United States Patent

US006970866B1

10y Patent No.: US 6,970,866 B1
45) Date of Patent: Nov. 29, 2005

OTHER PUBLICATTONS

Adobe Systems Incorporated, “Portable Document Format:
Changes from Version 1.3 to 1.4” Technical Note #5409, pp.
11-vii, 1-20, Jun. 11, 2001, San Jose, CA.

Adobe Systems Incorporated, “Portable Document Format:
Reference Manual” Version 1.3, pp. 1-8 and 55-64, Mar. 11,
1999, San Jose, CA.

* cited by examiner

Primary Examiner—Shahid Alam

Assistant Examiner—Fred Ehichioya

(74) Attorney, Agent, or Firm—Fish & Richardson P.C.

(57) ABSTRACT

Methods and apparatus i1mplementing a technique for
retrieving requested data. In general, in one aspect, the
technique includes receiving a request from an application to
read a portion of an application file and consulting a filter-
system {ile. The filter-system {file contains processed data
that corresponds to data in the application file and corre-
spondence nformation indicating how the set of processed
data corresponds to the data in the application file. The
technique also includes deriving the requested portion of the
application file from the processed data using the correspon-
dence 1nformation, and delivering the requested portion of
the application file to the application. In another aspect, the
technique includes receiving data to be retrieved 1n response
fo a request from an application with reference to the
application’s view of the application file, processing the
received data to generate processed data that corresponds to
the received data, producing correspondence information
indicating how the processed data corresponds to the
received data 1s produced, and storing the processed data and
the correspondence information 1n a filter-system file.

59 Claims, 12 Drawing Sheets

(12)
Pravetz et al.
(54) FILTER FILE SYSTEM
(75) Inventors: James D. Pravetz, Sunnyvale, CA
(US); Richard L. Sites, Menlo Park,
CA (US)
(73) Assignee: Adobe Systems Incorporated, San
Jose, CA (US)
(*) Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35
U.S.C. 154(b) by 453 days.
(21) Appl. No.: 10/159,161
(22) Filed: May 31, 2002
(51) Int. CL7 ..., GO6k 17/30
(52) US.CL .., 707/3; 70°7/10; 707/102;
707/103 R; 7077/201; 7077/205
(58) Field of Search 380/9; 707/2, 10,
707/100, 104.1, 203, 1, 3, 102, 103 R, 200,
707/201, 205; 709/201, 203, 206, 219, 220,
709/227, 214, 223, 231; 715/513; 705/59;
370/352
(56) References Cited
U.S. PATENT DOCUMENTS
5,781,785 A * 7/1998 Rowe et al. 715/513
5,958,006 A * 9/1999 Eggleston et al. 709/219
5,978,847 A 11/1999 Kisor et al.
5,991,402 A * 11/1999 Jiaetal.ccoeee.nl. 705/59
6,249,794 Bl 6/2001 Raman
6,298,385 B1 10/2001 Sparks et al.
6,401,093 Bl 6/2002 Anand et al.
6,401,239 Bl 6/2002 Miron
6,427,149 Bl 7/2002 Rodriguez et al.
6,473,749 Bl 10/2002 Smith et al.
6,807,550 B1* 10/2004 Lietal .oooevevevevnn... 707/201
2002/0131404 A1* 9/2002 Mehta et al. 370/352
(stat

)

v

Receaived Request For Data ——902
From Application

!

Consult Filter-System File
Corresponding To Application File

804
o’

:

Read Correspondence Information
From Filter-System File

806
|

!

Identify Block(s) Containing Data -
Corrasponding To Requested Data

808

!

Retrieve Blocks

810
./

If Required,

Apply Indicated Filters

l

Deliver Requested Data

'

[End

U.S. Patent Nov. 29, 2005 Sheet 1 of 12 US 6,970,866 B1

101
r 103

111

112] d ||)24

113

114 S | e |
D
_________________ 122
< 5 i
T R — » b

115 % \
AN

FIG. 1

U.S. Patent Nov. 29, 2005 Sheet 2 of 12 US 6,970,866 B1
201
211 L 103
S B e
204 230
|
212\~
G -y -
224
/202 ... N | 221
213 - -
\ H Jeerrereresrmnmeerereedederesrirensenssbnrenadocnnennnssneressierarerasansenssnenrasesaas)s > 223
L/
203
225
214 / ...)I
k_h - -
T 222
Y
.......... .‘.._,.::...............;:*............").
\ /
\\,/
215
J
N 108
104
200
106

105 j

U.S. Patent

Nov. 29, 2005

300
e

Sheet 3 of 12

310\‘\—[

Management Routines

1

Application File 312
Processor B g
Filter-System File -] | 314
Generator -V
Application 316
Interface L+
Filter-System File 318
Interpretor —
320 N)
| Filters
I - - |
Encryption

Compression

US 6,970,366 B1

U.S. Patent Nov. 29, 2005 Sheet 4 of 12 US 6,970,866 B1

416 f18
Open(filename) } Read(partC)
410 1 I
412
I _ Tﬁ414
450~) // / [B }416

4405 — 1 a0
: _/4444 T

A
N
\
\
\

420 7< B T 422

424

U.S. Patent Nov. 29, 2005 Sheet 5 of 12 US 6,970,866 B1

416

418

Open(filename) I— Rea&(partC)
410 —— r
| 412
- 414
452, / 352.\
\
430/ A /440 s N 2430
440 — é — 42
| — 444

LSS S S Aa60
42% \ ' 4 _ ﬁ%ﬁ

FIG. 5

U.S. Patent

Nov. 29, 2005

e N
Start
_ Y,
| /'602
Receive Data
I /604

Determine Data Type

606

Is Data Type NO

Sheet 6 of 12

US 6,970,366 B1

Select Default

Ordering

Is Ordering
ldentifiable?

f612

Select Default
Section Designation

Recognized?

YES

Y f608

Define Sections And

z -

NO
61C
Are Sections YES
|dentifiable?
e 618

Order Blocks

__L 620

If Required, Apply Filters

y _[622

Generate Correspondence

Register New Data Type, With

L

Information On Designation
And Ordering Rules

Information

P

FIG

i

r ™
End
\ v
T /624
Create Filter-System File
. 6

U.S. Patent Nov. 29, 2005 Sheet 7 of 12 US 6,970,866 B1

708
4 I - }
Start Get Filter(s) ———
. _/ .
NO
702 v (796

Does
File Type Indicate
Application Of
Filters?

YES YES

Is/Are Filter(s)
Available?

Apply Filter(s)

]

708~ NO {

r Check For Instructions

/-716

Get Filter(s)

NO /714

71C

Do
Instructions
Indicate
Application Of
Filters?

YES YES

Is/Are Filter(s)
Available?

Apply Filter(s)
To Block

NO

YE Do Blocks

Remain?

NO
o /‘718

Store File — > End

U.S. Patent

Nov. 29, 2005 Sheet 8 of 12

S

Received Request For Data
From Application

—
—— _

Corresponding To Application File

802

—

_

804
Consult Filter-System File

. | —L¢-] __806

Read Correspondence Information
From Filter-System File

_/

¢

ldentify Block(s) Containing Data
Corresponding To Requested Data

808

—

Retrieve Blocks

810

b

If Required,
Apply Indicated Filters

Deliver Requested Data

US 6,970,366 B1

U.S. Patent Nov. 29, 2005 Sheet 9 of 12 US 6,970,866 B1

4 ™
Start
\. J
1 /902
- 910

Read Correspondence

Information For Block Get Filter(s)

904 908\

Does
Corr. Info. Indicate
Application Of
Filters?

YES is/Are Filter(s)

Avallable?

