 6,978,327 Bl

FIG.11

HEADER AREA

DATA POINTER 4

DATA AREA

RAM (PACKET STORAGE MEANS)

U.S. Patent Dec. 20, 2005

FIG.12

RING
7

PACKET N-1
(PROCESSED)

UPR
PROCESSED PACKET | UP
POINTER REGISTER -
PACKET N
PACKET N+1
- PACKET N+2 —
PACKET N+3
PACKET N+4
PAGCKET N+3
PACKET N+6

PACKET N+7
(NOT RECEIVED)

BPR

BUS RESET
POINTER REGISTER

RECEIVED PACKET | PP
POINTER REGISTER

RAM
(PACKET STORAGE MEANS)

Sheet 12 of 28

EMPTY AREA

ﬁ\ 1

RB2 | RECEIVED

BEFORE
BUS
RESET

UNPROCESSED

RECEIVED
AFTER
BUS
RESET

RB3 l

EMPTY AREA

-y W i ks T .- e W A s S W skeis TE W ol e g e A W S o

US 6,978,327 Bl

U.S. Patent Dec. 20, 2005

FIG.13A

COMPARATIVE EXAMPLE

F1G.138

METHOD USING BUS RESET PACKET

START

BUS RESET

Sheet 13 of 28 US 6,978,327 B1

PACKET N
PACKET N+1

PACKET N+2

BUS RESET PACKET

READ ANY
UNPROCESSED
RECEIVED PACKET

IS IT

A BUS RESET
PACKET?

END

/

/
| pokern
G
| proeTvr
905 RESET PAOKET
| proeTvs
| prokeTie
| prokerws
| proerws
/

£

PACKET N+3
PACKET N+4
PACKET N+5

PACKET N+6

RAM

FIG.13C

METHOD USING BUS RESET POINTER

START

READ POINTER BPR
FROM REGISTER BP

U.S. Patent Dec. 20, 2005 Sheet 14 of 28 US 6,978,327 Bl

FIG.14
l UOPR
' RE2 " Uop| PROCESSED
UHPR - - ORB POINTER
PROCESSED REGISTER
HEADER |[|UHP S/

POINTER
REGISTER

HEADER N

HEADER N+1 RBOZ

RECEIVED

RECEIVED HEADER N+2 ORB N+3 BEFORE BUS
BEFORE DATA = RESET
BUS RESET OINTER
DATA LENGTH]
HEADER N+3
DATA DATA POINTER
DATA DATA LENGTH;
S HEADER N+4 RB12 BOPR
BUS RESET +
HEADER BHP ‘ BOP BUS RESET
ORB POINTER

N
)IIII

POINTER —
REGISTER HEADER N +5 ORB N+6 REGISTER
RECEIVED
HEADER N+
AFTER °
BUS RESET
DATA POINTER REGEIVED
SHPR DATA LENGTH AFTER BUS
RECEIVED HEADER N+7 | RB31 RESET
HEADER | PHP
POINTER
REGISTER .
RB32 POPR
~1 Pop| REGEIVED
ORB POINTER

HEADER AREA

REGISTER

/]

ORB (DATA) AREA

U.S. Patent Dec. 20, 2005 Sheet 15 of 28 US 6,978,327 Bl

FIG.19A

METHOD USING BUS RESET HEADER POINTER ALONE

START

S10
STORE ADDRESS

OF POINTER UOP

IS THERE A
HEADER BEFORE THE
POINTER BHP?

S12 S15

READ THE HEADER DETERMINE THAT THE

PREVIOUSLY STORED ORB
S13

POINTER ADDRESS IS THE
BOUNDARY IN THE ORB AREA
DUE TO THE BUS RESET

IS1T AN
ORB PACKET
HEADER?

END

S14

CALCULATE EACH ORB
POINTER ADDRESS
BASED ON THE DATA
POINTER AND THE DATA
LENGTH, THEN SAVE IT

FIG.198

METHOD USING BUS RESET ORB POINTER

START

S16

READ THE POINTER
BOP FROM THE
REGISTER BOPR

END

U.S. Patent Dec. 20, 2005 Sheet 16 of 28 US 6,978,327 Bl

HG.16

START

HAS BUS RESET
OCGCURRED?

S21

READ THE POINTERS BHP AND
BOP FROM THE REGISTERS

BHPR AND BOPR

S22

GIVE PRIORITY TO PROCESSING
THE PACKET RECEIVED AFTER
THE BUS RESET

S23

READ THE POINTERS UHP AND
UOP FROM THE REGISTERS
UHPR AND UOPR

S24

PROCESS THE PACKETS
RECEIVED BEFORE THE

BUS RESET

END

U.S. Patent Dec. 20, 2005 Sheet 17 of 28 US 6,978,327 Bl

FIG.1 7A
TRANSMISSION TRANSMISSION

START COMPLETION

TRANSMISSION

TRANSMISSION TRANSMISSION
START COMPLETION

I S B

FIG.1 78

susmeseT —J L — 00000000000

TRANSMISSION

TRANSMISSION
START

-1G.1 7C

FIG.A 7D

TRANSMISSION TRANSMISSION HALTED
START BY BUS RESET

BUS RESET

TRANSMISSION|
HALT

U.S. Patent Dec. 20, 2005 Sheet 18 of 28 US 6,978,327 Bl

FIG.18A

START C20
BUS RESET J

OCCURRENCE

S30
ISSUE TRANSMISSION
START COMMAND
AS BUS RESET OCCURRED:
Y

S33
CANCEL TRANSMISSION

FIG. 138

START
BUS RESET
S40 OCCURRENCE
[SSUE TRANSMISSION
START COMMAND

S47

WAS
TRANSMISSION
COMPLETED?

HAS

TRANSMISSION BEE

HALTED BY A BUS
RESET?

N
S42
AS BUS RESE N
OCCURRED?
Y

S43

S44 WAS N
TRANSMISSION
CANCEL TRANSMISSION COMPLETED?

US 6,978,327 Bl

Sheet 19 of 28

Dec. 20, 2005

U.S. Patent

PHY DEVICE

Otyd1SI0IY
— P

dldd

CONVERSION

0tL

FH0D MNI

Oc¢

dNOO XL
dNODXd

NOILVHINIO
SMNLVIS

vol

SOl

v
(44 H0O4) OVING
NOISIAIQ 13INDOVd

O8L

31vadn
Y8171 w3iniod

— NOILVHINID
881 $S34AaV

NOILV
-4 4N3D
1S3dN03y
SSJOIV

NOLLNO3IX3
1S3N03Y

2 Is s |3
= > | T
> |5 o |m
> A A 1O
MOIHO 13X0Vd
ONIdVHS LINOVd -—
I H4IDVNVI H344n8
A4l 091
6l Sl

NV 0£D

J9jui04elE(]

US 6,978,327 Bl

(8S7) ojuroadgeadA] jayoed
(9SN) dre24noeg

o .
% wov_|ofoa| olwsfsv] feeess|
Mu dseyxo0 T bayyroT]) dsaypeayyo0[H'DayqalLipAM20|g 13M0E4SNOUOUIYIUAS Y XM .
E e EE) d0¢ Dl
7 0HO eleg
W eyeq
o
=
o
> QYO JepeeH

(8S71) ojuipedgadA|jedoed
e 09 _ L9
s vOZ Ol
-

U.S. Patent Dec. 20, 2005 Sheet 21 of 28 US 6,978,327 Bl

FIG.21
TAG(DTAG) MEANING
0001 FW—SOP
0010 FW—HDR
' 0100 FW—0ORB
0101 FW—STRM
1001 HW—SOP
1010 HW—HDR
1011 HW—FTR
w—ors
1101 HW—STRM
FW =eee-s FIRMWARE
HW ececese HARDWARE
SOP === - START OF PACKET _
(INITIAL QUADLET OF RECEIVED PACKET)
HDR ===<:- HEADER OTHER THAN SOP
FTR eenees- STATUS INFORMATION FOR THE TRANSMITTED PACKET
ORB =«="--- - ORB (DATA)

STRM=»==-- STREAM (DATA)

U.S. Patent Dec. 20, 2005 Sheet 22 of 28 US 6,978,327 Bl

FIG.22A

DEVICE RESETK

' PACKET
RECEPTION
BRIP = H
(BUS RESET)

FIG.228

BRIP &
RECEIVED=H
DEVICE RESETK
BRIP &
RECEIVED=H

US 6,978,327 Bl

m¢ﬂ “ 6%0 L7 cos “ m
| _ _ _ _ i
/. R A — 19
_ '
__ “ " “ |
" " “ “ "
& 1 SYD 2HD _ R 17D €40 OO ”
= Ve N _ Ve A V4 A _
" " eENVE[SELS
| { { \ t
¥ _ _ ' _ '
b } | | i |
: m 7] | o N | O [
! i | | |
7+ N 4+ ‘24N L4+ ‘A
dldd
1) _) _ _ _
f— _ _ _ (_
o _ | _ _ |
@\ " \ " o ” \
] | SHNIVAMILNL 1 ZHNIVAMALND |+W IVAYILNI " N IVAYILNI ”
D _ 13834 SN8 . 13saysng 13S3 Sne _ 13S34 Sn4 _
&
-
e Dl

U.S. Patent

US 6,978,327 Bl

v - o
% dRig
-
-
4
3 W |dNODXY
+—
=5 -
= O«
77 W |
|
|
m da
P~ A .
~ OV1Q
>
b
-

U.S. Patent

HIINIOd WY3IHLS
-I Q3SS300Nd
QG
ore « |l s
v <|

(NdD) JUVYMINYLS

A . _ \
H31LSID3Y 318193 3181034
HILSIOF 3 INIOd SS3HAaY H31NIOd H3INIOd 43dvdH
WV3HLS J3IAI3O3Y aN3I/L1HVLS g40 d3SS3D0oHd d3ss$3n0dd
HILSIDIY HIALNIOd 9z¢ | A 02¢£- 4318193y

g0 13538 SNg

¥31S1D34 YILNIOd
940 Q3IAIFDIY
SEIOE

H31NIOd H3Av3IH
138d4 SNY

- ot
- 4318193

INJFWIJOVNYIN
Vadyv 40
NOILd303d

(4d YOd)
JVING

i o

-l i
Wilm w
3.1vadn -
431NIOd -

LNIWIOVNYI
NOILVN
_IWY3L3a zo_Emm%m_,wo - vIdY H3aVaH NOLLYY3INID
553 NOLLdID3Y SSIYAAY
208
NOLLND3IX3 Sor NOILLYYINIO
183NO3IY 1S3NO3Y ““?u_mmo NN LS 183N03IY
SSIOOV SS3IN0V e §S300V
— LS —
JOVM DIIM ¥AYM Havy MOVd D3N

