(12) United States Patent

US006968555B2

10y Patent No.: US 6,968,555 B2

Frazier et al. 45) Date of Patent: Nov. 22, 2005
(54) MULTI-LAYER SOFTWARE 5,862,052 A * 1/1999 Nixon et al. 713/1
ARCHITECTURE FOR HARDWARE 5,887,169 A * 3/1999 Lacombecc.u....... 719/311
CONTROL. 6,028,998 A * 2/2000 Gloudeman et al. 717/108
6,119,125 A * 9/2000 Gloudeman et al. 707/103 R
(75) Inventors: Brian Edward Frazier, Santa Rosa, * cited by examiner
CA (US); Keith Jeffrey Sutton, Santa
Rosa, CA (US); Thanh Thien Nguyen Primary Fxaminer—St. John Courtenay, III
Heyman, Santa Rosa, CA (US)
(57) ABSTRACT
(73) Assignee: Agilent Technologies, Inc., Palo Alto,
CA (US) . . .
A software system having a multi-layer architecture for
(*) Notice: Subject to any disclaimer, the term of this controlling a hardware system including a latch layer, a
patent is extended or adjusted under 35 hardware control layer, an access layer, and an orchestration
U.S.C. 154(b) by 753 days. layer. The latch layer includes a latch object for each of a set
of control points of the hardware system. Each latch object
(21) Appl. No.: 09/825,654 provides a common interface 1n the software system for
accessing the corresponding control point. The hardware
(22) Filed: Apr. 4, 2001 control layer includes a hardware control object for each of
a set of sub-portions of the hardware system. Each hardware
(65) Prior Publication Data control object coordinates accesses to the control points of
US 2002/0147854 Al Oct. 10. 2002 the corresponding sub-portion through the latch layer. The
’ access layer includes an access object for each of a set of
(51) Inmt. CL7 oo, GO6k 9/312 groupings of the sub-portions. Each access object coordi-
(52) US.ClL .o 719/316; 719/320 nates accesses to the corresponding grouping of the sub-

(58) Field of Search 719/310-320,
719/328; 713/1, 2, 100, 707/103 R; 717/108; 714/25-57,

portions. The orchestration layer includes an orchestration
object for each of a set of functional features of the hardware
system. Each orchestration object provides a common inter-

712/220 . . .
face 1n the software system for accessing a corresponding
(56) References Cited ogrouping of the access objects which are associated with the
corresponding functional feature.
U.S. PATENT DOCUMENTS
5,574,922 A * 11/1996 Jamesc.cccovvinnnnn. 7127220 17 Claims, 4 Drawing Sheets
Type A Type B
Requests Requests
100
Orchestration Orchestration
Object 10-1 Object 10-2
Access Object Access Object Access Object Access Object
20-1 20-2 120-1 120-2

Hardware Control Hardware Conirol Hardware Control Hardware Control Hardware Control
Object 30-1 Object 30-2 Object 130-1 Object 1030-1 Object 1030-2

US 6,968,555 B2

Sheet 1 of 4

Nov. 22, 2005

U.S. Patent

T-0€ 108lq0
10J)U0Y) 8JempieH

00}

0LS
jahe

10J]U07
aJempJeH

US 6,968,555 B2

Sheet 2 of 4

2005

Nov. 22,

U.S. Patent

¢-0€ 108Iq0 [-0€ 109/90 _m»m._
10JJU0) SIBMPIEH [04U0] 8JeMpIeH 03U07
2IeMpIeH

— 025
1-0¢ 1oAeT
10990 $5900Y SS90y

001

US 6,968,555 B2

Sheet 3 of 4

, 2005

22

Nov.

U.S. Patent

sl —

2-0€ 108140
10JJU07) 8JeMPIBH

[-0€ 10900

T-061 199[q0 |
10JJU0Y) SJempleH

0JU07) 8JeMpIeH

¢-0¢
198lq0) $S800Y

1-0¢
108[q0) SS90y

T-0T 109lq0
uones1sayold

001

10JU0N

2JEMPIEH

02<
19Ae7

S$S00Y

0€S
19fe

UONBNSaYIQ

v Ol

US 6,968,555 B2

T-0€ 109[00
|0J)U0N) 8JempleH

2-0¢€ 108l00
|0JJUOD BlempleH

F-0€1 109lq0

T-0807 199l00
|01JU07) 8JempieH

2-0€07T 109l00
|0JJU0)) aJeMpieH

04JU07) SIBMPIEH

4
< c-0cF 1-0ck 2-0¢ 1-0¢
3 109100 $5890Y 109lqQ $$800Y 108l0Q $S800Y 198l00 SS800Y
Z
—
N ¢-0F 19l00 _ -0 108l00
R UOIENSBYDIO) UoleisayaliQ
z 00F