Apply Filter(s)
To Block

NO
/910
YES Are There Stor.e Or
Deliver
Any Blocks Processed ————
Remaining? €
Data

NO
Y
Deliver | 910
Processed
Data
\J
4 ™~
End
_ /

FIG. 9

U.S. Patent Nov. 29, 2005 Sheet 10 of 12 US 6,970,866 B1

1002 1004 ~1006

Header — Version —> File Size
— 1.3 1346
|dentifier — -
1022 —— 1014
] ot — Metadata
1023] | Catalog Dictionary SRR vttt Modification Date
_ <|nfo> g
1024] | Version Ref. | <Title = "My Title"> 1999123123959-9'00"
Y <Author = "Tom ""
102 File Size Ref. Jones"s> . 1016
</Info> | Base Document
103 Metadata Ref. —— ¥1 012 | >
£ Tl Modification Date Ref. Data, Objects, Ete.
1034
1 Oj Base Document Ref. /,1 018
10 Message Digest Ref. 1020 ! Message Digest
' Sianature <DER.encoded>
1040 Signature Ref. 9 Message Digest
l Filter Cross-Ref. Ref. Sequence
File Cross-Ref. Ref.
1047
/-——1 009 /1042 | Modification Date
1008 File X Entry
199912 -9'00'
—1 File Cross-Ref. Table / 3123959-9°00
_ FilelD, Flag, OS, Start, Count, Type 1049
File 1 Entry _ | Relative Filename
—- Block Object Cross-Ref. Ref.
File 2 Entry —— Chapter 1
Modification Date Ref. /{050
File 3 Entry - :
Relative Filename Ref. N Metadata
J’ 1 Metadata Ref. <Info>
1045 1043) <Type= "Picture">
Block Cross-Ref. Table ~—1058 1060 <Format = "gif'>
— Block Object X Ent <finfo>
Block 1 Entry /o r“f-/ ' -
: BID, Size, UnSize, FilterNum, FilterlD ~1064
Block 2 Entry . S— _
— - - , _» Filter Parameter
Filter Parameter Ref
1067 — — <param>
Binary Data R
1062 — —
101 0\ 1072
_ 1066 Private Data Dict.
Filter Cross-Ref. Table — Filter X Entry
Filter 1 Ent + || FilterID, Fiag, FilterName, SubfiltN - A
_ ry o _g _ N ubfiltName ‘q 068
Filter 2 Entry Filter Privatﬂati Dictionary Ref. [[1070 1000

FIG. 10

U.S. Patent

Nov. 29, 2005

Sheet 11 of 12

US 6,970,366 B1

/7#1121_.

$CDF-1.4

112

1120

1122

| 1124
S

11QEH /ff4101
1 $PDF-1.0
1 0 obj
Catalog, Pages Tree,
1103 Page 1, Bookmarks and
\a_.other cbjects needed
to render first page
endob]
110§E 20 0 obj
—| Page 2 objects
endobi
1106 30 0 obj
\\hrPage 3 objects
endob]
1108 | | 40 0 obj
\HhrPage4 objects
i L endob
1110 | | xref
\l_| 0 50
0000000000 65535 £
0000000009 00000 n
0000000074 00000 n
0000000120 00000 n
0000000179 00000 n
0000000300 00000 n
0000000384 00000 n
trailer
<<
/Size 50
/Root 1 0 R
> >
startxref
2408
3SEOF

FIG. 11

1126
/

1128
/

U.S. Patent Nov. 29, 2005 Sheet 12 of 12 US 6,970,866 B1

1202

 $CDF-1. 4 204

Filter=externalPDF 1206
File=baseFile.pdf
FileID=34ED3413

7 0 obj 1208

New objects

endobj
| xXref

0 1
0000000000 65535 f
4 1

0000000612 00000
7 5

0000000747 00000
| { 0000000792 00000
0000000897 00000
0000001004 00000

0000001111 00000

trailer

<<

/Size 12
/Root 1 0 R
/Prev 408

| >>
startxref
1218

$3EOF

-

- 3 3 3 3

FIG. 12

US 6,970,866 Bl

1
FILTER FILE SYSTEM

BACKGROUND OF THE INVENTION

The present invention relates to accessing data 1n a file.

Data files and {file systems are abstractions used to orga-
nize and access data. A file 1s a set of data that can be
accessed by a program or application with the file system of
a particular operating system. Most conventional file sys-
tems have a naming system for files, and organize the named
files 1n named folders or directories, each of which can, 1n
turn, be included 1n higher-level directories. Thus, most file
systems have a system of data in files, with the files
organized 1n a directory hierarchy.

The data 1n a file are typically delivered to or created for
an application 1n response to a request from the application.
The application program interface (API) of some file sys-
tems allows applications to retrieve particular bytes or
combinations of bytes of data 1n a file, even when the data
are delivered when streamed over a network connection. For
example, the application can use a seek function to find a
particular location and then sequentially read data for some
interval. Such APIs provide what 1s typically called random
access, and allow retrieval of data from anywhere 1n a file.
Other mechanisms for accessing data 1n a file, for example
sequential access, normally are implemented on top of a
random access mechanism.

Whether the retrieved data are decipherable by the appli-
cation can depend, however, on the particular application
and the format of the file. Data that are stored 1n standardized
formats such as ASCII text are readily accessible. For
example, such data can be deciphered, or processed, by any
word processor or text editor and, if streamed over a
network, can be processed as they are received.

When data are delivered by streaming, some file formats
may require that the file data be provided in its entirety
before any of the data in the file can be processed by a
particular application. For example, some viewers for Adobe
portable document format (PDF) files may require access to
data at the end of the PDF file in order to present the first
page of the PDF document. In this case, access to the first
page 1s delayed until the entire file-including—-data that are
not needed to present the first page—is retrieved.

The application of encryption to a file also can require that
the entire file be retrieved before any portion of it can be
accessed. That 1s, to find objects 1n a file that 1s encrypted as
a block of data, the enftire file must first be decrypted. The
application of compression to a file can also limit access to
the data in the file. The file must be decompressed from its
beginning, until the desired data has been decompressed and
can be located. Thus, 1n general, the user must choose
between random access to data 1n a file and compression or
encryption of the data in the file.

Delays 1n the delivery of requested portions of encrypted,
compressed, and specialized files can be significant if the file
1s large relative to the requested portion of the file or if the
requested portion 1s close to the end of the file. In these cases
and without random access, the user must wait for the
delivery of relatively large portions of unrequested data. Any
such delay can be exacerbated 1f the file 1s being delivered
over a network, where the rate of delivery 1s limited by
hardware capabilities and network traffic.

SUMMARY OF THE INVENTION

In general, in one aspect, this invention provides methods
and computer program products for retrieving requested

5

10

15

20

25

30

35

40

45

50

55

60

65

2

data. A request 1s received from an application to read a
portion of an application file. The application file 1s format-
ted to be recognized by the application. A filter-system file
1s consulted. The filter-system file contains processed data
and correspondence 1nformation. The processed data
includes a set of processed data that corresponds to data in
the application file and the correspondence information
indicates how the set of processed data corresponds to the
data 1n the application file. The requested portion of the
application file 1s derived from the processed data using the
correspondence 1nformation, and delivered to the applica-
tion.

Advantageous implementations of the methods and com-
puter program products can include one or more of the
following features. The requested portion can include less
than all of the application file. The correspondence infor-
mation can be referenced 1n a header at the beginning of the
filter-system {ile. The correspondence information can
include a cross-reference table 1n the filter-system file. The
cross-reference table can be at the beginning of the filter-
system file. The request from the application can reference
an application file and the requested portion of the applica-
tion file can be derived by reading data from the filter-system
file through a filter-system API in response to the application
request. The processed data can further include a second set
of processed data corresponding to data m a second appli-
cation file, and the correspondence information can further
indicate how the second set of processed data corresponds to
the data 1n the second application file.

The application file can have two or more sections of data
and the filter-system file can have two or more blocks of
data, with each block corresponding to one or more sections
in the application {file, and the correspondence information
can 1ndicate the locations of the sections in the application
file, the locations of the blocks 1n the filter-system file, and
the correspondence between sections in the application file
and blocks 1n the filter-system {ile. The filter-system file can
have at least one block of data corresponding to data in a
second application file, and the correspondence information
can further indicate the correspondence of the at least one
block of data 1n the filter-system file and the second appli-
cation file. The two or more sections of data can be defined
independently of the native structure of the application file.
The two or more sections of data can be defined by the native
structure of the application file. A section of data can be an
object 1n the application file. A section of data can be a
linked file represented in the application {ile by a link.

Finding the requested portion of the application file by
using correspondence information can include determining
which section 1n the application {ile contains the requested
data and 1dentifying the corresponding block in the filter-
system file. The requested portion of the application file can
be a byte range. The method can further include streaming
a necessary block, where the necessary block corresponds to
a section including some of the requested portion of the
application {file, before streaming an unnecessary block that
precedes the necessary block, where the unnecessary block
corresponds to a section having none of the requested
portion of the application file. Delivering the requested
portion of the application file can include delivering a
section that contains some of the requested data before
delivering a section that does not contain any of the
requested data.

Deriving the processed data can include applying a filter
to the processed data to produce the requested data. Apply-
ing a filter can decrypt or decompress processed data 1n the
filter-system file. The method can further include using the

US 6,970,866 Bl

3

correspondence 1information to identify the filter, and obtain-
ing the filter. Using the correspondence mformation to
identify a filter can include using a designated data type to
identify a registered filter. The correspondence mnformation
can 1nclude parameters for use 1 applying the filter when
decoding the data. The method can include applying two or
more filters to produce the requested data. A first filter can
decrypt processed data to produce decrypted data and a
second filter can decompress the decrypted data. A first filter
can decompress the processed data to produce decompressed
data and a second filter can decrypt the decompressed data.

