(12) United States Patent

Yarmus

US006973459B1

US 6,973,459 B1
Dec. 6, 2005

(10) Patent No.:
45) Date of Patent:

(54) ADAPTIVE BAYES NETWORK DATA
MINING MODELING

(75) Inventor: Joseph S. Yarmus, Groton, MA (US)

(73) Assignee: Oracle International Corporation,
Redwood Shores, CA (US)

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 562 days.

(21) Appl. No.: 10/274,039
(22) Filed: Oct. 21, 2002

Related U.S. Application Data
(60) Provisional application No. 60/379,111, filed on May

10, 2002.
(51) Int. CL7 ... GO6F 707/102
(52) US.CL .. 707/102; 707/100; 707/104.1
(58) Field of Search .................................. 707/1-104.1
(56) References Cited

U.S. PATENT DOCUMENTS

6,473,084 B1* 10/2002 Phillips et al. .............. 345/440

6,606,615 B1* 8/2003 Jennings et al. .............. 706/45

2002/0103793 Al* 8/2002 Koller et al. .................. 707/3
FOREIGN PATENT DOCUMENTS

EP 797160 A2 * 9/1997 ... GO6F 17/30

EP 797161 A2 * 9/1997 ... GO6F 17/30

OTHER PUBLICAITONS

Oracle 91 Data Mining Concepts, “Basic ODM Concepts”,
Copyright 2002 Oracle Operation, pp. 1-28.%*

Daryle Niedermayer, “An Infroduction to Bayesian
Networks and their Contemporary Applications”, Dec. 1,
1998, pp. 1-14.%

A Study on the Performance of Large Baves Classitfier;
Dimitris Meretakis, Hongjun Lu and Beat Wuthrich;
Computer Science Dept., Hong Kong University of Science

& Technology, Clear Water Bay, Hong Kong, China, pp.
1-14.

The Minimum Description of Length Principle in Coding
and Modeling; Andrew Barron, Jorma Rissanen, and Bin Yu;
IEEE Transactions on Information Theory, vol. 44, No. 6,
Oct. 1998, pp. 2473-2760.

Approximating Probability Distributions to Reduce Storage
Requirements; PM. Lewis II, General Electric Research
Laboratory, Schenectady, NY & Dept. of Electric Engineer-
ing & Computer Components & Systems Group, Mas-
sachusetts Institute of Technology, Cambridge, MA (1959),

pp. 214-225.
Wrappers for Feature Subset Selections; Ron Kohavi &
George H. John (Aug. 14, 1996),pp. 1-43.

(Continued)

Primary FExaminer—Luke S Wassum

Assistant Examiner—Linh Black
(74) Attorney, Agent, or Firm—Swidler Berlin LLP

(57) ABSTRACT

A method, system, and computer program product for gen-

erating an Adaptive Bayes Network data mining model
includes receiving a data table having a plurality of predictor
columns and a target column, constructing a plurality of
single-predictor models, ranking each single-predictor
model using minimum description length and selecting a
best single predictor model, performing feature selection,
constructing a Naive Bayes model, comparing a description
length of the Naive Bayes model with a description length
of a baseline model, replacing the baseline model with the
Naive Bayes model, if the description length of the Naive
Bayes model 1s less than the description length of the
baseline model, extending a plurality of single-predictor
models 1n rank order, stepwise, to multi-predictor features,
and testing whether each new feature should be 1ncluded 1n
or should replace a current model state using minimum
description length.

21 Claims, 15 Drawing Sheets

2200

2204 | i2202A
INPUT/ |, CPU |o e ®
OUTPUT ‘

DATA MINING SYSTEM

2202N

5506 2210

INTERNET/
NETWORK

2208

MEMORY

2212

ABN ROUTINES

2214

MODEL BUILDING ROUTINES

2216

SCORING ROUTINES

2218

TRAINING DATA

2220

ABN MODEL

2222

SCORING DATA

2224

PREDICTIONS/RECOMMENDATIONS

2226

OPERATING SYSTEM




US 6,973,459 B1
Page 2

OTHER PUBLICAITONS

Comparing Bayesian Network Classifiers;, Jie Cheng &
Russell Greiner; Dept. of Computing Science, University of
Alberta, 8 pages.

Efiicient Learning of Selective Bayesian Network Classi-
fiers; Moninder Singh & Gregory M. Provan; University of

Pennsylvania (Nov. 1995) pp. 1-28.
Learning Bayesian Belief Networks An Approach based on

the MDL Principle; Wa1 Lam & Fahiem Bacchus; Dept. of
Computer Science, University of Waterloo,pp. 1-31.
AnAnalysis of Bayesian Classtfiers; Pat Langley; Wayne Iba
& Kevin Thompson; In Proceedings of the Tenth National
Conference on Artificial Intelligence (1992) , pp. 223-228.
Model Selection and the Principle of Minimum Description
Length;, Mark H. Hansen & Bin Yu, pp. 1-48.

On the Optimality of the Simple Bayesian Classifier under
Zero-One Loss; Pedro Domingos & Michael Pazzani; Dept.

of Information & Computer Science, Umversity of

California, Irvine, CA 92697, pp. 1-30.
Scaling Up the Accuracy of Naive-Bayes Classifiers: a
Decision-Tree Hybrid; Ron Kohavi, Data Mining &

Visualization, Silicon Graphics, Inc.,pp. 1-6.
Searching for Dependencies in Bayesian Classifiers,

Michael J. Pazzani, University of California, Irvine ,pp.

239-248.
Bayestian Network Classifiers; Nir Friedman, Dan Geigerm

Moses Goldszmidt; Kluwer Academic Publishers, Boston. ,

pp. 1-37.
Learning Maximum Likelihood Semi-Naive Bayesian

Network Classifier; Kaizhu Huang, Irwin King & Michael
Lyu; The Chinese University of Hong Kong , pp. 1-6.

* cited by examiner



U.S. Patent Dec. 6, 2005 Sheet 1 of 15 US 6,973,459 Bl

Fig. 1

PROB. OF TARGET C CONDITIONED ON PREDICTOR
P1 VALUE TVALUE COUNT PR (T | P1)

0 O 30 0. 375
0 1 50 0.625 |
1 0 20 0.2 |
1 1 80 0.8 i
Fig. 2

ROB. OF PREDICTOR CONDITIONED ON TARGET }
lm VALUE TVALUE COUNT PR (P1|T)

0 0 30 0.6
1 0 20 0.4
Q 1 50 0.384615
1 1 80  0.615385 |
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Fig. 3
GLOBAL DIST. OF TARGET
TVALUE | COUNT PR (T)
0 o0 0.277778
i 130 0.722222
Fig. 4
PROB. OF TARGET CONDITIONED ON TWO PREDICTORS
P2 VALUE |P1 VALUE | TVALUE | COUNT PR(T | P1, P2)
O 0 0 5 0.111111111
0 0 1 40 0.883888889 |
0 1 0 3 0.047619048
0 1 1 60 0.952380952
1 0 0 25 0.714285714
1 0 T 10 0.285714286
1 1 0 17 0.459459459
1 1 1 20 0.540540541
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Fig. 5
PROB. OF ONE PRED. COND. ON TARGET AND SECOND PRED.
P2 VALUE |P1VALUE |TVALUE |COUNT | PR(P2 I T, P1) i
0 0 0 5 0.166666667
1 0 0 25 0.833333333 l
0 0 1 40 0.8
1 0 1 10 0.2
0 1 0 3 0.15
E 1 0 17 0.85
0 1 1 60 0.75
1 1 1 20 0.25
Fig. 6
PROB. OF TARGET CONDITIONED ON PREDICTOR
P1 VALUE T VALUE COUNT PR (T|P1) |
o 0 30 0.375 o
0 1 50 0.625
1 0 20 0.2 N
1 1 30 0.8
2 0 0 0 ]
2 1 5 1
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Fig. 7

SROB. OF TARGET CONDITIONED ON TWO PREDICTORS
P2 VALUE |P1VALUE |T VALUE ‘ COUNT PR(T | P1, P2)

0 0 0 5 0111111111
0 0 1 40 0888888889 |
0 1 0 3 0.047619048

0 1 1 60 0.952380952 |
0 2 0 0 #DIV/O! |
0 2 1 0 #DIV/O! l
1 0 0 25 0.714285714 |
1 0 1 10 0.285714286

K : 0 17 0.459459459

1 1 1 20 0.54054054
h— 2 0 0 0

1 2 1 1
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Fig. &

| PROB. OF ONE PRED. COND. ON TARGET AND SECOND PRED.
. VALﬂ P1 VALUE_T TVALUE |[COUNT |PR(P2|T,P1)
o 0 0 5 0.166666667 |
1 0 0 25 0.833333333

0 0 - 40 0.8

1 0 1 10 0.2

0 1 0 3 0.15

1 1 0 17 0.85

0 1 1 60 0.75

1 1 1 20 0.25

0o 2 0 0 #DIV/O!
1 7 0 0 #DIV/O!

0 2 1 0 0 -

1 2 1 5 1
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Fig. 9

GLOBAL PROBABILITIES
P2 VALUE | COUNT | PR(P2)

0 108 | 0.5838
1 77 0.4162 |
Fig. 10

[ PROB. OF ONE PRED. COND. ON TARGET AND SECOND PRED.
P2 VALUE | P1 VALUE 1 T VALUE TCOUNT PR(P2 | T, P1) |

0 0 0 55837838 0.180122058

1 0 0 25.416216 0.819877942

0 0 1 40.583784  0.795760466

1 0 1 10416216  0.204239534
0 1 0 3.5837838 0.170656371 |

1 1 0 17.416216  0.829343629 |

0 1 1 60.583784 0.747947948 |

1 1 1 20.416216 0.252052052

0 > 0 0.5837838 0.583783784 |
R 2 0 04162162  0.416216216
{0 2 1 0.5837838 0.097297297

1 2 1

5.4162162 0.902702703
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Fig. 11

MODEL TABLE SCHEMA
COLUMN NAME | COLUMN TYPE
TREE_NUMBER | NUMBER
DEPTH OF TREE NUMBER

BLOCK_NUM T NUMBER |
PARENT BLOCK NUIVI NUMBER '
TARGET VALUE NUMBER N
PREDICTOR - | VARCHAR2(30)
PREDICTOR_VALUE | NUMBER
PROBABlLITY NUMBER
LOG2 P ~ [NUMBER
CNT - INUMBER

TARGET PROBABILITY | NUMBER
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Fig. 12

NODE CONSOLIDATION
P1 VALUE |P2VALUE |T VALUE

1 1 0
1 2 1
1 3 0
2 1 0
2 2z 1
2 3 O
3 1 1
3 2 1
3 3 1
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Fig. 13

NODE CONSOLID. RESULT |

P1 VALUE | P2 VALUE |T VALUE

1,2 1 0
1,2 2 1 |
1,2 3 0
3 1 1
3 2 1
3 3 1

Fig. 14

NODE CONSOLID. RESULT |

c [ P2 VALUE ! T VALUE 1

1.3 0
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Fig. 15

TRUE
P1IN {12} P1IN {3}

P3 IN {1,3) P3IN {2 P2 IN

il e &




U.S. Patent

0

0
1
]

WEIGHT DEPENDING UPON TARGET VALUE

Dec. 6, 2005 Sheet 11 of 15 US 6,973,459 Bl
Fig. 16
ESTIMATED POSTERIOR COST
P1 VALUE TVALUE PR({T|P1) COST TOTAL COST

0 0.375 1*0.625 |0.625

1 0.625 3*0.375 |1.125

0 0.2 1*0.8 0.8

1 0.8 3%0.2 0.6
Fig. 17

TVALUE COUNT PRIOR WEIGHT

1 0
1

80
120

200

.03 20070.05/80 = 0.125
95 20070.95/120 =1.583333 |
1.0




U.S. Patent Dec. 6, 2005 Sheet 12 of 15 US 6,973,459 Bl

Fig. 18
PROB. OF TARGET COND. ON PRED. AFFECTED BY WEIGHT
P T | COUNT lPR(T\P1) |WEIGHT |ADJ. | ADU.
VALUE | VALUE COUNT | PR (T | P1)
0 0 30 0.375 |0.125 3.75 0.0452262
0 1 50 0.625 1.58333 791665 0.9547738
1 0 20 0.2 0.125 2.5 0.0193549
1 1 80 0.8 1.98333  126.666 0.9806451 |
Fig. 19
PROB. OF PRED. COND. ON TARGET UNAFFECTED BY WEIGHT |
P1 T | COUNT |PRP1T) |WEIGHT [ADJ. |ADJ.
VALUE | VALUE COUNT | PR (P1|T)
0 0 30 0.6 10.125 3 75 06
1 0 20 0.4 0.125 2 5 04
0 1 50 0384615 | 1.98333  79.1665 0.3846154
1 1 80 10615385 | 1:98333  126.666 0.6153846
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NAME -
TREE NUM

DEPTH OF TREE
SEGMENT BUILD TIME NUMBER
FEATURE SCORING_TIME NUMBER
'S TERMINATED NUMBER(2)
IS ACCEPTED | NUMBER(2)
i—Eﬁ_FEATURE_SCORlNG'___'ﬂME J NUMBER

NUMBER

TYPE _4
NUMBER
]
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Fig. 22
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ADAPTIVE BAYES NETWORK DATA
MINING MODELING

CROSS-REFERENCE TO RELATED
APPLICATTONS

The benelit of provisional application 60/379,111, filed
May 10, 2002, under 35 U.S.C. § 119(e), 1s hereby claimed.

