(12) United States Patent

US006976165B1

10y Patent No.: US 6,976,165 B1

Carpentier et al. 45) Date of Patent: Dec. 13, 2005

(54) SYSTEM AND METHOD FOR SECURE
STORAGE, TRANSFER AND RETRIEVAL OF

(75)

(73)

(*)

(21)
(22)

(51)
(52)

(58)

(56)

FOREIGN PATENT DOCUMENTS

GB 2294 132 A 4/1996
CONTENT ADDRESSABLE INFORMATION
ontinue
(Continued)
Inventors: Paul R. Carpentier, Boechout (BE);
Jan F. Van Riel, Geel (BE); Tom OTHER PUBLICATIONS
Teugels, Schoten (BE) Bosselaers et al., “The RIPMED-160 Cryptographic Hash
Function”, Dr. Dobb’s Journal, Jan. 1997.
Assignee: KMC Corporation, Hopkinton, MA _
(US) (Continued)
Pri E ner—Kim V
Notice:  Subject to any disclaimer, the term of this AZ;?;?;% gf ;;Effgr—L:;!nni T Ha
patent is extended or adjusted under 35 (74) Attorney, Agent, or Firm—Wolf, Greenfield & Sacks,
U.S.C. 154(b) by O days. PC
Filed: Sep. 7, 1999 An algorithm (such as the MDS5 hash function) is applied to
. a file to produce an intrinsic unique identifier (IUI) for the
Int. Cl. e, GO6K 11/30 file (OI' message dlgeSt) The file is encryp‘[ed USiI]g e TUI
US.CL . 713/165; 707/1; 707/202; as the key for the encryption algorithm. An algorithm is then
_ 3807241 applied to the encrypted file to produce an IUI for the
Field of Search .............cccviiviiinnn. 713/200—201, encrypted file. The encrypted file 1s Safely stored or trans-
713/165, 171, '709/247, 245, 246; 380/200, ferred within a network and 1s uniquely identifiable by its
380/201-202, 2177, 229, 232,241, 277-278, IUI. The encrypted file 1s decrypted using the IUI of the
3807285, 45, 44; 705/57-58; 707/1-2, 9, plaintext file as the key. The IUI serves as both a key to
707/100-101, 200, 202-203 decrypt the file and also as verification that the integrity of
the plaintext file has not been compromised. IUIs for any
_ number of such encrypted files may be assembled into a
References Cited descriptor file that includes meta data for each file, the IUI
of the plaintext file and the IUI of the encrypted file. An
algorithm 1s applied to the descriptor file to produce an IUI
U5 PALENT DOCUMENTS for the descriptor file. The plaintext descriptor file i1s then
5,202,982 A 4/1993 Gramlich et al. encrypted using the descriptor file IUI as a key for the
5,404,508 A 4/1995  Konrad et al. encryption algorithm. An algorithm is applied to the
2,081,764 A 12/1996  Fitzgerald et al. encrypted descriptor file to produce an IUI for the encrypted
gﬁgggﬂgg ﬁ . éﬁgg; ifuwarg descriptor file. The IUI of the encrypted descriptor file is a
S ot alm aidyasal 379/67.1 location-independent 1dentifier to locate the encrypted
5694596 A 12/1997 Camijl;;ii """""""""" ' descriptor file. A flattened descriptor file includes the [Uls of
5701316 A 12/1997 Alferness et al. encrypted data files and the IUI of the encrypted descriptor
5710922 A 1/1998 Alley et al. file. An algorithm 1s applied to the flattened descriptor file to
5,742,807 A 4/1998 Masinter produce its own [UI.
(Continued) 7 Claims, 19 Drawing Sheets
102
X

106
File “'ET‘"‘ - |Pluintaxt MDS\
104

Encryption rmﬁ
Plaintext MDS ()
106
T

/ 114
Encrypted
c;]yl'i e Alguﬂm = |Encrypted MDS\
112




US 6,976,165 B1
Page 2

5,757,915
5,907,619
5,991,414
6,088,74

6,189,000
6,539,373
6,584,466
6,651,060
6,757,699
6,802,303

U.S. PATENT DOCUMENTS

5/1998
5/1999
11/1999
* 772000
1* 2/2001
* 3/2003

* 672003

1* 11/2003
B2 6/2004
B2 *  5/2005

% ® > > > >

v
&

2002/0002485 Al 1/2002
2002/0019935 Al 2/2002

WO
WO
WO
WO

Aucsmith et al.
Davis
Garay et al.

Cotugno et al. ...
Stratigos et al. ...
Guha ...............
Serbinis et al. ....
Harper et al. ......
Lowry ..............

Ie Pennec et al.
O’ Brien et al.
Andrew et al.

........... 710/74
........... 707/10

............. 707/3

........... 707/10
............ 707/9

.......... 707/205

......... 713/188

FOREIGN PATENT DOCUMENTS

96/32685
97/43717
99/38092
99/38093

10/1996
11/1997
7/1999
7/1999

OTHER PUBLICATTONS

Fowler, et al., “A User-Level Replicated File System”, Jun.
21-25, 1993, Usenix Summer 1993 Technical Conference.
Andrew Gore, “FileWave agents across Atlantic”, Mar. 29,
1993, MACWEEK.

Greene, et al.,, “Multi-Index Hashing for Information
Retrieval”, Nov. 20-22, 1994, Proceedings. 35™  Annual
Symposium on Foundations of Computer Science, IEEE.
Robert Hess, “FileRunner gets 1n sync with MAC”, May 3,
1993, MACWEEK.

Hirano et al., “Improved Extendible Hashing with High
Concurrency”. 1995, Systems and Computers 1n Japan, vol.
26, No. 13.

Prusker et al., “The Siphon: Managing Distant Replicated
Repositories”, Nov. 8-9, 1990, Proceedings on the Manage-
ment of Replicated Data, IEEE.

Rich et al., “hobgoblin: A File and Directory Auditor”, Sep.
30-Oct. 3, 1991, Lisa V, San Diego, CA.

* cited by examiner



U.S. Patent Dec. 13, 2005 Sheet 1 of 19 US 6,976,165 Bl

File A File C

20

22
MDS A m MDS C

10—

24

JO

Descriptor File

Meta Data

20

MDS A

J4

File Meta Data

£

22
File Meta Datg

File Meta Data MDO C

UL g
i

Descriptor File MDS

FIG. 1

(Prior Art)



U.S. Patent Dec. 13, 2005 Sheet 2 of 19 US 6,976,165 Bl

File Algorlthm Plaintext MD5

Encryption 106
Plaintext MDS ()
110
Encrypted Algorlthm

File Encrypted MD5S




U.S. Patent Dec. 13, 2005 Sheet 3 of 19 US 6,976,165 Bl

150

Descriptor File

154

File Meta Data 138

132 Algorithm
106— [ Plaintext MD5 —<_> Key MDS

136

114
Encrypted MDS

Encryption 140

146
Encrypted Descriptor File -M%"L Master MDS

144

FIG. O



U.S. Patent

Dec. 13, 2005

202
Select Files
Generate Intrinsic 206
Unique |dentifier (1U1)
for Each File
214
Encrypt Each File
Using its U
218
Generate |Ul for Each
Encrypted File
222
Create a Descriptor
File
226

Generate Ul for
Descriptor File

(Key IUI)

Sheet 4 of 19

Encrypt Descriptor
File Using Key |UI

Generate (Ul for
Encrypted Descriptor
File (Master IUl)

Convert Master |UI
and Key Ul to

ASCIll Format

Store Files

Return Master Ul and
Key Ul to Originator

US 6,976,165 Bl

250

234

242

246



U.S. Patent Dec. 13, 2005 Sheet 5 of 19 US 6,976,165 Bl

300

J02
Descriptor File Meta Data
J10 J12 J14
Folder Name Time Stamp 0.S. Attributes
2

J20 Il I24
File Name Time Stamp

26 I28
| Plaintext MDS Encrypted MDS |
99~ Creation Date e

Creation Date O. S. Attributes

- g
J File Name
000

J47
Folder Name

J44
o | File Name
o 000

J946
Administrative Data

o

Descriptor File Example

FIG. 5



U.S. Patent

Dec. 13, 2005 Sheet 6 of 19 US 6,976,165 Bl

<?xml version='1.0'?>

<IDOCTYPE ecml SYSTEM “http: //www.waveresearch.be/dtd /ecml.dtd">
<ecml version="2.0" compatibleversion="2.0">

<eclipdescription>

<meta
<meta
<meta
<meta

name="type value="Dell” />

name="name” value="Encrypted Network Package”/>
name="comment” value="this is a comment”/>
name="author.name” value="Abraham Felsenstein” />

<meta name="author.email” value="syncromedia®ping.be” />
<meta name="encoding” value="StandardCrypt” />

<meta name="compatibletype” value="Standard” />

<meta name="numfiles” value="4"/>

<meta name="numfolders” value="1"/>

<meta name="totalsize” value="9011"/>

<meta

name="creation.date” value=''1999.07.22 11:25:44

GMT+02: 00" />
<meta name="author.organization” value=""/>

<keyword name=""Contract_ID" value="0005" namespace="dell" />
<keyword name=""Contract_Name" value="Sales 005"

namespace="dell” />
<keyword name=""Contract_Destination” value="John Doe”

namespace="dell" />
</eclipdescription><l =———>

<eclipcontents>

<hfmi>
<folder name="net" winattributes.readonly=""talse"

winattributes.hidden="false” winattributes.system="false"”
winattributes.archive="false” winattributes.temp="false ">

<file name="FtpClient.class” size="3648"
md5="FVHLQCT1TFJ62x4ULSLQF94ILRP"
decoded.md5="'3SBUVEESBOAVLxBO61DOES18BE7G" decoded.size=""7064"
whenmodified="1999.06.14 13:20:50 GMT+02: 00"
whencreated='1999.07.22 11:03:31 GMT+02: 00"
winattributes.readonly=""false” winattributes.hidden=""false”
winattributes.system="false” winattributes.archive="true"

winattributes.temp="false” />

FIG. 6A—1T

Fig. 6A—1
Fig. 6A=2



U.S. Patent Dec. 13, 2005 Sheet 7 of 19 US 6,976,165 Bl

B

<file name="FtplnputStream.class” size="560"
md5="CSVINULL4RDSQx447NTI4T4BQGB"
decoded.md5="A5UU028DBF7V9xDGOD31VMOH24E" decoded.size="978"
whenmodified="1999.06.14 13:20:50 GMT+02: 00"
whencreated="1999.07.22 11:03: 31 GMT+02: 00"
winattributes. readonly— ‘false” winattributes. hidden— 'false”
winattributes. system— ‘false” winattributes.archive=""true"
winattributes. temp— ‘false” />

<file name= FtpLoglnExceptlon class” size="320"
md5="2IIKCDL66E173xOMFOOROE7IHH1"
decoded.md5="C1KHALJ3VDILOXF8QJ3PDPLJTUL" decoded.size="491"
whenmodiﬁed=“1 999.06.14 13:20:50 GMT+02: 00"

whencreated="1999.07. 22 11:03: 52 GMT+02: 00"
winattributes. readonly— ‘false” winattributes.hidden=""false”

winattributes. system- ‘false” winattributes.archive="true”
winattributes. temp-— ‘false” />

<file name="FtpProtocolException.class” size="320"

md5="ARC34P9F68KA9xA4ECGI03L0K42"
decoded.md5=""9UA8J446KV097x39EMOCJHDUSKI" decoded.size="478"

whenmodified="1999.06.14 13:20:50 GMT+02: 00"

whencreated="1999.07.22 11:03: 32 GMT+02: 00"
winattributes. recdonly— ‘false” winattributes. hldden- ‘false”

winattributes. system— ‘false” winattributes.archive="true”
winattributes.temp="false” />
</folder><! ——net——>

</hfmi><l ———=>
</eclipcontents><! ————>
</ecmiI><———=>

Descriptor File Example

FIG. 6A—2




U.S. Patent Dec. 13, 2005 Sheet 8 of 19 US 6,976,165 Bl

<?xml version='1.0"?>
<IDOCTYPE ecml SYSTEM “http: //www.waveresearch.be/dtd /ecml.dtd”>
<ecml version="2.0" compatibleversion="2.0">
<eclipdscription>
<meta name="type” value="Dell" />
<meta name="name” value="Encrypted Network Package”/>
<meta name="comment” value="this is a comment” />
<meta name="author.name” value="Abraham Felsenstein” />
<meta name="author.email” value="syncromedia@ping.be” />
<meta name="encoding” value="StandardCrypt” />
<meta name="compatibletype” value="'Standard” />
<meta name="numfiles” value="4"/>
<meta name="numfolders” value="1"/>
<meta name=""totalsize” value=""9011"/>
<meta name="creation.date” value="1999.07.22 11:25: 44
GMT+02: 00" />
<meta name="author.organization” value=”"/>
<keyword name=""Contract_JD” value="0005" namespace="dell” />
</eclipdescription><| ————>
<eclipcontents>
<keyfile md5="82FO04WM1EQJSDx1UJ4GIVITTS7E" size="896"
whenmodified="1999.07.22 11:25:44 GMT+02:00"/>
<file md5="FVHLQCT1TFJ62x4ULSLQF94ILRP" size="3648"
whenmodified="1999.06.14 13:20:50 GMT+02:00" />
<file md5="CSVINULL4RDSQx447NTI4T4BQGB" size="560"
whenmodified="1999.06.14 13:20:50 GMT+02: 00" />
<file md5="2IIKCDL66E173xOMFOOROE7IHH1" size="320"
whenmodified="199.06.14 13:20:50 GMT+02:00" />
<file md5="ARC34POF68KA9XA4ECGI03L0K42" size="'320"
whenmodified="1999.06.14 13:20:50 GMT+02:00" />
</eclipcontents><! ————>
<ecliporigin clipboxid="040—-762—05—-413—-6338" clipboxcount="9"
seatid=""¢7¢cd7b12—bcdf—11d2—b045—-00400569895e" >
</ecliporiginl ————>
/<eclipsignc|ture digest=""gliWJo2zuqBcRTgTrHD4Kg==
N>