In general, 1n another aspect, the invention provides
methods and computer program products for generating a
filter-system file. Data that 1s associated with an application
file 1s received. The application file 1s an application’s view
of the received data, and the application 1s operable to
request a portion of the application file. The received data 1s
processed to generate processed data that corresponds to the
received data. Correspondence information that indicates
how the processed data corresponds to the received data 1s
produced. The processed data and the correspondence infor-
mation are stored in a filter-system file.

Advantageous implementations of methods and computer
program products can include one or more of the following,
features. The information indicating the correspondence
between the processed data and the data received can be
referenced 1in a header at the beginning of the filter-system
file. The correspondence information can be In a cross-
reference table 1n the filter-system file. Receiving data
assoclated with an application file can include receiving data
from an application. Receiving data associated with an
application file can include receiving data from an applica-
fion file 1n response to a request from an application.

Processing the received data can include 1dentifying two
or more sections and generating two or more processed
blocks, where each processed block corresponds to a section
of data received; and the correspondence mformation can
identify the location of each section in the data received, the
location of each processed block 1n the filter-system file, and
the correspondence between each section in the data
received and each processed block 1n the filter-system file.
Processing the data received can mclude ordering the blocks
of data differently than the corresponding sections of
received data 1n the application file. The two or more
sections can be from two or more application files. Process-
ing the data received can include ordering the blocks of data
so that a block corresponding to a section from a second
application file 1s between two blocks corresponding to
sections from a first application file. Each section or block
can be defined by a byte range. The order of the blocks can
permit streaming a necessary block, which corresponds to a
section including some of the requested portion of the
application file, before streaming an unnecessary block that
precedes the necessary block, where the unnecessary block
corresponding to a section having none of the requested
portion of the application file.

Processing the data received can mclude applying a filter
to at least a portion of the data received. Applying a filter can
encrypt or compress at least a portion of the data received.
Processing the data received can include retrieving a filter,
applying the filter to some of the data received, and pro-
ducing correspondence information to 1dentily a filter to be
used to respond to a request for a portion of the application.
Producing correspondence information to identify a filter
can include 1dentifying a data type that identifies a registered
filter. The correspondence information can include param-
cters for use 1n applying the filter. Applying a filter can

10

15

20

25

30

35

40

45

50

55

60

65

4

include applying two or more filters to produce the requested
data. A first filter can encrypt processed data to produce
encrypted data and a second filter can compress the
encrypted data. A first filter can compress the processed data
to produce compressed data and a second filter can encrypt
the compressed data.

In general, in another aspect, the invention provides a
filter-system file. The filter-system file includes processed
data that corresponds to data in an application file, and
correspondence 1nformation that indicates how the pro-
cessed data corresponds to the data 1n the application file.
The filter-system file 1s operable to derive a requested
portion of the application file from the processed data.

The 1nvention can be implemented to realize one or more
of the following advantages. An application can receive and
process portions of a data file without receiving the entire
data file. An application can open a file before all of the file
1s received. A requested portion of an application file can be
delivered before nonrequested portions are delivered,
thereby shortening the time of delivery of the requested data.
Filters can be selectively applied to portions of an applica-
tion file, for example, to encrypt or compress them. A file can
be encrypted or compressed without sacrificing the ability to
access portions of the file. A file can be decrypted or
decompressed without introducing large lags 1n delivery and
without saving decrypted versions to disk. A file can be
reordered to optimize compression or encryption for down-
loading over a network. A file can be processed according to
user or application instructions. Arbitrary and external filters
can register with the file system and can be used to process
data 1n a file of a registered type. Application files of more
than one registered type can be collected 1nto a single file.
Portions of different files can be combined and interleaved
in a single file. Data 1n one or more files can be accessed
cificiently.

The details of one or more 1implementations of the mnven-
fion are set forth in the accompanying drawings and the
description below. Other features and advantages of the
invention will become apparent from the description, the
drawings, and the claims.

BRIEF DESCRIPITION OF THE DRAWINGS

FIG. 1 shows how a filter file system relates data in an
application file to data 1n a filter-system {ile using a layer of
code and a variety of {ilters.

FIG. 2 shows how a filter file system relates data 1n
several application files to data 1n a filter-system {file using
a layer of code and a variety of filters.

FIG. 3 presents management routines and filters that can
be mcluded 1n a filter file system.

FIG. 4 1llustrates how a filter file system interfaces with
an application and a conventional file system.

FIG. 5 illustrates how a filter file system interfaces with
an application and a conventional file system over a net-
work.

FIG. 6 1llustrates a method for generating a filter-system

file.

FIG. 7 illustrates a method for registering filters applied
In generating a filter-system file.

FIG. 8 1illustrates a method for retrieving data from a
filter-system file.

FIG. 9 1llustrates a method for applying filters to data
retrieved from a filter-system file and delivered filtered data.

FIG. 10 illustrates a format of a filter-system file.
FIG. 11 1llustrates an example of a filter-system file.

US 6,970,866 Bl

S

FIG. 12 illustrates an example of an incremental save to
a filter-system file.

Like reference symbols 1 the various drawings indicate
like elements.

DETAILED DESCRIPTION

A filter file system 100 relates data 1n an application file
101 to data 1n a filter-system file 102 using a layer of code
103 and a variety of filters 104, 105, 106, 108, as shown 1n
FIG. 1. Data 1n an application file 101 can be accessible to
an application with a conventional file system. Data 1n a
filter-system file 102 are accessible to the application with a
filter-file system. The filter file system includes a layer of
code 103 that can receive requests from an application for
data 1n an application file 101 and retrieve the requested data
from the filter-system file 102.

The application file 110 can be a virtual file. In this case,
data 1n the application file are accessible only with a filter
file system. The application makes requests for data from a
virtual application file 1n the same way that 1t would make
requests for data if the virtual application file were an
application file. However, the data that are requested can
only be retrieved from the filter-system file with the filter file
system.

In the filter file system, the data in the application file 101
can be divided into sections, for example Z 111, B 112, C
113, D 114, E 115. Typically, the data are divided into
several sections. The data in each section can be processed
by the filter file system independently from data i other
sections. The data 1n one or more sections of the application
file 101 are used to create one or more blocks of data in the
filter-system file 102. In a simple example and as shown 1n
FIG. 1, each section 1s used to create a single block. For
example, the data of section Z 111 are processed to produce
the data of block z 121. Similarly, the data of sections B 112,
C 113, D 114, and E 1135, are processed to produce blocks b
122, ¢ 123, d 124, and ¢ 125, respectively.

Conversely, the data 1n one or more sections of the
application file 101 can be derived from the data in one or
more corresponding blocks in the filter-system file 102. That
1s, the blocks of data in the filter-system file 102 can be
processed to produce the sections of data in the application
file 101. In a simple example and as shown 1n FIG. 1, each
section can be derived from a single corresponding block.

For example, the data of section Z 111 can be derived from
the data of block z 121. And the data of sections B 112, C

113, D 114, and E, can be derived from blocks b 122, ¢ 123,
d 124, and ¢ 1235, respectively.

Processing of sections to produce a filter-system file can
include rearranging, for example, reordering, the blocks of
data relative to their corresponding sections of data. A
rearrangement 1S 1llustrated 1in FIG. 1 by the relative order of
the sections 1n the application file 101 and the blocks in the
filter-system file 102. As shown, the blocks 1n the filter-
system file 102 are arranged or ordered differently from their
corresponding sections of data in the application file 101.
Thus, processing a section can include moving the data of
the block that corresponds to that section so that the block
occurs earlier or later 1n the filter-system {file 102 than the
corresponding section occurs 1n the application file 101. If
the data 1n the blocks are 1dentical to the data in the sections,
then reordering the blocks of data relative to their corre-
sponding sections of data 1s equivalent to reordering the
sections of data.

Processing of sections to produce blocks, and processing,
of blocks to produce sections, can include filtering the data

10

15

20

25

30

35

40

45

50

55

60

65

6

in a section or block. Filtering requires filters. Filters are
computer programs that can translate or transform one set of
data 1nto another. Filters can be used, for example, to
compress the data 1n a section of the application file 101, or
decompress the data in a block 1n the filter-system file 102.
Filters also can be used, for example, to encrypt the data in
a section, or decrypt the data 1n a block.

One or more filters can be applied selectively to sections
or blocks. For example, filters can be applied to some
sections and not others, and multiple filters can be applied to
a section. Such selectivity can provide access to some but
not all data 1n the file. For example, blocks of data that were
not filtered can be searched by simple parsing tools, while
access to other blocks 1s limited, for example, by their
having been compressed or encrypted.