FIELD OF THE INVENTION

The present mvention relates to a method, system, and
computer program product for generating an Adaptive Bayes
Network data mining model.

BACKGROUND OF THE INVENTION

Data mining 1s a technique by which hidden patterns may
be found 1n a group of data. True data mining doesn’t just
change the presentation of data, but actually discovers
previously unknown relationships among the data. Data
mining 1s typically implemented as software 1n or in asso-
ciation with database systems. Data mining includes several
major steps. First, data mining models are generated based
on one or more data analysis algorithms. Initially, the models
are “unftrained”, but are “trained” by processing training data
and generating i1nformation that defines the model. The
ogenerated 1nformation 1s then deployed for use 1n data
mining, for example, by providing predictions of future
behavior based on speciiic past behavior.

One application for data mining 1s 1n the analysis of data
collected by companies and other organizations. These enti-
fies are amassing huge databases for a multitude of purposes
including accounting, billing, profiling of customer activi-
fies and relations, manufacturing operations, web-site activ-
ity, and marketing efforts. To enhance corporate competi-
tiveness, 1nterest has focused on the creation of data-
warehouses and the extraction of information from these
warchouses. Purposes for this information include targeting,
marketing promotions 1n a cost-effective manner, improving
the relevance of a web-page to a visiting customer, display-
ing web-advertisements appropriate to the profile of a vis-
iting customer, detecting fraudulent behavior, enhancing
customer service, and streamlining operations.

To be useful to a general business analyst, a data mining,
methodology should require little user mput and statistical
skills. Because the problem and the data are not known 1n
advance to the product designers, the data mining methods
should be able to cope with a large space of potential
problems whose analytic form 1s not known 1n advance
(such methods are termed non-parametric methods). Fur-
thermore the results should be understandable, so that the
non-technical user can evaluate them.

A need arises for a technique by which data mining may
be performed that requires little user mput and statistical
skills, 1s able to cope with a large space of potential
problems whose analytic form 1s not known 1n advance, and
which produces results that are understandable, so that a
non-technical user can evaluate them.

SUMMARY OF THE INVENTION

The present invention 1s a method, system, and computer
program product incorporating Adaptive Bayes Network
(ABN) modeling that provides the capability to perform data
mining, but requires little user 1nput and statistical skills, 1s
able to cope with a large space of potential problems whose
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analytic form 1s not known 1n advance, and which produces
results that are understandable, so that a non-technical user
can evaluate them.

A method of generating an Adaptive Bayes Network data
mining model comprises the steps of receiving a data table
having a plurality of predictor columns and a target column
and comprising a plurality of rows of data, constructing a
plurality of single-predictor models, comprising the steps of
computing a description length of a baseline model based on
unconditional target probabilities among the plurality of
rows determining which predictor columns are correlated to
the target column based on minimum description length,

computing probabilities of at least two target values of the
target column conditioned on at least two predictor values of
at least one correlated predictor column, computing a prob-
ability of at least one correlated predictor column condi-
tioned on at least two target values, ranking each predictor
column by ranking each single-predictor model using mini-
mum description length and selecting a best single predictor
model, performing feature selection based on a minimum of
a specified number of predictors and as a function of a
reduction 1n entropy attributable to the best single predictor
model, constructing a Naive Bayes model using a top-
ranked portion of the plurality of predictor columns, com-
paring a description length of the Naive Bayes model with
a description length of a baseline model, replacing the
baseline model with the Naive Bayes model, if the descrip-
fion length of the Naive Bayes model 1s less than the
description length of the baseline model, extending a plu-
rality of single-predictor models 1n rank order, stepwise, to
multi-predictor features, and testing whether each new fea-
ture should be 1ncluded 1n or should replace a current model
state using minimum description length.

The step of constructing a plurality of single-predictor
models may further comprise the step of binning values
included 1n the predictor columns. The step of ranking each
predictor column by ranking each single-predictor model
using minimum description length may comprise the steps
of generating histograms of the target within each predictor
bin value and obtaining, from the histograms, smoothed
probabilities of target value conditioned on predictor value
estimated as a proportion of each target value within a given
predictor bin value. The step of ranking each predictor
column by ranking each single-predictor model using mini-
mum description length may comprise the step of computing
the description length as a sum of a penalty term, 2log,
(n,+1), where n; is a number of training row instances of an
ith value of a predictor; and a transmission cost, —2log,
(p;)n;;, where p;; is the probability of a jth target value
conditioned on an ith predictor value and n;; 1s a correspond-
ing count. The step of extending a plurality of single-
predictor models to multi-predictor features comprises the
steps of extending a portion of the plurality of single-
predictor models to multi-predictor features, one predictor at
a time as far as mimimum description length or a maximum
depth parameter permits 1n rank order and extending each
model to include a portion of the plurality of multi-predictor
features as far as minimum description length pruning or a
maximum number of network features parameter permits.
The method may further comprise the step of biasing against
selection of predictors with many missing values by using an
encoding reflecting a proportion of potential single-predictor
models attributable to each predictor. The method may
further comprise the step of applying a reduced penalty term
to a product model due to bias inherent in the product
model’s assumptions concerning data in the data table.
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BRIEF DESCRIPTION OF THE DRAWINGS

The details of the present invention, both as to 1ts structure
and operation, can best be understood by referring to the
accompanying drawings, in which like reference numbers
and designations refer to like elements.

FIG. 1 1s an exemplary table of probabilities of target
values conditioned on values of a predictor column.

FIG. 2 1s an exemplary table of probabilities of predictor
column values conditioned on target values.

FIG. 3 1s an exemplary table of global distribution of
target values.

FIG. 4 1s an exemplary table of probabilities of target
values conditioned on values of two predictor columns.

FIG. 5 1s an exemplary table of probabilities of values of
one predictor column conditioned on target values and on
values of a second predictor column.

FIG. 6 1s an exemplary table of probabilities of target
values conditioned on values of a predictor column.

FIG. 7 1s an exemplary table of probabilities of target
values conditioned on values of two predictor columns.

FIG. 8 1s an exemplary table of probabilities of values of
one predictor column conditioned on target values and on
values of a second predictor column.

FIG. 9 1s an exemplary table of global probabilities of
values of a predictor column.

FIG. 10 1s an exemplary table of probabilities of one
predictor column conditioned on target values and on values
of a second predictor column.

FIG. 11 1s an exemplary table schema of a data table
containing a representation of the model metadata.

FIG. 12 1s an exemplary table used 1n node consolidation.

FIG. 13 1s an exemplary table showing results of node
consolidation.

FIG. 14 1s an exemplary table showing results of node
consolidation.

FIG. 15 1s an exemplary decision tree constructed from a
node consolidation result.

FIG. 16 1s an exemplary table of estimated posterior cost.

FIG. 17 1s an exemplary table of weight depending upon
the target value.

FIG. 18 1s an exemplary table of probabilities of target
values conditioned on values of a predictor column affected
by weight.

FIG. 19 1s an exemplary table of probabilities of predictor
values conditioned on values of the target column unaffected
by weight.

FIG. 20 1s an exemplary timings table schema.

FIG. 21 1s an exemplary data flow diagram of a data
mining process, including building and scoring of models
and generation of predictions/recommendations.

FIG. 22 1s an exemplary block diagram of a data mining,
system, 1n which the present invention may be implemented.

DETAILED DESCRIPTION OF THE
INVENTION

The purpose of the Adaptive Bayes Network (ABN)
modeling 1s to provide a fast, scalable non-parametric means
of extracting predictive information from a database with
respect to a user-supplied “target”. ABN provides a means to
extract such mformation 1n the form of human-understand-
able rules and as a decision tree 1n addition to providing the
basis for a graphic representation of discovered relation-
ships. For example, these rules may have a form such as: If
income is greater than $70K and household size is greater
than 3, the probability of owning a late model minivan is
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0.075. It 1s the transparency of the rule representation that 1s
one of the main advantages of ABN compared to other types
supervised learning techniques. The business-user, marketer,
or business analyst can understand the basis of the model’s
predictions and therefore, be comfortable acting on them and
explaining them to others.

ABN can be advantageously applied to a number of
markets. For example, a market of interest 1s bioinformatics.
Many problems in this realm can be cast as predictive
modeling problems, such as finding gene markers for dis-
cases. These problems are often characterized by data that
have many thousands of predictors and very few rows,
possibly less than 100. To handle these statistically difficult
problems, ABN provides internal feature selection and a
parsimonious view of the model complexity. The advantage
of ABN 1n this realm 1s the potential for a parsimonious
solution with human understandable rules.

Advantageously, the rules generated by ABN are an
approximation to the scoring procedure. Each conditionally
independent feature 1s a tree-like structure and for a given
entity being scored, the “tree” has a rule. The entire model,
which can consists of many such trees can then have many
such rules applicable to an individual entity. The actual
scoring procedure combines the features with the global
prior in a Bayes product that 1s not typically comprehensible.
However, as an approximation, one can consider the top m
rules supporting the conclusion drawn by the actual scoring
procedure. m 1s a user parameter, typically small, and the
rules are typically shallow depth 1-4, leading to compre-
hensible supporting evidence for the conclusion drawn by
the model with respect to an individual entity. ABN views
these rules as “detailed rules”. Each of these rules contain a
set of IF . . . THEN conditions as described above, a
probability for each target value and a count of instances
matching the conditions and target value 1n the training data.

In contrast to the “detailed rules”, ABN also produces
aggregate rules. These rules are useful 1n understanding 1n a
coarse way, how ABN makes 1ts class assignments. The
aggregate rules aggregate predictor values that lead to the
same target class assignment. Rather than dilute the more
focused probabilities associated with the detailed rules, the
aggregate rules do not report probabilities or counts, only the
predicted target value.

In addition to transparency, speed and scalability are also
important reasons for using the ABN. The platform for the
expression of tree and other mining algorithms 1s the data-
base. The advantages of this platform are clear:

closeness to the data

the proliferation of the database infrastructure in the

business marketplace

Because the database 1s essentially a live organism 1nside
the business infrastructure, data mining can become part of
a feed back loop, that makes predictions, tracks actions and
responses and adapts the model predictions on the basis of
the actions and responses 1t sees. For such a loop to be
cficient, the algorithms should, where possible, reside
directly 1n the database. One possible means of accomplish-
ing this goal 1s to re-express the base data mining algorithms
in operations that are native to the database. Use of native
operations, 1f effective, will create algorithms that:

ride the database development wave

minimize development time, quality control issues and

maintenance cost.