</ecm|><l —~—=>

Flattened Descriptor File Example

FIG. 6B



U.S. Patent Dec. 13, 2005 Sheet 9 of 19 US 6,976,165 Bl

Descriptor File

410 412

File Meta Data
414 416

Plaintext MDS Encrypted MDS 406

420
File Meta Data Algorithm Key MD5
422 ;
404
Plaintext MDS Encrypted MDS

File Name File Meta Data
432

Plaintext MDS Encrypted MDS

Encryption e
406

152
456
Encrypted Descriptor File A__Ig_T)orithm Master MD5
454

160

I{:

Flattened Descriptor File

470 456
Meta Data Master MDS

464
416
Encrypted MDS _ .
Algorithm User MD5
422 "“‘? Se
Encrypted MDS 462
432
Encrypted MDS




U.S. Patent Dec. 13, 2005
502

Select Files

. . 506
Generate Intrinsic
Unique ldentifier (1UI)
for Each File
B _— 510

Encrypt Each File
Using its IUI

Generate |Ul for Each
Encrypted File

Create a Descriptor
File

Generate (Ul for
Descriptor File

(Key 1UI)

518

522

926

Sheet 10 of 19

Encrypt Descriptor

File Using Key IUI

Generate Ul for
Encrypted Descriptor

File (Master IUl)

Create Flattened
Descriptor File

Generate Ul for
Flattened Descrigtor

File (User (Ul

Convert User Ul
and Key |Ul to
ASCIl Format

Store Files

Return User |UI

and Key |UI
to Originator

FIG. &

US 6,976,165 Bl

530

o954

558

o42

544

248

992



U.S. Patent Dec. 13, 2005 Sheet 11 of 19 US 6,976,165 Bl

602
Receive Master |U| 0

60E€

Look for File
|dentified by Master

Ul (Fig.11)

610 Receive Encrypted

Descriptor File

Purporting to Correspond
to Master U

614 Calculate IUl of

Received Encrypted

Descriptor File
Not

i 618 - Verified
Receive Key |Verified Verify Descriptor File
|UI s Authentic

Decrypt
Encrypted
Descriptor

File

6J8

Build Directory
Structure Based on
Information in

Descriptor File

Verify Look for Encrypted 642
Plaintext Files Listed in
Descriptor File| Verified Descriptor File
is Authentic (Fig. 11)
Not
Verified 630 6546

d Fil
634 Verify Encrypted
File is Authentic
Fig. 9A

FIG. 9A



U.S. Patent Dec. 13, 2005 Sheet 12 of 19 US 6,976,165 Bl

Decrypt Encrypted 654
File Using
Plaintext |UI
658
Verify Plaintext
File is Authentic
Verified Not Verified
Error Handler 662
Update File 666
Request List
670
All Files
(B) No Received

[

Yes

674
Indicate all
Files Received

Populate Directory
Structure with Files

(_End
FIG. 9B



U.S. Patent Dec. 13, 2005 Sheet 13 of 19 US 6,976,165 Bl

742
702

Receive 746

Receive U UI Potential Verify Received
ecelve user Encrypted File is Authentic

706 |Descriptor File

: /7950
Lo?k for File Receive Key
|dentified by User
Ul (Fia.11 Look for U
(Fig-11) File Identified
by Master |UI
. 754
Receive Potential Decrypt Encrypted
Flattened 710 738 Descriptor File
Descriptor File
- Verify Plaintext /760
Verify Received 714 Descriptor File
File is is Authentic
Authentic
- Build Directory 764
Look for Encrypted /18 Structure Based
Files in Flattened on Descriptor File
Descriptor File
(Fig. 11) 792 Yes Decrypt Encrypted 768
734 Files Using
E ted File
ncrypted Fi ’ 772

Verify Plaintext

Files are

Verify Encrypted Authentic

File

Is_Authentic Populate Directory |—776

Structure
Update File with Files
Request List .
End

FIG. 10




U.S. Patent Dec. 13, 2005 Sheet 14 of 19 US 6,976,165 Bl

Obtain File
Start Error Handler

802 Not Found
|ldentify Ul of
Desired File 522
| m Found| ook for File
. 804 _ on FTP Servers
Look for File
Locally in Cache Not Found
Using Ul
Not Found Look for File on |—820
Mounted Volumes
on File Servers
Look for File in Not Found
Local Conventional
Storage Look for File on 818

Pre—configured
or Well-known

Servers

Not Found

Broadcast File

Location Request
on Peers on LAN | Not Found

Found

]
Request Download 810
Using File Request

812

Receive File Data
Packet |

Store File
Segment Data

File
Complete

FIG. 11



U.S. Patent Dec. 13, 2005 Sheet 15 of 19 US 6,976,165 Bl

Secure Storage Example

L 900
Bank Terminal _—914
Secure
Banking Application
Master MDS .
Key MDS
912
902 904 906
Customer Ir&tr_msuc Key MDS
: nique
Signature Card " Identifier
. File | Generation Master MDS
908
910 Encrypted
Card File
916
Publlc
Storage

FIG. 12



U.S. Patent

924

Encrypted
File

Public Storage

9356

923

Dec. 13, 2005

Sheet 16 of 19 US 6,976,165 Bl

921
926
Intrinsic
Unique Key MD5
Identifier
Generation Master MDS
927

SSL
930

934
Authentication

Database

SSL

U MDS
| User MDS5 | hoe
Authenticate
Information
9J3J |

User \g 20

Access Control Example

FIG. 13



U.S. Patent Dec. 13, 2005 Sheet 17 of 19 US 6,976,165 Bl

Software Company

942

/940
Software
Files
952
948 Intrinsic Koy MD5
Unique
ldentifier
Generation User MDS
954

950
956

Escrow Agent

952
Key MDS

Encrypted
Files

Software User

User MDS
954

Encrypted
Files

946

Escrow Example

FIG. 14




U.S. Patent Dec. 13, 2005 Sheet 18 of 19 US 6,976,165 Bl

972

User \ User
Computer Computer
974 Server
Computer
N @
966 Server
Computer N
964 LA
User User User
Computer Computer Computer

962

970 L AN
960—__

FIG. 15



U.S. Patent Dec. 13, 2005 Sheet 19 of 19 US 6,976,165 Bl

FIG. 16

/100
1022 1024 1026 1014

T
920

= =

ork
ace
1004 1010 1012 1030 1040

FIG. 1/



US 6,976,165 Bl

1

SYSTEM AND METHOD FOR SECURE
STORAGE, TRANSFER AND RETRIEVAL OF
CONTENT ADDRESSABLE INFORMATION

This application 1s related to U.S. patent application Ser.
Nos. 09/236,366 and 09/235,146 filed Jan. 21, 1999, which
are hereby incorporated by reference.

FIELD OF THE INVENTION

The present invention relates generally to the secure
storage, transfer and retrieval of imnformation using a com-
puter. More specifically, the present mnvention relates to a
technique for identifying information using an Iintrinsic
unique 1dentifier and for securely storing, transferring and
retrieving that information using related techniques.

BACKGROUND OF THE INVENTION

Digital information (such as a computer file) must often
be 1dentified to be 1n a particular state, denoted by the status
of the information as of some event or time. Digital infor-
mation 15 highly subject to change; normal attempts to
improve the content, imadvertent commands or actions
which change the content, or tampering by others are
difficult to detect.

Another problematic attribute of digital information 1s
that copies may exist which are identical 1n content but differ
in the meta data that the computer system uses to describe
the digital information. Such meta data includes the date/
time recorded for the creation or last modification of the file
and the file name. The meta data may 1mply that otherwise
identical copies of digital information are different when 1n
fact they are not. Such confusion makes 1t difficult to avoid
unnecessary duplication of content on a single computer or
on a collection of computers on a network. The 1nability of
systems to reliably distinguish different versions of files with
the same 1dentifier or to recognize identical files with
different 1dentifiers wastes network resources and creates
confusion when files are transferred between users of a
network.

Further, data on computer systems can generally only be
accessed through identifiers which to a greater or lesser
extent include mmformation about the location of the file 1n
the storage of the computer. For example, files within a
sub-directory are at risk 1f someone changes the sub-direc-
tory name. If changed, the path to a file becomes invalid, and
all of the stored or remembered names of files become
invalid as well.

Finally, 1t 1s 1nconvenient for computer users to identify
collections of specific versions of digital files. It would be
desirable for users to refer to collections of specific copies
or versions of digital files without creating a new entity
which incorporates copies of the files 1nto a new form. Many
mechanisms have been created to combine such copies 1nto
what are commonly called archive files. Such solutions
create additional copies which are often proliferated to many
systems. The difficulty 1s that digital copies of many of the
files 1n an archive are already present on the systems to
which they are copied, which 1s wasteful and potentially
confusing.

One result 1s that duplicate copies of digital files are
frequently stored on computer storage devices (at expense to
the owner of the system) or transferred via telecommunica-
tions devices (at further expense to the system owner and the
telecommunications provider). This duplication strains lim-

5

10

15

20

25

30

35

40

45

50

55

60

65

2

ited resources and causes needless confusion on local net-
works and on collections of systems connected by telecom-
munication networks.

To address various of these problems, unique solutions
have been presented in U.S. patent application Ser. Nos.
09/236,366 and 09/235,146, filed Jan. 21, 1999 1n the name
of Carpentier et al. In one embodiment of these mnventions,
a technique as shown 1n FIG. 1 1s used. FIG. 1 illustrates a
technique by which any number of files are uniquely rep-
resented by an identifier for later retrieval. As shown 1n FIG.
1, the cryptographic hash function known as the MDS3
algorithm (as one example) 1s applied to the contents of file
A to produce a unique identifier 20 for that file which 1s
referred to as MDS A. The algorithm 1s also applied to files
B and C to produce unique 1dentifiers 22 and 24. Next, a
descriptor file 30 1s created that includes meta data 32 that
describes high level information concerning the files (such
as the folders 1n which they are enclosed, time stamps, size,
etc.) and information for each file. In one embodiment, the
information for each file includes the file name 34, file meta
data 36 (such as time stamp, size, etc.) and the recently
calculated MDS5 20 for the file. As shown, such information
may be 1ncluded for each of the other files. Next, the MDS$§
algorithm may be applied to descriptor file 30 to produce a
unique 1dentifier 40 for descriptor file 30.

As described 1n the above patent applications, the unique
identifier 40 for descriptor file 30 can be used to provide
many advantages. For example, 1identifier 40 can be used to
uniquely 1dentify descriptor file 30, and 1n turn the 1dentifiers
20-24 can then be used to uniquely 1dentify files A, B and
C. Accordingly, files A, B and C may be stored once
anywhere on a network and may be eventually located,
retrieved and 1dentified using 1dentifier 40 and descriptor file
30.

Although the above technmiques have many advantages,
and are extremely useful in certain applications, there 1s
nonetheless room for improvement in the area of informa-
tion management. As alluded to above, managing front
office files and web-based information 1s a big problem with
today’s workers. Because data 1s referred to by breakable
URLs and path names, the disadvantages are huge: data can
be modified, corrupted, misplaced, and unreachable. As a
result, valuable information 1s lost to an enterprise or its
integrity becomes suspect.

More specifically, data protection relies on an extensive
organization and expensive specilalists to manage, backup
and archive digital information. Locating and retrieving the
richt information from 1its exact location can be time con-
suming 1f not impossible because the information may be
dispersed across various hard disks, file servers, and the
Internet 1n duplicated forms and with a variety of hard-coded
file names. Furthermore, sharing such information internally
and externally can seriously degrade network performance,
not to mention putting sensitive information at risk. Elec-
tronic mail attachments can be too large or take too long to
transfer. A download from an FTP server or a web site may
have to be started all over again 1f interrupted. The same
exact download performed by a large number of users 1in one
site can slow down the whole network. In addition, files are
confinually being modified, deleted, moved or misplaced,
meaning that there 1s no certainty in the location of a file or
in 1ts data integrity. Thus, it 1s no surprise that workers
themselves become responsible for managing their own data
and saving versions of documents. Such efforts are
extremely time consuming and may not always work.