The compression and decompression of data 1n the filter
file system 100 1s 1illustrated by the relative size of the
sections 1n the application file 101 and their corresponding
blocks 1n the filter-system {file 102. For example, section Z
111 1n the application file 101 can be compressed to produce
block z 121 in the filter-system file, and block z 121 can be
decompressed to produce section Z 111. Encryption 1is
shown by a similarly sized section and corresponding block.
For example, section C 113 1n the application file 101 can be
encrypted to produce block ¢ 123 1n the filter-system file
102, and block ¢ 123 can be decrypted to produce section C
113.

Filters to be applied to blocks 1n a filter-system file 102 are
external to the filter-system f{ile. Filters that are to be applied
to blocks 1n a filter-system must be 1dentified or referenced
in the filter-system file to which they are to be applied. For
example, a filter 104 that must be applied to block z 121 to
produce section Z 111 can be referenced in the header
section 130 of the filter-system file 102. The reference
identifies the filter by a unique ID, such as a name. In most
cases, parameters to be used in the application of the filter
are 1included 1n the filter-system file with the reference to the
filter.

Any number of filters can be used to process the data in
a section or block. Multiple filters can be applied m com-
bination or they can be applied sequentially, 1n a specified
order. For example, a compression filter 105 can be applied
to the data of section D 114 of an application {file 101 to
produce compressed data, and then an encryption filter 106
can be applied to the compressed data to produce the data of
the corresponding block d 124 in the filter-system file. In this
example, the section data are first compressed and then
encrypted. The data can be first encrypted and then com-
pressed. The number of filters and the sequence in which
they are applied can be optimized for a particular applica-
fion.

FIG. 2 1llustrates how a filter file system 100 uses a layer
of code 103 and a variety of filters 104, 105, 106, 108 to
relate data in several application files 201, 202, 203 to data
in a filter-system file 204. One or more of the application
files can be a virtual application file; that 1s, one or more of
the application files can be accessible only with a filter file
system. The application files can be created by one or more
applications.

The data 1n one or more of the application files 201, 203
can be divided into sections. For example one file 201 1s
divided 1nto two sections F 211 and G 212, and another file
1s also divided mto two sections I 214 and J 215. One or
more application files 202 can include only a single section
H 213. The data 1n each section can be processed 1indepen-
dently from data in other sections, including sections in
other application files, as described previously. The data in

US 6,970,866 Bl

7

the sections of the application files 201, 202, 203 are used to
create one or more blocks of data in the filter-system file
102. In a simple example and as shown 1n FIG. 2, each
section 1s used to create a single block. In this way, data from
sections 1n the several application files 201, 202, 203, arc
combined 1n a single filter-system {file 204.

The data 1n a section, for example, section F 211, of an
application file 201 can be derived from the data in one or
more corresponding blocks in the filter-system file 102, as
was described previously. Also, when multiple application
files are represented 1n a single filter-system {ile, the data for
an entire application file 202 can be derived from a corre-

sponding block 223 1n the filter-system file 204.

As shown 1n FIG. 3, a filter file system 300 includes
management routines 310 and filters 320. Management
routines 310 are part of the layer of code 103 illustrated 1n
FIG. 1. Filters 320 can be separate from but accessible to the
layer of code 103 or they can be included in the layer of code
103.

Management routines 310 can include an application file
processor 312, a filter-system {ile generator 314, an appli-
cation interface 316, and a {filter-system file interpreter 318.
The application file processor 312 processes the application
file 101 or data from an application. The filter-system file
generator 314 uses the processed data and information about
the processing or, more generally, information about the
correspondence between data from an application and the
processed data, to produce the filter-system file 102. The
application interface 318 receives requests from an applica-
fion to retrieve data from an application file. The filter-
system file interpreter 318 responds to the requests by
retrieving data from a filter-system file that corresponds to
the requested data and deriving the requested data from the
corresponding data in the filter-system file. The interpreter
can, for example, process the data in the filter-system
according to the correspondence information.

Filters can include encryption {ilters 322, compression
filters 324, and other encoder/decoder applications. Man-
agement routines can use {ilters to process data 1 an
application file to produce data for a filter-system file, or to
process data 1n a filter-system file to produce data 1n an
application file.

FIG. 4 illustrates how a filter file system interfaces with
an application 410 and a conventional file system 420. The
application 410 has a user interface 412 and a {file system
interface 414. A user makes requests for data at the user
interface 412. For example, the user can request a page from
a file. The application translates the user’s request into a
request that 1s understood by the file system. For example,
the application can request to open a file 416 or to read
particular data 418 1n a file. In this way, the application 410
uses the file system interface 414 to perform the user’s
request on a file system.

As shown on the right side of FIG. 4, a request from the
application 410 1s made to a conventional file system 420.
The conventional file system has an application interface
422 and a system interface 424. The request 1s passed
through the interface between the application and the con-
ventional file system, with reference to the application {ile
430. The conventional file system translates the applica-
fion’s request and passes 1t to the system at its system
interface 424, for example to retrieve data from storage on
a disk. In this way, an application 410 uses a conventional
file system 420 to access stored data in terms of an appli-
cation file 430.

As shown on the left side of FIG. 4, a request from the
application 410 1s made to a filter file system. The filter file

10

15

20

25

30

35

40

45

50

55

60

65

3

system 1ncludes a layer of code 440 that has an application
interface 442 and a file system intertace 444. The layer of
code 440 operates between the application 410 and the
conventional file system 420. The application makes
requests for data from an application file 1n response to user
input 450. The layer of code 440 translates the application’s
request and passes 1t to, for example, the conventional file
system 420. The translated request 1s made through the
interface between the layer of code of the filter file system
and the conventional file system, with reference to a filter-
system file 460.

The layer of code 440 can be coupled to the application
410. For example, the layer of code 440 can be packaged as
a plug-in for the application 410, or can be a part of the
application. The layer of code also can be coupled to the
conventional file system or operating system. The layer of
code can be a free-standing application.

The layer of code can have 1ts own cache bufler. The
cache buffer can be used, for example, when delivering
decrypted data. The cache buifer can be implemented so that
access to the encrypted data 1s managed. For example,
decrypted data can be placed as plaintext in a bufler, rather
than being written to disk, and then cleared from memory as
soon as 1t 1s no longer needed by the application.

With the filter file system, a conventional file system can
respond to a request with reference to the filter-system file.
For example, the request for a part 452 of the application file
450 1s translated into a request for a part 460 of the
filter-system file 460. The filter-system file 1s subdivided
into blocks, each of which can be processed separately by
the filter file system and the conventional file system. The
conventional file system provides a block of the filter-system
file to the layer of code, and the layer of code uses that data
to provide the requested portion of the application {ile.

FIG. 5 1illustrates how an application, filter file system,
and conventional file system can interact over a network
501. As shown on the left side of FIG. 4 and the left side of
FIG. §, an application 410 makes requests for data from an
application file 450. The requests are translated by a layer of
code 440 1n the filter file system. The translated requests
make reference to a filter-system file 460, and are passed on
to the conventional file system 420.

As shown on the right side of FIG. 5, a network 501 can
separate the conventional file system 420, which accesses
data from one computer, from the application 410, which
can be hosted on another computer 1n a network. In one
implementation, the network 1s interposed between the layer
of code of the filter file system 440 and the conventional file
system 420. That 1s, the application 410 and the layer of
code 440 are hosted on one computer 1in a network and the
filter-system file and conventional file system 420 are on
another computer 1n the network.

In the example shown in FIG. 5, the application makes
requests for data 1 terms of an application file 430. The
layer of code 440 translates the application’s request, so that
it makes reference to a filter-system file 460. The translated
request 1s passed over the network 401. The conventional
file system 420 responds to the request with reference to the
filter-system {ile. In response to the request from the filter-
system file, the conventional file system can return a block
from the file, rather than the entire file. The block 1s streamed
over the network 401 to the layer of code 440. The layer of
code 440 then processes that data to provide the requested
section of the application file 430, as shown on the left side
of FIG. 4 and as discussed previously.

For example, an application may request a file for delivery
over a network and, in response, data from the file 1is

US 6,970,866 Bl

9

streamed over the network to the application. If the appli-
cation attempts to access the data before it 1s all received, the
layer of code can intervene. For example, the layer of code
can assimilate data until the requested bytes are received,
and then deliver the requested data to the application. In
another example, the layer of code can preempt the stream-
ing of data and request the bytes corresponding to the data
requested by the application. In yet another example, the
layer of code can open a new network connection and
request the needed bytes of data.

The example shown in FIG. 5 can provide security
advantages. For example, if encryption filters were applied
to produce the block, the data that 1s being transferred over
the network will be transferred 1n a secure encrypted state.
If any decrypted copies of the block are made, they are on
the local system, which hosts the application file and the
filter file system, rather than the remote system, where the
filter-system file 1s stored.