s)sanbay sisanbay

g adAL v 9dAL

U.S. Patent

US 6,963,555 B2

1

MULTI-LAYER SOFTWARE
ARCHITECTURE FOR HARDWARE
CONTROL

BACKGROUND OF THE INVENTION

1. Field of Invention

The present invention pertains to the field of software
control of hardware. More particularly, this invention relates
to a multi-layer software architecture for hardware control.

2. Art Background

A wide variety of systems include hardware which 1s
controlled by software. Software that controls hardware 1s
commonly referred to as firmware. For example, a wide
variety of instruments including those used in test and
measurement applications commonly include circuits for
generating test signals and/or circuits for obtaining measure-
ments along with firmware for controlling the circuits.

A circuit 1n such a system typically includes one or more
control points that enable software to control a circuit by
writing values to the control points of the circuit. The control
points may be implemented as registers and/or digital-to-
analog converters, efc.

It 1s common to make hardware changes to a system when
performing support or upgrade operations on the system.
Hardware changes to a system may involve modification to
its circuits, replacement of 1ts circuits, and/or the addition of
circuits. Such hardware changes typically require modifica-
tions to the firmware that controls the circuits.

Prior firmware systems may grow quite large and com-
plex as the number and complexity of circuits being con-
trolled 1ncreases. In addition, the firmware code that directly
accesses the control points of circuits 1s usually scattered
haphazardly throughout numerous portions of a firmware
system. These factors typically complicate the task of per-
forming firmware modifications. For example, 1t 1s common
to undertake a search through large amounts of code to find
references to the control points that require modification.
Unfortunately, such methods of performing firmware modi-
fication are usually time consuming and can greatly increase
the time and cost of upgrading a system and may introduce
faults mto the firmware.

SUMMARY OF THE INVENTION

A software system having a multi-layer architecture for
controlling a hardware system 1s disclosed. The multi-layer
architecture 1ncludes a latch layer, a hardware control layer,
an access layer, and an orchestration layer. The latch layer
includes a latch object for each of a set of control points of
the hardware system. Each latch object provides a common
interface 1n the software system for accessing the corre-
sponding control point. The hardware control layer includes
a hardware control object for each of a set of sub-portions of
the hardware system. Each hardware control object coordi-
nates accesses to the control points of the corresponding
sub-portion through the latch layer. The access layer
includes an access object for each of a set of groupings of the
sub-portions. Each access object coordinates accesses to the
corresponding grouping of the sub-portions. The orchestra-
tion layer 1includes an orchestration object for each of a set
of functional features of the hardware system. Each orches-
tration object provides a common interface in the software
system for accessing a corresponding grouping of the access
objects which are associated with the corresponding func-
tional feature.

Other features and advantages of the present mvention
will be apparent from the detailed description that follows.

10

15

20

25

30

35

40

45

50

55

60

65

2
BRIEF DESCRIPTION OF THE DRAWINGS

The present ivention 1s described with respect to par-
ticular exemplary embodiments thereof and reference 1is
accordingly made to the drawings in which:

FIG. 1 shows one embodiment of a software system
according to the present teachings which includes a set of
latch objects grouped by a hardware control object;

FIG. 2 shows another embodiment of a software system
according to the present teachings which includes an access
object for grouping hardware control objects;

FIG. 3 shows yet another embodiment of a software
system according to the present teachings which includes an
orchestration object for grouping access objects;

FIG. 4 shows still another embodiment of a software
system according to the present teachings.

DETAILED DESCRIPTION

FIG. 1 shows one embodiment of a software system 100
according to the present teachings. The software system 100
controls a hardware subsystem 200-1 which may be a
sub-portion of a hardware system. The hardware subsystem
200-1 1ncludes a set of control points 50-1 through 50-n for
controlling the functionality of the hardware subsystem
200-1.

The software system 100 includes a set of latch objects
40-1 through 40-n which share a common interface and form
a latch layer 500. The latch objects 40-1 through 40-n may
share a similar responsibility with respect to the control
points 50-1 through 50-n.