This point of view favors algorithms that:

create via SQL and its extensions (PL/SQL)

characterizes sets with parameter aggregates

makes efficient use of sets and set operations
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It discourages the use of cursors, and flexible procedural
languages such as “C” that permit arbitrary structures and
operations. Alternative approaches include more standard
data mining algorithms that use:

cursors, user-created structures, and C-like table func-

tions, oOfr,

using a hybrid approach of database and non-database

operations, or

dumping the data into flat files or memory and thereafter

using non-database operations

Ultimately, questions of performance, of accuracy, of
code simplicity and maintain-ability and the evolution of the
database will determine the better approach. The approach
described 1n this functional specification 1s a novel re-

expression of the tree functionality 1n native SQL and
PL/SQL.

Target Types

The target 1s a database field that 1s to be predicted by the
Adaptive Bayes Network. Tree, like other Classification
function algorithms, predicts binary or multi-class classifi-
cation. Binary targets are targets that take on only two
values, e.g., response/non-response to a promotion. Multi-
class targets have more than two distinct values, €.g., prod-
uct purchased. Note that multi-class target values are not
assumed to exist 1n an ordered relation with each other, ¢.g.
hair brush 1s not greater than comb.

For binary targets and multi-class targets, each partition
predicts its majority (or plurality) class, and the confidence
or estimate of probability associated with each class.

Tree 1s Inefficient in SQL

The standard tree algorithms are metficient in SQL. The
most expensive part of the decision tree build operation 1is
the extension of the tree by splitting a node into two (or
more) child nodes. From the standpoint of sets and set
operations, the usual tree build methods are meflicient. At
cach recursive step, for each node on the fringe, we compute
target aggregates (counts, means, and variances). The aggre-
gates are 1n turn used to compute the decrease function
values that are used to pick the best splitter. These compu-
tations maybe viewed as set operations on a number of sets
approximately equal to the sum of the number of unique
values of each predictor. This 1s a large number of sets and
the associated table of aggregates can be very large and
expensive to compute.

As expressed 1n SQL, this can involve the search for best
split point for a given candidate predictor 1s represented by
a self-join. Multiple nodes can be handled within the same
query, 1f an external node table 1s maintained and 1s included
in the join using a “group by node” clause. The number of
self-joins 1s one per predictor per level. These seli-joins
obtain cumulative target statistics for each candidate pre-
dictor and potential split point (unique predictor value). The
self-joins can be expensive. After each level the node table
must be updated.

Using the Bayes Inverted Form

As an alternative, consider the Bayes inversion of the
problem. The Bayes formula re-expresses the probability of
the target conditioned on the predictors in terms of the
probability of the predictors conditioned on the target. In
simplest form, with a single predictor we have the following:

Pr(T'=tlPi=p)=Pr(T=t)*Pr(Pi=plT=t)/Pr(Pi=p)
where:

T=target
t=a specific target value
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Pi=predictor 1
p=a specific value of P1.

The Pr (T=t) 1s called the prior. It is the unconditional, i.e.,
global probability that the target takes on value ‘t’. This 1s
an aggregate of the complete data. The second factor, Pr
(Pi=plT=t), 1s the “conditional probability” that predictor
‘P1° takes on the value ‘p” given that the target takes on value
‘t’. Conditioning on the Target 1s equivalent to partitioning
the complete data on the target. The conditional probability
1s the determined from histograms of predictor P1 condi-
tioned on the target. A method for computing all histograms
for each predictor, P1, P2, . . ., Pn at the same time in SQL
is described below (Using Transactional Format). Thus, the
complete set of aggregates required for choosing a splitter
can be done efficiently. The Minimum Description Length
(MDL) principle is used to evaluate and rank the alternative
splits. In accordance with the MDL principle, the target field
data will be “transmitted” from a sender to a receiver. The
target data will be expressed as a model and its probability
estimates are used as an ideal encoding of the data. The
length of the theory 1s the bit length required to communi-
cate the model using the “ideal” encoding. Details of the
procedure are described 1n the design document.

The denominator, Pr (Pi=p), is ignored because it is a
constant for all target values. Ultimately, the goal 1s to
determine the probability of each of the target values con-
ditioned on some predictor value. The probability of the
predictor value 1s 1ignored, because presumably 1t has already
occurred and now we seek the relative likelihood of each
target value. Thus, the above equation 1s typically written as

L(T=0Pi=p)~Pr(T=0)*Pr{Pi=p/T=1)
where the ‘~’ means proportional to and the result 1s a
‘likelihood’ rather than a probability. The probability 1s later

extracted by normalizing each likelihood by the sum of the
likelihoods:

Pr(T=1Pi=p)=L(T=1\Pi=p)/Z,L(T=tPj=p)

With more than one predictor, the Bayes formula 1s extended
as follows:

Pr(T=tlPi=p, Pj=q)~Pr(T=t)*Pr(Pi=plT=1)*
Pr(Pj=q \T=t, Pi=p)

To extend the tree, we already have the first two factors.
The third 1s obtained by partitioning both on the target and
the previously chosen best split. The required statistics are
histograms for each predictor for each partition. The same
method for computing all histograms for each predictor, P1,
P2, ..., Pn at the same time 1n SQL referenced above applies
at this next recursive step. Thus, again the complete set of
aggregates required for choosing a splitter can be done
ciiiciently.

In general, the Bayes formula 1s extended as follows:

PHT=1Pil=pil, P2=pi2, . . . , Pik=pik)~

Pr(T=1)*Pr(Pil=pilIT=0)*Pr(Pi2=pi2|T=t,
Pil=pil)* . .. *

PH(Pik=pikiT=t,Pil=pil, . . . Pik-1=pik-1)

For the general recursive step, we partition on all ancestor
splits and compute the required histograms 1n a single pass.
MDL 1s used to select best splitter at each step and to
determine when to terminate. The recursive steps may be
expressed 1 PL/SQL as a while loop.

Recall however, that one requirement i1s that accuracy
must be at least as good as Naive Bayes. Naive Bayes
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models use all of the predictors. The greedy method
described above may exclude predictors that are 1n fact
informative. The algorithm 1s greedy because 1t chooses a
single best split to extend the tree at any one 1teration. How
can we ensure that this algorithm will typically be at least as

good as Naive Bayes? The simplest way 1s to first build a
Naive Bayes Model (NB). If it is better than the baseline

model (the global prior) as measured by MDL, then the NB
becomes the new baseline. After the first feature 1s com-
pletely constructed, 1t 1s tested against the NB baseline using,
MDVL. If the first feature i1s not better than the NB model, the
algorithm terminates returning the NB model.

If the first feature 1s superior to the NB model, the array
of seed trees can be extended one at a time 1n rank order
using an outer PL/SQL loop. Each predictor will appear at
most once, 1n at most one tree.

From the perspective of the Bayes formula we combine
these trees as

Pr(T=tPi,=pi, Pi,=pi,, ..., Pi, =pi,)~

PHT=0)*Pr{(Pi,=pi,T=0)*Pr(Pi,=pi,T=t
Pij=pi)* ... *

Pr(Pi,=pi,|T=t, Pi,=pi,, ... Pi, =pi, |)*

Pr(Pj,=pj,\ T=1)*"PH{Pj,=pi,lT=t, Pj,=Fj)* ... "

Pr(Pj=Pj/T=t, Pj,=Pj,, . .. PJi1=pix1)" - ..

Pr(Pz,=pz,|[T=)*Pr(Pz,=pi,|T=t, Pzy=pz,)* ... *

Pr(Pz,=Pz,|T=t, Pz,=pz,, ... Pz 1=pz; 1)

This model form 1s known as a conditional independence
model, where the trees are indexed as 1,7 ... z. The trees are
conditionally independent of each other given the target. It
1s a generalization of Naive Bayes that may be viewed as an
Adaptive Bayes Network. It 1s adaptive because the network
structure 1s discovered by the algorithm using the data rather
than, as 1s typical, user-specified.

But what 1s the quality of the conditional independence
model after combining the feature tree factors as described
above? How many feature trees should be included? Fea-
tures are pruned from the array of trees using a stepwise
MDL feature selection. Details of the procedure are
described 1n the below. Error rates can be measured using
leave-one-out cross-validation or, 1f there 1s sutlicient data,
test set validation described below (Measuring Errors).

As with Naive Bayes, the data must be binned. Binning 1s
the process of grouping values, assigning each group a bin
number and encoding the values with that bin number.
Binning makes all data columns mto multi-valued categori-
cal. It enables the algorithm to predict both numeric and
categorical target columns. It also makes histogram compu-
tation tractable. The splits described here are full fan-outs on
the binned values of the predictors. Where are the simple
rules that make tree an appealing, human interpretable
model? A method for extracting rules from the Bayes
Network 1s described below (Extracting Rules from the
Bayes Network).

To return to the original issue, the Bayes Network com-
putes aggregates 1n a single pass on partitioned set of data.
Thus, the number of passes per tree 1s just the depth of the
tree. This 1s far fewer set operations than would be required
to build a standard tree. The split 1s a total fan-out on the
small set of unique predictor values, so no computation 1s
done to determine a best split. Extracting the rules 1s done
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after the array of trees 1s built. The determination of split
assignment for this human readable form 1s done from the
agoregates 1n the rules table. It 1s therefore very fast.
Scoring the Bayes Network involves assigning each row
to the appropriate partitions to retrieve the Bayes probabili-
ties. These assignments can be done 1n a loop level-by-level
across all trees with a single query. The number of associated
scans 1S the max depth of any feature tree in the array.

Features (v. Attributes)

As can be seen 1n the previous section, features are
tree-like multi-attribute structures. From the standpoint of
the network, features are conditionally independent compo-
nents. Features contain at least one attribute (the root
attribute). Conditional probabilities are computed for each
value of the root predictor. A two-attribute feature will have,
in addition to the root predictor conditional probabilities,
computed conditional probabilities for each combination of
values of the root and the depth 2 predictor. I.e., 1f a root
predictor, X, has 1 values and the depth 2 predictor, v, has j
values, a conditional probability 1s computed for each com-
bination of values {x=a, y=bl ael, ..., 1iand bel, ..., ]j}.
Similarly, a depth 3 predictor, z, would have additional
assoclated conditional probability computed for each com-
bination of values {x=a, y=b, z=clael, . . .,1and bel, . . .,
jand cel, . .., k}.

Using Transactional Format

Transactional format 1s a table expression of data, which
consists of an ID, a name column and a value column. From
a data mining perspective this data has a logical represen-
tation as a set of rows. Each row consists of set of columns.
For supervised models, there 1s a special column called the
target. The other columns are predictors. The model con-
structed from this logical representation uses the predictors
to predict the target value. In the mapping from logical
representation to transaction format, the ID 1s a row 1d, the
name 1s the name of a logical column: predictor or target, the
value 1s the value of the column at row specified by ID.

The advantages of transactional format are twofold. First,
histograms can be obtained directly via a group by clause:
create table partition_ cnts as:
select /*+ PARALLEL

training_ table) */
partition_ num, target_ value, ANAME, VALUE, count(*)

cnt

from training table c, partitions p

where p.tid=c.tid

oroup by partition_ num,
VALUE;

USE_HASH(partitions

target_ value, ANAME,

In this query we need only keep track of the immediate
ancestor  partitioning, which 15 represented by
partition_ num and target_ value. The histograms are com-
puted directly. In addition, the number of columns that can
be represented 1s not limited.