A method for generating a filter-system file 1s shown 1n
FIG. 6. The filter file system receives data to be used to
generate a filter-system file (step 602). In one implementa-
tion the data are received from the application, for example,
in the form of write requests. In this case, the application file
1s a virtual file and cannot be accessed 1n the absence of the
filter file system. Software that 1s specific to a particular
application, commonly referred to as a ‘plug-mn’, can be used
In association with the application to create a filter system
file. Plug-ins that are application-specific can be optimized
for the file types associated with an application.

In another implementation, the data are received as an
application file, for example, from a conventional file sys-
tem. In this case, the application file can be accessible to the
application without a filter file system. The filter file system
typically determines the type of data received (step 604).
The type of data can be inferred from the format of a
received file. For example, the type of data can be ASCII
text, page description format, PostScript, or any other docu-
ment format type. The filter file system may or may not
recognize the format of the data received (step 606). The
filter file system can, for example, compare the data received
to registered data types, and determine whether the data
received are one of the registered data types.

If the data type is recognized (the YES branch of step
606), the filter file system processes the data. Processing
includes ordering and filtering. Ordering includes 1dentify-
ing sections of the data received (step 608). Sections can be
designated by native features of the application file format.
For example, sections can be defined by page breaks 1n a
PDF file. Ordering also includes locating the blocks that will
correspond to each sections (step 608). The blocks can be in
the same order as their corresponding sections, or they can
be ordered differently than the sections of data received. For
example, a block of data corresponding to a section of data
that 1s received last, or 1s found at the end of a file, can be
ordered so that it 1s located near the beginning of the
filter-system file.

The reordering of blocks relative to sections can improve
access to the data 1n a file. For example, the reordering can
allow 1mnformation about the location of data or objects 1n the
file to be delivered before other data 1s delivered, such as
when the file 1s delivered by streaming over a network.

If the data type is not recognized (the NO branch of step
608), the filter file system checks to see if sections can be
identified (step 610). For example, sections can be identified
by a standardized syntax or code. If the filter file system
cannot identify sections (the NO branch of step 610), it
chooses default rules to define sections (step 612). For

10

15

20

25

30

35

40

45

50

55

60

65

10

example, the system can define sections that are a specified
length, or it can define a specified number of sections that are
equal in length.

If sections can be identified (the YES branch of step 610)
or after default rules are chosen (step 612), the filter file
system checks to see if ordering can be identified (step 614).
For example, ordering can be identified by a standardized
syntax or code. If the filter file system cannot identily
ordering (the NO branch of step 614), it chooses default
rules to order the blocks corresponding to the sections (step
616). For example, the system can order the blocks corre-
sponding to sections by size or according to a particular
algorithm, for example, inverted order.

Rules and their parameters can be defined by a user or can
be chosen, for example based on characteristics of the data
received or the filter to be applied. For example, if the file
1s large or the data are repetitive, or 1if a filter to be applied
to the data operates best on larger objects, the system can
define sections to be large. Rules and their parameters are
advantageously defined to improve the rate of delivery over
a network and allow for compression, encryption, or other
forms of filtering.

[f ordering can be 1dentified (the YES branch of step 614)
or after default rules are chosen (step 616), a new file type
is registered with the filter file system (step 618). The
registration makes 1t possible for the filter file system to
assoclate the rules that 1t has chosen for the data received,
with the type of the data received. Registering a new data
type mcludes storing information about the data type of the
data received with the chosen rules for 1dentifying or des-
ignating sections 1n data of that type, and ordering the blocks
corresponding to the sections.

After the data type is recognized (step 606) or registered
(step 618), the rules for the data type of the data received are
applied to the data (step 608). Sections of data are identified
and blocks that correspond to those sections are ordered. The
filter file system can apply {ilters to the sections of data to
create the corresponding blocks (step 620). The ordering
and, if filters are applied, the filtering of the received data
produce processed data that will be included 1n the filter-
system f{ile.

The filter file system generates information to be included
in a header of the filter-system file (step 622). This infor-
mation includes mmformation about how the sections were
identified and ordered. If filters were applied, 1t includes
information about the filters. The information 1s sufficient to
allow the filter file system to reconstruct the received data
from the processed data. In general, 1t indicates the corre-
spondence between the received data and the processed data.
The correspondence information 1s placed 1n a header, and
the processed data and the header are combined to create a
filter-system file (step 624).

A method for applying filters to a section or sections of the
data received by the filter file system 1s shown 1n FIG. 7. The
application of filters can be associated with the data type
(step 702). That is, the filter file system can apply filters to
data received according to the rules for the data type of the
data received.

If the rules for a data type indicate that filters should be
applied to the data received (the YES branch of step 702),
the filter file system checks to see if the filter or filters are
available (step 704). If the filter or filters are available (the
YES branch of step 704), the filter or filters are applied to the
data received (step 706). The filter or filters can, for
example, be applied according to the rules for that data type.
For example, a filter can be applied to all the sections
received, or a filter can be applied to the first and last

US 6,970,866 Bl

11

sections of data received. Filters can be applied 1n sequence
to particular blocks. If the filter or filters are not available
(the NO branch of step 704), the filter file system can search
for the filter (step for 708). For example, the filter file system
can look for appropriate files on a local system, or can
broadcast requests for the filter in a network environment.
The filter or filters are then applied to the section or sections
of data as described previously (step 706). If the filter or
filters are not available, the method cannot proceed.

For each section, 1f the file type does not indicate the
application of filters (the NO branch of step 702), and even
if 1t does, the filter file system checks for instructions to
apply a filter or filters (step 708). For example, a user of the
application may request the application of filters. If the
application of filters is indicated (the YES branch of step
710), the filter file system checks to see if the filter or filters
are available (step 712). If they are (the YES branch of step
712), the filter or filters are applied to the section of data
(step 714). If the filter or filters are not available (the NO
branch of step 712), the filter file system can search for the
filter (step for 716). The filter or filters are then applied to the
section of data (step 714). If the filter or filters are not
available, the method cannot proceed.

If there are no instructions to apply a filter or filters to a
section (the NO branch of step 710) or if filters have been
applied to the section according to mstructions, the filter file
system checks to see if there are additional sections that have
been received (step 716). If there are sections remaining (the
YES branch of step 716), the file system again checks for
instructions to apply a filter or filters (step 708) and repeats
the steps described previously. If and when there are no
more sections (the NO branch of step 716), the filter file
system combines the data produced from the application of
filters to the sections of data with the correspondence
information to create a filter system file (step 718, which is
the same as step 624 in FIG. 6).

A method for retrieving data from a filter-system file 1s
shown 1n FIG. 8. The filter file system receives a request
from an application for data from an application file (step
802). The filter file system consults the filter-system file that
corresponds to the application file (step 804). The filter file
system reads the correspondence 1nformation from the filter-
system file (step 806). Typically, the correspondence infor-
mation 1s included 1n a header section near the beginning of
the file. If the correspondence mnformation 1s 1mncluded 1n a
portion of the file near the beginning of the file, 1t 1s recerved
before other portions of the file when the file 1s delivered to
the filter file system 1n order, for example, by streaming the
bytes of data i the filter-system file over a network.

The filter file system uses the correspondence information
to determine which block or blocks of data in the filter-
system file 1include data corresponding to the data requested
by the application (step 808). That is, the filter file system
determines which block or blocks of data 1n the filter-system
file can be processed to produce the requested data. The filter
file system then accesses the block or blocks of data that
correspond to the requested data (step 810). The data can be
accessed, for example, by retrieving the block or blocks
using a conventional file system.

The filter file system typically cannot process less than a
block, even 1f less than the corresponding section 1s
requested. For example, a section of the application file
located at bytes 3,072 to 4,096 of the application file can
correspond to a block of data 1n the filter file system located
at bytes 1,024 to 2,048. In this case, a request, for example,
for bytes 3,072 to 4,096 of the application file would cause
the filter file system to access bytes 1,024 to 2,048 of the

10

15

20

25

30

35

40

45

50

55

60

65

12

filter-system file. A request for a subset of the same section
would also cause the filter file system to access bytes 1,024
to 2,048. The filter file system can access more than one
block 1n response to a request for data. For example, a
request for bytes 4,000 to 5,000 would cause the filter file
system to access data from the previously described block
and one or more blocks including data corresponding to
bytes 4,096 to 5,000 in the application f{ile.

Once the filter file system has accessed the appropriate
block or blocks of data, the filter file system processes the
block or blocks to produce the data in the corresponding
section or sections of the application file or virtual applica-
tion file. This processing can include the application of
filters (step 812). The processed data is then delivered to the
application (step 814). If the processed data includes data
that was not requested by the application, the filter file
system delivers only the requested data and can, for
example, cache the rest of the processed data.