HADVYNYW H4344N9

YcOld

U.S. Patent Dec. 20, 2005 Sheet 25 of 28 US 6,978,327 Bl

FIG.25

BUFFER MANAGER

20
30
FIFO LINK CORE
(ATF)
DMAC
(FOR ATF)
TXCOMP
TRANS—
MISSION
START TXPRD COMPLET BRIP

GENERATION (BUS RESET)

CIRCUIT

GENERATION
CIRCUIT

TXPRD
(TRANSM!SSIO
IN PROGRESS
TXBRABORT

GENERATION
CIRCUIT

TRANSMISSION

TRANSMISSION |- 3920

START
SETTING HALT STATUS
REGISTER REGISTER

TRANSMISSION TRANSMISSION HALTED
START BY BUS RESET
e— J
Y

FIRMWARE

1J0dvddXxXl

US 6,978,327 Bl

voo”"

(L3S3Y sSNga)

altaks
m 80\« moo\
-
% 313 1dINOD
o Azo_mm_zmzéhv
nﬂn.., dWNOOX1L
Z N
29D
" SSIHHOHA NI
< NOISSINSNVYL
2.._,, \\ DW_&X._.
S LIVH NOISSINSNVYL AN 19D
5
- A 14V1S v
NOISSINSNVH.L
1HVLS
z/omo
OYAI =

U.S. Patent

U.S. Patent Dec. 20, 2005 Sheet 27 of 28 US 6,978,327 Bl

510
CPU

o171
o
501

516
ROM
502 000 518
DATA TRANSFER
o PHY DEVICE GONTROL DEVICE RAM

FIG27A

514 °19
PRINT DISPLAY
220
FIG278 —

021

526
OPERATING
FAnEL
501
502 >00 528
DATA TRANSFER
C PHY DEVICE | CONTROL DEVICE RAM

522
IMAGE
~530
FIG.2/7C CPU

531 536
OPERATING
501
502 000 538
DATA TRANSFER
:
533

532

STGNAL
CO—RW | pf READ/WRITE PROCESSING

U.S. Patent Dec. 20, 2005 Sheet 28 of 28 US 6,978,327 Bl

FIG.28A

FIG.288

FIG.28C

US 6,973,327 Bl

1

DATA TRANSFER CONTROL DEVICE AND
ELECTRONIC EQUIPMENT FOR
PERFORMING DATA

TECHNICAL FIELD

The present invention relates to a data transfer control
device and electronic equipment, and, 1n particular, to a data
transfer control device and electronic equipment for per-
forming data transfer that 1s based on a standard such as
IEEE 1394 between a plurality of nodes that are connected
to a bus.

BACKGROUND ART

An 1nterface standard called IEEE 1394 has recently been
attracting much attention. This IEEE 1394 lays down stan-
dards for high-speed serial bus interfaces that can handle the
next generation of multimedia devices. IEEE 1394 makes 1t
possible 1s to handle data that 1s required to have real-time
capabilities, such as moving 1mages. A bus 1n accordance
with IEEE 1394 can be connected not only to peripheral
cequipment for computers, such as printers, scanners, CD-
RW drives, and hard disk drives, but also to domestic
appliances such as video cameras, VIRs, and TVs. This
standard 1s therefore expected to enable a dramatic accel-
eration of the digitalization of electronic equipment.

Under this IEEE 1394, an event called a bus reset occurs
if new electronic equipment 1s connected to the bus, elec-
tronic equipment 1s removed from the bus, or the number of
nodes connected to the bus increases. When a bus reset
occurs, the topology information relating to the nodes 1is
cleared then this topology information 1s automatically reset.
In other words, after a bus reset, tree identification (deter-
mination of the root node) and self identification are per-
formed, then the nodes that are to act as management nodes,
such as the 1sochronous resource manager, are determined.
Ordinary packet transfer then starts.

Since the topology information 1s automatically reset after
a bus reset under this IEEE 1394, 1t 1s possible to insert and
remove cables in a state called a hot state (hot-plugging). For
that reason, this makes it possible for a user to freely plug
in cables 1 the same manner as with ordinary domestic
clectrical appliances such as VIRs, which could be a useful
factor 1n popularizing home network systems.

However, 1t has become clear that such a bus reset would
cause problems, as described below.

(1) Since topology information such as node IDs is
cleared by the occurrence of a bus reset, the occurrence of
a bus reset during a transaction will make 1t necessary to
re-do that transaction. It 1s therefore necessary for the nodes
to determine which transactions are incomplete, when a bus
reset occurs.

However, the processing capabilities of the firmware
(CPU) that processes the packets is generally low, so that the
processing of a received packet 1s done after a given period
of time has elapsed after the reception of that packet. For that
reason, there 1s always a large number of unprocessed
packets and it 1s necessary to determine which of those many
unprocessed packets were received before or after a bus
reset. This processing places a very large load on the
firmware. In particular, since an extremely large number of
packets are transierred between the nodes after a bus reset,
the number of packets received after a bus reset 1s also
extremely large and thus the problem of the increased
processing load on the firmware becomes more serious.

10

15

20

25

30

35

40

45

50

55

60

65

2

(2) If a bus reset occurs after the firmware has 1ssued a
packet fransmission start command, that transmission 1s
halted. If a bus reset occurs substantially simultaneously
with the 1ssue of a transmission start command, 1t will be
impossible for the firmware to learn whether or not the
transmission was halted by the occurrence of the bus reset.
For that reason, there 1s a danger that the processing of the
firmware will stall, with the firmware on standby until the
transmission complete status comes 1n.

DISCLOSURE OF THE INVENTION

The present invention was devised in the light of the
above described problems and has as an objective thereof
the provision of a data transfer control device that makes 1t
possible to reduce the processing load on firmware when a
reset that clears node topology mnformation occurs, making
it possible to prevent problems such as stalling of the
processing of the firmware caused by the occurrence of a
reset, and electronic equipment using the same.

In order to solve the above described problems, a data
transfer control device of the present invention which trans-
fers data between a plurality of nodes connected to a bus,
comprises: means which generates i1dentification informa-
tion for determining whether or not one received packet and
the next received packet are received during different reset
intervals, when a reset interval 1s defined as the period
between a reset that clears node topology information and
the next reset; and write means which links each received
packet with the generated idenfification information, and
writing the linked packet and 1dentification information mto
a packet storage means.

This aspect of the present invention makes 1t possible to
determine whether or not Nth and (N+1)th packets were
received 1n different reset intervals, for example, by Nth
identification information linked to the received Nth packet
and (N+1)th identification information linked to the (N+1)th
packet that was received next. In other words, 1f the Nth and
(N+1)th packets were received within the same Mth reset
interval, the Nth and (N+1)th identification information
would have the same value, by way of example, but 1if the
Nth and (N+1)th packets were received within Mth and Lth
reset intervals that are different, the Nth and (N+1)th iden-
tification information would have different values. It 1s
therefore possible to determine whether or not the Nth and
(N+1)th packets were received within different reset inter-
vals, 1 other words, whether or not a reset occurred between
the receptions of the Nth and (N+1)th packets, by checking,
for a change in the Nth and (N+1)th identification informa-
tion. The firmware or the like can therefore learn the time at
which the reset occurred 1n a simple manner, thus enabling
a reduction in the processing load during the reset occur-
rence.

The 1dentification information may be a toggle bit that
toggles from zero to one or from one to zero when one
received packet and the next received packet are packets
received within different reset 1ntervals. This makes it pos-
sible to learn the time at which a reset occurred 1n a simple
manner, by simply checking for any change 1n the toggle biat,
further reducing the processing load on the firmware during
a reset.

When the packet storage means 1s a randomly accessible
storage means and 1s divided into a control information arca
in which 1s stored packet control information and a data area
in which 1s stored packet data, the identification information
may be included within the control information written to
the control mformation area. This makes 1t possible to

US 6,973,327 Bl

3

reduce the processing load on the firmware or the like by
dividing the packet storage means 1nto a control information
arca and a data area, enabling an increase in the actual
transfer speed of the entire system. By comprising the
identification information within control information that 1s
written to the control information area, it becomes possible
for the firmware or the like to simply read the 1dentification
information with a low processing load.

A data transfer control device of the present invention
which transfers data between a plurality of nodes connected
to a bus, comprises: write means which writes packet that
have been received from each node into a packet storage
means; and first pointer storage means which stores first
pointer mnformation that specifies a boundary in the packet
storage means between an area for a packet received betore
the occurrence of a reset that clears node topology 1nforma-
fion and an area for a packet received after the occurrence of
the reset.

The present invention makes 1t possible for the firmware
to distinguish between a packet received before the occur-
rence of a reset and a packet received after the occurrence of
the reset 1n a stmple manner, just by reading the first pointer
information from the first pointer storage means. This also
makes 1t possible to perform various different types of
processing, such as destruction of a packet received before
the occurrence of the reset and usual processing of a packet
received after the occurrence of the reset.

A start address of the next packet after a packet that was
received immediately before the occurrence of a reset may
be stored as the first pointer information in the first pointer
storage means. This configuration makes 1t possible to start
the processing of the next packet after a packet that was
received 1immediately before the occurrence of a reset, just
by reading the first pointer information from the first pointer
storage means, thus reducing the processing load on the
firmware or the like.

The data transfer control device of the present invention
may further comprise: a second pointer storage means for
storing second pointer information which specifies a bound-
ary 1n the packet storage means between an area for pro-
cessed packets and an area for unprocessed packets; and a
third pointer storage means for storing third pointer mfor-
mation which specifies a boundary in the packet storage
means between an area for received packets and an area
storing no received packets. This configuration makes it
possible to distinguish between unprocessed packets and the
most recently received packet in a simple manner, by just
reading the second and third pointer information from the
second and third pointer storage means.