Requirements

Adaptive Bayes Network 1s a predictive data mining
model. Its general requirements include the ability to build,
test, evaluate, apply, display and persist a model and its
related objects. Adaptive Bayes Network 1s a supervised
learning module. Specific additional functionality required
for Adaptive Bayes Network include:

a vector of target prior probabilities to account for dis-
crepancies, 1f any, between the input data used for
training and the population from which the training
data were drawn
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a cost matrix, used to specily the relative importance to
the user of the various categories of prediction errors,
where an error category consists of a specific predicted
target class and an actual target class

There are also build termination criteria, including:

Maximum Network Feature Depth—Network Features
arec like 1ndividual decision trees. This parameter
restricts the depth of any individual Network Feature 1n
the model. At each depth for an individual Network
Feature there 1s only one predictor. The required num-
ber of scans 1s equal to the sum of the depths of all
constructed features. So the computational cost of
multiple deep feature builds 1s high. The range for this
parameter consists of the positive integers.

Maximum Number Of Network Features—the maximum
number of seed features extended can provide a sub-
stantial performance 1mprovement, especially i the
instance of wide training tables. Note that the seed
features are extended 1n rank order, and, 1n addition, the
stepwise selection procedure proceeds 1n ranked seed
features order. During stepwise selection, subsequent
features must provide a statistical boost (as measured
by MDL) relative to the current state of the model. Thus
the likelihood of substantial benefit from extending
later features declines rapidly.

Size of Naive Bayes baseline model: This parameter
controls the size of the Naive Bayes Model constructed
in the first step of the model build.

Maximum Consecutive Pruned Network Features—the
maximum number of consecutive pruned features
before halting the stepwise selection process. Negative
values are used to indicate that only the Naive Bayes
model and a single feature are constructed. If the Naive
Bayes model 1s best, then 1t 1s selected. Otherwise, all
as yet untested features are pruned from the {final
feature tree array.

Maximum Build Time—the maximum build time (min-
utes) parameter allows the user to build quick, possibly
less accurate models for immediate use or simply to get
a sense of how long 1t will take to build a model with
a given set of data. To accomplish this, the algorithm
divides the build into milestones (model states) repre-
senting complete functional models (see ABNModel-
BuildState for details). The algorithm completes at
least a single milestone and then projects whether 1t can
reach the next one within the user specified maximum
build time. This decision is revisited at each milestone
achieved until either the model build 1s complete or the
algorithm determines i1t cannot reach the next milestone
within the user-specified time limit. The user has access
to the statistics produced by the time estimation pro-
cedure.

extracting the model rules. The rules may be extracted in
a standard Decision Tree rules format: predictor-opera-
tor-value list. The rules are extracted as an array of
possibly shallow trees.

extracting the Bayesian Network. The network consists of
an array of conditionally independent network features.
The Network Features are products of conditional
probability expressions. The Conditional Probability
Expressions contain a Consequent, an Antecedent, a
count and a probability. Each Adaptive Bayes Network
contains a special Network Feature, termed the Target
Prior. The Target Prior is the global (unconditional)
probability of the various target values. Extending the
definition of a conditional probability to be a probabil-
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ity conditioned on zero or more conditions, the Target
Prior can be viewed as a conditional probability with
zero conditions. Thus, the Target Prior 1s represented as
a single Conditional Probability Expression containing,
a Consequent with no antecedent attributes. The Ante-
cedent of the Target Prior 1s empty.

Adaptive Bayes Network’s additional mining settings
allow the user to communicate to the model build process
sampling characteristics of the training data (prior probabili-
ties), the relative importance of the various target values
(cost matrix) and to control build performance and trade-off
build time v. accuracy. Model rules extensions are to enable
the user to view and make sense of the model.

Functionality

This section explains in more detail the Adaptive Bayes
Network-specific functional requirements mentioned above
and their use.

Cost Matrix

The user may specily cost matrices. From the user view-
point 1t may be that not all misclassifications are equal. In a
medical problem, predicting no reaction, when death occurs
1s a much more serious error, than predicting a mild reaction
when no reaction occurs. Or, 1n a marketing application that
1s intended to promote sale of a product, given the cost of the
promotion and the potential revenue from a sale, 1t may be
10 times worse to misclassity a potential positive respondent
than to misclassily a non-respondent. A NULL cost matrix
indicates that all misclassifications are to be counted as
cequally important. The cost matrix 1s used by the apply
operation to produce the “minimum cost” prediction and by
the build operation in the construction of the aggregate
decision tree rules.

Priors

Class priors are appropriate to classification targets only.
Class priors are the prior probabilities assigned to each target
class. They act as a weight assigned to each entity based on
the value of the target. The reason for making use of this
feature 1s to overcome a known bias 1 the sampling pro-
cedure used to collect the data presented to the model.
Suppose there are two target classes, responders and non-
responders. Suppose that responders make up only 1% ot
population. For reasons of cost, convenience or because of
the rarity of the responders, the data might be collected such
that it consists of 50% responders and 50% non-responders.
I.e., the responder population has been over-sampled. To
allow the model to correct for this condition, the user may
specily a priors vector. As a convenience, when no known
sampling bias exists, the user may specily the priors as
NULL, mndicating to the algorithm that the priors are to be
constructed internally from the training table data.

Extracting the Model Rules

The rules and the Bayes Network are useful for assisting,
human comprehension of the model findings. In standard
decision, tree format, the predicate rules can be extracted
from each of the extended features. The rules come 1n two
flavors:

1. detailed rules:
2. aggregate rules:
as described above.

The Bayes Network has become a popular statistical
prediction tool. Graphical representation of the network can
also help human comprehension of the model findings.
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Build Termination Criteria

The build process includes a step that finds an array of
sced features. These are traiming data columns that are
statistically correlated with the target. In a wide training
table, with many columns, many seed features may be
found. The statistical procedure ranks the seed features with
respect to their statistical correlation. Subsequent steps
extend each seed feature one at a time 1n rank order. Each
time a seed feature 1s extended, 1t involves a scan of the
table.

To control the length of time it takes for the build, there
are three user parameters: maximum tree depth, maximum
number of seed features extended, and maximum build time.

For deep data sets (many rows or transactions), the
maximum tree depth setting will limit the number of scans
per feature extended.

Limiting the number of seed features that are extended via
the maximum number of seed features extended can provide
a substantial performance improvement, especially 1n the
instance of wide training tables. Note that the seed features
are extended 1n rank order, and, in addition, the stepwise
selection procedure proceeds in ranked seed features order.
During stepwise selection, subsequent features must provide
a statistical boost (as measured by MDL) relative to the
current state of the model. Thus the likelihood of substantial
benelit from extending later features declines rapidly.

The maximum build time allows the user to build quick,
possibly less accurate models for immediate use. To accom-
plish this, the algorithm divides the build into milestones
(model states) representing complete functional models:

Naive Bayes Model: the model consists of a subset of
(single-predictor) features that individually pass MDL
correlation criteria. No MDL pruning has occurred with
respect to the joint model.

Single partially-complete MDL-pruned feature: the model
consists of a single feature of at least depth 2 (2
predictors) but the attempts to extend this feature have
not terminated

Complete single feature: a single feature has been built to
termination

Multiple feature model: multiple features have been tested
for inclusion in the model, MDL pruning has deter-
mined whether the model actually has 1 or more
features. The model may have terminated either
because there 1s 1nsufficient time to test an additional
feature or because the number of consecutive features
failing the stepwise selection criteria exceeded the
maximum allowed.

The algorithm outputs its current model state and statistics
that provide an estimate of how long 1t would take for the
model to build (and prune) a feature. Future version of ABN
will include a continueBuild operation that will enable both
incremental improvement of the current model based on a
static set of training data and incremental learning based on
dynamic training data.

Stepwise Selection Termination Criteria

The stepwise selection procedure 1s used to prune features
that do not contribute to the statistical accuracy of the target
predictions. However, even with restrictions on the number
of features extended and the depth of trees, this stepwise
selection procedure can be expensive. The features are
ranked statistically. The stepwise procedure adds the fea-
tures to the model one at a time, 1n rank order. The cost to
enter a new feature into the model rapidly goes up as
features are added. The barrier to entry i1s greater and the
likelihood less as the process continues. Hence, to avoid
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wasting expensive computation, the stepwise selection pro-
cedure 1s terminated when a number of consecutive features
have failed the stepwise selection test. All features of lower
rank are then pruned along with any other features that have
failed stepwise model selection criteria. The algorithm also
includes a test to see whether a new feature should replace
the complete current model state, since the greedy procedure
makes this a possibility. This feature of the algorithm when
combined (in the future) with incremental learning will
enable the model to be adaptive to changes in input. The
model will then be able to both modily the parameter
estimates assoclated with its current structure and abandon
its current structure for one better adapted to the current
input.

ABN Design

ABN Description
This section describes the implementation of the PL/SQL
build and apply operations.

Build Operation

The build operation constructs a generalized conditional
independence model for a description of this model form. It
proceeds by first using a statistical procedure, Minimum
Description Length (MDL), to find which predictors are
correlated to the target column (see Using MDL to Construct
Conditionally Independent Components). If the algorithm
stopped after finding the correlated predictors, and used the
selected predictors 1n a Bayes model, the model so con-
structed would be a Naive Bayes model with embedded
feature selection.

Note that the predictors are binned. The statistical proce-
dure compares the histograms of the target within predictor
bin value to the global target. These within-bin histograms
represent an array ol one-variable predictive models. The
statistical procedure 1s capable of model comparison for
predicting the target. Hence, the result of the MDL compu-
tation 1s to rank the predictors.

For purposes of the MDL computation, from the histo-
grams, the probabilities of target value (T) conditioned on
predictor value (P1) are obtained. These probabilities are
estimated as the proportions of each target value within a
grven predictor bin value, for example, as shown 1 FIG. 1.
The notation “Pr (TIP1)” is read the probability that the
target value =<listed target value> on condition that the
predictor value =<listed predictor value>. As shown, prob-
abilities that sum to 1 are grouped.

The same set of counts 1s used to compute the probability
of the predictor conditioned on the target value, the Bayes
inverted form, which 1s required for the final model. Thus,
rearranging FIG. 1 yields FIG. 2. The notation “Pr (P1IT)”
1s read the probability that the predictor value =<listed
predictor value> on condition that the target value =<listed
target value>. Note that the Target has a global distribution,
as shown i FIG. 3.

The corresponding Bayes model 1s:
Pr(NP1)~Pr(T)*Pr(P1IT)
As an example computation:

PHT=11P1=1)=PHT=1)*Pr(P1=1T=1)/(P+T=1)*
Pr(P1=1IT=1)+P+(T=0)*Pr(P1=1IT=0)=
0.722222*0.615385/
(0.722222*0.615385+0.277778*0.4)=0.8

Note that in this simple (no conditional independence
assumption) case the Bayes computation is just another
method of computing the probabilities (using the values in
Tables 1b and 1c¢ to compute the values in Table 1a). The real
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utility of the method 1s only apparent when computing in
higch dimensional spaces. In such spaces, the data become
sparse and histograms cannot be constructed for all multi-
dimensional cells, 1.€., 1t 1s not possible to directly estimate
Pr(T IP) where P is a vector. The conditional independence
assumption permits the computation of probabilities where
the data 1s sparse and histograms cannot be constructed.
E.g., suppose there are two conditionally independent com-
ponents:

Pr(P1IT) and Pr(P3IT, P2)

then under conditional independence, the Bayes Model
would be:

PH(T \P1, P2, P3)~P(T)*P(PLIT)*P(P2T)*P(P3P2,T)

The Search for the Best Model

ABN constructs and evaluates a series of candidate mod-
els. As a preliminary step, each predictor 1s used as a simple
single-predictor model. MDL 1s used to rank these models
and, implicitly, the predictors. Then a Naive Bayes Model
(NB) is constructed using the top K predictors according to
the ranked predictor list. K 1s a user-parameter: Maximum
Number Of Network Features. If this model 1s better, as
measured by MDL, than the global prior, then 1t becomes the
new baseline. The size of the NB model is restricted to
prevent instability 1 the probability estimates 1n the face of
large numbers of predictors, many of which may be uncor-
related to the target.