The latch objects 40-1 through 40-n correspond to the
control points 50-1 through 50-n, respectively. The latch
objects 40-1 through 40-n encapsulate and provide common
interfaces to the corresponding control points 50-1 through
50-n, respectively. For example, the latch object 40-1 encap-
sulates and provides a common 1nterface to the control point
50-1 and the latch object 40-2 encapsulates and provides a
common 1nterface to the control point 50-2, etc.

Each latch object 40-1 through 40-n provides a wrapper
and locking mechanism around a physical address associ-
ated with the corresponding control point 50-1 through 50-n.
For example, the latch object 40-1 provides a wrapper and
locking mechanism around the physical address associated
with the control point 50-1 and the latch object 40-2 pro-
vides a wrapper and locking mechanism around the physical
address associated with the control point 50-2, efc.

In one embodiment, each latch object 40-1 through 40-n
1s an object 1mplemented as a C™ class and 1ts common
interface includes a set of methods. The methods include a
change_ state() method for altering the corresponding con-
trol point 350-1 through 50-n. For example, the
change state() method of the latch object 40-1 takes as an
arcument a value to be applied to the control point 50-1 and
the change state() method of the latch object 40-2 takes as
an argument a value to be applied to the control point 50-2.
Each latch object 40-1 through 40-n uses a C* locking
mechanism to lock the physical address associated with the
corresponding control points 50-1 through 50-n.

The implementation of the latch objects 40-1 through
40-n are adapted to the particular hardware implementation
of the underlying control points 50-1 through 50-n and
insulate higher objects of the software system 100 from
these particulars. For example, an alteration of the circuitry
assoclated with the control point 50-2 can be accommodated
by a modification to the latch object 40-2 rather than
modifications to other portions of the software system 100.

US 6,963,555 B2

3

The software system 100 includes a hardware control
object 30-1 that encapsulates and provides a common 1nter-
face for controlling the hardware subsystem 200-1. The
hardware control object 30-1 provides a hardware control
layer 510 1n the software system 100. The hardware control
object 30-1 coordinates the latch objects 40-1 through 40-n.

The hardware control object 30-1 includes a set of meth-
ods which are adapted to provide a set of hardware functions
associated with the hardware subsystem 200-1 according to
the underlying hardware implementation. The methods 1n
the hardware control object 30-1 are adapted to calculate
values to be applied to the control points 50-1 through 50-n
and call the change state() methods of the latch objects
40-1 through 40-n when appropriate. Code 1n higher objects
of the software system 100 call the methods of the hardware
control object 30-1 when accessing the hardware functions
provided by the hardware subsystem 200-1. In one embodi-
ment, the hardware control object 30-1 1s an object 1imple-
mented as a C7F container class for the latch objects 40-1
through 40-n.

In some embodiments, the latch objects 40-1 through 40-n
are grouped together using the hardware control object 30-1
because the control points 50-1 through 50-n may have
interdependencies with respect to one another. The nature of
the interdependencies among the control points 50-1 through
50-n may depend on the particular application-specific func-
tion of the hardware subsystem 200-1. One example of an
interdependency between a pair of control points 1s one 1n
which the valid range of values for one depends on the value
of the other. The coding of the methods 1n the hardware
control object 30-1 are adapted to the interdependencies and
shield higher levels of the software system 100 from having
to adapt to the mterdependencies. An alteration or replace-
ment of the hardware subsystem 200-1 including changes in
the interdependencies among the control points 50-1 through
50-n can be accommodated by a modification to the hard-
ware control object 30-1 rather than modifications to other
portions of the software system 100.

In some embodiments, the hardware control object 30-1
may include files having calibrated data to be applied to the
control points 50-1 through 50-n.

FIG. 2 shows another embodiment of the software system
100 according to the present teachings. The software system
100 1n this embodiment controls the hardware subsystem
200-1 along with a hardware subsystem 200-2 each of which
1s a sub-portion of a hardware system 300. The hardware
subsystem 200-2 includes a set of control points 150-1
through 150-n for controlling its functionality.

As before, the software system 100 includes the hardware
control object 30-1 for grouping together the latch objects
40-1 through 40-n which are associated with the control
points 50-1 through 50-n of the hardware subsystem 200-1.
In this embodiment, the hardware control layer 510 of the
software system 100 includes a hardware control object 30-2
for grouping together a set of latch objects 140-1 through
140-n which are associated with the control points 150-1
through 150-n of the hardware subsystem 200-2.