Although the embodiments described in the above appli-
cations may address some of these problems, there are




US 6,976,165 Bl

3

further 1ssues that remain to be addressed. For example, 1t
unique 1dentifier 40 1s either intercepted or otherwise
obtained by an unscrupulous individual, that individual may
then be able to retrieve descriptor file 30 which would then
allow the individual to locate and retrieve files A, B and C.
If these files contain sensitive or secret company 1nforma-
tion, there would then be a problem. In other words, the
advantage provided by identifier 40 1n that it can be used to
uniquely locate a group of files can also be turned to a
disadvantage 1f the wrong party obtains identifier 40 and
gains access to sensitive information contained in the files.
Furthermore, even though files A, B and C may be stored
anywhere on a network 1n a location-independent manner, a
secret file might still be stolen, viewed, and/or printed 1f 1t
1s not secured appropriately.

Thus, workers are called upon to secure their own data
files. For example, a file may be stored 1n a computer 1n a
physically secure location (such as in a locked room with
only electronic access), the file may be electronically locked
using a password or other operating system function, the file
may be encoded, or some other security technique may be
used. Thus, 1t 1s no surprise that workers themselves become
responsible for managing the security of their own data,
encrypting files, password-protecting files, hiding files and
finally saving versions of files where they believe they are
safe and can be located later. Placing the burden upon the
worker to 1implement security for a particular file and then
maintain that security over the life of the file 1s extremely
onerous, expensive, and may not be foolproof.

Accordingly, a technique 1s desired that would provide
cfficient and near foolprootf security for digital information
and/or 1ts respective unique 1dentifiers. In particular, 1t
would be desirable to have such a technique that works well
with the embodiments described in the above patent appli-
cations; such a technique would provide a user with the
assurance that not only can a file be uniquely 1dentified, but
also that the file can be kept secure from prying eyes and 1its
integrity can be guaranteed.

SUMMARY OF THE INVENTION

In a first embodiment of the invention, an algorithm 1s
applied to a file to produce an intrinsic unique identifier
(IUI) for the file. To provide security for the file, the file is
then encrypted using the recently produced IUI as a key for
the encryption algorithm. The file may also be compressed
in addition to being encrypted. An algorithm 1s then applied
to the encrypted file to produce an IUI for the encrypted file.
Thus, the encrypted file may be sately stored or transferred
within a network and 1s uniquely 1dentifiable by 1its IUI. An
authorized party who obtains the encrypted file may then
decrypt the encrypted file using the IUI of the plaintext file
if he or she has access to this key. Using the IUI of the file
to also serve as a key to encrypt the file provides many
advantages. For example, a single identifier (in this case the
[UI) serves as both a key to decrypt the file and also as
verification that the integrity of the plaintext file has not been
compromised. Further advantages and specific applications
of this technmique are presented below. In one speciiic
embodiment, the MDS$ algorithm 1s used to generate the TUI
for the plaintext file. The resulting MDS (the result of the
hash function) may then be used to verify that the plaintext
file has not changed.

In a further addition to this first embodiment, IUIs for any
number of such encrypted files may be assembled into a
descriptor file. In one specific implementation, the descriptor
file includes meta data for each file (such as the file name),

10

15

20

25

30

35

40

45

50

55

60

65

4

the IUI of the plaintext file and the IUI of the encrypted file.
An algorithm 1s applied to the descriptor file to produce an
TUI for the descriptor file. The plaintext descriptor file 1s then
encrypted using the descriptor file TUI as a key for the
encryption algorithm. The result produces an encrypted
descriptor file. An algorithm 1s then applied to the encrypted
descriptor file to produce an IUI for the encrypted descriptor
file. The encrypted files and the encrypted descriptor file
may then be safely stored or transferred within a network.
The TUI of the encrypted descriptor file 1s used as a location-
independent identifier to locate the encrypted descriptor file.

Thus, an 1nterested party 1s able to locate and retrieve the
encrypted descriptor file using 1ts IUI. The party would not,
however, be able to decrypt the encrypted descriptor file
unless 1t 1s also provided with the IUI of the descriptor file
which has been used as an encryption key. Thus, this key
may be withheld from a party until such a party 1s authorized
o gain access to information included within the files. Once
the party obtains the IUI of the descriptor file, 1t may then
decrypt the encrypted descriptor file to obtain the plaintext
descriptor file. Using the IUIs of the encrypted and plaintext
files included 1n the descriptor file, the party may then locate
the encrypted data files and decrypt them. In an alternate
implementation, the IUIs of the encrypted data files may be
located outside of the descriptor file and may be provided to
the 1nterested party so that the party may retrieve the
encrypted data files. In this scenario, the IUls of the
encrypted data files may or may not be present within the
descriptor file.

In a second embodiment of the mvention a flattened
descriptor file may also be produced. A descriptor file, its
IUI, an encrypted descriptor file and 1ts IUI may be produced
as described in the first embodiment. Additionally, a flat-
tened descriptor file 1s created based upon the descriptor file.
The flattened descriptor file includes the IUls of the
encrypted data files and the IUI of the encrypted descriptor
file. An algorithm 1s then applied to the flattened descriptor
file to produce 1ts own IUI. The IUI of the flattened descrip-
tor file may then be used as a unique identifier to indirectly
reference all of the data files listed within the descriptor file.
Using the IUI of the flattened descriptor file, an interested
party may retrieve the flattened descriptor file (in plaintext).
Using the IUIs 1t contains the party may then obtain not only
the encrypted data files but also the encrypted descriptor file.

At this point, however, even though the party has the
encrypted data files, it does not have access to these files. At
a suitable time, the party may then be supplied with the TUI
of the descriptor file which serves as a key to decrypt the
encrypted descriptor file. Once decrypted, the party may
then use the descriptor file as described 1n the first embodi-
ment to retrieve and decrypt the data files. Advantageously,
two 1tems are necessary for retrieval and decryption of the
data files: the IUI of the flattened descriptor file which
allows retrieval of the encrypted data files; and the IUI of the
plaintext descriptor file which allows decryption of the
encrypted descriptor file. Thus, one or both may be withheld
from a party to prevent its access to the data files, while
allowing the party to physically obtain the encrypted files.
Furthermore, a party able to retrieve the encrypted data files
1s guaranteed that the files have not been changed from the
time their IUIs have been calculated, but 1s unable to decrypt
these files unless 1t receives the second item.

Through use of the present invention, each file to be
stored or transferred need only be encrypted once using one
key, and only the encrypted version of the file need be
manipulated. There 1s no need to use different keys for
different users. Further, should the same file exist in two




US 6,976,165 Bl

S

different locations on a computer or within a network, use of
the present invention produces an encrypted file for each that

1s the same automatically. Thus, only this single encrypted
file need be stored and/or transferred. Such benefits accrue
automatically due to the nature of the present invention. The
encrypted form of each file can be stored or transmitted
anywhere within a computer network without the need for
firewalls, access control, virtual private networks, or secure
session protocols. Further, by using the intrinsic unique
identifier to serve as the encryption key for the file as well,
this single 1dentifier not only serves to authenticate the file
but also to verily the integrity of the file.

The present 1nvention in 1ts many embodiments provides
a variety of advantages 1n numerous applications which will
be discussed below.

BRIEF DESCRIPTION OF THE DRAWINGS

The 1nvention, together with further advantages thereof,
may best be understood by reference to the following
description taken in conjunction with the accompanying
drawings in which:

FIG. 1 1illustrates a prior art technique by which any
number of files are uniquely represented by an 1dentifier for
later retrieval.

FIG. 2 illustrates a technique by which a file may be
encrypted according to one embodiment of the invention.

FIG. 3 1llustrates a technique by which a descriptor file 1s
created and encrypted according to one embodiment of the
invention.

FIG. 4 1s a flow diagram describing how an intrinsic
unique identifier (IUI) may be created for a group of files.

FIG. § 1llustrates symbolically one example of a descrip-
tor file.

FIG. 6A 1llustrates an example of an implementation of a
descriptor file written using a modified version of XML.

FIG. 6B 1llustrates a modified or “flattened” descriptor file
suitable for use 1n the second embodiment.

FIG. 7 1illustrates a technique for generating intrinsic
unique identifiers (IUIs) according to a second embodiment
of the mnvention.

FIG. 8 1s a flow diagram describing a technique for
creating a number of intrinsic unique i1dentifiers representing
a collection of files according to a second embodiment of the
ivention.

FIG. 9 1s a flow diagram describing how files identified in
FIGS. 2 and 3 may be retrieved.

FIG. 10 1s a flow diagram describing retrieval of files
uniquely 1dentified using the embodiment of FIG. 7.

FIG. 11 1s a flow diagram describing how a file may be
looked for and obtained 1n accordance with an embodiment

of the present 1nvention.

FIG. 12 1s a block diagram illustrating a use of the
invention 1n the area of secure storage.

FIG. 13 15 a block diagram 1llustrating use of an embodi-
ment of the 1nvention 1n the area of access control.

FIG. 14 1s a block diagram 1llustrating use of an embodi-
ment of the invention for escrow purposes.

FIG. 15 1s a block diagram 1llustrating a computer net-
work environment suitable for use with an embodiment of
the 1nvention.

FIGS. 16 and 17 show one possible form of a computer
system.

5

10

15

20

25

30

35

40

45

50

55

60

65

6

DETAILED DESCRIPTION OF THE
INVENTION

The present invention 1s applicable to a wide variety of
digital information. As used herein, digital information may
refer to a computer file, a group of {files, a group of file
identifiers, or other collections of data or database informa-
tion. Such other collections of data include documents,
selected frames or clips from digital audio or video streams,
streams from message records or {files, of log entries from
audits or status logs of systems. Database information might
include selected database records from a relational, hierar-
chic, network or other format database. Indeed, digital
information may include any string of binary digits used
wholly or in part by some application or device. In one
embodiment, the present invention manipulates digital infor-
mation as binary large objects, or BLOBs (a bit sequence).

The following discussion illustrates embodiments of the
invention using the example of typical computer files for
case of understanding. It should be pointed out, however,
that embodiments of the invention are well-suited for use
with any of the beforementioned digital information.

As discussed above, 1t would be desirable to address
security 1ssues relating to computer files and to the intrinsic
unique identifiers (IUIs) of the data files and of a descriptor
file. As pointed out, 1t 1s possible for a data file to be obtained
by unauthorized parties or for an IUI of a descriptor file to
be 1ntercepted. Although 1t may appear that standard encryp-
tion techniques may address these problems, there are draw-
backs associated with conventional uses of these standard
techniques.

For example, 1t can prove burdensome to store or send a
file to numerous people using public key cryptography. In
order to send a single file to fifty people using public key
cryptography, one would {first have to obtain the public key
from each of the fifty people. Then, fifty copies of the file
would have to be made, and each file encrypted with a
different one of the fifty keys. Fifty different encrypted files
would then be created which are sent out or stored for later
retrieval. The problem 1s that the single file that was started
with has now become fifty different files each of which must
be managed and transported separately. Calculation of an
identifier for each of the fifty encrypted files would then
produce fifty different identifiers each of which must be
managed and transported. It would be most desirable to have
a single copy of the plaintext file and a single copy of the
encrypted file for use by an authorized entity to cut down on
the proliferation of files copies.

Use of conventional symmetric cryptography also has
drawbacks. Using the above example of a single file to be
distributed to fifty people, one might choose to use a
different random key to encrypt the file fifty times. Again,
fifty different encrypted files must be generated and each of
the random keys must also somehow be transmitted to each
person. Further, consider the situation 1n which fifty different
files are to sent to one person. If only a single key 1s used to
encrypt all of the files, then it would become much easier to
hack the key and determine its value by an unscrupulous
third party. Further, if each file 1s encrypted with a different
key, then each of these keys must somehow be transmitted
to the person and managed 1n a secure fashion.

Finally, a typical prior art use of either asymmetric or
symmetric cryptography to encrypt a file might provide a file
that 1s encrypted, but the keys used do not provide assurance
that the file has not somehow been tampered with 1n either
its plaintext or encrypted form. Also, a file that has been
tampered with might not be able to be decrypted. It would




US 6,976,165 Bl

7

be most desirable if a single key could be used to not only
encrypt a file but to also 1nsure the integrity of its contents.

Further, it would be desirable to store and/or transmit the key
or keys for a given set of {iles 1n a secure manner. Accord-
ingly, the present invention realizes a technique for address-
ing the above 1ssues.

First Embodiment

FIG. 2 1llustrates a technique by which a file may be
encrypted according to one embodiment of the invention.
FIG. 3 1llustrates a technique by which a descriptor file 1s
created and encrypted according to one embodiment of the
invention. FIG. 4 1s a flow diagram describing how an
intrinsic unique identifier (IUI) may be created for a group
of files. FIG. 4 will be explained with reference to FIGS. 2
and 3. In step 202 a group of files (or one file) is selected and
its corresponding file data and any meta data 1s collected. As
mentioned above, the files selected may be computer files or
any of the digital information previously described. The files
selected may include a descriptor file, any type of encrypted
or compressed file or files that themselves contain intrinsic
unique identifiers. File 102 1s an example of one of the files
selected and will be used to illustrate this embodiment.
Other selected files or information are preferably treated in
a similar fashion as file 102.