The next step 1s to extend the best one-variable model, if
possible to a two-variable model. For this, target (T) histo-
grams are constructed for each existing combination of
predictor values. In this next iteration, MDL 1s used to
compare the new baseline model, P1 only, shown in FIG. 1,
with a more complex model, P1 and P2, shown in FIG. 4.
The Bayes probabilities associated with this more complex

model are computed from the same set of counts and are
displayed FIG. 5.

Subsequent steps attempt to extend the best two-variable
model until termination where the baseline model has a
smaller description length than any candidate extensions. At
this point a conditionally independent component has been
constructed. The predictors that are part of this component
are excluded from consideration as one-variable models and
as predictors within other components. The algorithm then
attempts to extend the next best one-variable model. After
this process has terminated, either because of a user setting
limiting the number of attempted extension or because there
are no more one-variable models to extend, the complete
conditional independence model 1s pruned using MDL (see
section Pruning Using MDL).

Zero Count Cells

Zero counts are common 1n the multi-dimensional histo-
orams that are constructed by this algorithm. There are
practical SQL 1ssues concerning dealing with the zero counts
and 1ssues with respect to construction of the Bayes prob-
abilities. This 1s 1llustrated consider in FIGS. 6-8. For
example, in FIG. 6, the notation “Pr(TIP1)” is read the
probability that the target value=<listed target value> on
condition that the predictor value=<listed predictor value>.

Note that 1if SQL 1s used to simply counts the co-
occurrences via joins, then the zero cells will not be repre-
sented (for example, the 5th row of FIG. 6). In addition, logs
of probabilities are used, both for reasons of scaling, and
because extended product computations are not supported

by SQL. The log of 0 1s not defined.
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There are two apparent problems for the Bayes probabili-
ties, shown 1n FIG. 8. First, the conditional probabilities
Pr(P2=0P1=2, T=0) and Pr(P2=1 [P1=2, T=0) are undefined.
Second, the conditional probabilities Pr(P2=0P1=2, T=1)
and Pr(P2=1/P1=2, T=1) are unrealistic. Adding the global
probabilities for P2, as shown in FIG. 9, to the counts, as
shown 1n FIG. 10, can ameliorate both problems.

Note that the effect 1s to shrink the conditional probabili-
ties back to the prior for P2. In the special case where P2=0
and P1=2, there are no instances of either T=0 or T=1. The
corresponding conditional probabilities are equal. There 1s
no information about the target when P2=0 and P1=2 and the
Bayes probabilities reflect that.

Pr(T=0|Pl=2P2=0)=P(T=0)«PPI1=2|T=0)x

0.583783784/(P(T = 0)« P(P1 =2|T = 0)
0.583783784+ P(T = )« P(P1 =2 |T = 0)
0.583783784)

= P(T=0)+P(PI=2|T=0/(P(T=0)x
PPI-2|T=0)+P(T=1)x

P(PI=2|T =0))

These adjustments to the counts are simply used to
compute the probabilities. The original counts are main-
tained for other computations. The conditional probabilities
are realistic with respect to the information i1n the counts.
The probabilities are no longer 0, thus the log function is

defined.

Pruning And Termination Conditions

MDL has been used to construct conditionally indepen-
dent components which, individually, correlate with the
target. The details are described in the section Using MDL
below. This section answer the following questions. How
does the conglomerate Bayes Model perform? Do additional
components increase or decrease predictive accuracy? The
task of the pruning phase 1s to select the best subset model.

Note that the seed features are ranked. Also note that the
first seed feature 1s more strongly correlated than all the
other seed features. Furthermore, 1ts extensions are better
than it is. With a single feature (no conditional independence
components) the Bayes computation is a straight-forward
probability computation. If the first feature 1s better than the
Naive Bayes model then it becomes the new baseline.
Otherwise the build process terminates and the Naive Bayes
model 1s returned.

The algorithm, 1f not terminated, then extends the remain-
ing seceds one at a time 1n rank order. Each feature 1is
extended as far as MDL pruning or the maximum depth
parameter permits (like the first feature). Then MDL is used
to test whether the new feature should augment the current
model or replace the current model altogether. If at any point
the number of consecutively rejected seed features 1s equal
to the (user-selectable) maximum allowed, then the build
process terminates. Other termination conditions include a
limit on the number of accepted (possibly extended) fea-
tures, having insuflicient time to complete the next build
milestone and exhausting the list of available seed features
during the search. Rejected seed features are deleted from
the model.

When a user-selectable number of components have been
rejected, all lower ranked features are deleted from the
model and the pruning process terminates.
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Usmg MDL

The minimum description length (MDL) principle states
that the most likely model 1s the model that minimizes the
sum of the length of the theory and the length of the data
encoded using the theory for the data. Length 1s measured in
bits to transmit the target value. The approach used here 1s
an extension of a two-stage encoding method.

Transmitting the Targets

The simplest such model transmits a target value by first
transmitting the target probability and then coding the target
in accordance with the probability distribution. The most
efficient encoding requires —log2(p) bits (Shannon’s Noise-
less Coding Theorem). The average cost to transmit a target
is its entropy =—p* log2(p). The total cost of transmission is
-N*Zp* log2(p), where N is the number of targets to be
transmitted.

Transmitting the Model: the Size of the Candidate Model Set

One way to transmit the model 1s to:
construct a code book consisting of the model candidates
which both sender and receiver have available

assign each candidate model a number

transmit the number of the model to the receiver

Suppose the target 1s binary. If there are N target values
to be transmitted, then there are N+1 possible values of the
observed p=k/N, ke{0,1, . . . , N}. Thus, there are N+1

possible models distinguishable in data (whatever the algo-
rithm used to construct such models). Thus, assuming
apriorl, that all possible observed k are equally likely,
transmitting the model requires log2(N+1) bits.

The extension to multiclass targets 1s a standard combi-
natorics problem: the number of combinations of a given
length (N) using elements of a given set (m target values)
allowing repetition (repeated target values) and missing
elements (0 instances of one or more specific target values).
The solution to this combinatorics problems is

(N+m-DY{(m=-1HN)! ),
which 1n the binary case i1s:

(N+2-D{ - DIND =N+ D) { 1N =N+1.

Thus, 1 general transmitting the model requires:

log2((N+m-1)!/{ (m-1)!(N)! }) bits.

For a binned predictor, with j unique values, we have j
submodels. Transmitting the j submodels requires:

2 log2((NA+m-D/{(m-1)1(N,)!} bits.

For a multidimensional feature with n predictors, with 7
unique values each, we have . 1. submodels, one for each of
the multidimensional cells. Transmitting the . . submodels
requires:

2 e J082((N+m=1)1/{ (m-1)I(N})! }) bits,
where ht—:nj 1indexes the multidimensional cells.

Transmitting the Model: Specitying the Model Predictors
The model contains 1 or more predictors. To transmit the
model, the predictors used by the model must be transmitted.
The predictors are encoded using an 1deal encoding associ-
ated with their prior probability of inclusion in the model.
Note that for a fixed N, the larger the number of partitions
(bins or multidimensional cells), the greater is the size of the
candidate model set. Hence all predictors are not equally
likely aprior1. Predictors with fewer bins, lower entropy or
more missing values are less likely apriori, because these
predictors have smaller associated candidate model sets. The
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prior probability, p,, of each candidate predictor, k, 1s
computed as the size of 1ts candidate model set divided by
the sum of the sizes of the candidate model sets of all
predictors. Transmitting candidate predictor k requires —log
p;. Less likely predictors are penalized. Note, this approach
has the benefit of penalizing predictors with a large percent-
age of missing values.

Some datasets, such as biomnformatics problems, may
have data which is very wide (many predictors) and shallow
(few rows). To prevent the cost associated with specifying
model predictors from swamping the benelits, the algorithm
does 1nternal predictor selection. The top m ranked predic-
tors (see Using MDL to Rank the Predictors below) are
selected for consideration by the model build, the others are
ignored. The predictor “encodings”, —log p,, are updated to
reflect the selected predictors. A user parameter, specifies the
value of m.

However, 1n extreme circumstances, such as the bioinfor-
matics problems described above, the value of m can be
over-ridden by the algorithm. The algorithm computes the
difference between the global model target entropy and the
target entropy assoclated with the best single predictor
model. It considers this difference as a crude estimate of
model potential benefit, B. It sets a threshold on the maxi-
mum number of allowed predictors such that the number of
bits associated with specifying a predictor 1s a fraction, f, of
the model potential benefit. The algorithm then the model
potential benefit 1n terms of a maximum number of allowed
predictors, n;:

fB=-log2(1/n,).

It n,>m then the algorithm sets m=n,,.

Using MDL to Rank the Predictors

The description length 1s computed for each predictor as
a single predictor model. The description length 1s the sum
of the bit cost to transmit the targets, the candidate model
(size of the candidate model set) and the predictor name,
-log p,, (see Transmitting the Model: Specifying the Model
Predictors above). The sum of the within-bin entropies is
used to compute the bit cost to transmit the targets:

predictor k’s description length=-3Np,.* log2(p;,)+Z,
log2((NAm=1)!/ {(m-1)}{(N)! }-log p;

The predictors are then ranked by description length from
smallest to largest.

Using MDL to Construct Conditionally Independent Fea-
tures

Features are constructed by attempting to extend single
predictor, seed features in rank order. For a predictor to be
a seed feature, 1t must have a description length smaller than
the baseline model. The baseline 1s the global distribution of
the target. The baseline description length 1s the sum of the
bit cost to transmit the targets using the global distribution
and the candidate model.

Baseline  Description  Length=-X log2(p)+log?2

(N+m=-1/{ (m=-1)! (N)!}

A seed feature’s description length becomes the baseline
for the full feature: (see Using MDL to Rank the Predictors
above). The algorithm searches through each candidate
extension predictor looking for the two-predictor feature
with the smallest description length. The candidate exten-
sion has a description length consisting of the sum of the
target entropies in its multidimensional cells (transmission
of targets), the log2 of the sum of the cardinalities of the
candidate model sets in its multidimensional cells (trans-
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mission of model) and the cost to transmit the name of the
candidate predictors (seed and current extension).

If no candidate extension i1s smaller than the current
baseline, then the extension process terminates and a new
seed may be considered. Otherwise, the smallest description
length candidate becomes the new feature baseline.

Using MDL to Evaluate the Product of Conditionally Inde-
pendent Features

The MDL components of a conditional independence
product model include:

transmitting the targets
transmitting the model

transmitting the predictors

transmitting the feature boundaries (which predictors are
in which feature)

Transmitting the targets 1s again done via an “ideal”
encoding. The model 1s used to score a sample of the training
records. Sampling 1s used for performance reasons, since the
algorithm may be forced to score the training data multiple
times. The cost to transmit a target 1s —log2(p), where p is the
model predicted probability of the actual target value. Note
that poor predictions have high transmission costs. Predic-
tions with probabilities close to zero have costs approaching
infinity and predictions close to 1.0 have 0 costs. It 1s
reasonable to assume that the precision of the probability
estimates cannot exceed 1/sample size. Thus, using a Lapla-
cian smoothing of the probabilities the minimum and maxi-
mum values of p are forced to:

Poin=1/(sample size+number of target values —1)

Prax= 1 ~Piin

respectively.

Transmitting the predictors 1s done using the encoding
scheme described 1n the section, Transmitting the Model:
Specifying the Model Predictors, above. However, for the
Naive Bayes Model, there 1s no need to transmit a predictor
list, since all predictors are included in the model (after what
is taken to be an external feature selection step).

Transmission of the feature boundaries 1s accomplished as
follows. The predictors are specified 1n feature and depth
order, with 2 additional stop bits between successive fea-
tures. However, for the Naive Bayes Model, there 1s no need
to transmit feature boundaries, since boundaries exist
between all.