The data transfer control device of the present invention
may further comprise processing means which specifies a
packet received after the occurrence of the reset, based on
the first pointer information stored in the first pointer storage
means, and gives priority to processing the specified packet.
This configuration makes 1t possible to avoid situations such
as one 1n which the firmware processing stalls, by enabling
preferential processing of a packet received after the reset
has occurred.

When the packet storage means 1s a randomly accessible
storage means and 1s divided into a control information arca
in which 1s stored packet control information and a data arca
in which 1s stored packet data, the first pointer storage means
may 1nclude: a fourth pointer storage means for storing
fourth pointer information which specifies a boundary in the
control information area between control information for a
packet received before the occurrence of the reset that clears
node topology information and control information for a

10

15

20

25

30

35

40

45

50

55

60

65

4

packet received after the occurrence of the reset; and a fifth
polnter storage means for storing fifth pointer information
which specifies a boundary in the data area between data of
a packet received before the occurrence of the reset that
clears node topology information and data of a packet
received after the occurrence of the reset. This configuration
makes it possible to determine the boundary in the data areca
between packets received before and after the occurrence of
a reset, by simply reading the fifth pointer information from
the fifth pointer storage means, enabling an even further
reduction 1n the processing load on the firmware or the like.

When the data area has been divided into a first data area
for storing first data for a first layer and a second data area
for storing second data for a second layer, the fifth pointer
information may be pointer information which specifies a
boundary 1n the first data area between the first data for a
packet received before the occurrence of a reset that clears
node topology information and the first data for a packet
received after the occurrence of the reset. This configuration
makes 1t possible to reduce the processing load on a first
layer (such as firmware), by enabling the first layer to read
first data stored in a first data area (such as ORBs) and thus
distinguish between before and after a reset. The actual
transfer speed of the data transfer control device can be
improved by enabling a second layer (such as an applica-
tion) to read out second data stored in a second data area
(such as stream data) continuously.

A data transfer control device of the present invention
which transfers data between a plurality of nodes connected
to a bus, comprises: read means which reads a packet from
a packet storage means when a transmission start command
has been 1ssued; link means which provides services for
transmitting read packet to each node; and status storage
means which stores status information indicating that the
fransmission of a packet has been halted, when the trans-
mission of the packet has been halted by the occurrence of
a reset that clears node topology information.

This aspect of the invention makes 1t possible for the
firmware or the like to determine whether packet transmis-
sion has been halted by the occurrence of a reset, by reading
status mnformation from the status storage means. As a result,
it 1s possible to prevent a situation 1n which the processing
of the firmware or the like stalls, even 1f a reset occurs
slightly before the 1ssue of a transmission start command, by
way of example.

The data transfer control device may further comprise
processing means which 1ssues the transmission start com-
mand, and the processing means may cancel transmission
processing that has already started, without determining
whether or not transmission has been completed, when it has
been determined from the status information that transmis-
sion of a packet has been halted by the occurrence of the
reset. This configuration makes it possible to prevent a
situation 1n which the processing of the firmware stalls,
without making it necessary for the firmware to wait for the
transmission complete status to arrive.

In the present invention, the reset may be a bus reset as
defined by the IEEE 1394 standard.

In the present invention, data transfer may be 1n accor-
dance with the IEEE 1394 standard.

Electronic equipment in accordance with the present
invention comprises: any one ol the above-described data
transfer control devices; a device which performs given
processing on data that has been received from another node
through the data transfer control device and a bus; and a
device which outputs or stores data that has been subjected
to processing. Alternatively, electronic equipment 1n accor-

US 6,973,327 Bl

S

dance with the present invention comprises: any one of the
above described data transfer control devices; a device
which performs given processing on data that 1s to be
transferred to another node through the data transfer control
device and a bus; and a device which takes 1n data to be
subjected to processing.

According to the present invention, since processing load
on the firmware or the like which controls data transter 1s
reduced, electronic equipment can be made less expensive
but with higher processing speeds. Since it 1s possible to
avold a situation 1 which the system 1s stalled by the
occurrence of a reset that clears topology information, the
reliability of the electronic equipment can also be increased.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 shows the layer structure of IEEE 1394.

FIGS. 2A and 2B are illustrative of the various services
provided by the transaction layer and the link layer.

FIG. 3 1s illustrative of the SBP-2.

FIG. 4 shows an example of the configuration of a data
transter control device 1n accordance with an embodiment of
this mvention.

FIG. 5 1s illustrative of a technique of separating (divid-
ing) within a RAM (packet storage means).

FIG. 6 shows the configuration of a comparative example.

FIG. 7 1s illustrative of the method of data transfer
implemented by the configuration of FIG. 6.

FIG. 8 1s 1llustrative of the method of data transfer of this
embodiment of the present invention.

FIGS. 9A and 9B are illustrative of the halting of a
transaction by the occurrence of a bus reset.

FIG. 10 1s 1llustrative of the toggle bit BT.

FIG. 11 1s illustrative of a method of comprising the
togele bit BT within headers.

FIG. 12 1s illustrative of the bus reset pointer.

FIGS. 13A, 13B, and 13C are 1illustrative of the process-
ing of the firmware then a bus reset packet 1s used and when
a bus reset pointer 1s used.

FIG. 14 1s illustrative of the bus reset ORB pointer.

FIGS. 15A and 15B are flowcharts that are illustrative of
the processing of the firmware when only a bus reset header
pointer 1s used and when a bus reset ORB pointer 1s used.

FIG. 16 1s a flowchart that 1s illustrative of a method 1n
which the processing give priority to a packet received after
a bus reset.

FIGS. 17A, 17B, 17C, and 17D are 1llustrative of the bus
reset transmission halt status.

FIGS. 18A and 18B are flowchart illustrative of the
processing of the firmware when the bus reset transmission
halt status 1s used and when 1t 1s not used.

FIG. 19 shows details of the configuration of the reception
side.

FIG. 20A shows the format of a packet having block data
in asynchronous transfer in accordance with the IEEE 1394
standard and FIG. 20B shows the format of the header
portion of a packet stored in RAM and having block data in
asynchronous reception.

FIG. 21 1s illustrative of TAG.

FIGS.22A and 22B are state transition diagrams of the BT
generation circuit.

FIG. 23 1s a timing waveform chart that 1s illustrative of
the operation of the BT generation circuit.

FIG. 24 1s 1llustrative of details of the various pointer
registers.

FIG. 235 1s illustrative of details of the bus reset transmis-
sion halt status.

10

15

20

25

30

35

40

45

50

55

60

65

6

FIG. 26 1s a timing waveform chart that 1s illustrative of
details of the bus reset transmission halt status.

FIGS. 27A, 278, and 27C show examples of the internal
block diagrams of various 1tems of electronic equipment.

FIGS. 28A, 28B, and 28C show external views of various
items of electronic equipment.

BEST MODE FOR CARRYING OUT THE
INVENTION

Detailled embodiments of this mvention are described
below with reference to the accompanying drawings.

1. IEEE 1394
The description first relates to an outline of IEEE 1394,

1.1 Outline

The IEEE 1394 standard (IEEE 1394-1995, P1394.a)
enables high-speed data transfer at 100 to 400 Mbps
(P1394.b concerns 800 to 3,200 bps). It also permits the
connection of nodes of different transter speeds to the same
bus.

The nodes are connected 1n a tree configuration 1n which
a maximum of 63 nodes can be connected to one bus. Note
that the use of bus bridges enables the connection of
approximately 64,000 nodes.

IEEE 1394 provides for asynchronous transfer and 1so-
chronous transfer as packet transfer methods. In this case,
asynchronous transfer i1s suitable for data transfers where
reliability 1s required and 1sochronous transfer is suitable for
transfers of data such as moving images and audio, where
real-time capabilities are required.

1.2 Layer Structure

The layer structure (protocol structure) covered by IEEE
1394 1s shown 1 FIG. 1.

The IEEE 1394 protocol 1s configured of a transaction
layer, a link layer, and a physical layer. A serial bus man-
agement function monitors and controls the transaction
layer, link layer, and physical layer, and provides various
functions for controlling nodes and managing bus resources.

The transaction layer provides an interface (service) for
transaction units within upper layers and a link layer for
lower layers, and executes transactions such as read trans-
actions, write transactions, and lock transactions.

In this case, a read transaction causes data to be trans-
mitted from the responding node to the node that requested
the data. Similarly, a write transaction causes data to be
transmitted from the requesting node to the responding
node. A lock transaction causes data to be transmitted from
the requesting node to the responding node, and the respond-
ing node then processes that data and returns i1t to the
requesting node.

The services provided by the transaction layer are con-
figured of four services (request, indication, response, and
confirmation), as shown in FIG. 2A.

In this case, a transaction request 1s a service that causes
the requesting side to start a transaction, and a transaction
indication 1s a service that informs the responding side that
a request has been reported. A transaction response 1S a
service that returns the state or data of the responding side
to the requesting side, and a transaction confirmation 1s a
service that informs the requesting side that a response has
arrived from the responding side.

The link layer provides functions such as addressing, data
check, data framing for packet transmission/reception, and
cycle control for 1sochronous transfer.

US 6,973,327 Bl

7

The services provided by the link layer are configured of
four services (request, indication, response, and confirma-
tion), as shown in FIG. 2B.

In this case, a link request 1s a service that transfers a
packet to the responding side and a link indication 1s a
service that receives a packet from the responding side. A
link response 1s a service that transfers an acknowledgment

from the responding side and a link confirmation 1s a service
that receives an acknowledgment from the requesting side.

The physical layer converts the logical symbols used by
the link layer into electrical signals, performs bus arbitra-
tion, and defines the physical bus interface.

The physical layer and link layer are usually implemented
by hardware such as a data transfer control device (interface
chip). The transaction layer is implemented either by firm-
ware (processing means) operating on the CPU, or hard-
ware.

Note that a protocol called the serial bus protocol 2
(SBP-2) has been proposed as a higher-order protocol that

comprises some of the functions of the transaction layer
under IEEE 1394, as shown in FIG. 3.