The latch objects 140-1 through 140-n encapsulate
accesses to the control points 150-1 through 150-n, respec-
fively, in a manner substantially similar to that described
with respect to the latch objects 40-1 through 40-n. The
hardware control object 30-2 encapsulates and provides a
common 1nterface to the functionality of the hardware
subsystem 200-2 in a manner substantially similar to that
described with respect to the hardware control object 30-1.

The software system 100 1n this embodiment includes an
access layer 520 having an access object 20-1 that encap-

10

15

20

25

30

35

40

45

50

55

60

65

4

sulates and coordinates accesses to the hardware subsystems
200-1 and 200-2 1n response to requests for specific hard-
ware actions from higher levels of the software system 100.
The access object 20-1 implements methods that coordinate
the hardware functions associated with the hardware control
objects 30-1 and 30-2. In this context, the access object 20-1
groups together the hardware subsystems 200-1 and 200-2.
The grouping may be based upon interdependencies among
hardware subsystems 200-1 and 200-2.

Consider an example in which the subsystem 200-1
controls the frequency of a wavelorm and the subsystem
200-2 attenuates the waveform and in which there 1s a
dependancy between the frequency of the waveform and the
amount of attenuation. Code 1n the access object 20-1 may
call the methods of the hardware control object 30-2 to
obtain an attenuation setting from the subsystem 200-2,
determine an appropriate frequency setting according to an
interdependency, and then call the methods of the hardware
control object 30-1 to set the frequency of the waveform
accordingly.

FIG. 3 shows yet another embodiment of the software
system 100 according to the present teachings. The software
system 100 in this embodiment controls the hardware sub-
systems 200-1 and 200-2 along with a hardware subsystem
1200-1. The hardware subsystems 200-1 and 200-2 and the
hardware subsystem 1200-1 are cach a sub-portion of the
hardware system 300.

As betore, the software system 100 includes the hardware
control objects 30-1 and 30-2 for providing a common
interface to the latch objects 40-1 through 40-n and the latch
objects 140-1 through 140-n, respectively. Similarly, the
software system 100 includes the access object 20-1 for
orouping together the hardware control objects 30-1 and
30-2. In this context, the access object 20-1 groups together
and provides a common 1nterface to the functionality of the
hardware subsystems 200-1 and 200-2.

In this embodiment, the software system 100 includes a
hardware control object 130-1 for grouping together a set of
latch objects 240-1 through 240-n which are associated with
a set of corresponding control points of the hardware sub-
system 1200-1. The software system 100 1n this embodiment
includes an access object 20-2 that encapsulates, provides a
common 1nterface to, and coordinates accesses to the hard-
ware subsystem 1200-1.

The hardware control objects 30-1, 30-2 and 130-1 of the
hardware control layer 510 may be viewed as sharing a
similar responsibility in that they coordinate latch objects.
The access objects 20-1 and 20-2 of the access layer 520
may be viewed as sharing a similar responsibility 1n that they
coordinate hardware control objects.

The software system 100 1n this embodiment includes an
orchestration layer 5330 having an orchestration object 10-1
for grouping together and providing a common interface to
the access objects 20-1 and 20-2. The grouping of the access
objects 20-1 and 20-2 may be based on interdependencies 1n
the functionality of their underlying hardware subsystems.
The grouping of the access objects 20-1 and 20-2 may define
a Tunctional feature of the hardware system 300. The orches-
fration object 10-1 may implement methods that provide
higher level feature-based functionality which 1s substan-
tially independent of the underlying hardware system 300.
In one embodiment, the orchestration object 10-1 1s an
object implemented as a C™ class having data that includes
pointers to the access objects 20-1 and 20-2.

Consider an example in which the hardware system 300
generates a wavelorm, the hardware subsystem 200-1 con-
trols the frequency of the waveform and the hardware

US 6,963,555 B2

S

subsystem 200-2 attenuates the wavetorm and in which the
hardware subsystem 1200-1 conditions the waveform. In
this context, the access object 20-1 encapsulates the func-
tions 1n the software system 100 that are imvolved 1n
generating the source waveform and the access object 20-2
encapsulates the functions that are involved 1n conditioning
the waveform. The orchestration object 10-1 calls methods
in the access object 20-1 to control the generation of the
source wavetform and calls methods in the access object 20-2
to control the conditioning of the source waveform.