Transmitting the Model

In evaluating the complexity of the candidate set associ-
ated with a model that 1s the product of conditionally
independent features, it 1s necessary to move away from the
“communication” MDL paradigm. The communication
paradigm vastly overrates the cost of this type of model,
which as the number of elements 1 product increases, goes
rapidly to infinity. A good model, whose model transmission
cost 1s highly overrated may be de-selected during the model
selection procedure. Instead considerations of the 1nforma-
fion 1n the model set are used to place limits on the
complexity of this type of model (paper to follow with
justifications). The MDL principle minimizes the sum of the
information in the model concerning the order and values of
the target and transmission cost using the model. From this
perspective, a conditionally mndependent product model has
as much information with respect to the ordering and values
of the target as 1its largest single component. The argument
for the multiclass case 1s similar.
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Apply

Each conditionally independent feature has conditional
probability predictions for each target value indexed by a
multi-dimensional predictor vector. The number of dimen-
sions varies by depth. At the root there 1s only one vector
component. At depth 2 there are 2 vector components, etc.
Scoring 1s done via a loop over component depth. The model
representation needs to be structured to support scoring.
Note that for each component at each depth all that is
required to score a transaction 1s to match a condition on the
predictor at that depth for that component AND to know to
which immediate parent the transaction belongs. The parent,
constructed 1n a similar manner, encodes all the ancestral
information. Recursion 1s implicit in the breadth-wise loop.
For this purpose, the notion of a block and a parent block
number are used.

The block is a numeric (linearization) encoding of the
multi-dimensional vector. The parent block 1s the same
encoding applied to the parent. A sequence 1s used for
creating the encoding. To 1llustrate, suppose I have a single
component with two predictors, each with three values. Note
that block 1 1s reserved for the global target distribution. At
depth 1, the block numbers might range from 2—4, each with
a parent block of 1. At depth 2, we have 3 possible predictor
values for each of three possible parents. Thus there are 9
required block numbers at depth 2, ranging from 5-13.
Blocks 5—7 would have parent block 2, blocks 8—10 would
have parent block 3 and blocks 11-13 would have parent
block 4.

The columns m the model table include those shown 1n
FIG. 11. The LOG2__P column 1s a computational conve-
nience, to avold on-the-fly transformations. Transfer to the
log scale avoids underflow and transforms product compu-
tations mto sums. The TARGET__PROBABILITY column
1s kept as a convenience for the construction of the rules
tables.

To apply, the apply table 1s joined to the model table 1n a
loop over depth. At depth 1, the join matches predictor and
predictor value to item column name and 1tem column value
in the apply table. The result 1s 1nserted into an assignment
table. The assignment table contains the transaction id (from
the apply table), and all of the tree table columns. At
subsequent steps the join also includes the assignment table
sub-selected for parent depth. Here we have additional
equi-join conditions between the assignment table and the
apply table on transaction i1d, and between the assignment
table, a, and the model table, m:

a. BLOCK_ _NUM=m.PARENT BLOCK NUM
a. TARGET VALUE=m.TARGET VALUE

and

This 1dentifies the specific parent block of each transaction
1d, which, in turn, makes the current block number well
defined.

Next shifted (to avoid underflow) raw scores are created
by summing the LOG2_ P grouped by transaction 1d and
target value. To this sum the (log) prior (probability) for each
target value 1s added. This sum 1s the raw Bayes likelihoods
for each target value on the log scale. These likelihoods are
transformed by a power function to the original scale and
normalized (divided by the sum of the likelihoods over the
target values) to produce predicted probabilities for each
target value. The results are inserted into a results table.

Apply with Rules

For some applications, users would like to understand the
reasoning behind the model prediction. With complex con-
ditional independence product models, this can be difficult.
As a rough approximation intended to provide human
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insight, for a given target prediction, the individual product
components can be ranked with respect to the degree to
which they support that prediction. If the rules are assigned
IDs then, the rule IDs can then be returned 1n rank order
along with the target prediction, probability or cost and
supplemental data.

Note that the model table contains the target value, the
target probability and the count for each block. Thus, the
block numbers are used as rule IDs. Apply returns the 1ds of
one more rules that have the highest probability or lowest
cost with respect to a specific target value or set of target
values depending on the apply type specification. The num-
ber of rules 1s user-specified. In addition there 1s a PL/SQL
function for obtaining the metadata associated with these
rules:

the rule (as a string)

a list of target values, associated probabilities and count of
rows matching the rule and target value in the training
data

The function has the signature:
PROCEDURE get detailed  rule(

p_rule_1d INTEGER,

p_ trees_table name
odm_model util. TABLE NAME TYPE,

p_rule_ string IN OUT VARCHAR?2,

p_ target_val list IN OUT STRVAL__LIST__TYPE,
p_ target prob_ list IN OUT NUM_ LIST_TYPE,
p_rule count list IN OUT NUM__LIST_TYPE);

Mining Rules

The predicate mining rules that characterize a decision
tree are conjunctions of simple predicates. The ordering of
the conjunctions define paths 1n the tree. Nodes 1n the tree
are defined as satistying a complete set of ancestral predi-
cates.

Note that the individual conditionally independent com-
ponents (feature trees) already represent structures of this
type. Individual rules (paths through the tree) are conjunc-
tions of predictor-value pairs, one pair at each depth. The
number of such rules is the product of the number of unique
values of each predictor in the feature tree. The problem 1s
that this representation 1s not compact. It 1s hard to visualize
and 1nterpret. A more compact representation 1s constructed
using the following mechanism. For each feature tree to be
represented, a table 1s constructed that that contains the
values of the feature predictors and the associated minimum
cost (see Use of Cost Matrix and Prior Probabilities below)
target class. The required inputs to construct this table are
the Model table and the Cost Matrix table, 1f 1t exists. This

table 1s then consolidated 1n a stepwise fashion. From the
consolidated table a tree 1s constructed.

The algorithm proceeds by first consolidating root node
values. For a pair of root node values to be consolidated, all
of their downstream conditions must lead to the same target

values. To 1illustrate, suppose a starting table as shown in
FIG. 12, where P1 is the depth 1 (root) predictor and P2 is

the depth 2 predictor. Note that P1=1 and P1=2 have the
same downstream behavior:

when P2=1, T=0
when P2=2, T=1
when P2=3, T=2

P1=3 has different downstream behavior. Thus P1=1 and
P2=2 can be consolidated. This can be detected using the
following 1llustrative SQL.:
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create table cons_ levl_ grps as
select P1 1, P1 2 from

(select min(P1_1) P1_1, P1_2 from
(select P1_1, P1_2 from
(select P1 P1_, p2, t from table_5a) a,
(select P1 P1_ 2, p2,t from table_5a) b
where a.p2=b.p2 AND a.t=b.t AND a.pl_1
<=b.pl_2
MINUS
select P1 1, P1 2 from
(select P1 P1_ 1, pl, p2, t from table 5a) a,
(select P1 P1_ 2, pl, p2, t from table_ 5a) b
where a.p2=b.p2 AND at !=b.t AND apl_1
<b.pl_ 2)

group by P1_ 2);

When the associated consolidation 1s performed, the
result 1s as shown 1 FIG. 13.

Note that for the consolidated group P1=1 and P1=2, the
downstream behavior of P2=1 and P2=3 1s that T=0. Hence,
P2=1 and P2=3 can be consolidated. P2=2 has different
downstream behavior, T=1. In addition, for the consolidated
group P1=3 all values of P2 lead to T=1, thus P2=1, P2=2
and P2=3 can be consolidated. The result 1s as shown 1n FIG.
14. These grouping can be detected using the following
llustrative SQL:
create table cons_ lev2_ grps as

select PO 1, P2 1, P2 2 from
(select P1_1, min(P2_1) P2 1, P2 2 from
(select a.P1_1,P2 1, P2 2 from

(select P1_1, p2 P2 1, t from table 5a c,
cons_ levl grps g where c.P1=g.P1_2) a,
(select P1_1, p2 P2_2, t from table 5a c,
cons_ levl_ grps g where c.P1=g.P1_2) b
where a.pl__1=b.pl__1 AND
a.t=b.t AND
a.p2_l<=b.p2_2
MINUS
select a.P1 1, P2 1, P2 2 from
(select P1_1, p2 P2 1, t from table 5a c,
cons_ levl grps g where c.P1=g.P1_2) a,
(select P1_1, p2 P2 2, t from table 5a c,

cons_ levl grps g where c.P1=g.P1_2) b
where a.pl__1=b.pl_1 AND
a.t '=b.t AND
a.p2_1<b.p2_2)
group by P1_1, P2_ 2);

To facilitate consolidation, rules with no support in the
training data are not allowed to impede consolidation. This
is achieved by maintaining the counts in the table (illustrated
in FIG. 12) and applying a where clause that eliminates O
count rules.

A decision tree can be constructed from the table shown
in FIG. 14, as shown 1n FIG. 15. The decision tree shown 1n
FIG. 15 can be represented 1n a database using three data
tables:

1. Parent_ Child_ Table with columns:
parent_ node, child_node, target_ value

2. Node Table with columns: tree number, node 1id,
target_ value, predictor__name

3. Value Table with columns: tree  number, node 1d,
predictor__value

tree_ number,

These tables will contain the metadata used by the Java API
call to construct the decision tree Java objects. The
Parent_ Child table specifies the parent-child links. The
parent of any node in the Node_ Table can be found via an
equi-join ~ between  these two tables  where
node_ id=child_node. The join of the Value_ Table to the

Node_ Table 1s many to one.
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These tables are constructed from the model table as
follows. Node _Ids are created using a sequence. The 1ds are
created for each feature (tree) as if the tree were full. E.g.,
if there are k unique target values, then a feature of depth m,
requires k ™+1 1ds. The 1ds are created 1n a loop from depth
1...m for each tree, where at each level k values are added
per node 1d at the previous level. This constructs the

Parent_ Child_ Table. The 1nitial table creation begins with
a single (root) node. At the outset of each new tree a root
node 1s 1nserted.

The Node_Table 1s created by a jomn of the
Parent_ Child_ Table, p, with the model table, m, where the
following condition limits the output of the model table
prior to the join : select distinct tree__number, target_ value,
predictor__name from model_table. The following clause

restricts the jom: where p. tree_ number=m. tree_ number
AND p. target_ value=m. target_ value.

To create the Values  Table, a table that enumerates the
list of vectors of predictor values for each predictor 1n each
feature tree. The table 1s then scored using the apply opera-
tion and the predictor values are assigned 1n accordance with
the posterior probabilities and, 1f it exists, the cost matrix.
Note that target and categorical predictor values are replaced
with their un-binned (string) representation where such
exist. Numeric predictor values associated with contiguous
bins are merged to simplily the rule, e.g.:

Age In {“20-307, “30-407, “60-70"}=>“Responder”

becomes:

Age In {“20-407, “60-70” }=>“Responder”.

Use of Cost Matrix and Prior Probabilities

A cost matrix 1s a means by which the user can express
preference for one target class over another. To illustrated
1ts’ use, suppose there 1s a cost matrix which weights the cost
of an error when T=1 as 1 and when T=0 as 3. Then the
estimated posterior cost 1s shown 1n FIG. 16 and 1s derived
from the example 1n FIG. 1. Here we sce that the lowest cost
prediction when P1=0 1s T=0 and the lowest cost prediction
when P=1 1s T=1. With a user-supplied cost matrix, the
model predicts the lowest cost target value. If no cost matrix
1s supplied the default 1s a “unit” cost matrix. This cost
matrix has 0’s on the diagonal and 1°s on the off diagonal
clements. I.e., the cost of an error 1s 1, regardless of actual
or predicted target class. With the default (unit) cost matrix,
the model predicts the target class with the highest posterior
probability.