In this case, SBP-2 1s proposed 1n order to enable utili-
zation of the SCSI command set on top of the IEEE 1394
protocol. Use of this SBP-2 minimizes the changes to be
made to the SCSI command set that 1s used m electronic
equipment that conforms to the existing SCSI standards, and
also enables their use 1n electronic equipment that conforms
to the IEEE 1394 standard. The design and development of
clectronic equipment can be simplified thereby. Since 1t 1s
also possible to encapsulate device-specific commands, not
just SCSI commands, this greatly increases the universality
of the command set.

With SBP-2, log-in processing 1s done by first using an
operation request block (ORB) for initializing a log-in or
fetch agent, which is created by an initiator (such as a
personal computer). The initiator then creates an ORB
(command block ORB) comprising a command (such as a
read command and write command), then informs the target
of the address of the thus created ORB. The target acquires
the ORB created by the inmitiator by fetching from that
address. If the command within the ORB was a read
command, the target executes a block write transaction to
transmit data from the target to the data buffer (memory) of
the nitiator. If the command within the ORB was a write
command, on the other hand, the target executes a block read
fransaction to receive data from the data buffer of the
initiator.

With this SBP-2, the target can execute a transaction to
send or receive data when i1ts own circumstances allow since
it 1s therefore not necessary for the mitiator and the target to
operate 1n synchronism, the efficiency of data transfer can be
increased.

Note that protocols other than SBP-2 are also being
proposed as protocols of a higher order than IEEE 1394,
such as the function control protocol (FCP).

1.3 Bus Reset

Under the IEEE 1394, a bus reset occurs when power 1s
applied or devices have been disconnected or connected
while power 1s on. In other words, each node monitors the
voltage state at the corresponding port. If a voltage change
occurs at a port because of the connection of a new node to
the bus, for example, a node that has detected that change
informs the other nodes on the bus that a bus reset has
occurred. The physical layer of each node informs the link
layer that a bus reset has occurred.

5

10

15

20

25

30

35

40

45

50

55

60

65

3

When such a bus reset occurs, topology information such
as node IDs 1s cleared, then this topology information 1s
automatically reset. In other words, tree 1denfification and
self 1dentification are performed after a bus reset. The nodes
that are to act as management nodes, such as the 1sochronous
resource manager, cycle master, and bus manager are then
determined. Ordinary packet transfer starts.

Since the topology mnformation 1s automatically reset after
a bus reset under this IEEE 1394, it 1s possible to implement
a hot-plug configuration 1n which the cables of electronic
equipment can be freely removed or inserted.

Note that 1f a bus reset occurs during a transaction, that
transaction 1s cancelled. The requesting node that 1ssued the
canceled transaction transfers the request packet again, after
the topology information has been reset. The responding
node does not return a response packet to the requesting
node for a transaction that has been canceled by a bus reset.

2. Overall Configuration

The overall configuration of the data transfer control
device 1n accordance with this embodiment of the mnvention
1s described below, with reference to FIG. 4.

In FIG. 4, a PHY nterface 10 1s a circuit that provides an
interface with a PHY device (a physical-layer device).

A link core 20 (link means) is a circuit implemented in
hardware that provides part of the link layer protocol and the
fransaction layer protocol; it provides various services relat-
ing to packet transfer between nodes. A register 22 1s
provided for controlling the link core 20 that implements
these protocols.

A FIFO (ATP) 30, FIFO (ITF) 32, and FIFO (RF) 34 are
FIFOs for asynchronous transmission, 1sochronous trans-
mission, and reception, respectively: each being configured
of hardware means such as registers or semiconductor
memory. In this embodiment of the invention, these FIFOs
30, 32, and 34 have an extremely small number of stages.
For example, the number of stages per FIFO can be no more
than three, or no more than two.

ADMAC 40 (read means), a DMAC 42 (read means), and
a DMAC 44 (write means) are DMA controllers for ATE,
ITFE, and RE, respectively. Use of these DMACs 40, 42, and
44 makes 1t possible to transfer data between a RAM 80 and
the link core 20 without going through a CPU 66. Note that
a register 46 provides control such as that over the DMACs
40, 42, and 44.

A port 1nterface 50 1s a circuit that provides an interface
with an application-layer device (such as a device for
performing print processing for a printer, by way of
example). In this embodiment of the invention, the use of
this port interface 50 makes 1t possible to transfer 8-bit data,
for example.

A FIFO (PF) 52 i1s a FIFO used for transferring data
between an application-layer device and a DMAC 54 1s a
DMA controller for PF. A register 56 provides control over
the port mterface 50 and the DMAC 54.

An SBP-2 core 84 is a circuit that implements part of the

SBP-2 protocol by hardware. A register 88 provides control
over the SBP-2 core 84. A DMAC (for SBP-2) 86 is a DNA

controller for the SBP-2 core 84.
A RAM area management circuit 300 1s a circuit for
managing the various areas within the RAM 80. When each

of the areas within the RAM 80 becomes full or empty, the
RAM area management circuit 300 uses various full or

empty signals to control the DMACs 40, 42, 44, 54, and 86.

A CPU mterface 60 provides an interface with the CPU 66
that controls the data transfer control device. The CPU
interface 60 comprises an address decoder 62, a data syn-

US 6,973,327 Bl

9

chronization circuit 63, and an interrupt controller 64. A
clock control circuit 68 controls the clock signals used by

this embodiment, and SCLK that 1s sent from the PHY
device (PHY chip) and HCLK, which is the master clock,
are 1nput thereto.

Abufler manager 70 1s a circuit that manages the interface
with the RAM 80. The buifer manager 70 comprises a
register 72 for controlling the buffer manager, an arbitration
circuit 74 that arbitrates the bus connection to the RAM 80,
and a sequencer 76 that generates various control signals.

The RAM 80 functions as a randomly accessible packet
storage means, where this function 1s 1mplemented by
SRAM, SDRAM, or DRAM or the like.

Note that the RAM 80 may be accommodated within the
data transfer control device of this embodiment of the
invention, but 1t 1s possible to attach part or all of the RAM
80 externally.

An example of the memory map of the RAM 80 1s shown
in FIG. 5. In this embodiment of the invention as shown 1n

FIG. 5, the RAM 80 is divided into header areas (AR2, AR3,
AR4, and AR6) and data areas (ARS, AR7, ARS8, and ARY).
The header of a packet (broadly speaking, control informa-
tion) is stored in a header area and the data (ORB and
stream) is stored in a data area.

In this embodiment of the invention, the data areas (ARS,
AR7, ARS8, and ARY) in the RAM 80 are divided into ORB

areas (ARS and AR7) and stream arcas (ARS8 and ARY), as
shown 1n FIG. 5.

In addition, the RAM 80 1n this embodiment 1s divided
into reception areas (AR2, AR4, ARS, and AR9) and trans-
mission areas (AR3, AR6, AR7, and ARS).

Note that each ORB (first data for a first layer) is data
(commands) conforming to SBP-2 as described above. A
stream (second data for a second layer that is above the first
layer) is data for the application layer (such as print data for
a printer, read or write data for a CD-RW, or image data that
has been fetched by a scanner).

A page table area for hardware (HW), a reception header
arca for HW, and a transmission header area for HW,
denoted by AR1, AR2, and AR3, are areas used by the SBP-2
core 84 of FIG. 4 for writing and reading the page table,
reception header, and transmission header.

Note that the areas denoted by AR4, ARS, ARS8, and AR9
in FIG. 5 form a structure called a ring buifer.

A bus 90 (or buses 92 and 94) shown in FIG. 4 is for
connections to applications (a first bus). Another bus 95 (or
bus 96), which is for controlling the data transfer control

device, 1s connected electrically to a device (such as a CPU)
that controls the data transter control device as a second bus.
Yet another bus 100 (or buses 102, 104, 105, 106, 107, 108,
and 109) is for electrical connections to physical-layer
devices (such as a PHY device), as a third bus. A further bus
110 (a fourth bus) is for electrical connections to RAM that
acts as a randomly accessible storage means. A still further
bus 99 (a fifth bus) is for reading and writing header
information and page table information, to enable the SBP-2
core 84 to implement SBP-2 by hardware.

The arbitration circuit 74 1n the buifer manager 70 arbi-
frates bus access requests from the DMACs 40, 42, and 44,
the CPU 1nterface 60, and the DMACs 86 and 54. Based on
the results of this arbitration, a data path 1s established
between one of the buses 105§, 107, 109, 96, 99, and 94 and
the bus 110 of the RAM 80 (i.c., a data path is established
between one of the first, second, third, and fifth buses and the
fourth bus).

One feature of this embodiment of the present mnvention
1s the way 1n which 1t 1s provided with the RAM 80, which

10

15

20

25

30

35

40

45

50

55

60

65

10

stores packets 1in a randomly accessible manner, and also the
mutually independent buses 90, 96, 99, and 100 as well as
the arbitration circuit 74 for connecting one of those buses
to the bus 110 of the RAM 80).

A data transfer control device that has a different con-
figuration from that of this embodiment 1s shown 1n FIG. 6,
by way of example. In this data transfer control device, a

link core 902 1s connected to a PHY device by a PHY
interface 900 and a bus 922. The link core 902 1s connected
to a CPU 912 by FIFOs 904, 906, and 908, a CPU interface
910, and a bus 920. The CPU 912 1s also connected to a
RAM 914, which 1s local memory 1n the CPU, by a bus 924.

The method of data transfer used with the data transfer
control device configured as shown m FIG. 6 will now be
described with reference to FIG. 7. A received packet sent
from another node through a PRY device 930 passes through
the bus 922, a data transfer control device 932, and the bus
920, then 1s accepted by the CPU 912. The CPU 912
temporarily writes the accepted received packet to the RAM

914 over the bus 924. The 912 then reads the received packet
that has been written to the RAM 914 over the bus 924,
processes the received packet into a form that can be used by
the application layer, then transfers it to an application-layer
device 934 over a bus 926.

When the application-layer device 934 transfers data, on
the other hand, the CPU 912 writes this data to the RAM
914. A header 1s attached to the data 1n the RAM 914 to
create a packet that conforms to IEEE 1394. The thus created
packet 1s sent to another node over the path comprising the
data transfer control device 932 and the PHY device 930.