The hardware system 300 and 1ts sub-portions—the hard-
ware subsystems 200-1, 200-2, and 1200-1 may be embod-
ied 1n a variety of arrangements. For example, the hardware
system 300 may be a circuit board or module and the
hardware subsystems 200-1 and 200-2 and 1200-1 may be
separate circuits contained on 1t. In another example, the
hardware subsystems 200-1 and 200-2 and 1200-1 may be
separate sub-circuits of a larger circuit that 1s the hardware
system 300. In yet another example, the hardware sub-
systems 200-1 and 200-2 and 1200-1 may be separate
modules or circuit boards contained within a rack mounted
hardware system 300. The control points of the hardware
subsystems 200-1, 200-3, and 1200-1 may be implemented
as registers or digital-to-analog converters, etc., or any
combination of these.

The hierarchical arrangement of the hardware system 300
and the hardware subsystems 200-1, 200-2, and 1200-1 and
the control points 1n the hardware subsystems 200-1, 200-2,
and 1200-1 correspond to the hierarchical arrangement of
the access objects 20-1 and 20-2, the hardware control

objects 30-1, 30-2, and 130-1, and the latch objects 40-1
through 40-n, 140-1 through 140-n, and 240-n through

240-n. Changes that encompass a grouping ol hardware
subsystems are handled by changes to a corresponding
access object and below. Changes that encompass a hard-
ware subsystem are handled by changes to a corresponding,
hardware control object and below. Changes that encompass
a control point are handled by changes to a corresponding
latch object.

For example, the software system 100 adapts to a modi-
fication or replacement of the hardware subsystems 200-1
and 200-2 with a modification or replacement of the access
object 20-1. The software system 100 adapts to a modifica-
tion or replacement of the hardware subsystem 200-1 with a
modification or replacement of the hardware control object
30-1. The software system 100 adapts to a modification or
replacement of the control point 50-1 with a modification or
replacement of the latch object 40-1. The modification to a
object may include modifications to its data and/or its
methods.

FIG. 4 shows still another embodiment of the software
system 100 according to the present teachings. The software
system 100 in this embodiment includes the orchestration
object 10-1, the access objects 20-1 and 20-2, and the
hardware control objects 30-1, 30-2, and 130-1 along with
corresponding latch objects for controlling the hardware
subsystems 200-1, 200-2 and 1200-1.

In this embodiment, the software system 100 includes a
hardware control object 1030-1 and an access object 120-1
for a corresponding hardware subsystem and a hardware
control object 1030-2 and an access object 120-2 for a
corresponding hardware subsystem and an orchestration
object 10-2 for grouping the access objects 120-1 and 120-2.

The orchestration object 10-1 handles requests from a
user which are associated with a type A function feature of
the hardware system 300 and the orchestration object 10-2
handles requests from the user which are associated with a

10

15

20

25

30

35

40

45

50

55

60

65

6

type B function feature of the hardware system 300. Con-
sider an example 1n which the orchestration object 10-1 uses
the access objects 20-1 and 20-2 to control the frequency of
a wavelorm and the orchestration object 10-2 uses the access
objects 120-1 and 120-2 to control the amplitude of the
waveform. In this context, type A functional features are
frequency related and type B functional features are ampli-
tude related. The orchestration object 10-1 may include a
method that takes as an arcument a frequency value and the
orchestration object 10-2 may have a method that takes as an
arcument an amplitude value.

Each latch object 1s controlled by only one hardware
control object and each hardware control object 1s controlled
by only one access object whereas multiple orchestration
objects can control each access object. In addition, orches-
tration objects can control other orchestration objects. This
enables an access object to handle conflicts 1in the control
undertaken by their orchestration objects. For example, the
access objects 20-2 and 120-1 are each contained 1n both the
orchestration objects 10-1 and 10-2. If the orchestration
object 10-1 undertakes to generate a frequency of 500 MHZ
and the orchestration object 10-2 undertakes to set an
amplitude of 10 V then either the access object 20-2 or the
access object 120-1 may determine that the corresponding,
hardware 1s only capable of 5 V and 500 MHZ and take
appropriate action to apply these constraints.

No communication 1s allowed between access objects.
This forces all requests to be coordinated by an orchestration
object. Similarly, no communication 1s allowed between
hardware control objects.

In some embodiments, communication 1s allowed
between orchestration objects. For example, the orchestra-
fion object 10-1 communicates to the orchestration object
10-2 that 1t 1s changing the frequency of the waveform which
1s an operation that may require the orchestration object 10-2
to change an operating mode 1f its underlying hardware.

In one embodiment, the software system 100 includes
initialization or boot-up code for detecting the versions of
the hardware systems and subsystems installed and for
setting the pointers maintained by each orchestration objects
to 1ts corresponding access objects and for setting the
polinters maintained by each access objects to 1ts correspond-
ing hardware control objects accordingly.