In step 206 an intrinsic unique identifier (IUI) is generated
for each file. Algorithm 104 1s applied to file 102 to produce
IUI 106. The algorithm may be applied to the complete file
or to any portion of the file. Algorithm 104 1s preferably any
algorithm that can generate a reliably unique identifier for
the file based upon the file contents. As such, the IUI
ogenerated 1s repeatable 1n that application of the algorithm
again to the file will produce the same IUI. The term
“Intrinsic” 1s used to indicate that the IUI 1s based at least 1n
part (or in whole) upon the contents of the file. Algorithm
104 may be any of a wide variety of algorithms. By way of
example, algorithm 104 may be a hash function such as the
MDS3S algorithm or SHA-1 that produce a message digest, or
may be an error detection algorithm such as employed 1n
cyclic redundancy checking (CRC).

Preferably, an algorithm should consistently produce the
same binary number for any speciiic instance of digital
information and such a binary number should be practically
proven to be unique with a reasonably high probability for
the class of digital information being 1dentified. Use of such
an algorithm over two binary sequences that result in the
same binary number can prove that the two binary sequences
are the same. Conversely, use of the algorithm over two
binary sequences that result in different binary numbers can
prove that the binary sequences are different. Such an
algorithm simplifies the identification of copies of a particu-
lar portion of digital information (such as a computer file).
The result of such an algorithm 1s referred to herein as an
intrinsic unique identifier (IUI). Other algorithms may be
used to generate an 1ntrinsic unique identifier as long as the
probability of generating 1dentical identifiers from different
files 1s below a threshold that 1s defined as acceptable.

In a preferred embodiment of the invention, the algorithm
used 1s the MD3 algorithm and produces a 128-bit message
digest referred to herein as sumply the “MD3.” In this case,
algorithm 104 generates plaintext MD3 106. Plaintext MDS$§
106 15 an 1ntrinsic unique 1dentifier for file 102 and uniquely
identifies file 102 based upon it contents. Should file 102 be
changed a newly calculated MD3 would not match the MDS$§
calculated for the previous version of the file.

10

15

20

25

30

35

40

45

50

55

60

65

3

In step 210 an optional compression step may be per-
formed. In a preferred embodiment, each file 1s also com-
pressed. Any of a wide variety of compression algorithms
may be used; the LZW algorithm 1s preferable, although
other algorithms associated with formats such as GZIP and
CAB may be used. Compression may also be performed
after encryption although it 1s preferable to perform com-
pression {irst, or to perform both together. Alternatively, 1t 1s
possible to perform the compression step and not the encryp-
fion step.

In step 214 each file 1s encrypted using its recently
generated MDS3 as the key for the encryption algorithm. For
example, file 102 1s encrypted using encryption algorithm
108 with the key being plamntext MDS 106 to produce an
encrypted file 110. Any of a wide variety of ciphers may be
used as the encryption algorithm. By way of example, the
“Two Fish” algorithm works well, although other algorithms
such as block and stream cipher may also be used.

The use of plamntext MD3S 106 to encrypt file 102 provides
advantages. The single key used to encrypt and decrypt file
102 can also be used to verify the integrity of the file because
the key happens to be plamntext MDS 106 that has been
ogenerated using the MD3S algorithm. Because it 1s an intrin-
sic unique 1dentifier 1t may also be used to verily that the
contents of file 102 have not changed.

Now that encrypted file 110 has been created 1t may be
stored and/or transferred within a computer network 1n a
securec manner. In step 218 an intrinsic unique identifier 1s
generated for file 110 using algorithm 112. In this example,
algorithm 112 1s the MD3 algorithm and the result 1s
encrypted MD3S 114. Preferably, algorithm 112 is the same
as algorithm 104. It i1s possible, however, that the two
algorithms may be different; for example, by convention it
may be agreed that plaintext files use a particular algorithm
while encrypted files use a different algorithm to generate
their intrinsic unique identifiers.

At this point, a secure and sufficient technique for storing,
locating and retrieving file 102 has been described.
Encrypted file 110 may now be stored within a computer
network 1nstead of storing the plaintext file 102. By provid-
ing a user with encrypted MD3 114, the user will be able to
locate and retrieve file 110. The integrity of file 110 can be
cguaranteed by recalculating the MDS of the file and com-
paring 1t to MDS 114. The key 106 to encryption algorithm
108 may be held by the originating party and only released
to a user when 1t 1s desired that the user has access to file 110.
Once the key 106 1s given to someone that has retrieved {ile
110, the file may be decrypted to produce plaintext file 102.
Thus, two pieces of information are necessary for a user to
have access to file 102: encrypted MD3 114 and plaintext
MD3S 106. A user that 1s provided with encrypted file 110 1s
also guaranteed that the original plaintext file has not been
changed.

In step 222 a descriptor file 1s created that represents all
of the files that have been selected. FIGS. 5 and 6 provide
orcater detail of how a descriptor file may appear. Descriptor
file 130 may include a variety of information and may take
many forms. In this example, for each of these files selected
and previously encrypted, it includes a file name 132, file
meta data 134, plaintext MD3 106 and encrypted MD3 114.
In other embodiments the encrypted MDS3 for each file may
also be located elsewhere to assist 1n locating the encrypted
files and may or may not also appear 1n file 130. A descriptor
file 130 1includes the plaintext MD3 for each file, once
descriptor file 130 has been obtained it may be used to
decode the encrypted files to obtain the original plaintext

files.




US 6,976,165 Bl

9

In step 226 an intrinsic unique i1dentifier 1s generated for
descriptor file 130. In a preferred embodiment, algorithm
136 1s the MD3S algorithm which is used to create MD3S 138
which 1s preferred to as the “key MDS.” In step 230
descriptor file 130 1s encrypted using key MD35 138 as the
key to encryption algorithm 140 to produce encrypted
descriptor file 142. Preferably encryption algorithm 140 is
the Two Fish algorithm. File 130 may also be compressed in
a stmilar way as discussed in step 210. MD3 138 is referred
to as the “key MDS35” because it provides the key for
decrypting file 142.

In step 234 an intrinsic unique identifier for file 142 1s
generated using algorithm 144. Preferably, the MD3 algo-
rithm 1s used to produce master MDS 146. Preferably,
algorithms 136 and 144 are the same algorithms although
they may be different, and may be different from algorithms
104 and 112. By convention, it may be agreed upon before-
hand to use different algorithms in different places. Also,
meta data 134 may also indicate which algorithms are to be
used with the plamtext and encrypted files. By the same
token, meta data for file 130 may be included therewithin to
indicate algorithm 136. At this point, the selected files have
been uniquely 1dentified using either master MD3 146 or key
MDS 138.

Step 238 1s an optional step 1n which the master MD3 and
the key MD3 are encoded. Because a resultant MDS 1s a
128-bit number, 1t may be desirable to encode this number
in a more manageable form for human use. The resultant
number may be encoded 1n any of a variety of forms
including decimal, hexadecimal or binary. Preferably, the
number 1s converted to a base 36 number mapped to the set
of twenty-six alphabetic and numeric characters 1n the base
ASCII character set. This mapping 1s referred to as “ASCII
Armoring” and 1s commonly used to render binary infor-
mation 1n a limited character set for transmission over
protocols that require content to be constrained to alphanu-
meric coding. In a preferred embodiment, a flag character 1s
included at a predetermined position within the resulting
string bringing the total length of the string to 27 characters.
This flag character could also provide information such as
algorithm to use, type of file, efc.

The result 1s a 27-character ASCII string of digits and
upper case letters. Such a format provides a compact form
that may more easily be written down by a person and/or
manipulated by a computer, and 1s also 1n a form that 1s
casily accommodated by many software programs. In addi-
fion, this particular representation of an intrinsic unique
identifier has the advantage of being more easily retrieved
by data query, coded into software application file requests,
referenced by a content or asset management system,
requested 1n an object browser, electronically copied and
pasted from one document to another, sent via electronic
mail, etc.

Master MD35 146 may also be associated with a file
locator to assist with finding file 142. Although the mnvention
works without an additional file locator, one may be used.
An example of a file locator 1s a URL, an IP address, or a
path name.

In step 242 the encrypted files that have been created may
be stored. The files created may be stored in any suitable
location such as on the user’s computer, at a remote server,
in an archive, at the site of a future user, or other. In fact, the
files created need not be stored together, but may be stored
in different locations. Preferably, the files that are stored for
future reference by a user include the encrypted files (such
as file 110) and the encrypted descriptor file 142. Preferable,
the plaintext files (such as file 102) and the plaintext

10

15

20

25

30

35

40

45

50

55

60

65

10

descriptor file 130 need not be stored 1n an accessible
location due to security. The files may be destroyed or kept
by the originator 1n a secure location. Because the plaintext
files can be created from the encrypted files using the
appropriate key, 1t 1s not necessary to have the plaintext files
casily available.

In step 246 the master MD3 146 and the key MD35 138 are

returned to the originator for future reference. At this point,
both the master MD3 and the key MD3 would be needed by
a party who wishes to access the encrypted files. For
example, should the originator wish an interested party to
have access to the encrypted files at some point, he may
provide that party with the master MDS. Using master MD35
that party could obtain encrypted descriptor file 142 but
would have no way of decrypting it. Only when the party 1s
provided with key MDS3S from the originator, can that party
decrypt file 142 and obtain not only the encrypted MDSs (to
locate each encrypted file) but also the plaintext MDS for
cach file (which would allow that party to decrypt the
encrypted file and verity that the original file has not
changed). Alternatively, an interested party may be provided
with the encrypted MD3s 1n addition to the master MD3S
which would allow that party to retrieve the encrypted files
but not decrypt them. Once the key MD3S was provided, the
party could decrypt the descriptor file, obtain the keys for the
data files, and decrypt them. In an alternative embodiment,
the user may be supplied with MD3s for the encrypted data
files but 1s not supplied with the master MDS or the key
MDS unfil a later time. Alternatively, the user may be
supplied with the key MD3 1nitially and the master MD3$§
later. Such embodiments have a variety of applications
which are discussed below.

Descriptor File Examples

FIG. § 1llustrates symbolically one example of a descrip-
tor file 300. In general, a descriptor file includes the plaintext
MDS3S for each of the encrypted data files. Thus, once the
descriptor file 1s obtained and decrypted, the user may then
decrypt the encrypted data files using the plaintext MD3 for
cach file as a key 1n the decryption algorithm. Other infor-
mation may optionally be included within the descriptor file
to assist with locating an encrypted data file, reconstructing
its directory environment, and/or administrating a scheme
for generating revenue for the use of such a techmique.
Further, a descriptor file may be implemented 1n any of a
wide variety of modeling languages; examples are given in
FIG. 6A.

In one specific embodiment, descriptor file 300 includes
meta data 302 that describes options regarding the descriptor
file and information concerning its use and contents. By way
of example, meta data 302 includes the type of the descriptor
file, a name for the descriptor file, a creation date, comments,
the number of data files that it represents, the number of
directory folders it represents, the total size of all of the files
combined that 1t represents and other information such as
author, keywords, efc.

A user-supplied name may be assigned when the descrip-
tor file 1s created and 1s used as a mnemonic aid by the user
to identify a folder (for example) from which files repre-
sented by the descriptor file have originated. In another
embodiment of the invention, the name of the folder 1tself 1s
suggested automatically as a mnemonic aid. This name can
be associated with the master MD3 created for the descriptor
file to enable a user to more easily i1dentily the general
contents of a descriptor file. For example, when retrieving
data using a particular master MDS$§ this name may be




US 6,976,165 Bl

11

included to assist the user. The creation date indicates when
the descriptor file was created and 1s useful for keeping track
of versions. Comments may be inserted into the descriptor
file for any purpose by the user. The number of files
represented, number of folders and total size 1s useful for
progress status during downloading.

A descriptor file may include any number of represented
files and optionally may include the folders 1n which the files
originally resided. Any number of folders and any hierarchy
may be represented 1n the descriptor file. By way of
example, included 1s a folder name 310, its time stamp 312
and operating system attributes 314. Time stamp 312 indi-
cates when the folder was last modified. Attributes 314
indicate operating specific attributes for the folder such as
whether the folder 1s read-only, whether 1t should be hidden,
and 1ts type such as system, archive or temporary.

Any number of files may be indicated as being originally
found within folder 310, such as the files 1dentified by file
name 320 and file name 340. A wide variety of meta data
may be present that provides information regarding the file
identified by file name 320. Included 1s a time stamp 322
indicating when the file was last changed, a size 324, the
plaintext MD3 326, the encrypted MD3 328, a creation date
of the file 330, and any number of operating speciiic
attributes 322. These attributes may include the read or write
status of the file, the file type, 1ts creator, etc. By including
the encrypted MDS 328 for the file, the file becomes content
addressable using the encrypted MDS as a location-inde-
pendent file name. Plamtext MDS 326 can then be used to
decrypt the retrieved encrypted file. Other file names and
assoclated meta data may also be indicated as being included
in folder 310. Any number of folders and their included files
(indicated by 324 and 344) may also be included. A hierar-
chy of folders may exist in which one folder and 1its files are
present within another folder.