However, 1f the data transfer method of FIG. 7 1s
employed, the processing load on the CPU 912 1s extremely
heavy. This means that, even if there 1s a fast transfer speed
over the serial bus that connects nodes, the actual transfer
speed of the entire system 1s slowed by factors such as
processing overheads of the CPU 912, so that 1t 1s ultimately
not possible to implement high-speed data transfer.

In contrast thereto, this embodiment of the invention
ensures that the bus 90 between a data transfer control
device 120 and an application-layer device 124; the CPU
bus 96; and the bus 110 between the data transfer control
device 120 and the RAM 80 are mutually separated, as
shown 1n FIG. 8. The configuration 1is therefore such that the
CPU bus 96 can be used solely for controlling data transfer.
The bus 90 1s also dedicated so that it can be used for data
transfer between the data transfer control device 120 and the
application-layer device 124. If, for example, the electronic
equipment 1n which the data transfer control device 120 is
incorporated 1s a printer, the bus 90 can be used exclusively
for transferring print data. As a result, the processing load on
the CPU 66 can be reduced and the actual transfer speed of
the entire system can be increased. In addition, an inexpen-
sive device can be employed as the CPU 66 and 1t 1s also no
longer necessary to use a high-speed bus as the CPU bus 96.
This ensures that the electronic equipment can be made less
expensive and more compact.

3. Features of this Embodiment

3.1 Bit Toggled by Bus Reset

An IEEE 1394 transaction 1s completed by the requesting
node transmitting a request packet to the responding node
and the requesting node receiving the corresponding
response packet from the responding node, as shown 1n FIG.
9A. There 1s no problem if a bus reset occurs after such a
transaction completion.

If a bus reset occurs during a transaction, on the other
hand, the transaction halts as shown at C1 1n FIG. 9B. In

US 6,973,327 Bl

11

such a case, the responding node cannot return the response
packet for the halted transaction back to the requesting node.
Since the transaction has been completed, the requesting
node must send the request packet again to the responding
node, as shown at C2.

If the data transfer control device of this embodiment of
the present 1invention 1s incorporated into peripheral equip-
ment such as a printer or CD-RW drive, however, 1t 1s usual
to use an mexpensive CPU having low processing capabili-
ties as the CPU 66 of FIG. 4, from the point of view of
controlling production costs. The processing capabilities of
the firmware operating on the CPU 66 are therefore also low.
This means that received packets cannot be processed as
soon as they are received, so that a large number of unproc-
essed recerved packets exist in the RAM 80. If a bus reset
occurs, 1t 1s therefore necessary to perform processing to
determine whether these unprocessed packets were received
ceither before or after the bus reset. In other words, 1t 1s
necessary to perform processing to detect the time at which
the bus reset occurred. Since the processing capabilities are
ogenerally considered to be low, as described previously, the
processing for detecting the time at which a bus reset
occurred 1s preferably such as to reduce the load thereon.

This embodiment of the present invention uses the
method described with reference to FIG. 10.

In other words, a bus reset interval 1s defined as the
interval between one bus reset (a reset that clears node
information) and the next bus reset. As shown by way of
example 1n FIG. 10, the interval between bus resets M and
M+1 1s a bus reset interval M and the interval between bus
resets M+1 and M+2 1s a bus reset interval M+1.

In this case, this embodiment of the invention generates a
toggle bit BT (broadly speaking, identification information)
for determining whether or not one received packet and the
next received packet were received 1n different reset inter-
vals. The configuration 1s such that this toggle bit BT 1s
linked to each packet and is written to RAM (the packet
storage means) as shown at C11 in FIG. 10.

In other words, packets N and N+1 were received in the
same bus reset period M of FIG. 10, so the BT 1s zero for
both. Since packets N+1 and N+2 were received 1n different
bus reset intervals M and M+1, the BT for packet N+1 1s
zero whereas the BT for packet N#2 1s 1. In other words, the
BT toggles between zero and one. Similarly, packets N+4
and N+5 were received 1n bus reset intervals M+1 and M+2,
so the BT toggles from one to zero. Packets N+5 and N+6
were received during bus reset mtervals M+2 and M+4, so
the BT toggles from zero to one.

As 1s clear from C12, C13, and C14 of FIG. 10, therefore,
the configuration 1s such that the time at which BT has
togeled correspond to the time at which bus resets occurred
(boundaries in RAM). For that reason, the firmware (pro-
cessing means) can learn the time at which bus resets
occurred by simply checking the time at which BT toggled.
As a result, the firmware can perform processing to process
packets N+6, N+7, and N+8 (which were received after the
last bus reset, by way of example) in the usual manner, and
processing to destroy packets N to N+5 that were received
before the last bus reset occurred.

This embodiment of the present invention is particularly
characterized in the way 1n which BT does not change at C15
in FIG. 10. In other words, if BT were to be set to toggle
every time a bus reset occurs, 1t would toggle from one to
zero at C15 because bus reset M+4 occurs then. If that were
to happen, BET would change from zero to one at C14 1n
FIG. 10, regardless of the fact that packets N+5 and N+6 are
received 1n different bus reset intervals. As a result, a

10

15

20

25

30

35

40

45

50

55

60

65

12

problem will occur 1n that the firmware would not be able to
detect the occurrence of the bus reset between the receptions

of the packets N+5 and N+6.

This problem does not occur in this embodiment of the
present mnvention because 1t 1s configured 1n such a manner
that BT toggles from zero to one or from one to zero on
condition that sequentially received packets were received in
different reset intervals.

Note that 1n this embodiment of the invention, the RAM
described with reference to FIG. 5 1s divided into a header
area and a data (ORB and stream) area. The headers stored
in the header area and the data stored in the data area are
linked by data pointers comprised within the headers. With
this embodiment of the invention, the above described
toggle bit BT (identification information) is comprised
within the header that 1s written to the header area, as shown
in FIG. 11. This configuration makes 1t possible for the
firmware to detect the time at which the bus reset occurred
in a simple manner, just by reading all the headers in the
header area together and checking the values of BT in those

headers. This enables a further decrease 1n the processing
load on the firmware.

Note that the description with reference to FIG. 10
concerns a case 1n which the idenfification imnformation is
one bit of data, but the identification information can equally
well be two or more bits of data. For example, the value of
the 1dentification information could be incremented to 1, 2,
3, etc., at C12, C13, and C14 of FIG. 10, instead of changing

from zero to one or one to zero.

3.2 Bus Reset Pointer

This embodiment of the present invention 1s also provided
with a bus reset pointer register (first pointer storage means)
BPR enabling efficient detection of the time at which the bus
reset occurred, as shown 1n FIG. 12.

In this case, a bus reset pointer BP held within the bus
reset pointer register BPR specifies a boundary RB1 in RAM
between packets N to N+2 received before a bus reset
occurred and packets N+3 to N+6 received after the bus reset
occurred. More specifically, the pointer BP indicates the start
address of the next packet N+3 after the packet N+2 that was
received 1immediately before the bus reset occurred.

This embodiment of the present invention 1s also provided
with a processed packet pointer register UPR (second
pointer storage means) and a received packet pointer register
PPR (third pointer storage means), as shown in FIG. 12.

In this case, a processed packet pointer UP held in the
register UPR specifies a boundary RBP2 in RAM between
a processed (used) packet N-1 and an unprocessed (not
used) packet N. More specifically, the pointer UP indicates

the start address of the next packet N after the processed
packet N-1.

Similarly, a received packet pomnter PP held within the
register PPR specifies a boundary RBP3 1n RAM between
the most recent (post) received packet N+6 and the non-
received packet N+7 (the next packet that ought to have been
received). More specifically, the pointer PP indicates the
start address of the non-received packet N+7 that ought to
have arrived next after the most recent recerved packet N+6.

The provision of the register BPR makes it possible for
the firmware to distinguish between a packet received before
the bus reset and a packet received after the bus reset, 1n a
simple manner. The provision of the registers UPR and PPR
also make 1t possible for the firmware to determine which of
the packets has not been processed, in a simple manner

(packets N to N+6 in FIG. 12 are unprocessed).

US 6,973,327 Bl

13

In particular, the pointer BP indicates the start address of
the packet N+3 received immediately after the bus reset. The
firmware can therefore start the processing of packets after
the bus reset, by simply reading the pointer BP from the
register BPR. The pointer UP indicates the start address of
the unprocessed packet N. The firmware can therefore start
the processing of unprocessed packets by simply reading the
pointer UP from the register UPR.

Another method of distinguishing between a packet
received before a bus reset and a packet received after the
bus reset that could be considered 1s a method that utilizes
a packet called a bus reset packet. The use of such a bus reset
packet makes 1t possible to determine that packets N to N+2
that are stored before the bus reset packet are packets
received before the bus reset, and packets N+3 to N+6 that
are stored after the bus reset packet are packets received
after the bus reset, as shown 1 FIG. 13A.

With this method, however, the firmware has to read
unprocessed recerved packet in sequence from the RAM up
until the bus reset packet, as shown 1n steps S1 and S2 1n the
flowchart FIG. 13B. This method therefore has a problem 1n
that there 1s a heavy processing load on the firmware, and
this problem 1s particularly severe if there 1s a large number
of unprocessed packets accumulated in RAM.

In contrast thereto, this embodiment of the invention that
uses the bus reset pointer BP ensures that the firmware need
only read the pointer BP from the register BPR, as shown 1n
step S3 1in FIG. 13C. The processing load on the firmware
can therefore be dramatically reduced in comparison with
the method shown 1n FIG. 13B.

With this embodiment of the present invention, the RAM
shown 1n FIG. 5 1s divided into a header area and a data area.
For that reason, a bus reset header pointer register BHPR
(fourth pointer storage means) and a bus reset ORB pointer
register BOPR (fifth pointer storage means) are provided as
shown 1n FIG. 14, as the bus reset pointer register BR of
FIG. 12.

A processed header pointer register UHPR and a pro-
cessed ORB pointer register UOPR are also provided as the
processed packet pointer register UPR. A received header
pointer register PHPR and a received ORB pointer register
POPR are provided as the received packet pointer register
PPR.