The prior probabilities specification 1s a means to allow
the user to indicate that the training data were selectively
sampled. Prior probability vectors, where supplied, modily
the sample priors and the mternally computed block counts.
The supplied probability vectors replace the sample priors.
In addition, the supplied probability vectors are applied as a
set of normalized weights to the block counts computed
during the build operation. To 1llustrate, suppose a binary
target has been supplied with the following prior: {0.05,
0.95} and the sample global distribution is {80, 120}. Then
implicitly each example has a weight depending upon the
target value as shown in FIG. 17.

Note that the effect of the weights on the global sample
makes the distribution:

80*0.125=10

120%1.583333=190

matching the user supplied prior.
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If the table name referencing the prior probabilities 1s
empty, the algorithm computes the sample priors and returns
the resultant table.

The impact of these weights on the internal computations
1s 1llustrated in FIGS. 18 and 19 dernived from the example
used to compute the tables shown m FIGS. 1 and 2. The
welghts greatly affect the probabilities of Target conditioned

on the predictor(s), as shown in FIG. 18, used in the MDL
computation, but have no affect on the probability of the
(current) predictor conditioned on the Target and the ances-
tor predictors, as shown i FIG. 19, used 1n the Bayes
probability computation. For the Bayes probability compu-
tation, the 1mpact 1s felt entirely through the prior.

ABN Inputs

Build
An exemplary 1mplementation of ABN processing
includes the following PL/SQL inputs to the build operation:
name of the training table
name of the transaction 1d column
name of the predictor name column
name of the value column

name of the target

name of the model table

name of the cost matrix table

name of the priors table

name of the Parent Child Table
name of the Node Table

name of the Value Table
MaximumNetworkFeatureDepth
MaximumNumberOfNetworkFeatures
MaximumConsecutivePrunedNetworkFeature
MaximumBuildTime

The training table 1s the table containing the data used to
build the model. The transaction 1d 1s the name of the
column 1dentifying a logical data row 1n 2-D format. The
predictor name and value columns are transactional format
representations, the former being the name of the predictor
and latter its value. The target is the name of the (logical)
column to be predicted. The model table 1s the result object
produced by the build operation.

Cost Matrix 1s a table with 3 columns: Predicted  Value,
Actual_ Value, Cost of type NUMBER. Predicted_ Value
and Actual_Value are binned target values and cost 1s the
user-assigned cost of an error. This 1s a small, temporary
structure created and passed to the build operation from data
in the corresponding Java object. Its purpose 1s to transmit
to the model build and apply operations the users subjective
relative value of a prediction error. See for details on use and
function. This 1s an N * N table where N 1s the number of

unique target values. It 1s optional. The default table has 0’s
on the diagonal (Predicted_ Value=Actual Value) and 1°s

on the off-diagonal clements
(Predicted Value!=Actual Value).
The priors table has 2 columns: Target Value,

Prior_ Probability of type NUMBER. Target_ Value 1s the
value of the target and Prior_ Probability 1s the global
probability of that target value.

The last three inputs are configuration parameters to
control build performance.

ABN Processing

Build

An exemplary 1mplementation of ABN processing
includes a build operation having the following high level
structure:
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Validate and Initialize
create seed feature trees

IF Model Table IS empty Then
drop Model__Table;
Throw ¢__model _1s__empty__ num exception
RETURN

END IF;

terminate=FALSE:;

test whether user’s feature selection parameter (max num-
ber of predictors) is too high

perform feature selection

create__naive_ _bayes_ model;

IF Naive Bayes model has smaller description than global
prior model THEN
baseline=Naive Bayes model

END;

select top m features;

update table specilying predictor cost to reflect feature
selection;

/* Extend the first feature tree */
While terminate=FALSE 1.LOOP

Find Best Predictor
If NULL Then terminate=TRUE

Swap ID mapping tables' in preparation for the next

iteration
END LLOOP

Compute MDL score of the first model

IF First Feature has higher MDL score than current
baseline
Terminate returning Naive Bayes model

END IF;
Find Next Seed Feature to Extend
IF NOT NULL THEN

WHILE
V_current num trees<v. maximum num trees
[.LOOP

WHILE
v__current__depth<=v__ maximum_ tree_depth
LOOP

extend (add predictor to) current feature to next
depth
if no extension possible then exit
END LOOP

test whether current extension provides a lower cost
MDL model

if NOT then
re-activate extension feature as a seed feature
exit
end 1f
Find Next Seed Feature to Extend
IF NULL then exit
END LOOP

Clean up intermediate structures

' Maps transactions to block numbers and parent block numbers.

Validation and Error Messages

The validation operation checks that the name of training,
table 1s not NULL, that 1t exists and that it 1s not empty. It
checks that the predictor column name and predictor value
name are not NULL and that they exist in the training table.
[t checks that the model table name (result) is not NULL. It
validates that the configuration parameters, if specified are
within range: MaximumNetworkFeatureDepth, Maximum-
NumberOfNetworkFeatures, and MaxBuildTime must all be
oreater than or equal to 0. If the parameters are O, 1t sets them
to the default values. MaximumConsecutivePrunedNet-
workFeature can have a negative value. A negative value
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indicates that only a single feature 1s built and compared to
the Naive Bayes Model. It validates that the names has been
given for the output tables (described below).

An additional run time error message occurs if the model
table 1s empty or the rules table 1s empty.

ABN Outputs

The output for this component includes 4 tables resulting,
from the build operation and one from the apply operation.
There 1s a model table that contains the metadata required to
score with the model. The schema for this table and its use
are described 1n the Apply section.

There are three tables produced to enable the Java API to
obtain the mining rules 1n decision tree format. The schema
and use are described 1n Mining Rules section. In addition
there 1s a timings table that reports statistics on the timing to
achieve build milestones.

The schema for the timings table 1s shown 1n FIG. 20.

The apply operation produces a results table that includes
transaction ID, target value and predicted probability. In
addition, 1f the user does not specify a priors, the component
returns a priors table. This table 1s required for the apply
operation.

General Model Building and Scoring

An exemplary data flow diagram of a data mining process,
including building and scoring of models and generation of
predictions/recommendations, 1s shown 1 FIG. 21. The
training/model building step 2102 involves generating the
models that are used to perform data mining recommenda-
tion and prediction. The 1nputs to training/model building
step 2102 include training parameters 2104, training data
2106, and untrained models 2108. Untrained models 2108
include algorithms that process the training data 2106 in
order to actually build the models. In particular, untrained
models 2108 includes ABN algorithms that are used to build
data mining models that are based on adaptive Bayes
networks. Tramning parameters 2104 are parameters,
described above, that are input to the data-mining model
building algorithms to control how the algorithms build the
models. Training data 2106 1s data that 1s mnput to the
algorithms and which 1s used to actually build the models.

Training/model building step 2102 invokes the data min-
ing model building algorithms included 1n untrained models
2108, initializes the algorithms using the training parameters
2104, processes training data 2106 using the algorithms to
build the model, and generates trained model 2110. Trained
model 2110 1ncludes representations of the ABN model, as
described above. Trained model 2110 may also be evaluated
and adjusted 1n order to improve the quality, 1.e. prediction
accuracy, of the model. Tramned model 2110 1s then encoded
in an appropriate format and deployed for use 1 making
predictions or recommendations.

Scoring step 2112 involves using the deployed trained
model 2110 to make predictions or recommendations based
on new data that 1s received. Trained model 2110, prediction
parameters 2114, and prediction data 2116 are input to
scoring step 2112. Trained models 2110 include information
defining the model that was generated by model building
step 2102. Prediction parameters 2114 are parameters that
are mput to the scoring step 2118 to control the scoring of
scoring data 2116 against trained model 2110 and are 1nput
to the selection and prediction/recommendation step 2120 to
control the selection of the scored data and the generation of
predictions and recommendations.

Scoring data 2116 1s processed according trained model
2110, as controlled by prediction parameters 2114, to gen-
erate one or more scores for each row of data 1n scoring data
2116. The scores for each row of data indicate how closely
the row of data matches attributes of the model, how much
confidence may be placed 1n the prediction, how likely each
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output prediction/recommendation to be true, and other
statistical indicators. Scored data 2118 1s output from scor-
ing step 2112 and includes predictions or recommendations,
along with corresponding probabilities for the scored data.

Scored data 2118 1s input to selection and prediction/
recommendation generation step, which evaluates the prob-
abilities associated with the predictions/recommendations
and selects at least a portion of the predictions/recommen-
dations. The selected predictions/recommendations are
those having probabilities meeting the selection criteria. The
selection criteria may be defined by desired results data
and/or by predefined or default criteria included 1n selection/
generation step 2120. In addition, the selection criteria may
include a limit on the number of predictions/recommenda-
tions that are to be selected, or may indicate that the
predictions/recommendations are to be sorted based on their
assoclated probabilities. The selected predictions/recom-
mendations are output 2122 from step 2120 for use 1n data
mining.

An exemplary block diagram of a data mining system
2200, 1n which the present invention may be 1implemented,
1s shown 1n FIG. 22. System 2200 1s typically a programmed
general-purpose computer system, such as a personal com-
puter, workstation, server system, and minicomputer or
mainirame computer. System 2200 includes one or more
processors (CPUs) 2202A-2202N, input/output circuitry
2204, network adapter 2206, and memory 2208. CPUs
2202A-2202N execute program 1nstructions in order to
carry out the functions of the present invention. Typically,
CPUs 2202A—2202N are one or more microprocessors, such
as an INTEL PENTIUM® processor. FIG. 22 illustrates an
embodiment 1n which system 2200 1s implemented as a
single multi-processor computer system, 1n which multiple
processors 2202A—2202N share system resources, such as
memory 2208, input/output circuitry 2204, and network
adapter 2206. However, the present invention also contem-
plates embodiments in which system 2200 1s implemented
as a plurality of networked computer systems, which may be
single-processor computer systems, multi-processor com-
puter systems, or a mix thereof.

Input/output circuitry 2204 provides the capability to
mnput data to, or output data from, system 2200. For
example, input/output circuitry may include input devices,
such as keyboards, mice, touchpads, trackballs, scanners,
etc., output devices, such as video adapters, monitors, print-
ers, etc., and 1nput/output devices, such as, modems, etc.
Network adapter 2206 interfaces system 2200 with Internet/
intranet 2210. Internet/intranet 2210 may include one or
more standard local area network (LAN) or wide area
network (WAN), such as Ethernet, Token Ring, the Internet,
or a private or proprictary LAN/WAN.

Memory 2208 stores program 1nstructions that are
executed by, and data that are used and processed by, CPU
2202 to perform the functions of system 2200. Memory
2208 may include electronic memory devices, such as
random-access memory (RAM), read-only memory (ROM),
programmable read-only memory (PROM), electrically
erasable programmable read-only memory (EEPROM),
flash memory, etc., and electromechanical memory, such as
magnetic disk drives, tape drives, optical disk drives, etc.,
which may use an integrated drive electronics (IDE) inter-
face, or a wvariation or enhancement thereof, such as
enhanced IDE (EIDE) or ultra direct memory access
(UDMA), or a small computer system interface (SCSI)
based interface, or a variation or enhancement thereof, such
as fast-SCSI, wide-SCSI, fast and wide-SCSI, etc, or a fiber
channel-arbitrated loop (FC-AL) interface.

In the example shown 1n FIG. 22, memory 2208 mcludes
ABN routines 2212, model building routines 2214, scoring,
routines 2216, training data 2218, trained ABN model 2220,
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scoring data 2222, predictions/recommendations 2224, and
operating system 2226. ABN routines 2212 implement ABN
algorithms that are used to build data mining models that are
based on adaptive Bayes networks. Model building routines
2214 invoke the ABN routines 2212 that implement the
ABN data mining model building algorithms, processes
training data 2218 using the algorithms to build the model,
and generates trained ABN model 2220. Scoring routines
2216 use the trained ABN model 2220 to process scoring
data 2222 to generate one or more scores for each row of
data 1n scoring data 2222. The scores for each row of data
indicate how closely the row of data matches attributes of
the model, how much confidence may be placed 1 the
prediction, how likely each output prediction/recommenda-
tion to be true, and other statistical indicators. Training data
2218 1s data that 1s input to the algorithms and which 1s used
to actually build the models. ABN model 2220 includes
representations of the ABN model that are used for scoring
data 2222. Scoring data 2222 1s processed according to ABN
model 2220 to generate one or more scores for each row of
data 1n scoring data 2222. Predictions/recommendations
2224 are scored data that may have been selected and/or
evaluated as having probabilities meeting selection criteria.
The selection criteria may be defined by desired results data
and/or by predefined or default criteria and/or may include
a limit on the number of predictions/recommendations that
arc to be selected, or may indicate that the predictions/
recommendations are to be sorted based on their associated
probabilities. Operating system 2226 provides overall sys-
tem functionality.