Administrative data 346 may also be included within the
descriptor file 300 to assist in generating revenue from use
of the technique, tracking the software which embodies the
technique, etc. By way of example, data 346 includes an
identifier ndicating on which machine the software was
originally installed. In one embodiment of the invention,
software which embodies the 1nvention 1s either sold,
licensed, or provided free to users. Included along with the
software 1s a so-called “token box” that represents the
number of times that a user may create a descriptor file and
generate a master MDS for a collection of {files. Included
within data 346 would then be a token box identifier and a
token box count. The box identifier uniquely identifies the
particular box that was provided along with software to a
user. The box count mndicates the number of times that a user
may generate a descriptor file and its corresponding master
MDS. For example, a user may pay for (or receive free)
software embodying the 1mnvention that has a box count of
1000. The software keeps track of this box count variable
and decrements 1t each time the user creates an encrypted
descriptor file and its associated master MDS. The box
identifier and the current box count are then included within
data 346. The box 1dentifier may by useful to indicate that
only certain types of descriptor files may be generated.
Preferable, it 1s unique for a given copy of software provided
to a customer and 1s similar to a serial number. The box
count 1included within the descriptor file 1s useful for track-
ing token boxes that have been “hacked” into to circumvent
paying.

Also imcluded within data 346 may be a digest of the
complete descriptor file. For example, the digest may be
created by performing a hash function upon the descriptor

10

15

20

25

30

35

40

45

50

55

60

65

12

file and then encrypting the hash produced with a secret key
known only to the manufacturer of the software. Asymmet-
ric or symmetric cryptography may be used. By including
this digest within (or at the end) of the descriptor file, the
manufacturer of the software can prove whether or not the
descriptor file and/or 1ts associated master MDS was created
by the manufacturer because only the manufacturer can
calculate this unique digest. Thus, the manufacturer can

determine 1if another entity created the descriptor file and/or
its master MD3S. This information may be useful 1n deter-
mining whether to process a request for a retrieval of files,
for requesting payment from an entity, or for legal protection
of a particular implementation.

The type of a descriptor file indicates one of a variety of
types of the file and 1ts associated master MDS. In general,
a particular type provides different meta data and different
behavior for different classes of descriptor files. For
example, certain types of descriptor files may include certain
meta data that are not present within other types and may
cause a software agent or an operating system to inifiate
various actions that are different from other types. A wide
variety of types may be defined for descriptor files. By way
of example, these types include the following. A standard
type may automatically place retrieved files back into a
default folder on the desk top of the user’s computer when
the files are retrieved using embodiments of the present
invention. In other scenarios, however, it may be desirable
to retrieve a file and place 1t 1n a particular location within
a computer or elsewhere. An extended type of descriptor file
allows the descriptor file to include meta data for each file
name or folder indicating to where within a computer and/or
its operating system the file shall be placed when 1t 1s
received. For example, for performing software replacement
or upgrades, meta data included within the descriptor file for
cach file may indicate that a particular file should replace a
f1le within the operating system of the computer. Thus, when
the present invention 1s used to retrieve a file, a software
agent may automatically place the retrieved file in the
location mndicated by the meta data.

Because automatic replacement or placement of operating
system or application software files may be sensitive and
require permission, a certificate may be included along with
the descriptor file for this type. In this scenario a user of a
descriptor file first approves of a given creator of the files
that are to be retrieved. The software agent that implements
the present mvention then keeps track of a list of creators
that are approved by the user. The user and the creator then
agree upon a digital certificate that authenticates the creator
to the user. Creation and use of digital certificates are
well-known 1n the art and any of a variety may be used. In
this situation, included within meta data 302 1s a certificate
from the creator that guarantees the authenticity of the files
indicated within the descriptor file. Once the software agent
has decrypted the descriptor file, 1t retrieves the certificate of
the creator and verifies that 1t does 1n fact authenticate that
particular creator. The software agent then compares that
creator to the list of approved creators, and 1f there 1s a
match, the indicated files in the descriptor file are retrieved,
decrypted and installed on the user’s computer where 1ndi-
cated.

Another type of descriptor file 1s a trial type. When using
this type of descriptor file, an advertisement appears on the
user screen whenever a descriptor file 1s created and a master
MDS3S generated. In return for viewing the advertisement, the
box count for that particular user 1s not decremented. The
data representing the advertisement may be stored within the




US 6,976,165 Bl

13

software agent that embodies the present invention, or may
also be mcluded within the descriptor file.

Another type of descriptor file 1s a service type. This
descriptor file includes meta data that identifies a software
plug-in 1n any suitable fashion. By way of example, the
plug-in may be 1dentified using an intrinsic unique 1dentifier
(IUI) according to any embodiment of the present invention
or may be identified by using a file name, location, etc.
When files are retrieved by the software agent by using the
descriptor file, the software plug-in 1s 1dentified, located and
automatically 1nstalled upon the user’s computer. For
example, the plug-in may be a Java file to load or XML
conflguration files.

Descriptor files may also be customized by a user. For
example, a user may create a custom type of descriptor file
that automatically adds particular meta data and behavior to
the file when it 1s created. Custom descriptor files may also
be created for each company to whom software embodying,
the present invention 1s to be provided. For example, any
relevant information may automatically be added to the
descriptor file when created or the user may be prompted to
add information that is relevant to the type of descriptor file
and 1ts contents. Automatic behavior may be added to a
custom descriptor file that performs certain actions when a
descriptor file 1s used to retrieve files. For examples, codes
within the descriptor files may automatically send electronic
mail. Other actions that may occur include publication on
web sites.

FIG. 6A 1llustrates an example of an implementation of a
descriptor file written using an application of XML. The
extensible mark up language (XML) is preferred although
other mechanisms such as initialization (“.ini” files) may be
used. The particular descriptor file shown uses a so-called
“hyperfile” modeling language (HFML) based on XML to
describe the structure of the directories containing files as
well as the files themselves. An HFML 1s described 1n the
U.S. provisional patent application No. 60/072,316, filed
Jan. 23, 1998. In general, 1t should be noted that implemen-
tation of the invention 1s not restricted to a descriptor file
written 1n any particular syntax. The HFML 1n the preferred
embodiment 1s used because 1t 1s readily parsed and can be
used to generate a tree-structured directory of the files and
keys.

The descriptor file of FIG. 6 A mcludes two MDSs for
cach file. The MD3 termed “decoded.md5” corresponds to
plaintext MDS 106 of FIG. 2 (for example), and represents
an 1ntrinsic unique identifier for a plaintext file. The MD3S
termed simply “mdS” corresponds to encrypted MDS 114 of
FIG. 2, and represents an intrinsic unique identifier for the
encrypted plaintext file. The descriptor file of FIG. 6A
includes no administrative data, although 1t may.

FIG. 6B 1llustrates a modified or “flattened” descriptor file
suitable for use 1n the second embodiment. In the second
embodiment (described in FIGS. 7 and 8), descriptor file 402
may be implemented as 1in FIG. 6A, and flattened descriptor
file 460 may be implemented as in FIG. 6B. Note that the file
of FIG. 6B includes the MDS3 of the encrypted descriptor file
of FIG. 6A (termed the “keyfile mdS™), and includes the
MD3s for the encrypted plaintext files, but not the MD3Ss for
the plaintext files. FIG. 6B also includes administrative data
(“eclipcontents™) such as a box identifier, a box count, a seat
identifier, and a digest.

Second Embodiment

The first embodiment has described the technique by
which a master MD3 and a key MDS3$ are provided to a user

10

15

20

25

30

35

40

45

50

55

60

65

14

who wishes to locate and access a collection of encrypted
files. Because the master MDS only allows access to
encrypted descriptor file 142, it would be difficult for a user
to locate and retrieve the encrypted data files because the
descriptor file 1s encrypted. It 1s not until the user i1s also
provided with the key MD3 that the user 1s able to decrypt
the descriptor file and obtain the MD3s, allowing it to locate
the encrypted data files. In various situations it may be
desirable to allow a user to not only obtain the encrypted
descriptor file at first, but also to allow the user to locate and
obtain the encrypted data files without allowing those files to
be encrypted. For example, this 1s useful when administrat-
ing pool servers, load balancing, caching, mirroring, and 1n
other applications such as escrowing.

FIGS. 7 and 8 describe an embodiment by which the user
1s not only allowed access to the encrypted descriptor file,
but also obtains the means to locate the encrypted data files.
FIG. 7 1llustrates a technique for generating 1ntrinsic unique
identifiers (IUIs) according to a second embodiment of the
invention. FIG. 8 1s a flow diagram describing a technique
for creating a number of intrinsic unique identifiers repre-
senting a collection of files according to a second embodi-
ment of the invention.

In steps 502518 a collection of files are selected, MD3Ss
are generated and the files are encrypted 1n a similar fashion
as described 1in steps 202—-218 (not shown 1n FIG. 7). In step
522 descriptor file 402 1s created. Descriptor file 402
includes representative meta data for any number of files and
may also include other mformation such as 1s shown 1n
FIGS. § and 6A. Included are a file name 410 representing
a first file, 1ts associated file meta data 412, 1ts plaintext MD3
414 oenerated from the plaintext file and an encrypted MD3$S
416 that 1s generated from the encrypted file. File name 420
and file name 430 represent second and third {files, respec-
fively, and each have their associated meta data, plaintext
MD3S and encrypted MDS3.

In step 526 algorithm 404 is used to generate key MD3
406 for descriptor file 402. In step 530 descriptor file 402 1s
encrypted using key MDS 406 as the key to encryption
algorithm 440 to produce encrypted descriptor file 452.
MDS3S 406 1s referred to as “key MDS” because it provides
the key for decrypting file 452. In step 534 master MDS 456
for file 452 1s generated using algorithm 454. Preferably,
algorithms 404 and 454 are the same algorithms although
they may be different, and may be different from algorithms
used with the data files.

At this point master MDS 456 may be provided to a user
to allow the user to locate and obtain encrypted descriptor
file 452. The user, however, would be unable to locate the
encrypted data files. It 1s conceivable that the originator may
simply provide the encrypted data files to the user or may
provide file locators for them or may even provide their
encrypted MD3s 1n any fashion. In a preferred embodiment,
however, the encrypted MD3s for the encrypted data files are
provided 1n another modified descriptor file.

In step 538 flattened descriptor file 460 1s created based 1n
part upon the information in descriptor file 402. Included
within the flattened descriptor file 406 are the encrypted
MD3Ss 416, 422 and 432 that provide intrinsic unique

identifiers to locate the encrypted files represented by file
names 410, 420 and 430 1n descriptor file 402. File 460 may
be created by duplicating file 402, removing certain infor-
mation and adding other information. For example, master

MDS 456 1s also added to file 460 to allow a user to access
file 452. Meta data 470 associated with the file 460 may also
be added. This meta data may be the same descriptor file
meta data as found in file 402, may be a subset of that data,




US 6,976,165 Bl

15

or may be different meta data or may not appear at all. For
example, meta data 470 mcludes publicly searchable 1tems
but not private data.

The flattened descriptor file may take a wide variety of
other forms. For example, other types of file locators may be
included 1instead of the MD3s to provide access to the
encrypted files or to the plaintext data files. Also, master
MDS 456 i1s optional, and file meta data may also be
included for each file.

In step 542 algorithm 462 1s applied to file 460 to create
a user MD35 464 that 1s an intrinsic unique i1dentifier for file
460. Preferable, algorithm 462 1s the MD3S algorithm. In step
544 the user MDS5 464 and key MD3 406 arc preferably
converted to ASCII format 1n a similar fashion as described
in step 238 to provide identifiers that are more manageable
by a user. Because master MD3 456 1s not handled directly
by a user 1n this embodiment, 1t 1s optional whether to
encode this identifier i file 460.

In step 548 the relevant files are stored for later access by
a user. The files to be stored include the encrypted data files,
encrypted descriptor file 452 and non-encrypted flattened
descriptor file 460. These files may be stored in any suitable
computing device or computer network and may be distrib-
uted 1n different locations. In one embodiment, the files are
stored 1n what 1s termed a file “pool”. In general, a file pool
refers to a collection of distributed storage devices that store
files only being identified by their MDSs (or other IUIs).

In step 552 the user MDS 464 and the key MD3 406 arc
returned to the originator for possible distribution to a
requesting user. In this fashion, access to the encrypted data
files and eventually to the plaintext files are provided simply
via two 1denfifiers, namely, user MDS 464 and key MD35
460. For example, using user MD3 464, the user can access
and read file 460 which provides access to the encrypted data
files and to the encrypted descriptor file (via the master
MDS). Once the user is also supplied with key MDS5 406, the
user may decrypt the encrypted descriptor file, obtain the
plaintext MD3s, and decrypt each of the encrypted data files.

