US006965978B2

(12) United States Patent

(10) Patent No.: US 6,965,978 B2

Cohen et al. 45) Date of Patent: Nov. 15, 2005
(54) MEMORY TRACKING TOOL 6,782,462 B2* 82004 Marion et al. 711/170
(75) Inventors: Shy Cohen, Bellevue, WA (US); John OTHER PUBLICAIIONS

T. Spivey, Redmond, WA (US); Eyal Galen Hunt and Doug Brubacher, Detours: Binary Intercep-
Schwartz, Bellevue, WA (US) tion of Win32 Functions, Microsoft Research, http://re-

secarch.microsoft.com/sn/detours, p. 1-9.
(73) Assignee: Microsoft Corporation, Redmond, WA
(US) * cited by examiner

Primary Fxaminer—Christian P. Chace

Assistant Examiner—Matthew Bradley

(74) Attorney, Agent, or Firm—Shook, Hardy & Bacon,
L.L.P; Jesse J. Camach; Scott B. Strohm

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 285 days.

(21) Appl. No.: 10/438,671

(57) ABSTRACT
(22) Filed: May 15, 2003 A method, medium, and computer-program product 1s pro-
vided for tracking memory-usage characteristics of an appli-
(65) Prior Publication Data cation. The 1nvention includes a suite of tools to evaluate
US 2004/0230763 Al Nov. 18, 2004 memory usage ol uninstrumented binaries by tracking
memory allocations, de-allocations, and in-memory-pres-
(51) Int. CL7 oo GO6F 12/00 cnce attributes at the module level. Memory-manipulation
(52) US.CL ., 711/170; 710/15 functi::;n calls (not limited to allocations and deallocations)
(58) Field of Searcho.ccoooo.... 711/170-173, ~ 2r¢ hyacked to code segments that annotate and log then-
707/205: 710/8. 1 5’ current memory characteristics. Processing 1s reverted back
’ ’ to 1ts from-hyjacked position and allowed to continue. In-
(56) References Cited memory presence of allocated memory and labels for certain
points at time are tracked as well. The tracked data 1s logged
U.S. PATENT DOCUMENTS so that algorithms can be run to extract desired information,
5,491,808 A * 2/1996 Geist, Jt. weevveeeeeeennn... 711100 ~ Which can be presented in various reports.
50009033 A * 12/1999 Mehta ..oceevvevververeennn. 707/100
6,718,286 B2* 4/2004 Rivin et al. 702/186 5 Claims, 7 Drawing Sheets

RERCUTE MEMORY-
300 ALLOCATION FUNCTION

I I
I |
I |
I |
I I
\ | CALLS 316 I
I
| |
I I
I |
I |
I

ANALYZE THE CALL
STACK 318A

LOG ALLOCATIONS AND /‘) I

MAKE DESIRED

TRACK MEMORY USAGE |/ ! | INFORMATION ABOUT THE

I
310 | CALL STACK 318 | ANNOTATIONS 318B
I I | d
I | -y - - - 77777
: I | ~~-318
| OUTPUTRESULTSTOA |
; LOG RECORD 320 ;
h 4 | !
CTTTTTTTT T T T T T T T ~L_.310
ANALYZE TRACKED DATA
312 /\f ——————————————————— >
OPTIONALLY SPECIFY |,
| |[MODULES TO IGNORE 324 ! mT T -
I
| I I { ALL 326A |
| | !
I
v i | CONDUCT A SERIES OF | | ; ;
. | ANALYSIS ALGORITHMS R | LIST 326B |
REPORT RESULTS OF | 326 O\ |
ANALYSIS | | : |
314 | I | I FILTER 326C |
| |
| DUMPDATATOGENERIC |1 | |
| |
I FLE 328 - | TRIGGER 326D |
L R —— | I
\ e }
~~312 AN

US 6,965,978 B2

Sheet 1 of 7

Nov. 15, 2005

U.S. Patent

00}
G8L SWvH90Hd \
NOILYOITddV
3LOW3H __ __ __
ISNOW ol Gyl vyl

S3TNAOW SWVHDOUd NILSAS
ONILVH3dO

JONVI1ddV
31 ONEH

“ . V.1v({

J3OY4H3INI | | FOVAHILNI . NvHD0dd
AGOMLAN || LMENI-H3SN

LLL

NHOMLIN Y38v-TvO0T

ot | S31NAON

8)

8

—
QO
o)
—

|
|
|
|
|
|
|
| |
[ZF SNG W3LSAS ALLSISIZCREELES |
— |
L6 SHINVYIAS ool SWYHDOHd
|
_ i NOILYOI1ddY _
- HILNIHd _ HAHdIA amww%mkz, TS _
96 L | 1Nd1No LINN ONILYH3dO |
| el 051 ONISS3O0Hd _
| 4 _
| |
| 0g | |
e d_____ 1EL (wou) | |
| ADOWIN WILSAS _

ok OLL ~_ |

¢ OId

US 6,965,978 B2

PTaNOILYOIddY j
ettt
— o E—
% “ Voe
||| S1HOd3Y | JOV4HI LN
_ ONLdIHOS _
_
_ — 1| _
| CCo _
S _ ININOJAWOD
=~ cEC === | |
0Ec |
= ININOJWNOD aang _ | ONILVLIONNY
M., JOVHOILS v1va “ "
: - _
7> | _
| _ _
_ | 8le _
= | ININOJNOD _
— _
> | LNINOJINOD NOILNO3X3 |
il _ ONISHVd | |
. | W _
> .. .3 —— - _
& _ _
rd | “
— | 9T _
E_n_mmw,_:o LNINOJWOD “
ONMOVHL _
TVYNOILdO _ | _