In this case, pointers BHP (fourth pointer information),
UHP, and PHP held within the registers BHPR, UHPR, and
PHPR, respectively, specity boundaries RB11, RB21, and
RB31 within the header area of the RAM.

Similarly, pointers BOP (fifth pointer information), UOP,
and POP held within the registers BOPR, UOPR, and POPR,
respectively, specily boundaries RB12, RB22, and RB32
within the ORB (first data) area of the RAM.

The advantages described below can be obtained by using,
the pointer BOP, which indicates the boundary RB12 of the
bus reset 1n the ORB area, as shown 1n FIG. 14.

In other words, since the boundary RB12 1in the ORB area
can be specified by a method using only a pointer BHP that
indicates the boundary RB11 in the header area, the firm-

ware must perform the processing shown 1n the flowchart of
FIG. 15A.

The address of the pointer UOP is first stored (step S10).
The system then determines whether or not there 1s a header
in front of the pointer BHP (step 11) and, if there is one, it
reads that header (step S12). The header N of FIG. 14 is read
thereby, by way of example.

The system then determines whether the thus-read header
is the header of a packet (ORB packet) having data in the
ORB area (step S13). Since the headers N and N+1 in FIG.

10

15

20

25

30

35

40

45

50

55

60

65

14

14 are not the headers of ORB packets, the flow returns to
steps S11 and S12 without proceeding to step S14. Since the
headers N+2 and N+3 are ORB pointers, on the other hand,
the flow proceeds to step S14 at that point, where the
addresses of the ORB pointers (the boundaries RB02 and
RB12) are calculated and stored, based on the data pointers
and data lengths comprised within those headers. Since the
next header N+4 1s not an ORB pointer, the flow returns to
S11 at that point. When that happens, since it 1s determined
at step S11 that there 1s no header 1n front of the pointer BHP,
the flow branches to step S185 where the address (RB12) of
the ORB pointer stored immediately before 1s determined to
be the boundary of the ORB area due to the bus reset.

As described above, the method of using the pointer BHP
alone requires the firmware to perform a heavy processing
load, as shown in FIG. 15A. This situation becomes par-
ticularly serious when the processing capabilities of the

firmware are low and a large number of headers have
accumulated in RAM.

In contrast thereto, use of the pointer BOP makes it
possible for the firmware to specity the boundary RB12 by
simply reading the pointer BOP from the register BOPR, as
shown 1n the flowchart of FIG. 15B. This therefore enables
a dramatic reduction 1n the processing load on the firmware,
in comparison with the method using the pointer BHP alone.

Under SBP-2, each node (initiator or target) has a 64-bit
ID called EUI-64, in addition to the usual 16-bit node ID. In
contrast to the node IDs which are reset by a bus reset and
which are always likely to be completely different after a bus
reset, each EUI-64 1s unique to the corresponding node and
1s thus not changed after a bus reset. It 1s therefore necessary
to link each EUI-64 to a new node ID after a bus reset and
a large number of packets are transferred between the nodes
for this linkage processing. For that reason, a large number
of packets will accumulate in RAM within a short period
after a bus reset. The number of these accumulated packets
will increase as the number of nodes connected to the bus
INcreases.

[t is clear that, if the firmware (transaction layer) of each
node were to place priority on processing the packets that
were received before the bus reset 1n such a case, 1t 1s likely
that the processing of those nodes will stall. If the processing
of one node stalls, the other nodes will be affected thereby.

If a bus reset has occurred 1n this embodiment of the
present invention, the firmware (processing means) first
processes a packet that was received after the bus reset.

In other words, 1if 1t 1s determined that a bus reset has
occurred (step S20 in the flowchart of FIG. 16), the firmware
reads the pointers BHP and BOP from the registers BHPR
and BOPR (step S21). It then gives priority to processing a
packet received after the bus reset (a packet linking the node
ID and the EUI-64) (step S22). In other words, this embodi-
ment of the 1mvention provides the pointers BHP and BOP
beforehand, as described previously, making it possible to
specily a packet received after a bus reset by the simple
process of reading these pointers from the registers BHPR
and BOPR. There 1s therefore no significant increase 1n the
processing load on the firmware, even 1f the processing gives
priority to the packet received after a bus reset i1n this
manner.

The firmware then reads the pointers UHP and UOP from
the registers UHPR and UOPR (step S23) and processes the
packets received before the bus reset (step S24). In other
words, 1t proceeds to processing such as determining
whether or not to destroy the packets or whether they are for
a transaction that was halted by the bus reset.

US 6,973,327 Bl

15

3.3 Bus Reset Transmission Halt Status

The usual transmission processing 1s started by the firm-
ware 1ssuing a transmission start command (by writing the
transmission start command to the register 46 of FIG. 4), as
shown 1n FIG. 17A. When this transmission start command
1s 1ssued, bus arbitration occurs and, i1f the firmware 1s
successtul in the arbitration, actual packet transfer over the
bus starts. If an ACK (acknowledgment) is received from
another node, the transmission complete status 1s passed to
the firmware.

If a bus reset had occurred immediately before the 1ssue
of the transmission start command, as shown 1n FIG. 17B,
the usual transmission processing 1s performed 1n a similar
manner to that shown in FIG. 17A. If a bus reset occurs
immediately after the 1ssue of the transmission start com-
mand, on the other hand, the transmission 1s halted, no ACK
1s returned from another node, and thus the transmission
complete status 1s not passed to the firmware, as shown 1n
FIG. 17C.

If such a bus reset occurs slightly before the firmware has
issued the transmission start command (written to the reg-
ister), however, the firmware cannot determine which of the
cases shown 1 FIGS. 17B and 17C has occurred.

In other words, after issuing the transmission start com-
mand (step S30), the firmware determines whether or not a
bus reset has occurred (step S31). If no bus reset has
occurred, 1t waits for the arrival of the transmission complete
status (step S32). This 1s the case shown in FIG. 17B. If a bus
reset has occurred, on the other hand, the firmware does not
wait for the transmission complete status and cancels the
transmission (step S33). This is the case shown in FIG. 17C.

If the bus reset occurred slightly before the 1ssue of the
transmission start command, as shown at C20 in FIG. 18A,
the processing of the firmware loops at steps S31 and S32,
and thus the processing stalls. In other words, 1t 1s not
possible to detect the occurrence of the bus reset, so the
transmission is not cancelled (the processing does not pro-
ceed to step S33) and the transmission complete status is not
returned, which means that the processing loops at steps S31
and S2.

With this embodiment of the present invention, the status
indicating that transmission has been halted by a bus reset,
as shown 1n FIG. 17D, 1s passed to the firmware. More
specifically, if a bus reset occurs and the hardware of the data
transfer control device performs processing to halt the
transmission, the bus reset transmission halt status 1s written
to the register 46 of FIG. 4. This makes 1t possible for the
firmware to determine whether or not transmission has been
halted by the bus reset, as shown 1n step S41 of FIG. 18B.
I 1t 1s determined that transmission has been halted by a bus
reset, the configuration 1s such that transmission 1s canceled
without waiting for the transmission complete status (step
S44). This makes it possible to avoid a situation in which the
processing of the firmware stalls.

4. Detailed Example

4.1 Derailed Configuration of Reception Side

The description now turns to details of the configuration
of the reception side. An example of the detailed configu-
ration of the link core 20 (link means), a FIFO 34, and the
DMAC 44 (write means) is shown in FIG. 19.

The link core 20 comprises a bus monitor circuit 130, a
serial-parallel conversion circuit 132, and a packet shaping
(reforming) circuit 160.

The bus monitor circuit 130 1n this case monitors an 8-bit
wide data bus D and a 2-bit wide control bus CTL that are
connected to a PHY device by the PHY interface 10.

10

15

20

25

30

35

40

45

50

55

60

65

16

The serial-parallel conversion circuit 132 converts the
data on the data bus D into 32-bit data.

The packet shaping circuit 160 shapes (reforms) each
packet that has been transferred in from another node, mto
a form that can be used by an upper layer. The format of a
packet having block data in asynchronous transfer in accor-
dance with the IEEE 1394 standard 1s shown 1n FIG. 20A by

way of example. The format of a header portion (stored in
the header area of the RAM 80) of a packet having block
data 1n asynchronous reception i1s shown in FIG. 20B. The
thus-configured embodiment of the present invention shapes
a packet that 1s 1n the format shown 1n FIG. 20A 1nto a
packet of the format shown 1 FIG. 20B, so that it can be
used by an upper layer such as the firmware.

The packet shaping circuit 160 comprises a packet check
circuit 142, a sequencer 167, a builer 168, and a selector
170; and the packet check circuit 142 comprises a tag
generation circuit 162, a status generation circuit 164, and an
error check circuit 166.

The packet check circuit 142 1n this case 1s a circuit that
diagnoses packets. The tag generation circuit 162 generates
tags that are information for identilying write areas in
packets, and the status generation circuit 164 creates various
statuses to be added to the packets. The error check circuit
166 1nvestigates error check information, such as parity
information and CRCs, which are comprised within each
packet, to detect any errors therein.

The sequencer 167 creates various control signals. The
buffer 168 and the selector 170 select one of DI from the
serial-parallel conversion circuit 132, a status from the
packet check circuit 142, or data pointers from the DMAC
44, using a SEL signal from the packet check circuit 142.

The FIFO 34 functions as a buifer for adjusting the phase
of RD (which is output data from the link core 20) and the
phase of WDATA (which is data to be written to the RAM
80), and it comprises a FIFO state judgement circuit 35. The
FIFO state judgement circuit 35 makes an EMPTY signal go
active when the FIFO 1s empty and a FULL signal go active
when the FIFO 1s full.

The DMAC 44 comprises a packet division circuit 180, an
access request execution circuit 190, and an access request
generation circuit 192.

The packet division circuit 180 in this case divides
packets that have been shaped by the packet shaping circuit
160 1nto data, headers, and other parts, based on the tags
(DTAGS), then writes those parts to the various RAM areas
(see FIG. §).

The access request execution circuit 190 executes access
requests from the link core 20. When the FULL signal from
the FIFO state judgement circuit 35 1s active, the access
request execution circuit 190 makes a FFULL signal go
active. The sequencer 167 within the packet shaping circuit
160 makes RDS, which is a RD (RxData) strobe signal, go
active on condition that FFULL 1s not active.