The multi-layer architecture disclosed herein may be used
to 1mpose rules on the laying out of control of hardware
systems 1ncluding embedded systems. These rules provide
clarity and consistency 1n generating new control algorithms
for a system as well as maintenance of a system.

The orchestration layer enables the implementation of
high-level, feature-based algorithms in which there 1s little
need for knowledge of the underlying hardware system. The
access layer provides for encapsulation of hardware function
circuits and enables implementation of control which 1is
specific to the underlying circuitry. The access layer pro-
vides an application programming interface (API) to the
underlying circuitry and enables use of the underlying
circuit functionality without specific knowledge of the
design of the underlying circuitry. The hardware control
layer 1s provided to abstract the specific digital interface to
the underlying circuitry from the access layer. Minor
changes to a portion of underlying circuitry may be changed
while not affecting the access layer. For example, the reso-
lution of a control DAC may be changed with a correspond-
ing change to the code 1n the hardware control layer while
not affecting the code 1n the access layer

The foregoing detailed description of the present mmven-
tion 1s provided for the purposes of illustration and 1s not

US 6,963,555 B2

7

intended to be exhaustive or to limit the mvention to the
precise embodiment disclosed. Accordingly, the scope of the
present mvention 1s defined by the appended claims.

What 1s claimed 1s:

1. A software system, comprising:

latch layer having a latch object for each of a set of control

points of a hardware system, each latch object provid-
ing a common 1nterface in the software system for
accessing the corresponding control point and each
latch object providing a locking mechanism around a
physical address associated with the corresponding
control point; and

hardware control layer having a hardware control object

for each of a set of sub-portions of the hardware
system, each hardware control object for coordinating
accesses to the control points of the corresponding
sub-portion through the latch layer.

2. The software system of claim 1, wherein each latch
object 1s controlled by only one of the hardware control
objects.

3. The software system of claim 1, wherein each latch
object includes a method which 1s adapted to alter a value
applied to the corresponding control point according to a
hardware implementation of the corresponding control
point.

4. The software system of claim 1, wherein each hardware
control object 1s adapted to handle interdependencies among
the corresponding control points.

5. The software system of claim 1, further comprising an
access layer having an access object for each of a set of
ogroupings of the sub-portions, each access object coordinat-
Ing accesses to the corresponding grouping of the sub-
portions.

6. The software system of claim 5, wherein each access
object 1s adapted to handle interdependencies among the
sub-portions of the corresponding grouping of the sub-
portions.

7. The software system of claim §, wherein each hardware
control object 1s controlled by only one of the access objects.

8. The software system of claim §, further comprising an
orchestration layer having an orchestration object for each of
a set of functional features of the hardware system, each
orchestration object providing a common 1nterface in the
software system for accessing a corresponding grouping of
the access objects which are associated with the correspond-
ing functional feature.

10

15

20

25

30

35

40

45

3

9. The software system of claim 8, wherein each orches-
tration object 1s adapted to handle mterdependencies among
the access objects of the corresponding grouping of the
access objects.

10. The software system of claim 8, wherein each access
object 1s controlled by one or more of the orchestration
objects.

11. The software system of claim 8, wherein each orches-
tration object controls one or more of the other orchestration
objects.

12. A method for controlling a hardware system using a
software system, comprising:

providing a latch object 1n the software system for each of
a set of hardware control points of the hardware system,
cach latch object providing a common software inter-
face enabling the software system to access the corre-

sponding hardware control point mcluding a locking
mechanism around a physical address associated with
the corresponding hardware control point; and

coordinating accesses to the latch objects for the hardware
control points of each of a set of sub-portions of the
hardware system.

13. The method of claim 12, wherein providing a latch
object 1includes providing a method which 1s adapted to alter
a value applied to the corresponding hardware control point
according to a hardware 1implementation of the correspond-
ing hardware control point.

14. The method of claim 12, wherein coordinating
accesses Includes coordimating interdependencies among the
hardware control points.

15. The method of claim 12, wherein coordinating
accesses 1ncludes coordinating accesses among a set of
groupings of the sub-portions.

16. The method of claim 15, wherein coordinating
accesses further includes coordinating interdependencies
among the sub-portions of the corresponding groupings of
the sub-portions.

17. The method of claim 15, wherein coordinating
accesses further includes coordinating accesses associated
with each of a set of functional features of the hardware
system.

	Front Page
	Drawings
	Specification
	Claims