A method for applying filters to a block or blocks of data
retrieved from the filter-system {ile 1s shown 1n FIG. 9. The
filter file system reads the correspondence information for a
block from the filter-system file (step 902). If the correspon-
dence information indicates that a filter or filters must be
applied to the data in the block to produce the data in the
corresponding section of the application file (the YES
branch of step 904), the filter file system checks to see if the
filter or filters are available (step 906). If the filter or filters
are available (the YES branch of step 906), the filter or filters
are applied to the block of data (step 908). If the filter or
filters are not available (the NO branch of step 906), the filter
file system can search for the filter (step for 910). For
example, the filter file system can look for appropriate files
on a local system, or can broadcast requests for the filter in
a network environment. The filter or filters are then applied
to the block or blocks of data (step 908). If the filter or filters
are not available, the method cannot proceed.

The filter file system can deliver the requested data (step
910). These data can be identical to the data in the section
of the application file that corresponds to the accessed block.
If the request 1s for less than all of the data 1n the section, the
filter file system selects the requested data from the pro-
cessed data and delivers only the requested data from the
section corresponding to the accessed block. Alternatively,
the filter file system can store the processed data for later
delivery.

If the requested data includes data from sections corre-
sponding to more than one block (the YES branch of step
912), the filter file system reads the correspondence infor-
mation for another block from the filter-system file (step
902). The data in the block is processed and delivered or
stored as described previously. If there are no blocks remain-
ing (the NO branch of step 912) and the requested data has
not been delivered to the application, 1t 1s delivered to the
application.

FIG. 10 illustrates the format of a filter-system file. In this
implementation, the filter-system system file 1000 1ncludes
a header 1002, which 1s advantageously located at the
beginning of the filter-system file, and a variety of objects

1004, 1006, 1008, 1010, 1012, 1014, 1016, 1018,1020,

1045, 1047, 1049, 1050, 1058, 1064, which can be located
anywhere 1n the file. The location of the header at the

begmning of the filter-system {file provides early access to
the correspondence information when the filter-system file 1s
delivered by streaming.

The header 1002 has an identifier 1022 and a catalog
dictionary 1023. The identifier 1022 specifies the file format
and any major or minor versions of the file format. In one

US 6,970,866 Bl

13

implementation, the identifier 1s 12 octets long and can be
parsed by parser compatible with the PDF parsers developed
by Adobe Systems, Incorporated. For example, the 1dentifier
“% CDF-1.3\040\040\040\r” 1indicates that the file format 1s
CDF and the version i1s 1.3. The version number 1n the
identifier can be used by a simple parser to determine
whether 1t 1s able to process the file.

The catalog dictionary 1023 follows the identifier and
contains entries or references identifying the locations of
various objects 1 the {file. References can be pointers.
Location 1s given, for example, by the number of bytes from
the beginning of the file. An entry can contain data such as
“‘PX *00000101,” which indicates that object PX begins at
byte 00000101. In this example, the catalog dictionary
begins at byte 13 and the last entry 1030 i the catalog
dictionary 1023 indicates the location of the file cross-

reference table 1008. Eight other entries 1024, 1026, 1030,
1032, 1034, 1036, 1038, 1040 in the catalog dictionary 1023
indicate the locations of eight other objects 1004, 1006,
1010, 1012, 1014, 1016, 1018, 1020 1n the filter-system {ile
1000.

The filter-system file 1000 includes version 1004 and file
size 1006 objects, and the catalog dictionary 1023 includes
entries 1024, 1026 that specity the locations of version 1004
and file size 1006. Version 1004 gives the version numbers
for the filter-system file format specified 1n 1dentifier 1022.
File size 1006 gives the size of the file.

If a previously saved version of the file was modified and
saved, file size 1006 gives the size of the section of the file
corresponding to the previously saved version of the file.
File size can be used to determine whether the file has been
updated. If the file was updated, there will be blocks
including information corresponding to the updates and an
original, base document 1016, so that the noted file size 1s
smaller than the actual size of the file. If there are updates,
the catalog 1023 located in the update or updates sections
can 1nclude an entry 1036 indicating the location of the base
document 1016 within the filter-system file and a reference
1034 to the modification date 1014.

The filter-system file 1000 can include metadata 1012,
which provide information about the file. In one 1mplemen-
tation, the metadata are expressed using XML or an XML
compatible language, and mnclude title, author, and version
of the data file. The catalog dictionary 1023 contains a
reference 1032 to any metadata object 1012.

The filter-system file 1000 includes file cross-reference
table 1008. File cross-reference table includes entries 1009
for each file 1n the filter-system {file 1000. In this example,
cach block entry 1009 1n the file cross-reference table 1008
provides mformation 1042 and references 1043 for a file.
The mnformation 1042 for each entry 1009 1n the file cross-
reference table 1008 includes a unique identifier (ID); file
flags (Flags) indicating whether to open the file when the
filter-system file is opened; a code for operating system (OS)
indicating the type of file system used to create the filter-
system file; the starting location (ByteStart) and size (Byte-
Count) of the file; and a code for file type (Type). A PDF file,

for example, can be 1dentified using the string “pdif01.”
The references 1043 for each entry 1009 in the file
cross-reference table 1008 indicate the following: the loca-
tion 1n the filter-system file of an data cross-reference table
1045, the location of the most recent modification date of the
original file 1047, and the location of a relative file name
1049. The modification date 1046 1s similar 1n structure to
modification date 1014, whose location 1034 1s referenced
in the catalog dictionary 1023. The modification date 1047
indicates the last time that the file i1dentified in the file

10

15

20

25

30

35

40

45

50

55

60

65

14

cross-reference table entry 1009 was modified. The relative
file name 1049 1s used as a relative link in HITML or PDF
files. A reference indicating the location of metadata 1050
for the file can be included. This metadata object 1050 1s
similar 1n structure to metadata object 1012, whose location
1032 1s referenced 1n the catalog dictionary 1023.

The block cross-reference table 1045 1s used to map data

from the original application file to locations in the filter-
system file 1009. Each file indicated by an entry 1009 1n the

file cross-reference table 1008 has a block cross-reference
table 1047. Thus, 1f there are n files 1n the file cross-reference
table 1008, there will be n block cross-reference tables. In
this example, each entry 1054 1 the block cross-reference
table 1045 provides information for a block object 10358.
There 1s at least one block object for each file 1n the
filter-system file. The information 1054 for each entry 1n the
block cross-reference table 1045 includes a unique 1dentifier
for the block object (BlockID); a unique identifier for the file
to which the object belongs (fileID); and the starting location
(ByteStart) and size (ByteCount) of the data object. The
entry 1054 can include a reference indicating the location of
another section of the block cross-reference table 1045, for
example, 1f the block cross-reference table 1s very large.

A block object 1058 contains a block header 1060,
references 1061 to other objects 1n the filter-system file, and
filtered binary data 1062 that corresponds to data from the
original application file. The block header includes the
unique identifier for the object (BID); the existing size of the
object (Size), the size of the object before it was filtered
(UnSize); the number of filters applied to the data from the
original application file (FilterNum); and an array of filter
identifiers (filterID). For each identified filter, there is a
reference to a filter parameter object 1064, which has
parameters needed to apply the filter. The 1dentified filters
can be used to derive data from the original application from
the binary data in the block object.

The filter-system file 1000 can include a filter cross-
reference table 1010. The filter cross-reference table 1010 1s
used to locate filter information based upon a filter identifier.
It 1s referenced when a block object 1s accessed. Each entry
1066 1n the filter cross-reference table 1010 provides infor-
mation 1068 and can provide references 1070. The mfor-
mation 1068 includes a filter identifier (filterID); a flag
indicating whether the data should be cached as clear text;
the name of a registered handler (filterName) for the filter,
which was used to create the binary data 1n a data object; and
the name of a registered algorithm for a filter (subFiltName).
The references 1070 can indicate, for example, the location
of a filter private data dictionary 1072, which can have
global data for a specified filter.

It 1s possible that different filter handlers from different
vendors can process the same filtered data. For example, an
encryption filter handler from one vender can encrypt data
using a particular encryption technique while another ven-
dor’s filter handler 1s used to decrypt the filtered data.