Note that RFAIL 1s a signal used by the sequencer 167 to
inform the access request execution circuit 190 that a
reception has failed.

The access request generation circuit 192 1ssues an access
request to the RAM 80. The access request generation circuit
192 receives WACK (which 1s a write acknowledgment
from the buffer manager 70) and EMPTY from the FIFO
state judgement circuit 35, and outputs WREQ (which is a
write request) to the buffer manager 70.

The packet division circuit 180 comprises a tag determi-
nation circuit 182 and an address generation circuit 188, as
shown 1n FIG. 19, and the address generation circuit 188
comprises a pointer update circuit 184.

US 6,973,327 Bl

17

The tag determination circuit 182 in this case 1dentifies
the tags (DTAGs) created by the tag generation circuit 162
and determines the write area for the output WDATA of the
FIFO 34.

The pointer update circuit 184 comprised within the
address generation circuit 188 sequentially updates (incre-
ments or decrements) the pointers (data pointer and header
pointer) in the thus-determined area. The address generation
circuit 188 generates an address as indicated by the sequen-
tially updated pointers and outputs 1t as WADR to the buifer
manager 70. The address generation circuit 188 outputs a
data pointer DP (a data pointer for the reception ORB area
or a data pointer for the reception stream area) to the packet
shaping circuit 160. The packet shaping circuit 160 embeds
this data pointer in the header of the packet (see C30 in FIG.
20B). This makes it possible to link each header stored in the
header area to the corresponding data stored in the data arca
(see FIG. 11).

Examples of the tags (DTAGs) used by this embodiment
of the present invention are shown 1 FIG. 21. If the tag 1s
(0001) or (0010), as shown in FIG. 21 by way of example,
the header of the received packet (the output WDATA of the
FIFO 34) is written to the reception header area of FIG. §.
Similarly, if the tag 1s (0100), the data of the received packet
is written to the reception ORB area, or if the tag is (0101),
the data of the received packet 1s written to the reception
stream area.

If the tag 1s (1001) or (1010), the header of the received
packet 1s written to the reception header area for hardware
(HW). Similarly, if the tag is (1100), the data of the received
packet 1s written to the reception ORB area for HW, or it the
tag 1s (1101) the data of the received packet is written to the
reception stream area for HW. Note that “for hardware/HW”
in this case denotes that this data 1s for the SBP-2 core 84 of
FIG. 4.

4.2 BT Generation Circuit

The status generation circuit 164 comprises a BT genera-
tion circuit 165. This BT generation circuit 165 generates the
toggle bit BT that was described with reference to FIG. 10.
The thus generated BT 1s embedded 1n the header of packet
after 1t has been shaped, as shown at C31 1n FIG. 20B.

State transition diagrams of the BT generation circuit 165
are shown 1n FIGS. 22A and 22B.

In FIG. 22, RECEIVED 1s an internal signal of the BT
generation circuit 165 and BRIP 1s a signal indicating that a
bus reset 1s 1 progress. This BRIP signal 1s generated by the
bus monitor circuit 130 of FIG. 19. In other words, the bus
monitor circuit 130 accepts status information from the PHY

device through the data bus D and determines whether or not
a bus reset has occurred from this status information. If the

bus monitor circuit 130 determines that a bus reset has
occurred, 1t sets BRIP to high and returns 1t to low thereafter.

As shown 1n the state transition diagram of FIG. 22A,
RECEIVED goes from low to high on condition that a
packet has been received, or from high to low on condition
that BRIP 1s high. As shown 1n the state transition diagram
of FIG. 22B, the toggle bit BT toggles from low to high or
from high to low on condition that BRIP and RECEIVED
are both high.

A timing chart of the above signals 1s shown 1n FIG. 23.
C40, C41, and C42 1n FIG. 23 indicate points at which

RECEIVED goes from low to high because a packet has
been received. C43, C44, and (45 indicate points at which
RECEIVED goes from high to low because BRIP (the

bus-reset-in-progress signal) has gone high.

10

15

20

25

30

35

40

45

50

55

60

65

138

C46, C47, and C48 1indicate points at which BT toggles
from low to high or from high to low because both BRIP and
RECEIVED are high. At C49, on the other hand, BT does
not change because RECEIVED i1s not high. In other words,
since no packet was received during the bus reset mnterval
M+2, BT does not change even if a bus reset occurred (i.e.,
BRIP went high) during that time. This configuration makes
it possible to generate the toggle bit BT in such a manner that
it changes whenever sequentially received packets are pack-
ets received during different bus reset intervals, as described
with reference to FIG. 10.

4.3 Pomter Registers

The description now turns to details of the pointer regis-
ters of FIG. 14, using FIG. 24 for reference.

Registers 310, 314, and 318 are registers for storing the
received header pointer, the recetved ORB pointer, and the
received stream pointer, respectively (see FIG. 14). These
registers 310, 314, and 318 receive WHADR (address of the
header area), WOADR (address of the ORB area), and
WSADR (address of the stream areca) from the address
generation circuit 188. The registers 310, 314, and 318 also
receive a reception completed signal RXCOMP from the
link core 20. The registers 310, 314, and 318 fetch and store
WHADR, WOADR, and WSADR from the address genera-
fion circuit 188 at the timing at which this RXCOMP goes
active. This makes it possible to store the addresses of the
boundaries RB31, RB32, etc., of FIG. 14.

Registers 312 and 316 are registers for storing the bus
reset header pointer and bus reset ORB pointer, respectively
(see FIG. 14). These registers 312 and 316 receive the
bus-reset-in-progress signal BRIP from the link core 20. The
registers 312 and 316 fetch and store the addresses that are
stored 1n the registers 310 and 314 at the timing at which this
BRIP goes active. This makes 1t possible to store the
addresses of the boundaries RB11 and RB12 of FIG. 14.

Registers 320, 322, and 324 are registers for storing the
processed header pointer, the processed ORB pointer, and
the processed stream pointer, respectively (see FIG. 14).

A start/end address register 326 stores the start address
and end address of each area shown in FIG. 5. Address
generation circuits 188 and 332 control the generation of
addresses, based on the start and end addresses from the
register 326. More specifically, they update the pointers
sequentially, using each start address as a start point. If a
pointer has passed an end address, the control is such that the
pointer returns to the corresponding start address (ring buffer
structure).

The RAM areca management circuit 300 comprises a
reception header area management circuit 302, a reception
ORB area management circuit 304, and a reception stream
arca management circuit 306.

The reception header area management circuit 302
receives the received header pointer from the register 310
and the processed header pointer from the register 320, and
outputs a signal HDRFULL indicating that the reception
header area 1s full to the access request generation circuit
192.

The reception ORB area management circuit 304 receives
the received ORB pointer from the register 314 and the
processed ORB pomter from the register 322, and outputs a
signal ORBFULL indicating that the reception ORB area 1s
full to the access request generation circuit 192.

The reception stream area management circuit 306
receives the received stream pointer from the register 318
and the processed stream pointer from the register 324,
outputs a signal STRMFULL indicating that the reception

US 6,973,327 Bl

19

stream area 1s full to the access request generation circuit
192. It also outputs a signal STRMEMPTY indicating that
the reception stream area 1s empty to an access request
generation circuit 334.

The access request generation circuits 192 and 334
receive these full and empty signals and determine whether
or not to output a write request WREQ or read request

RREQ to the buffer manager 70.

4.4 Bus Reset Transmission Halt Status

The description now turns to details of the bus reset
transmission halt status, with reference to FIGS. 25 and 26.

In FIG. 25, the firmware writes a transmission start
command to a transmission start setting register 340. When
that happens, a START generation circuit 342 makes a
START signal go active, as shown at C60 1n FIG. 26. When
that happens, the DMAC 40 outputs a read request to the
buffer manager 70 and transmission starts.

When a TXPRD generation circuit 346 receives the
START signal, 1t makes a TXPRD signal go active to show
that transmission 1s in progress, as shown at C61. If packet
transfer ends without problems and the link core 20 makes
a transmission complete signal TXCOMP go active, as
shown at 62, the TXPRD signal goes inactive.

If BRIP signal goes active (i.€., if a bus rest occurs) during
transmission (when TXPRD is active), as shown at C63, a
TXBRABORT generation circuit 348 of FIG. 25 makes a
TXBRABORT signal go active, as shown at C64. The status
indicating that transmission has been halted by the bus reset
1s passed to the firmware through a transmission halt status
register 350.

When there is no transmission in progress (when TXPRD
is inactive), on the other hand, TXBRABORT does not go
active even 1f a bus reset occurs and BRIP goes active, as
shown at C65 in FIG. 26.

Thus this embodiment of the present invention ensures
that the bus reset transmission halt status 1s passed to the
firmware only when transmission has been halted because a
bus reset occurred during that transmission.

5. Electronic Equipment

The description now turns to examples of electronic
equipment comprising the data transfer control device of this
embodiment of the 1nvention.

An 1nternal block diagram of a printer that 1s one example
of such electronic equipment 1s shown 1n FIG. 27A with an
external view thereof being shown 1n FIG. 28A. A CPU
(microcomputer) 510 has various functions, including that
of controlling the enfire system. An operating section 511 1is
designed to allow the user to operate the printer. Data such
as a control program and fonts 1s stored in a ROM 516, and
a RAM 518 functions as a work area for the CPU 510. A
display panel 519 1s designed to inform the user of the
operational state of the printer.

Print data that 1s sent from another node, such as a
personal computer, through a PHY device 502 and a data
transfer control device 500 1s sent directly to a print pro-
cessing section 512 over a bus 504. The print data 1is
subjected to given processing by the print processing section
512 and is output for printing to paper by a print section (a
device for outputting data) 514 comprising components such
as a print head.

An 1nternal block diagram of a scanner that 1s another
example of electronic equipment 1s shown in FIG. 27B with
an external view thereof being shown 1n FIG. 28B. A CPU
520 has various functions, including that of controlling the
entire system. An operating section 521 1s designed to allow
the user to operate the scanner. Data such as a control

10

15

20

25

30

35

40

45

50

55

60

65

20

program 15 stored iIn a ROM 526 and a RAM 528 functions
as a work area for the CPU 520.