File Retrieval Embodiments

At this point 1n time, the originator of the data files has
generated key MDS 138 and master MDS 146 and has
securcly stored the encrypted files on a computer or on a
distributed computer network. An interested party such as a
user or software program may perform the following steps
to retrieve the files.

In step 602 the user receives the master IUI (in this
example master MDS) which is the identifier uniquely
representing the files to be retrieved. In step 606 the user
looks for the file identified by master MD3 146. The file may
be searched for and obtained 1n a wide variety of ways. By
way ol example, the user looks for the file on a local
computer or throughout a distributed computer network.
Preferably, the file 1s mnitially identified by matching master
MDS 146 with the MD3 of a particular file found. In a
preferred embodiment of the invention, step 606 may be
implemented as described i FIG. 11. In step 610 an
encrypted descriptor file 142 that purports to correspond to
master MD3 146 1s received. Once received, the user may
assume that the descriptor file 1s authentic by virtue of the
search performed in step 606. It may be preferable, however,
to verily that the received file 1s the correct file by first
calculating the MD3 of the received encrypted descriptor file
in step 614.

In step 618 the received file 1s verified as being authentic
by comparing master MD35 146 with the MDS3 just calculated

10

15

20

25

30

35

40

45

50

55

60

65

16

from the received file. If the MDS3s do not match, then
control returns to step 606 to look for another file. If the
MD3Ss match, then the file 1s authentic and the process may
continue. Steps 614 and 618 are optional steps.

By virtue of possessing encrypted descriptor file 142, at
this point the user 1s effectively guaranteed that all data files
that have been encrypted and identified in the plaintext
descriptor file are effectively sealed and have not changed.
For example, should an unscrupulous party attempt to
modify one of the data files, the MD3s of the plaintext file
and of the encrypted file would not match with MDS 106 and
114 1n the plaintext descriptor file. In this way, the holder of
the encrypted descriptor file can be assured that once the
descriptor file 1s decrypted that 1t will be able to verifiably
identify the original data files that have been 1dentified 1n the
descriptor file. In this way, encrypted descriptor file 142
serves as a type of escrow of the original data files. As such,
key MD3S 138 may be delivered to the user concurrently with
master MD3 146, sometime shortly there after, or at some
later time when the originator wishes the user to have access
to the original data {iles.

Therefore, at some appropriate time, 1n step 622 the user
receives the key IUI (in this case key MDS 138) and may
begin to obtain the original files. In step 626 the user uses
key 138 to decrypt descriptor file 142 and obtain plaintext
descriptor file 130. Although optional at this point, i step
630 the user may wish to verify that plaintext descriptor file
130 1s also authentic. For example, the user may recalculate
the MDS35 for file 130 and compare 1t to key 138. Such a
check verifies that a bogus descriptor file 130 has not been
substituted for the correct descriptor file and then encrypted
using key 138. Additionally, a digest may be recalculated for
file 130 and compared to a previously calculated digest
already present 1n {ile 130. For example, as pointed out 1n
FIG. 5, administrative data 346 may include a unique digest
that has been calculated by the true creator of descriptor file
130. If, for some reason the MD3Ss to not match or the digest
1s 1incorrect, the in step 634 an error handler 1s invoked to
produce a suitable error message and a suitable action.

In step 638 the directory structure (if any) described in
descriptor file 130 1s rebuilt using the information contained
in the descriptor file. For example, a directory structure such
as 1s shown 1n FIG. 5 or 6A or some other structure may be
built. A hierarchy of folders may be created, folder and
directory attributes may be assigned and individual file
attributes may be 1dentified for assigning to particular files
once these files are retrieved.

Because descriptor file 130 lists the encrypted MD3 114
of each file identified, the user may now look for each of the
encrypted files using these MD3s. Step 642 may be per-
formed 1n any suitable fashion, for example, may be per-
formed as described in step 606 and 1n FIG. 11 by which a
file 1s 1dentified having a particular IUI.

In step 646 a file 1s received that purports to correspond
to encrypted MDS 114. Although the user may assume that
this retrieved file 1s authentic, it 1s preferable 1n step 650 that
the retrieved file 1s verified. By recalculating the MDS of
encrypted file 110 (for example) this recalculated MDS
maybe compared to encrypted MD3S 114 to verily that the
file 1dentified 1n descriptor file 130 1s 1n fact the file that has
just been retrieved. If the file 1s not verified then step 642
may be implemented again to find the correct file.

Assuming the file has been verified, in step 654 encrypted
file 110 1s decrypted using plaintext MDS 106 to obtain the
original plaintext file 102. In this embodiment of the inven-
tion, plaintext MD3S 106 1s also present within descriptor file
130 along with encrypted MDS 114. In other alternative




US 6,976,165 Bl

17

embodiments, 1t 1s conceivable that plaintext MD3 106 need
not be present within file 130 but 1s delivered to the user 1n
another suitable fashion. The user may now assume that file
102 1s the original file that has been secaled earlier. In an
alternative embodiment, the user may also verify the authen-
ticity of file 102 by recalculating its MDS and comparing
this recalculated MDS with plamntext MDS 106. Such a
check verifies that an unscrupulous party has not substituted
a bogus file for original file 102 and then encrypted the
bogus file using the MDS3 of the original file. If the file 1s not
verified, then a suitable error handler 662 1s mnvoked.

If verified, 1n step 666 a file request list 1s updated to
indicate that file 102 has been accurately been obtained. If
not all files idenfified 1n descriptor file 130 have been
received, then control returns to step 646 to receive another
file. If all files have been received, 1n step 674 an 1ndication
1s provided to the user that all files 1dentified 1in descriptor
file 130 have been successiully retrieved. In this fashion, a
user provided with master MD3 146 and key MD3 138 1s
provided the means to obtain the originally encrypted and
identified files, and 1s guaranteed that the original files have
not been altered since they were encrypted.

FIG. 10 1s a flow diagram describing retrieval of {iles
uniquely 1dentified using the embodiment of FIG. 7.
Through the use of user MD3 464 and key MD3S 406 a user
may later locate and retrieve the plaintext versions of the
files 1dentified 1n descriptor file 402. Through the use of this
embodiment a user 1s allowed to retrieve not only the
encrypted descriptor file, but also the encrypted data files to
retain 1n his possession. This may be advantageous 1n certain
situations such as software escrow and pool management
where a user wishes to keep 1n his possession the actual
encrypted data files. The files cannot be decrypted, however,
until key 406 1s also supplied to the user.

Steps 702—710 may be performed 1n a similar fashion as
in steps 602—610. In step 710, however, the file received 1s
potentially the plaintext flattened descriptor file 460. In step
714 the user may further verily that the received flattened
descriptor file 1s authentic by recalculating a digest for the

file and comparing it to the digest mncluded within admin-
istrative data 346 of file 460 (if present).

Now that the user has obtained the plamtext flattened
descriptor file, in steps 718 and 722 the user may look for
and retrieve those encrypted data files that are 1dentified by
their corresponding MDSs (for example 416, 422 and 432)
included in file 460. These files may be identified and
retrieved 1n any suitable manner and are preferably retrieved

using the techniques described 1n steps 642, 646 and in FIG.
11.

In step 726 a received encrypted file 1s verified as being,
authentic by comparing its newly calculated MD3S with the
MDS3 from file 460 that has been used to retrieve it. If not
authentic, control returns to step 722 to wait for another {ile.
Once verified, 1 step 730 a file request list 1s updated to
indicate that one of the encrypted data files has been
successtully received. If, in step 734 not all files have been
received, then control returns to step 722 to wait for another

file.

In step 738 master MD3S 456 1s extracted from file 460. By
using master MD3 456 present within flattened descriptor
file 460, the user may now locate and retrieve encrypted
descriptor file 452. Once the user 1s supplied with key MD3S
406 from the originating party (once certain conditions are
met, for example), the user will be able to eventually retrieve
the original data files. For example, steps 738—764 may be
performed as described 1n steps 606—638 above. Note that in

10

15

20

25

30

35

40

45

50

55

60

65

138

step 750 the key MD3 1s not supplied unless the origiator
wishes the user to have access to the original files.

Because the user has already retrieved the encrypted data
files, once the directory structure has been built the user may
decrypt the encrypted files 1n step 768 using the plaintext
MD3s that are found 1n descriptor file 402. In an alternative
embodiment, the plaintext MD3s need not be included the
file 402, but may be supplied to the user 1n some other
fashion. In step 772 the plaintext files may be verified as
described 1n step 658. Finally, in step 776 the directory
structure may be populated with the plaintext files to restore
them to their proper place. Additionally, any file meta data
included 1n descriptor file 402 may also be applied to each
file.

Thus, through this embodiment a user to able to retrieve
the encrypted descriptor file and all encrypted data files
using user MD35 464. The user 1s unable to decrypt the data
files until key MD3 406 1s supplied.

FIG. 11 1s a flow diagram describing how a file may be
looked for and obtained 1n accordance with an embodiment
of the present invention. The procedure of FIG. 11 may be
used to mmplement steps 606, 642, 706, 718 and 738 of
FIGS. 9 and 10 1n a preferred embodiment of the invention.

In a preferred embodiment, a file (for example) is received
in portions or segments. In other embodiments, files may be
received whole or 1n a manner specified by any file transfer
protocol. A file request list includes all of the files that are
being requested until those files are received 1n their entirety.
It 1s also possible that a file segment request list would be
implemented that would include individual segments being
requested. For example, individual segments of files may be
requested when data or a code patch for a software appli-
cation 1s required, or when speciiic entries for a database are
obtained by a store or query result. An 1mporter program
manages the transfer of files to the recipient and determines
when the files are.

In one embodiment, the importer has a specific hierarchy
of locations in a computer system (or on a network) in which
it looks for the files listed 1n a descriptor file. Thus, the
importer may be implemented using a chained system which
looks for files 1n different places. Thus, files are searched for
first 1n the most convenient location and then in progres-
sively less convenient locations. This “assembly line” 1is
configurable 1n kind and quantity of importers and may
automatically and dynamically change to optimize economy,
security or performance. Because the MD3s serve as con-
tent-based file names that enable the content of files to be
verifled once the files are recovered, it 1s possible to allow
files to be recovered from arbitrary locations where they
may be found without regard to checking the contents of the
file using some sort of check sum.

In step 802 the intrinsic unique identifier (IUI) of the file
desired to be obtained 1s i1dentified. This IUI may be any
suitable 1dentifier such as an MDS that uniquely 1dentifies a
data file, a descriptor file, any encrypted file, or other digital
information. In the following steps, the IUI may be matched
with a particular file using any of a variety of techniques. In
a preferred embodiment, files are stored along with their file
name which 1s the IUI of the file. In other words, the encoded
2’7-bit alphanumeric MDS of the file 1s also used as its file
name. In this embodiment, the file system of a computer 1s
used to help match the IUI with a particular file. In other
embodiments, a database may use an IUI as a look up (or
data base key) into the database to find the location of the file
that 1s 1dentified by the IUI. The database may contain a
pointer to the file or the actual contents of the file if the file
1s a file object 1n an object-oriented database. Other tech-




US 6,976,165 Bl

19

niques may be used to associate an IUI with a file 1n a
storage device to facilitate matching a received IUI with a
particular file on the storage device. For example, an IUI
may also be associated with a file as a file attribute. It 1s also
possible to recalculate an IUI for a found file and then
compare 1t to an 1dentified IUI to determine 1f the file 1s the
correct file to retrieve. Other techniques include object
database storage.

In step 804 an importer program looks for the desired file
using 1ts IUI 1n a local cache on the computer. In a preferred
embodiment of the invention, this cache 1s a pool of files into
which files have been stored previously, for example 1n steps
242 and 548. Advantageously, this pool of files stores the TUI
of a file as its file name for efficient retrieval. The cache may
be 1mplemented on a local disk, within RAM, or on another
local device. Preferably, the pool cache 1s organized as a
hierarchy of folders wherein the included files use their TUI
as their file names. The pool cache preferably uses key/value
lookup where an IUI 1s the key and the value 1s the bat
sequence to be retrieved. If the file 1s found 1t 1s retrieved and
the procedure ends.

If the file 1s not found locally 1n a pool cache, in step 806
the importer looks for the file 1n local conventional storage.
For example, of the file 1s not included in pool cache where
the IUI 1s the file name, 1t 1s possible that the file 1s still
stored locally and 1ts IUI 1s associated with the file 1n some
other manner. For example, the IUI may be a file attribute of
a file and all files on local conventional storage (such as
memory, disk, tape) may be scanned to search for a file
attribute that matches the identified IUI. As a last result,
brute force method, local storage may be scanned to deter-
mine the contents of all files present and an IUI may be
recalculated for all of these files. The identified IUI from
step 802 may then be compared against each of these newly
calculated IUIs to determine the correct file to be retrieved.
If the file 1s found 1t 1s retrieved and the procedure ends.