¢k NOILLVOIlddV 149dVL

U.S. Patent

9ZE -~ € OId

o\
aa
i
N . AL TN
s r———— === — e e e == = \
\(; | _ 1
e -
EN _ - _ | . e
& d9¢t HIDOIHL 7 _ “ g7¢ 3| |
2 n | OI43NID OL v.vd diNNC "
59CE YL o t | PTE
L — _ SISATYNY
— | ST43 _ 40 S1INS3H 1HOd3Y
g9¢c 18I SWHLIHODTY SISATYNY | |
| 40S3H3SV1ONANOD | |
™~ | i e |
o VoceE TV | |
S _ —
3 P | | |PZ€ 3IHONDI OL STINAOW| |
3 | AdIO3dS ATIVNOLLLO
= ril_v\/\l 2le
VLVA AINOVHL IZATYNY
OLe ™ N _ o _____ e
_
< _ A
= | 02€ QHOO3H DO | |
Q | YOLS1INS3d LNdLNO | |
1, -~ |
— e | Hmllplll | 4 _
= " |
Z g8I€ SNOILV.LONNY _ 8I€ MOVLS 1IVD " 5TE
d3dis3d IAVIN ' | FHL 1NOgY NOILYINHOANI 7| 3DVYSNAHOWIA MOVHL
H — \vl\”\ aNY SNOILYOOTTY DO
|

_

VBIE MOVLS |
TIVO FHL IZATYNY _ STE ST1v5

|

|

|

|

\

NOILONNA NOILVOO 11V 00€

-AHOWIW 31N0YdY

U.S. Patent

US 6,965,978 B2

— 8CY
817

™ INITOdIWVYHL

-)

-

g bEY

= oSy

Y2 — £15% A

m NOILONNd i
..__ 4NO13Q

_ LS

2

r4 STAY

U.S. Patent

0S¥

o1’d%
ovvy

¢ty eV

Ott

T

N\

| pirp
8P _ .y
A4
| Ot
-

IId

S

T1a TIaAN .v|

149%

Qct

14°1%

vev

%1%

LQOO4iITIdANW., TTVO

cev

IX3 IXIAN M
AL

US 6,965,978 B2

Sheet 5 of 7

Nov. 15, 2005

U.S. Patent

G OId

(IVNLHIN)

819 AVdH MOVLIS —

AOVLS
11d
110°d

11O
113°d
915 dOL MAOVLS — amleR";

PLS

. «—

1VOISAHG
HOVLS

Ta3
_ TaA
Ta°a
QX
11a°0
110 M
L5 pplex:

+JHONDI. _
_ TaA
11V

OlY

D V9 'OI1

US 6,965,978 B2

'SITNAONHIHLIO NHN13Y
‘W NHNL3Y ((WSNIVLINOO LSIT3TINA0ON) 41 (S NI W 371NAOW) HOVY3HO4

-

. |

e (S MOVLS)LSIMHLIMANIL m::oo_\,m

-

-

7 NOLLOG'S NHNL3Y v
(S MOVLS)TIVHLIMANI4 3TNAON

D {

S {

) (S)HTOOIHLHLIMANI4 NHNL3Y ‘HIDHOIHL ISVO

K (S)H3LT4HLIMANIA NHN1L3Y : "Y31114 IS0

z (S)LSITHLIMANIA NHNL3Y © 1SI73SVD

(S)TIVHLIMANIZ NENL13d © 71V 3SYO
}

(3A0ON) HOLIMS

(LSITIYONDI ‘S)LSITIHONDIIAOWIAH =S

}
(S MOVISINOILYOOTIVILNGIHLl1lY 3 TNAOW

U.S. Patent

d9 OId

US 6,965,978 B2

HOVLSTIVNLYHIA NHNL3Y
{

}
(S NI W 37NAOW) HOVYIHOS
(OMOVLS MAN = MOVLISTIVNLIHIA

| (N)AavyMOVvLSTIVNIYIA (((WSNIVLINOD LSINIHONDI)) 4l

}
-
g (S MOV.LS)LSITHONDIFAONWIYH MOVLS
- {
E WOLLOS'S NHN13Y 3513
75 TINN NANL3Y (OALJNTSE'S) 4
4713S1! 31NAOW 4359141 IHL IAOW3Y -> // ONOLLOGINAOWAY 'S (DALJINTSI'SH) 3
{
\ OWOLLOEG3IAOWIAY'S (ITNACNHIODDIHL =i NOLLOA'S) i
o~ }
L\
e (OALAW3SI'SI) ITIHM
— }
m (S MOVYIS)HADDIHIHLIMANIA ITINAON
{

TINN NHN13Y
NO1L109°'S NHNLIY ((IWSNIVINOD' LSITITNAOWN) 41 (S NI W 31NACW) HOVYIHOAS

)

)
(S MOV1S)HILTAHLIMANIA 3TNAOW

U.S. Patent

US 6,965,978 B2

1
MEMORY TRACKING TOOL

CROSS-REFERENCE TO RELATED
APPLICATIONS

Not applicable.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

Not applicable.