As shown 1n FIG. 22, the present mnvention contemplates
implementation on a system or systems that provide multi-
processor, multi-tasking, multi-process, and/or multi-thread
computing, as well as implementation on systems that
provide only single processor, single thread computing.
Multi-processor computing imnvolves performing computing
using more than one processor. Multi-tasking computing
involves performing computing using more than one oper-
ating system task. A task 1s an operating system concept that
refers to the combination of a program being executed and
bookkeeping imformation used by the operating system.
Whenever a program 1s executed, the operating system
creates a new task for it. The task 1s like an envelope for the
program 1n that 1t identifies the program with a task number
and attaches other bookkeeping information to it. Many
operating systems, including UNIX®, OS/2®, and WIN-
DOWS®, are capable of running many tasks at the same
time and are called multitasking operating systems. Multi-
tasking 1s the ability of an operating system to execute more
than one executable at the same time. Each executable is
running 1n 1ts own address space, meaning that the
executables have no way to share any of their memory. This
has advantages, because it 1s impossible for any program to
damage the execution of any of the other programs running
on the system. However, the programs have no way to
exchange any information except through the operating
system (or by reading files stored on the file system).
Multi-process computing 1s similar to multi-tasking com-
puting, as the terms task and process are often used inter-
changeably, although some operating systems make a dis-
tinction between the two.

It 1s important to note that while the present invention has
been described in the context of a fully functioning data
processing system, those of ordinary skill in the art waill
appreciate that the processes of the present invention are
capable of being distributed in the form of a computer
readable medium of instructions and a variety of forms and
that the present invention applies equally regardless of the
particular type of signal bearing media actually used to carry
out the distribution. Examples of computer readable media
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include recordable-type media such as floppy disc, a hard
disk drive, RAM, and CD-ROM’s, as well as transmission-
type media, such as digital and analog communications

links.

Although specific embodiments of the present invention
have been described, it will be understood by those of skill
in the art that there are other embodiments that are equiva-
lent to the described embodiments. Accordingly, it 1s to be
understood that the invention 1s not to be limited by the
specific 1llustrated embodiments, but only by the scope of
the appended claims.

What 1s claimed 1s:

1. A method of generating an Adaptive Bayes Network
data mining model comprising the steps of:

receiving a data table having a plurality of predictor

columns and a target column and comprising a plurality
of rows of data;

constructing a plurality of single-predictor models, com-

prising the steps of:

computing a description length of a baseline model
based on unconditional target probabilities among
the plurality of rows;

determining which predictor columns are correlated to
the target column based on minimum description
length;

computing probabilities of at least two target values of
the target column conditioned on at least two pre-
dictor values of at least one correlated predictor
column; and

computing a probability of at least one correlated
predictor column conditioned on the at least two
target values;

ranking each predictor column by ranking each single-

predictor model using minimum description length and
selecting a best single predictor model;

performing feature selection based on a minmimum of a

specified number of predictors and as a function of a
reduction 1n entropy attributable to the best single
predictor model;

constructing a Naive Bayes model using a top-ranked

portion of the plurality of predictor columns;
comparing a description length of the Naive Bayes model
with a description length of a baseline model;
replacing the baseline model with the Naive Bayes model,
if the description length of the Naive Bayes model 1s
less than the description length of the baseline model;
extending a plurality of single-predictor models 1 rank
order, stepwise, to multi-predictor features; and
testing whether each new feature should be included 1n or
should replace a current model state using minimum
description length.

2. The method of claim 1, wherein the step of constructing
a plurality of single-predictor models further comprises the
step of binning values included 1n the predictor columns.

3. The method of claim 2, wherein the step of ranking
cach predictor column by ranking each single-predictor
model using minimum description length comprises the
steps of:

generating histograms of the target within each predictor

bin value; and

obtaining, from the histograms, smoothed probabilities of

target value conditioned on predictor value estimated as
a proportion of each target value within a given pre-
dictor bin value.

4. The method of claim 3, wherein the step of ranking
cach predictor column by ranking each single-predictor
model using minimum description length comprises the step
of:

computing the description length as a sum of a penalty

term, 2log, (n,+1), where n; is a number of training row
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instances of an 1th value of a predictor; and a trans-
mission cost, —xlog,(p;)n,,, where p;; 1s the probability
of a jth target value conditioned on an 1th predictor
value and n;; 1s a corresponding count.
5. The method of claim 4, wherein the step of extending
a plurality of single-predictor models to multi predictor
features comprises the steps of:
extending a portion of the plurality of single-predictor
models to multi-predictor features, one predictor at a
fime as far as minimum description length or a maxi-
mum depth parameter permits in rank order; and
extending each model to 1include a portion of the plurality
of multi-predictor features as far as minimum descrip-
tion length pruning or a maximum number of network
features parameter permits.
6. The method of claim 5, further comprising the step of:
biasing against selection of predictors with many missing
values by using an encoding reflecting a proportion of
potential single-predictor models attributable to each
predictor.
7. The method of claim 6, further comprising the step of:
applying a reduced penalty term to a product model due
to bias inherent in the product model’s assumptions
concerning data 1n the data table.
8. A system for generating an Adaptive Bayes Network
data mining model comprising:
a processor operable to execute computer program
mstructions;
a memory operable to store computer program instruc-
tions executable by the processor; and
computer program instructions stored in the memory and
executable to perform the steps of:
receiving a data table having a plurality of predictor
columns and a target column and comprising a plurality
of rows of data;
constructing a plurality of single-predictor models, com-
prising the steps of:
computing a description length of a baseline model
based on unconditional target probabilities among,
the plurality of rows;
determining which predictor columns are correlated to
the target column based on minimum description
length;
computing probabilities of at least two target values of
the target column conditioned on at least two pre-
dictor values of at least one correlated predictor
column; and
computing a probability of at least one correlated
predictor column conditioned on the at least two
target values;
ranking each predictor column by ranking each single-
predictor model using minimum description length and
selecting a best single predictor model;
performing feature selection based on a minimum of a
specified number of predictors and as a function of a
reduction 1n entropy attributable to the best single
predictor model;
constructing a Naive Bayes model using a top-ranked
portion of the plurality of predictor columns;

comparing a description length of the Naive Bayes model
with a description length of a baseline model;

replacing the baseline model with the Naive Bayes model,
if the description length of the Naive Bayes model 1s
less than the description length of the baseline model;

extending a plurality of single-predictor models 1n rank
order, stepwise, to multi-predictor features; and

testing whether each new feature should be 1included 1n or
should replace a current model state using minimum
description length.
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9. The system of claim 8, wherein the step of constructing
a plurality of single-predictor models further comprises the
step of binning values included 1n the predictor columns.

10. The system of claim 9, wherein the step of ranking
cach predictor column by ranking each single-predictor
model using minimum description length comprises the
steps of:

generating histograms of the target within each predictor

bin value; and

obtaining, from the histograms, smoothed probabilities of

target value conditioned on predictor value estimated as
a proportion of each target value within a given pre-
dictor bin value.
11. The method of claim 10, wherein the step of ranking
cach predictor column by ranking each single-predictor
model using minimum description length comprises the step
of:
computing the description length as a sum of a penalty
term, Zlog,(n,+1), where n; is a number of training row
instances of an 1th value of a predictor; and a trans-
mission cost, —Xlog,(p;;)n;;, where p;; 1s the probability
of a jth target value conditioned on an ith predictor
value and n;; 1s a corresponding count.
12. The system of claim 11, wherein the step of extending
a plurality of single-predictor models to multi predictor
features comprises the steps of:
extending a portion of the plurality of single-predictor
models to multi-predictor features, one predictor at a
time as far as minimum description length or a maxi-
mum depth parameter permits 1n rank order; and

extending each model to include a portion of the plurality
of multi-predictor features as far as minimum descrip-
tion length pruning or a maximum number of network
features parameter permits.

13. The system of claim 12, further comprising the step
of:

biasing against selection of predictors with many missing

values by using an encoding reflecting a proportion of
potential single-predictor models attributable to each
predictor.

14. The system of claim 13, further comprising the step
of:

applying a reduced penalty term to a product model due

to bias mherent in the product model’s assumptions
concerning data 1n the data table.

15. A computer program product for generating an Adap-
five Bayes Network data mining model, comprising:

a computer readable medium;

computer program instructions, recorded on the computer

readable medium, executable by a processor, for per-
forming the steps of

receiving a data table having a plurality of predictor

columns and a target column and comprising a plurality
of rows of data;

constructing a plurality of single-predictor models, com-

prising the steps of:

computing a description length of a baseline model
based on unconditional target probabilities among
the plurality of rows;

determining which predictor columns are correlated to
the target column based on minimum description
length;

computing probabilities of at least two target values of
the target column conditioned on at least two pre-
dictor values of at least one correlated predictor
column; and

computing a probability of at least one correlated
predictor column conditioned on the at least two
target values;
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ranking each predictor column by ranking each single-
predictor model using minimum description length and
selecting a best single predictor model;

performing feature selection based on a minimum of a
specified number of predictors and as a function of a
reduction 1n entropy attributable to the best single
predictor model;

constructing a Naive Bayes model using a top-ranked
portion of the plurality of predictor columns;

comparing a description length of the Naive Bayes model
with a description length of a baseline model;

replacing the baseline model with the Naive Bayes model,
if the description length of the Naive Bayes model 1s
less than the description length of the baseline model;

extending a plurality of single-predictor models 1n rank
order, stepwise, to multi-predictor features; and

testing whether each new feature should be included 1n or
should replace a current model state using minimum
description length.

16. The computer program product of claim 15, wherein
the step of constructing a plurality of single-predictor mod-
els further comprises the step of binning values included 1n
the predictor columns.

17. The computer program product of claim 16, wherein
the step of ranking each predictor column by ranking each
single-predictor model using minimum description length
comprises the steps of:

generating histograms of the target within each predictor
bin value; and

obtaining, from the histograms, smoothed probabilities of
target value conditioned on predictor value estimated as

a proportion of each target value within a given pre-
dictor bin value.

18. The computer program product of claim 17, wherein
the step of ranking each predictor column by ranking each
single-predictor model using minimum description length
comprises the step of:

computing the description length as a sum of a penalty
term, Zlog,(n+1), where n; is a number of training row
instances of an 1th value of a predictor; and a trans-
mission cost, —2log,(p;)n;;, where p;; is the probability
of a jth target value conditioned on an ith predictor
value and n;; 1s a corresponding count.

19. The computer program product of claim 18, wherein
the step of extending a plurality of single-predictor models
to mult1 predictor features comprises the steps of:

extending a portion of the plurality of single-predictor
models to multi-predictor features, one predictor at a
time as far as mimimum description length or a maxi-
mum depth parameter permits in rank order; and

extending each model to 1include a portion of the plurality
of multi-predictor features as far as minimum descrip-
tion length pruning or a maximum number of network
features parameter permits.

20. The computer program product of claim 19, further
comprising the step of:
biasing against selection of predictors with many missing
values by using an encoding reflecting a proportion of
potential single-predictor models attributable to each
predictor.

21. The computer program product of claim 20, further
comprising the step of:
applying a reduced penalty term to a product model due

to bias inherent 1n the product model’s assumptions
concerning data 1n the data table.
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