I the file 1s not found 1n conventional storage, 1n step 808
a file location request 1s broadcast to peer computers on a
local area network. A file request list that includes the TUI of
the file and 1its sequence numbers may also be created.
Preferably, the identified IUI 1s broadcast to all computers on
the network that implement a pool cache. These computers
may then determine if the desired file 1s present within their
pool by examining the broadcast IUI. Additionally, 1t 1s
possible for a peer computers to examine 1ts local conven-
tfional storage using the techniques described above. If the
file 1s found, the computer having the file returns a location
indicator to the requesting computer indicating the network
location of the desired file.

In step 810 the original computer establishes a one-to-one
link with the computer that contains the desired file and
requests a download of the file using a file request. In this
embodiment, the file 1s downloaded segment by segment,
although 1t 1s possible that the file may be downloaded all at
once. In step 812 the originating computer receives a file
data packet containing segment data for the desired file. The
sequence number of the received file data packet 1s checked
against the file request list to determine 1f the packet
received 1s for a file that 1s desired. Suitable examples of a
file request and file data packet are shown in the above
referenced application Ser. Nos. 09/236,366 and 09/235,146.

If the data packet 1s needed for the current desired file,
then 1n step 814 the segment data from the file data packet
1s stored as part of the desired file and the file request list 1s
updated to indicate that this particular segment has been
received. Step 818 checks whether the file 1s complete and
all segments have been received. If so, the file has been fully

10

15

20

25

30

35

40

45

50

55

60

65

20

retrieved and the procedure ends. If not, then the originating
computer waits to receive another downloaded file data
packet 1n step 812.

If, in step 808 the desired file was not found, then 1n step
818 the importer sends a request for the file to any pre-
configured or well-known servers that implement a pool
cache. For example, an importer may be pre-configured to
connect to certain servers using an IP address if that server
1s known to implement a pool cache. By passing the IUI of
the desired file to the particular server, the server may
determine 1f the file 1s present within the pool cache by
examining the file names of its files. Other addressing
techniques may be used to form a connection with one of
these servers. If the file 1s found 1t 1s retrieved and the
procedure ends.

In step 808 these peer computers may be dedicated pool
cache servers that are dedicated to collecting and storing
files that are identified by their IUI. In this fashion, broad-
casting to these pool servers 1s efficient in that there 1s a high
likelihood that one of the servers has the desired {ile in 1ts
cache. The broadcast may also reach certain software agents
located on the computers whose primary function 1s to
generate the unique identifiers such as 1s described 1n FIGS.
4 and 8. These software agents may also store the files and
their associated IUIs 1n a pool cache of their own or 1n local
conventional storage.

If the file 1s not found 1n step 818 then 1n step 820 the
importer looks for the desired file on any mounted volumes
of file servers attached to the local area network. In this
situation, the file servers identified may not necessarily
implement a pool cache 1n a standard format, but nonethe-
less may store the desired file on a mounted volume such as
in RAM, on disk, etc. The identified IUI may be used to find
the desired file using any of the techniques discussed 1n step
802. If the file 1s found 1t 1s retrieved and the procedure ends.
If the file 1s not found, then 1n step 822 the importer looks
for the desired file on any suitable FTP server using a URL,
for example. In this situation the FTP servers may be
accessed over the Internet using a URL and are passed the
IUI of the desired file. As the servers may not implement a
pool cache 1n a standard format, any of the techmiques
described 1n step 802 may be used to find the desired file on
the FTP server. If the file 1s found 1t 1s retrieved and the
procedure ends.

If the file 1s not found, other techniques may be used such
as making a request over a GSM telephone and retrieval via
satellite, using a web search engine to find the file associated
with an IUI etc. An error handler may be invoked 1n step 824
to return a suitable error message if necessary. Thus, the
procedure of FIG. 11 describes a technique by wish a desired
file 1s searched for 1n an efficient manner using its [UI. Local
and likely places for the file are searched first while the
remote and less likely places are searched later.

Examples of Use

The various embodiments described herein are suitable
for use 1 a wide range of technical and business applica-
tions. For example, the invention i1s useful in the secure
storage of documents, 1n access control, 1n escrow of docu-
ments, for encryption 1ssues, and 1n reliably proving creation
of documents. The following examples may be implemented
using any of the embodiments described herein, for example

the embodiment of FIG. 2, the embodiment of FIG. 3 or the
embodiment of FIG. 7.

For any application, meta data 470 of flattened descriptor
file 460 may be used to help an interested party search for



US 6,976,165 Bl

21

and find content of interest. For example, consider a book
whose chapters are encrypted and distributed on the Internet
using an embodiment of the present invention. Meta data
470 may include keywords that help to describe the book,
and locations where user MDS may be found and payment
made to receive key MD3S. Thus, as the flattened descriptor
file 1s not encrypted, an interested party can perform a search
on the Internet for a book using author, subject or fitle
keywords; 1f these keywords are present in meta data 470,
then the party may retrieve the flattened descriptor file and
eventually retrieve the book using embodiments described
herein.

In the area of the secure storage, 1t 1s often desirable to be
able to store documents 1 a public location that may be
casily accessed by certain entities but not allow the docu-
ments to be opened or read except by authorized parties.
FIG. 12 1s a block diagram 1llustrating a use of the invention
in the secure storage area. In this example, a bank desires to
digitize a customer’s signature card and have it available for
its distributed terminals to access and verily. One difficulty
1s that the card must be kept secure and not released to
outside parties. The digital signature card file 902 1s pro-
cessed using an embodiment of the present invention 904 to
produce a key MD3S 906 and a master MD3 908. As part of
the process an encrypted version of the card file 910 1s also
produced. When implemented using the embodiment of
FIG. 2, key 906 corresponds to MD35 106 and master 908
corresponds to MD3S 114. In the embodiment of FIG. 3, the
card file may be combined with other file and/or bank or card
meta data to produce a descriptor file which then yields key
906 and master 908. Key 906 and master 908 are then stored
securcly within a banking application 912 resident upon a
bank terminal 914. Terminal 914 may be in communication
with a bank mainframe that had originally calculated the
MD3Ss and downloaded them to the terminal. In this
example, security for this master and the key are the
responsibility of the banking application.

The encrypted card file 910 may then be transferred over
the Internet or some other data link to non-secure public
storage 916. Because file 910 1s encrypted, an outside party
cannot read 1t even though 1t 1s stored 1 public storage.
When application 112 has a need for a particular card file, 1t
may then use key 906 and master 908 to retrieve the
encrypted file from public storage 916 and decrypt 1t. Such
a scenar1o 1s possible with multiple customer files and/or
other types of documents. Other secure storage applications
may be found in areas such as insurance and health.

FIG. 13 15 a block diagram 1llustrating use of an embodi-
ment of the mvention 1n the area of access control. Often an
entity produces documents or information that i1t wishes to
provide to an authorized user, but only upon authentication
of that user. Further, an entity may not wish to perform the
authentication itself, but may wish another to perform the
authentication. In this example, originator 921 has produced
a file 922 that 1t wishes user 923 to have access to, but only
if user 923 can authenticate itself, or if a certain time has
passed, or if other conditions are met. Using a suitable
embodiment of the mnvention 924, file 922 1s processed to
produce an encrypted version 925, a key MDS 926 and a
user MD3S 927. It utilizing the embodiments shown 1n FIG.
2 or FIG. 3, user MD3S 927 would correspond to encrypted
MD3S 114 or master MD3S 146, respectively. Originator 921
1s then free to transfer the encrypted file to public storage
928, to keep 1t 1tself, or even to deliver it to user 923.
Because the file 1s encrypted, the user may not access 1it.

Next, user MDS5 1s delivered to the user via email 929,
another data link, a telephone, or any other physical

10

15

20

25

30

35

40

45

50

55

60

65

22

exchange medium. By possession of user MDS, user 923
may locate and retrieve the encrypted file but will not be able
to decrypt it. Concurrently or therecafter, the two MD3s are
transmitted to an authentication database 931 1n a secure
manner. For example, an Internet connection 930 using SSL
may be used. A secure connection 1s preferred, as possession
of both MD3Ss would allow any party to read the encrypted
file. Database 931 may be present upon any suitable authen-
tication server that acts an authenticating agent for originator
921. For example, the server may be an LDAP server and
protocol 930 and 935 may be secure LDAP protocols. Both
MD3s are stored 1n a record 932 of the database along with
authentication mformation 933. Information 933 1s any
suitable information suitable for authenticating user 923,
such as a password. The authentication server also contains
any of a wide variety of authenticating mechanisms for
authenticating outside parties. Such authentication mecha-
nisms are well known 1n the art.

In order to access the encrypted file, user 923 delivers via
a data link 934 both the user MDS and the user’s authenti-
cation information. The user MD3 serves as a record locator
within the database to locate the correct key and authenti-
cation information. The authentication server next authen-
ticates the user by comparing the authentication information
or by performing some other well-known process. If authen-
tic, the key MD3 1s then delivered via a data link 935 back
to user 923. Preferably, link 935 1s a secure link such a an
SSL protocol that protects the key. Once user 923 1s 1n
possession of key MDS, 1t may now decrypt the encrypted
file directly, or by way of decrypting an encrypted descriptor
file.

In this example, originator 921 may decide to revoke the
user’s privilege to view the file at any time by simply
communicating with the authentication server. The server
would then be directed to always to decline authentication
for the user. Alternatively, record 932 may be associated
with any number of users that might be authenticated to
download key MDS5.

In another area of access control, files embodying music
may be delivered to a user over the Internet who 1s not
allowed to access the files until he or she has paid. Using the
embodiment of FIG. 3, for example, the encrypted files may
be delivered with a master MDS3, or with the encrypted
descriptor file 142 1tself. Once the user completes a credit
card payment over the Internet, the issuing entity delivers
key MD35 138 to the user which allows the user to decrypt
the descriptor file. Once decrypted, the user has access to the
plaintext MD3s which allows the user to decrypt the music
files. Alternatively, the encrypted music files are not deliv-
ered to the user, but are located and retrieved by the user
using the encrypted MD3 114 included in the descriptor file.
Other examples 1n the area of access control 1n which this
embodiment may be useful are publishing on the Internet.

FIG. 14 1s a block diagram 1illustrating use of an embodi-
ment of the invention for escrow purposes. A wide variety of
information may be put mto escrow such as experimental
records, legal documents, government records, etc. In this
example, software company 942 produces a software pro-
ogram 1n the form of a software file 944 which 1s used by a
software user 946. For any of a number of reasons, both
parties have agreed that the software files will put 1n to
escrow for later access by the user if needed. The company,
however, does not wish anyone to have access to the files
unless the proper conditions are met. Accordingly, an
embodiment of the ivention 948 processes files 944 to
produces encrypted files 950, a key MD3 952 and a user
MD3S 954. User MDS3 1s then provided to the software user.



US 6,976,165 Bl

23

In the embodiment of FIG. 7, files 950 may be retrieved by
the user using a flattened descriptor file, or the file may
simply be delivered to the user from the software company.
In the embodiment of FIG. 3, user MDS corresponds to
master MD3S 146 and the encrypted files may be stored 1n a
public location held by escrow agent 956, or may be even by
delivered from the company to the user.

Key MD3 952 1s delivered to escrow agent 956 who
retains 1t until a condition previously agreed upon by the
company and the user 1s met. Upon satisfaction of the
condition, key 952 1s delivered 938 to the user using any
suitable means. Once 1n possession of the key, the user may
decrypt an encrypted descriptor file to obtain the plaintext
MD3s which will allow the user to decrypt and read the files
950. Thus, software escrow 1s made simpler.

In another example of escrow, a pharmaceutical company
1s 1n the process of getting a drug approved and 1s generating
voluminous evidence and clinical data that 1t may need to
provide to the FDA. The company may wish to speed up the

approval process and msure that 1ts massive amounts of data
cannot be altered over time. The FDA, 1n a similar fashion,
desires an assurance that such clinical data if held 1n escrow
does not change over time. Using an embodiment of the
present invention, a single MDS (or other type of identifier)
can represent an enormous amount of data and isure to the
FDA that the documents originally used to create the MD3S
have not changed since that time.

In this example, the company regularly generates a user
MDS3S and a key MDS3 based upon any number of data files
that the government may need to access. The user MDS3 1s
then delivered to the FDA, at the same time the data files
may be held by an escrow agent, put into public storage, or
even delivered to the government. Because the company
may wish to limit access to the data files should the approval
process be abandoned, the files have previously been
encrypted using an embodiment of the invention. Advanta-
geously, should the company forgo the approval process, 1t
may choose not to deliver the key MD3 to the FDA and as
such the FDA (or anyone else) would be unable to decrypt
the descriptor file.

At the end of the approval process, the company delivers
the key MD3 to the FDA who may then use 1t 1n conjunction
with the user MDS3 to decrypt the data files and view them.
The company 1s protected against anyone viewing their files
prematurely. The FDA 1s protected against the data being
changed 1n the meantime, because the user MD3 and the key
MD3S guarantee that the files eventually decrypted are the
ones that were originally used to create the user MDS and
they key MDS3.