An 1mage of a document 1s read 1n by an image read
section (a device for fetching data) 522, which comprises
components such as a light source and an opto-electric
converter, and data of the read-in 1image 1s processed by an
image processing section 524. The processed 1image data 1s
sent directly to the data transfer control device 500 over a
bus 505. The data transfer control device 500 creates packets
by attaching headers and the like to this 1mage data, then
sends those packets through the PHY device 502 to another
node such as a personal computer.

An 1internal block diagram of a CD-RW drive that 1s a
further example of electronic equipment 1s shown 1n FIG.
27C with an external view thereof being shown in FIG. 28C.
A CPU 530 has various functions, including that of control-
ling the entire system. An operating section 531 1s designed
to allow the user to operate the CD-RW. Data such as a
control program 1s stored in a ROM 536 and a RAM 538
functions as a work area for the CPU 530.

Data read out from a CD-RW 3532 by a read/write section
(a device for fetching data or a device for storing data) 533,
which comprises components such as a laser, a motor, and
an optical system, 1s mnput to a signal processing section 534
where 1t 15 subjected to given signal processing such as error
correction. The data that has been subjected to this signal
processing 1s sent directly to the data transfer control device
500 over a bus 506. The data transfer control device 500
creates packets by attaching headers and the like to this data,
then sends those packets through the PHY chip 502 to
another node such as a personal computer.

Data that has been sent in from another node through the
PHY chip 502 and the data transfer control device 500, on
the other hand, i1s sent directly to the signal processing
section 534 over the bus 506. The data 1s subjected to given
signal processing by the signal processing section 534 then
1s stored by the read/write section 533 into the CD-RW 532.

Note that a separate CPU for providing data transfer

control with respect to the data transfer control device 500
could be provided 1n addition to the CPU 510, 520, or 530

of FIG. 27A, 27B, or 27C.

In addition, a RAM 501 (equivalent to the RAM 80 of
FIG. 4) is shown provided outside the data transfer control
device 500 1n FIGS. 27A, 27B, and 27C, but the RAM 501
could equally well be provided within the data transfer
control device 500.

Use of the data transter control device of this embodiment
in electronic equipment makes 1t possible to perform high-
speed data transfer. Therefore, if a user wishes to order a
printout from a personal computer or the like, the printout
can be completed with only a small time lag. Similarly, a
user can see a scanned 1mage with only a small time lag after
instructing the scanner to take an image. It 1s also possible
to read data from a CD-RW or write data to a CD-RW at high
speeds. The present invention also makes i1t simple to use a
plurality of 1tems of electronic equipment connected to one
host system or a plurality of items of electronic equipment
connected to a plurality of host systems, for example.

Use of the data transfer control device of this embodiment
in electronic equipment also reduces the processing load on
firmware running on the CPU, making it possible to use an

mexpensive CPU and low-speed buses. This also enables
reductions 1n the cost and size of the data transfer control
device, thus reducing the cost and size of the electronic
equipment.

This configuration also makes 1t possible to prevent a
situation 1n which normal data transfer between items of

US 6,973,327 Bl

21

clectronic equipment must wait for a long time 1s a bus reset
1s generated by the connection of new electronic equipment
to the bus.

Note that the electronic equipment that can employ a data
transfer control device 1n accordance with the present inven-
tion 1s not limited to the above described embodiments, and
thus various other examples can be considered, such as
various types of optical disk drive (CD-ROM or DVD),
magneto-optic disk drives (MO), hard disk drives, TVs,
VTRs, video cameras, audio equipment, telephones, projec-
tors, personal computers, electronic organizers, and dedi-
cated word processors.

Note also that the present invention 1s not limited to the
embodiments described herein, and various modifications
are possible within the scope of the invention as laid out
herein.

For example, the configuration of the data transfer control
device 1 accordance with the present invention can be that
as shown 1n FIG. 4, but 1t 1s not limited thereto.

The present invention 1s particularly useful for bus resets
in accordance with IEEE 1394, but it can equally well be
applied to any reset whereby at least node topology infor-
mation 1s cleared.

The pointer mmformation of the present invention 1s not
limited to the start addresses of packets, provided that at
least boundaries within the packet storage means are speci-
fied thereby.

The method by which the packet storage means 1s divided
1s also not limited to that described with reference to FIG. §.

Similarly, the present mvention can be applied to data
transfer as defined by the IEEE 1394 standard, but it 1s not
limited thereto. For example, the present mnvention can also
be applied to data transfer in accordance with standards that
are based on a similar concept to that of IEEE 1394 or

standards that are developed from IEEE 1394,

What 1s claimed 1s:

1. A data transfer control device for transferring data
between a plurality of nodes connected to a bus, the data
transfer control device comprising;:

a circuit which generates identification information for
determining whether or not one received packet and a
next received packet are received during different reset
intervals, when a reset interval 1s defined as the period

between a reset that clears node topology information
and the next reset;

a write circuit which links each received packet with the
ogenerated 1dentification information, and writes the
received packet and identification mformation into a
packet storage memory;

a first pointer storage register which stores first pointer
information that specifies a boundary in the packet
storage memory between an area for a packet received
before the occurrence of a reset that clears node topol-
ogy Information and an area for a packet received after
the occurrence of the reset;

wherein the identification information 1s a toggle bit that
toggles from zero to one or from one to zero when one
received packet and the next received packet are pack-
ets received within different reset intervals; and

wherein the 1dentification information for the one
received packet 1s different than the identification for
the next received packet.

2. The data transfer control device as defined 1n claim 1,

wherein the packet storage memory 1s a randomly acces-
sible storage memory and 1s divided into a control

10

15

20

25

30

35

40

45

50

55

60

65

22

information area 1n which 1s stored packet control
information and a data area 1n which 1s stored packet
data; and

wherein the 1dentification information 1s included within
the control information written to the control informa-
fion area.

3. The data transfer control device as defined in claim 1,

wherein a start address of the next packet after a packet
that was received immediately before the occurrence of
a reset 1s stored as the first pointer information in the
first pointer storage register.

4. The data transfer control device as defined 1n claim 1,

further comprising:

a second pointer storage register which stores second
pointer information which specifies a boundary 1n the
packet storage memory between an area for processed
packets and an area for unprocessed packets; and

a third pointer storage register which stores third pointer
information which specifies a boundary 1n the packet
storage memory between an arca for received packets
and an area storing no received packets.

5. The data transfer control device as defined 1n claim 1,

further comprising:

a processing unit which specifies a packet received after
the occurrence of the reset, based on the first pointer
information stored 1n the first pointer storage register,
and gives priority to processing the specified packet.

6. The data transfer control device as defined 1n claim 1,

wherein the packet storage memory 1s a randomly acces-
sible storage memory and 1s divided into a control
information arca 1 which 1s stored packet control
information and a data area 1n which 1s stored packet
data; and

wherein the first pointer storage register includes:

a fourth pointer storage register which stores fourth
pointer information which specifies a boundary 1n the
control information area between control information
for a packet received before the occurrence of the reset
that clears node topology information and control infor-
mation for a packet received after the occurrence of the
reset; and

a fifth pointer storage register which stores fifth pointer
information which specifies a boundary 1n the data area
between data of a packet received before the occur-
rence of the reset that clears node topology information
and data of a packet received after the occurrence of the
reset.

7. The data transfer control device as defined 1n claim 6,

wherein the data area has been divided into a first data
area for storing first data for a first layer and a second
data area for storing second data for a second layer; and

wherein the fifth pointer information 1s pointer informa-
tion which specifies a boundary 1n the first data area
between the first data for a packet received before the
occurrence of the reset that clears node topology infor-
mation and the first data for a packet received after the
occurrence of the reset.

8. The data transfer control device as defined 1n claim 1,

comprising:

a status storage register which stores status information
indicating that the transmission of a packet has been

halted, when the transmission of the packet has been
halted by the occurrence of a reset that clears node
topology 1nformation.

9. The data transfer control device as defined 1n claim 8,

further comprising a processing unit which 1ssues the trans-
mission start command,

US 6,973,327 Bl

23

wherein the processing unit cancels transmission process-
ing that has already started, without determining
whether or not transmission has been completed, when
it has been determined from the status information that
transmission of a packet has been halted by the occur-
rence of the reset.

10. The data transfer control device as defined 1n claim 1,

wherein the reset 1s a bus reset as defined by the IEEE
1394 standard.

11. Electronic equipment comprising:

a data transfer control device as defined 1n claim 1;

a device which performs given processing on data that has
been received from another node through the data
transfer control device and a bus; and

a device which outputs or stores data that has been
subjected to processing.

12. Electronic equipment comprising;:

a data transfer control device as defined 1n claim 1;

a device which performs given processing on data that 1s

to be transferred to another node through the data

transfer control device and a bus; and

a device which takes 1n data to be subjected to processing.

13. A data transfer control device for transferring data

between a plurality of nodes connected to a bus, the data
transfer control device comprising;:

a circuit which generates identification mformation for
determining whether or not one received packet and a
next received packet are received during different reset
intervals, when a reset interval 1s defined as the period
between a reset that clears node topology information
and the next reset;

10

15

20

25

30

24

a write circuit which links each received packet with the
generated 1denfification information, and writes the
received packet and identification information into a
packet storage memory;

wherein a changing point of the identification information
specifies a boundary in the packet storage memory
between an area for a packet received before the
occurrence of a reset that clears node topology infor-

mation and an area for a packet received after the
occurrence of the reset;

wherein the identification information 1s a toggle bit that
toggles from zero to one or from one to zero when one
received packet and the next received packet are pack-
ets received within different reset intervals; and

wherein the 1denfification information for the one
received packet 1s different than the i1dentification for
the next received packet.

14. The data transfer control device as defined 1n claim 13,

wherein the packet storage memory 1s a randomly acces-
sible storage memory and 1s divided into a control
information areca 1 which 1s stored packet control

information and a data area 1n which 1s stored packet
data; and

wherein the 1dentification information 1s included within
the control information written to the control informa-
tion area.

	Front Page
	Drawings
	Specification
	Claims