The filter-system file 1000 can include a message digest
1018 and a signature 1020 at or near the end of the file. The
message digest 1018 data 1s used to check the data integrity
of the file and, 1n some cases, to 1dentify uniquely the file.
For example, data 1n the message digest can be encoded with
Basic Encoding Rules (BER) along with the object identifier
(OID) of the message digest algorithm and the message
digest value following common cryptographic standards.
The signature 1002 contains a signature of all bytes 1n the
file up to but not including the message digest data 1018,
signature data 1020, and any trailer objects. Signature data
1020 can be encoded using PKCS#7 encoding techniques. If

US 6,970,866 Bl

15

the filter-system file includes a message digest 1018 or a
signature object 1020, the catalog dictionary 1023 will
include an entry 1038, 1040, indicating the location of the
included object. The filter-system file can end with a trailer
such as % EOF.

FIG. 11 provides an example of an application file 1101
and a corresponding filter-system system file 1121 that 1s
consistent with the format 1llustrated i FIG. 9. The appli-
cation file 1101 1s a PDF f{ile. In the filter file system, the
application file 1101 1s divided into five sections, 1103,
1104, 1106, 1108, 1110. The first section 1102 includes a line
specitying the file format. The second section 1103 includes
the data needed to present the first page of the document.
The last section 1110 includes a cross-reference table. The
cross-reference table contains an enftry for each object,
specifying the location of that object within the body of the
file. Each of the middle sections corresponds to a page in the
document. Each of the middle sections mncludes a catalog,
pages tree, bookmarks, and other objects that can be used to
render a page.

The filter-system file 1121 that corresponds to the appli-
cation file 1101 1s divided nto six blocks. The first block
1112 1s a header block. It includes information about the
correspondence of information between data 1n the blocks of
the filter-system file and data in the sections of the applica-
tion file 1101. In this case, it includes only a line 1ndicating
the format type of the file and the version of the format type,
which corresponds to information given 1n the first section
1102 of the application file 1101. The filter file system can
use this information to 1dentify rules for the idenfification of
blocks and the application of filters to blocks. The filter-
system {ile 1121 includes five other blocks, each of which
corresponds to a section 1n the application file 1101. For

example, the last section of the application file 1110 corre-
sponds to the first block 1120 1n the filter-system file. This

block includes the cross-reference table 945 that 1s used to
locate objects 1n the file. The middle four sections of the
application file 1103, 1104, 1106, correspond to the last four
sections 1122, 1124, 1126, 1128 of the filter-system file. One
or more of the blocks can include, for example, a com-
pressed or encrypted version of the data in the corresponding,
section.

FIG. 12 shows how a filter file system can be used to track
incremental changes or updates to an existing filter-system
file. Data that 1s added to an application file 1s used to create
a new block 1n the filter-system file or a new file 1n the
filter-system file. For example, block or file 1103 includes
data for a new object 1108. The 1dentifier 1104 of the header
for the block or file names the filter-system file format and
version. The rest of the header 1106 includes a filter, e.g.,
externalPDF, to be applied to the update block or file. The
filter take the next two entries, file and filelD, as parameters.
Together, these two arguments 1dentily the application file
that 1s being updated.

If the filter-system file includes multiple application files,
then there can be updates for multiple files. If an incremental
update contains a file cross reference table, this file cross
reference table will replace the previously existing file cross
reference table. This replacement allows files to be removed
and added from the filter-system file, for example, as incre-
mental versions are saved.

The mvention can be implemented 1n digital electronic
circuitry, or in computer hardware, firmware, software, or 1n
combinations of them. Apparatus of the invention can be
implemented 1n a computer program product tangibly
embodied 1n a machine-readable storage device for execu-
tion by a programmable processor, or embodied 1n a propa-

10

15

20

25

30

35

40

45

50

55

60

65

16

cgated signal, or embodied 1n any combination of the
machine-readable storage device and the propagated signal.
Method steps of the invention can be performed by a
programmable processor executing a program of 1nstruc-
fions to perform functions of the invention by operating on
input data and generating output. The invention can be
implemented advantageously in one or more computer pro-
orams that are executable on a programmable system includ-
ing at least one programmable processor coupled to receive
data and 1nstructions from, and to transmit data and instruc-
fions to, a data storage system, at least one input device, and
at least one output device. Each computer program can be
implemented 1n a high-level procedural or object-oriented
programming language, or in assembly or machine language
if desired; and 1n any case, the language can be a compiled
or interpreted language. Suitable processors mclude, by way
of example, both general and special purpose microproces-
sors. Generally, a processor will receive instructions and
data from a read-only memory and/or a random access
memory. The essential elements of a computer are a pro-
cessor for executing instructions and a memory. Generally,
a computer will include one or more mass storage devices
for storing data files; such devices include magnetic disks,
such as internal hard disks and removable disks; magneto-
optical disks; and optical disks. Storage devices suitable for
tangibly embodying computer program instructions and data
include all forms of non-volatile memory, including by way
of example semiconductor memory devices, such as
EPROM, EEPROM, and flash memory devices; magnetic
disks such as internal hard disks and remowvable disks;
magneto-optical disks; and CD-ROM disks. Any of the
foregoing can be supplemented by, or incorporated in,
ASICs (application-specific integrated circuits).

To provide for interaction with a user, the 1nvention can
be implemented on a computer system having a display
device such as a monitor or LCD screen for displaying
information to the user and a keyboard and a pointing device
such as a mouse or a trackball by which the user can provide
input to the computer system. The computer system can be
programmed to provide a graphical user mterface through
which computer programs interact with users.

The 1nvention has been described in terms of particular
embodiments. Other embodiments are within the scope of
the following claims. For example, steps of the invention
can be performed in a different order and still achieve
desirable results. The described methods and apparatus can
be implemented to process XML files, providing for efficient
compression and delivery 1n a network environment. The
invention can be used to store and access documents for
ebooks. The invention can be used to access data 1n a digital
camera file, where the digital camera file includes a refer-
ence to a separate file such as an audio file. The encoding
rules can be different than described here.

What 1s claimed 1s:

1. A computer 1mplemented method for retrieving
requested data, comprising:

receiving a request from an application to read a portion

of an application file, the application file being recog-
nized by the application and having two or more
sections of data;

consulting a filter system f{ile, the filter system file con-

taining correspondence information and having two or
more blocks of data, each block including a set of
processed data corresponding to one or more sections
in the application file the correspondence information
indicating the locations of the sections in the applica-
tion file, the locations of the blocks in the filter-system

US 6,970,866 Bl

17

file, and the correspondence between sections 1n the
application file and blocks 1n the filter-system file;

deriving the requested portion of the application file from
the processed data using the correspondence informa-
tion; and

delivering the requested portion of the application file to

the application.

2. The method of claim 1, wherein the requested portion
includes less than all of che application file.

3. The method of claim 1, wherein the correspondence
information 1s referenced 1n a header at the beginning of the
filter-system file.

4. The method of claim 3, wherein the correspondence
information includes a cross-reference table 1n the filter-
system file.

S. The method of claim 4, wherein the cross-reference
table 1s at the beginning of the filter-system file.

6. The method of claim 1, wherein:

the request from the application references an application

file; and deriving the requested portion of the applica-
tion file 1s performed by reading data from the filter
system {ile through a filter-system API in response to
the application request.

7. The method of claim 1, wherein:

the processed data further mncludes a second set of pro-

cessed data corresponding to data 1n a second applica-
tion file; and

the correspondence information further indicates how the

second set of processed data corresponds to the data 1n
the second application file.

8. The method of claim 1, wherein:

the filter-system {ile has at least one block of data corre-

sponding to data 1n a second application file; and

the correspondence information further indicates the cor-

respondence of the at least one block of data in the
filter-system file and the second application file.

9. The method of claim 1, wherein the two are more
sections of data are defined independently of the native
structure of the application file.

10. The method of claim 1, wherein the two or more
sections of data are defined by the native structure of the
application file.

11. The method of claim 10, wherein a section of data 1s
an object 1n the application file.

12. The method of claim 3, wherein a section of data 1s a
linked file represented in the application file by a link.

13. The method of claim 1, wherein finding the requested
portion of the application file by using correspondence
information comprises:

determining which section 1n the application file contains

the requested data;

identifying the corresponding block 1n the filter-system

file.

14. The method of claim 1, wherein the requested portion
of the application file 1s a byte range.

15. The method of claim 14, further comprising:

streaming a necessary block, the necessary block corre-

sponding to a section including some of the requested
portion of the application file, before streaming an
necessary block that precedes the necessary block, the
unnecessary block corresponding to a section having
none of the requested portion of the application {ile.

16. The method of claim 1, wherein:

delivering the requested portion of the application file

comprises delivering a section that contains some of the
requested data before delivering a section that does not
contain any of the requested data.

10

15

20

25

30

35

40

45

50

55

60

65

138

17. The method of claim 1, wherein deriving the pro-
cessed data mcludes applying a filter to the processed data
to produce the requested data.

18. The method of claim 17, wherein applying a filter
decrypts or decompresses processed data in the filter system
file.

19. The method of claim 17, further comprising:

using this correspondence information to idenftily the

filter; and

obtaining the filter.