The present mnvention may also be used in situations
where the government or other entity 1s concerned about an
entity using encryption that 1s unbreakable. For national
security reasons, the government may wish at some point to
decrypt private party communications. In this example, the
private party agrees to encrypt their communications using,
an embodiment of the present invention in which a key MD3$§
and a master MDS3 (or a user MDS) are generated. The files
that have been encrypted by the private party are delivered
to public storage or to a government server for safekeeping.
Based upon accepted legal principles and an agreement
between the private party and the government, the key MD3
and the master MD3 are delivered to a suitable government
agency for satekeeping. If at some future time 1t 1s legally
determined that the communications of the private party
must be decrypted, the government agency may release both
the key MD3S and the master MDS to an appropriate legal
entity who would then be able to not only locate and access

10

15

20

25

30

35

40

45

50

55

60

65

24

the files but to decrypt them. Further, due to the nature of the
present mvention, both parties are virtually assured that the
files eventually decrypted are the original files making up
the secret communications of the private party.

Embodiments of the present invention may also be used
to prove the existence of records on a particular date. For
example, consider an individual inventor who 1s working
diligently to perfect an invention. His records include digital
text files, digital drawings, and/or handwritten documents
which may be digitized. On a particular date, the inventor
uses an embodiment of the invention to create a key MDS
and a master MDS (or a user MDS) for all of his records in
the form of computer files. The single M D3 1s then delivered
to the Patent Otfice. The Patent Office logs the MD3 as being
received on a certain date and keeps 1t for safekeeping. Both
the master MD3 and the key MDS remain with the 1ndi-
vidual inventor. The actual digital files (encrypted) may be
kept by the inventor, placed in public storage, or even
delivered to the government.

Should the inventor wish to abandon his invention and not
disclose it, he simply need not provide the key MDS3 to the
Patent Office and the files would not be able to be decrypted.
If the mventor desires to prove a date of conception some
time later, the key MD3S 1s delivered to the Patent Office
which then has the capability to locate and decrypt the
inventor’s original documents. By virtue of the original
master MD3 being logeged on particular date, it may be
reliably be proven that the original documents that are
eventually decrypted using the master MD3S and the key
MDS3 where 1n fact in existence on that earlier date.

In another example on how the present invention may be
used to prove the existence of records on a particular date,
consider a Notary Public with access to the Internet. A party
who desires proof of the existence of a document on a
particular date uses an embodiment of the imvention to
generate a unique MDS for that document. For example, the
embodiments of FIG. 2, FIG. 3 or FIG. 7 may be used, in
which case the user generates MD3 114, master MD3 146 or
user MDS 464. The user sends the MDS (preferably
encoded) to the Notary via electronic mail or some other
suitable method on a particular date. The Notary receives the
MDS, logs it, and notarizes it as being received on a
particular date. At a later point 1n time, the corresponding
key MDS may be provided by the user to reliably prove that
the document identified by the original MD3 was 1n exist-
ence on the date that the Notary received the original MDS.

A generated intrinsic unique identifier (IUI), such as an
alphanumeric encoded MDS, may be embedded in, trans-
ported, or attached to a wide variety of physical objects. For
example, either MD3 may be received embedded in an
clectronic mail message to specily a set of files. Alterna-
tively, the MD3s may be generated automatically by a
network device performing the backup of the files and
directories specified. The MD3s may be produced by a
business application, thus sealing the relevant digital infor-
mation relating to a particular transaction. In addition, MD3s
may be generated for other reasons by any user, network
node, application or hardware device that needs to uniquely
specily a file or group of files for some purpose. Such MD3s
may be embedded in and readily accessed from database
applications, legacy applications running on mainirames,
text retrieval applications, web sites, efc.

Further, an IUI (such as an alphanumeric encoded MDS$)
might be placed into digital content to identify that content,
authorize 1ts use, address further information, etc. For
example, a music file such as the MP3 format might mix 1n,
“splice,” or use a watermark to embed an IUI into the actual




US 6,976,165 Bl

25

music file. Such an IUI might also be embedded 1nto genetic
material to reference further information about that genetic
material.

An IUI might be attached physically to a physical object
to provide a reference for extensive information about that
object. For example, a bar code representing an IUI might be
present on a home appliance and represent a user’s manual.
Or, the alphanumeric representation of an IUI may be
present on an object; a user might then type the IUI into a
computer to receive files over the Internet about that object.

An IUI might be present within memory of a computing
device to reference much more extensive programming or
data for that device. For example, consider a typical smart
card with a memory capacity of 2 K bytes. This limited
memory space 1S used for small programs and data. When
mserted 1nto a smart card terminal, such as an AITM, con-
nections are made with other computing devices to execute
the Iimited program and data stored on the smart card. To
expand the usable program size, or the number of programs
executable on a smart card, an IUI 1s embedded in memory
of the smart card. The IUI umquely identifies additional
programs or data that can be loaded onto the smart card, or
executed by the terminal or smart card. The same would
work with other portable devices such as mobile telephones,
personal digital assistants, etc.

COMPUTER SYSTEM EMBODIMENT

FIG. 15 1s a block diagram 1llustrating a computer net-
work environment suitable for use with an embodiment of
the mvention. User computer 962 connected to LAN 964
along with other computers access Internet 968 via a server
computer 966. Connected thereto 1s another server computer
974 attached to LAN 970 that includes user computer 972.
As embodied in a software program, agent soltware residing,
upon either computer 962 or 972 1s arranged to 1implement
the tlows for FIGS. 4 and 8 and produce encrypted files,
descriptor files and the intrinsic unique i1dentifiers. The files
and 1denfifier may then be held locally or distributed
throughout the network 1n any suitable fashion.

When implementing the flows of FIG. 9 or 10, computer
972 includes agent software that identifies an intrinsic
unique 1dentifier and begins to look for it. If not found
locally, the request for a file or files 1s handled by server
computer 974 that implements server software. Such server
software may implement the flows of FIGS. 9 and 10 and
portions of FIG. 11 to look for, retrieve, decrypt and deliver
the requested files to computer 972. In an alternative
embodiment, the functions implemented by the agent soft-
ware and the server software need not be separated, but may
be embodied within a single software program that is present
on one computer or any number ol computers.

FIGS. 16 and 17 illustrate a computer system 1000
suitable for implementing any of the computers mentioned
herein. FIG. 16 shows one possible physical form of the
computer system. Of course, the computer system may have
many physical forms ranging from an integrated circuit, a
printed circuit board and a small handheld device up to a
huge super computer. Computer system 1000 includes a

monitor 1002, a display 1004, a housing 1006, a disk drive
1008, a keyboard 1010 and a mouse 1012. Disk 1014 is a
computer-readable medium used to transfer data to and from
computer system 1000.

FIG. 17 1s an example of a block diagram for computer
system 1000. Attached to system bus 1020 are a wide variety
of subsystems. Processor(s) 1022 (also referred to as central
processing units, or CPUs) are coupled to storage devices

10

15

20

25

30

35

40

45

50

55

60

65

26

including memory 1024. Memory 1024 includes random
access memory (RAM) and read-only memory (ROM). As
1s well known 1n the art, ROM acts to transfer data and
instructions uni-directionally to the CPU and RAM 1s used
typically to transfer data and instructions 1n a bi-directional
manner. Both of these types of memories may include any
suitable of the computer-readable media described below. A
fixed disk 1026 i1s also coupled bi-directionally to CPU
1022; 1t provides additional data storage capacity and may
also 1nclude any of the computer-readable media described
below. Fixed disk 1026 may be used to store programs, data
and the like and 1s typically a secondary storage medium
(such as a hard disk) that is slower than primary storage. It
will be appreciated that the information retained within fixed
disk 1026, may, in appropriate cases, be incorporated 1n
standard fashion as wvirtual memory in memory 1024.
Removable disk 1014 may take the form of any of the
computer-readable media described below.

CPU 1022 1s also coupled to a variety of input/output
devices such as display 1004, keyboard 1010, mouse 1012
and speakers 1030. In general, an mput/output device may
be any of: video displays, track balls, mice, keyboards,
microphones, touch-sensitive displays, transducer card read-
ers, magnetic or paper tape readers, tablets, styluses, voice
or handwriting recognizers, biomeftrics readers, or other
computers. CPU 1022 optionally may be coupled to another
computer or telecommunications network using network
interface 1040. With such a network 1nterface, 1t 1s contem-
plated that the CPU might receive information from the
network, or might output information to the network 1n the
course of performing the above-described method steps.
Furthermore, method embodiments of the present invention
may execute solely upon CPU 1022 or may execute over a
network such as the Internet in conjunction with a remote
CPU that shares a portion of the processing.

In addition, embodiments of the present invention further
relate to computer storage products with a computer-read-
able medium that have computer code thereon for perform-
ing various computer-implemented operations. The media
and computer code may be those specially designed and
constructed for the purposes of the present invention, or they
may be of the kind well known and available to those having
skill 1n the computer software arts. Examples of computer-
readable media include, but are not limited to: magnetic
media such as hard disks, floppy disks, and magnetic tape;
optical media such as CD-ROMSs and holographic devices;
magneto-optical media such as floptical disks; and hardware
devices that are specially configured to store and execute
program code, such as application-specific integrated cir-
cuits (ASICs), programmable logic devices (PLDs) and
ROM and RAM devices. Examples of computer code
include machine code, such as produced by a compiler, and
files containing higher level code that are executed by a
computer using an interpreter.

Although the foregoing invention has been described 1n
some detail for purposes of clarity of understanding, 1t will
be apparent that certain changes and modifications may be
practiced within the scope of the appended claims. For
example, 1n the embodiment of FIG. 7, the key identifier
could be provided first to a user, and then the master
identifier later, instead of the other way around. Therefore,
the described embodiments should be taken as illustrative
and not restrictive, and the invention should not be limited
to the details given herein but should be defined by the
following claims and their full scope of equivalents.




US 6,976,165 Bl

27

We claim:

1. A method comprising:

generating a first unique identifier for said a binary asset,
said first unique identifier being computed from at least
a portion of the contents of said binary asset and
uniquely 1dentifying said binary asset;

encrypting said binary asset using said first unique 1den-
tifier as a key, said encrypting resulting in an encrypted
version of said binary asset;

generating a second unique 1dentifier for said encrypted
version of said binary asset, said second unique iden-
tifier being computed from at least a portion of said
encrypted version of said binary asset and uniquely
identifying said encrypted version of said binary asset;

providing said second unique identifier for the retrieval of
said encrypted version of said binary asset, whereby
said second unique 1identifier may be used to locate said
encrypted version;

creating a descriptor file that includes said unique iden-
tifier and said second unique identifier;

generating a first file identifier, said first file 1dentifier
being computed from at least a portion of said descrip-
tor file and uniquely identitying said descriptor file;

encrypting said descriptor file using said first file 1dentifier
as a key, said encrypting producing an encrypted
descriptor file; and

cgenerating a second file identifier for said encrypted
descriptor file, said second file i1dentifier being com-
puted from at least a portion of said encrypted descrip-
tor file and uniquely 1identifying said encrypted descrip-
tor file, whereby said first file identifier and said second
file 1dentifier may be used to access the contents of said
binary asset.

2. The method of claim 1, further comprising an act of:

decrypting said encrypted version of said binary asset
using said first unique identifier to generate a decrypted
version of said binary asset.

3. The method of claim 2, further comprising an act of:

verifying the integrity of said decrypted version of said
binary asset using said first unique 1dentifier.

10

15

20

25

30

35

40

23

4. A method comprising:

cgenerating a first identifier for a file, said first 1identifier
being computed from at least a portion said file and
uniquely 1dentifying said file;

encrypting said file using said first identifier as a key, said
encrypting producing an encrypted file;

generating a second file identifier for said encrypted file,
said second file identifier being computed from at least
a portion of said encrypted file and uniquely 1dentifying,
said encrypted file;
providing said first file identifier and second file 1dentifier
for the retrieval of said file, whereby said second
unique 1dentifier may be used to locate said encrypted
file, and said first file identifier may be used to decrypt
said encrypted file to produce said file;

creating a descriptor file that includes said first file
identifier and said second file i1dentifier;

cgenerating a third file identifier, said third file identifier
being computed from at least a portion of said descrip-
tor file and uniquely identifying said descriptor {ile;

encrypting said descriptor file using said third file 1den-
tifier as a key, said encrypting producing an encrypted
descriptor file; and

cgenerating a fourth file identifier for said encrypted
descriptor file, said fourth file i1dentifier being com-
puted from at least a portion of said encrypted descrip-

tor file and uniquely 1dentifying said encrypted descrip-

tor file, whereby said third file identifier and said fourth

file 1dentifier may be used to access the contents of said

file.

5. A method as recited i claim 4 wherem the act of
ogenerating the first file identifier further comprises generat-
ing the first file 1dentifier using a first hash function and the
act of generating the second file identifier further comprises
ogenerating the first file 1dentifier using a second hash func-
fion.

6. The method of claim 5, wherein the first hash function
and the second hash function are a same hash function.

7. A method as recited 1n claim 4 further comprising:

compressing said file 1n conjunction with said encrypting.

% o *H % x



	Front Page
	Drawings
	Specification
	Claims