20. The method of claim 19, wherein using the corre-
spondence information to i1dentify a filter includes using a
designated data type to 1dentily a registered filter.

21. The method of claim 19, wherein the correspondence
information includes parameters for use 1n applying the filter
when decoding the data.

22. The method of claim 17, further comprising:

applying two or more filters to produce the requested data.
23. The method of claim 22, wherein a first filter decrypts
processed data to produce decrypted data and a second filter
decompresses the decrypted data.
24. The method of claim 22, wherein a first filter decom-
presses the processed data to produce decompressed data
and a second filter decrypts the decompressed data.
25. A computer implemented method for generating a
filter system file for use 1n retrieving data, comprising:
receiving data associated with an application file, the
application file being an application’s view of the
received data, the application being operable to request
a portion of the application f{ile,

processing the received data to generate processed data
the processed data corresponding to the received data,
including 1dentifying two or more sections of received
data and generating two or more processed blocks 1n a
filter system f{ile, each processed block corresponding
to a section of received data; and

producing correspondence mnformation indicating how the

processed data corresponds to the received data, the
correspondence 1nformation identifies the association
of each section of received data with the application
file, the location of each processed block in the filter-
system file, and the correspondence between each sec-
tion of received data and each processed block 1n the
filter-system file; and

storing the processed data and the correspondence infor-

mation 1n the filter system file.

26. The method of claim 25, wherein the information
indicating the correspondence between the processed data
and the data received 1s referenced in a header at the
begmning of the filter system file.

27. The method of claim 26, wherein the correspondence
information 1s 1n a cross-reference table in the filter-system
file.

28. The method claim 25, wherein receiving data associ-
ated with an application file includes receiving data from an
application.

29. The method of claam 25, wherein receiving data
associated with an application file includes receiving data
from an application {file 1n response to a request from an
application.

30. The method of claim 25, wherein processing the data
received comprises:

ordering the blocks of data differently than the corre-

sponding sections of received data in the application
file.

31. The method of claim 25, wherein the two or more
sections are from two or more application {iles.

US 6,970,866 Bl

19

32. The method of claim 31, wherein processing the data
received comprises:

ordering, the blocks of data so that a block corresponding

to a section from a second application file 1s between
two blocks corresponding to sections from a first appli-
cation file.

33. The method of claim 31, wherein each section or
block 1s defined by a byte range.

34. The method of claim 33, wherein:

the order of the blocks permits streaming a necessary

block, the necessary block corresponding to a section
including some of the requested portion of the appli-
cation file, before streaming an unnecessary block that
precedes the necessary block, the unnecessary block
corresponding to a section having none of the requested
portion of the application file.

35. The method of claim 25, wherein processing the data
received comprises applying a filter to at least a portion of
the data recerved.

36. The method of claim 35, wherein applying a filter
encrypts or compresses at least a portion of the data
received.

37. The method of claim 25, wherein processing the data
received comprises:

retrieving a filter;

applying the filter to some of the data received; and

producing correspondence mnformation to 1dentify a filter

to be used to respond to a request for a portion of the
application.

38. The method of claim 37, wherein producing corre-
spondence miormation to identify a filter includes 1dentify-
ing a data type that identifies a registered filter.

39. The method of claim 37, wherein the correspondence
information includes parameters for use in applying the
filter.

40. The method of claim 37, wheremn applying a filter
includes applying two or more filters to produce the
requested data.

41. The method of claim 40, wherein a first filter encrypts
processed data to produce encrypted data and a second filter
compresses the encrypted data.

42. The method of claim 40, wherein a first filter com-
presses the processed data to produce compressed data and
a second filter encrypts the compressed data.

43. A computer program product, tangibly embodied in
any combination of a machine-readable medium and a
propagated carrier signal, for retrieving requested data,
comprising instructions operable to cause a programmable
processor to:

receive a request from an application to read a portion of

an application file, the application file being formatted
to be recognized by the application and having two or
more sections of data;

consult a filter system file, the filter-system file containing,

correspondence information and having two or more
blocks of data, each block including a set of processed
data corresponding to one or more sections in the
application file, the correspondence information indi-
cating the locations of the sections 1n the application
file, the locations of the blocks in the filter-system file,
and the correspondence of each section 1n the applica-
tion file to a block 1n the filer-system f{ile;

derive the requested portion of the application file from

the processed data using the correspondence informa-
tion; and

deliver the requested portion of the application file to the

application.

10

15

20

25

30

35

40

45

50

55

60

65

20

44. The computer program product of claim 43, wherein
the correspondence mnformation 1s referenced 1n a header at
the beginning of the filter system file.

45. The computer program product of claim 43, wherein
the correspondence information includes a cross-reference

table 1n the filter-system file.
46. The computer program product of claim 43, wherein:

the request from the application file references an appli-
cation file; and
instructions to derive the requested portion of the application
file mnclude 1nstructions to read data from the filter system
file through a filter-system API in response to the application
request.
47. The computer program product of claim 43, wherein:

the processed data further includes a second set of pro-
cessed data corresponding to data 1n a second applica-
tion file; and

the correspondence information further indicates how the
second set of processed data corresponds to the data 1n
the second application file.

48. The computer program product of claim 43, wherein:

the filter-system file has at least one block of data corre-
sponding to data 1n a second application file; and

the correspondence information further indicates the cor-
respondence of the block of data in the filter-system file
and the second application file.

49. The computer program product of claim 43, wherein:

instructions to deliver the requested portion of the appli-
cation file include mstructions for delivering a section
that contains some of the requested data before deliv-
ering a section that does not contain any of the
requested data.
50. The computer program product of claim 49, wherein
applying a filter decrypts or decompresses processed data 1n
the filter-system file.
51. The computer program product of claim 20, wherein
the 1nformation indicating the correspondence between the
processed data and the data received 1s referenced in a
header at the beginning of the filter-system file.
52. The computer program product of claim 50, wherein
the correspondence information 1s 1n a cross-reference table
in the filter-system f{ile.
53. The computer program product of claim 52, wherein
the two or more sections are from two or more application
files.
54. The computer program product of claim 50, wherein:
processing the received data includes identifying two or
more sections and generating two or more processed
blocks, each processed block corresponding to a sec-
tion of data received; and

the correspondence information identifies the location of
cach section 1n the data received, the location of each
processed block 1n the filter-system file, and the corre-
spondence between each section 1n the data received
and each processed block in the filter-system file.

55. The computer program product of claim 50, wherein
instructions to process the data received comprise:

instructions to order the blocks of data differently than the

corresponding sections of received data 1n the applica-
tion file.

56. The computer program product of claim 55, wherein
applying a filter encrypts or compresses at least a portion of
the data received.

57. The computer program product of claim 50, wherein
instructions to process the data received comprises mnstruc-
tions to apply a filter to at least a portion of the data received.

US 6,970,866 Bl
21 22

58. The computer program product of claim 43, wherein data and generating two or more processed blocks 1n a
deriving the processed data includes applying a filter to the filter system file, each processed block corresponding,
processed data to produce the requested data. to a section of received data;

59. A computer program product, tangibly embodied in produce correspondence information indicating how the
any combination of a machine-readable medium and a 5 processed data corresponds to the received data, the
propagated carrier signal, for use in generating a filter- correspondence mnformation identifying the association
system file, comprising instructions operable to cause a of each section of received data with the application
programmable processor to: file, the location of each processed block in the filter

receive data associated with an application file, the appli- system {ile, and the correspondence between each sec-

cation file being an application’s view of the received 10 tion of received data and each processed block in the

data, the application being operable to request a portion filter system file; and

of the application file; store the processed data and the correspondence 1nforma-
process the received data to generate processed data, the tion 1n the filter system file.

processed data corresponding to the received data,
including identifying two or more sections of received k% ok k%

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. :6,970,8366 Bl Page 1 of 1
DATED : November 29, 2005
INVENTOR(S) : James D. Pravetz and Richard L. Sites

It is certified that error appears in the above-identified patent and that said Letters Patent Is
hereby corrected as shown below:

Column 17,

Line 9, delete “che™ and replace with -- the --;

Line 45, delete “3” and replace with -- 10 --;

Line 60, delete “necessary” and replace with -- unnecessary --;

Column 18,
Line 39, delete “identifies™ and replace with -- identifying --;

Column 19,
Line 3, delete “ordering,” and replace with -- ordering --;
Line 62, delete “filer” and replace with -- filter --;

Column 20,
Line 36, delete “20” and replace with -- 50 --.

Signed and Sealed this

Sixth Day of June, 2006

JON W. DUDAS
Director of the United States Patent and Trademark Office

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