TECHNICAL FIELD

The present invention relates to application programming.
More particularly, the present invention relates to the field of
memory usage 1n a computing environment.

BACKGROUND OF THE INVENTION

Poor memory-usage characteristics are the bane of soft-
ware applications. While an application runs on a computer
or computing device, 1t uses a portion of the computer’s
physical memory. Physical memory 1s limited. Virtual
memory 1S a conventional scheme employed 1n a computing
environment whereby a computer’s hard drive 1s made to
appear to an application as available memory. When physi-
cal memory 1s exhausted, a memory manager Swaps
memory pages out of physical memory to the hard drive, and
brings them back when they are needed again, potentially
swapping other pages out in their stead. The event of
fetching a missing page from disk 1s called a page fault. Data
retrieval time from the hard drive 1s typically orders of
magnitude greater than retrieval time from RAM (physical
memory-random access memory). Accordingly, page swaps
degrade an application’s performance, especially when the
application requires a large amount of memory, which must
be synthetically created vis-a-vis page swaps.

An application’s working set 1s a set of pages that the
application has loaded 1nto physical memory. Modem appli-
cations may have large memory footprints, which require
persistent virtual-memory swaps and a large working set.
Application performance could be enhanced if the memory
footprint of an application could be reduced. Remedying
page-fault problems can enhance the speed of computer
applications.

Historically, however, evaluating an application’s
memory-usage characteristics and determining what mod-
ules allocated what memory has been difficult 1f not unavail-
able. No tools provided specificity with respect to what
events caused certain memory manipulations, such as allo-
cations and deallocations. Rather, one of the only metrics
available may be that of memory to code. That 1s, total data
usage can be calculated, it cannot be dissected to attribute
pieces to the various system components. So, whereas total
memory ol an application—which typically includes many
program modules—can be determined, memory usage
attributable to individual modules cannot be likewise deter-
mined. This leads to an inability to adequately troubleshoot
MEmOory-usage 1Ssues.

There 1s a need for a tool set that can evaluate the
memory-usage characteristics of a software application.
Moreover, there 1S a need to be able to use the tool set on
uninstrumented binary {iles.

10

15

20

25

30

35

40

45

50

55

60

65

2
SUMMARY OF THE INVENTION

The present invention generally relates to a development
and evaluation tool set that tracks memory usage of a
software application. The present mvention offers several
practical applications 1n the technical arts, not limited to
depicting memory usage over time at the module level,
tracking page faults, reporting memory consistent with 1ts
usage, highlighting important states and events, and assist-
ing program design and development.

In one aspect, the present i1nvention tracks various
memory-allocation types, not limited to heap, virtual,
memory-mapped files, page files, and other code-related
allocations. The 1nvention 1s a tool set that evaluates
memory usage ol an application by tracking, logging and
providing various ways to analyze and report memory usage
as 1t relates to both code and data. The tool tracks the
memory usage of applications, including uninstrumented
binaries, by tracking memory manipulations such as alloca-
tions, deallocations and 1n-physical-memory presence
attributes.

The present invention tracks memory usage, analyze the
tracked data, and presents intuitive reports that empower a
developer or developing enfity to 1solate memory-related
problems. With such knowledge, developers can shorten
development periods and create higher quality applications.
Tracking 1s done by rerouting memory-manipulation func-
fion calls, examining memory usage at various code points,
and annotating different points during the program’s run.
The tracking data can then be output to a log record, which
1s analyzed to determine the memory behavior of the appli-
cation. The results produced 1n the analysis can be tabled,
charted, examined, and/or logged for comparison with future
runs of the tool.

Embodied algorithms are disclosed that analyze the
tracked data and enable 1t to be presented intuitively. Core
modules that are necessarily responsible for memory allo-
cations can be 1gnored, revealing a more precise represen-
tation of memory usage. Depictions can be made of modules
at the tope of a memory stack. This depiction can be
narrowed by imcluding a list of only certain modules. The
present 1nvention can also count allocation towards the
module whose address 1s at the stack’s top when a module
from a module list 1s on the stack. A module of interest can
be so designated. Other modules that contribute to alloca-
tions resulting from the module of interest can be depicted.

BRIEF DESCRIPTTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

The present 1nvention 1s described in detail below with
reference to the attached drawing figures, wherein:

FIG. 1 1s a block diagram of a computing system envi-
ronment suitable for use 1n 1implementing the present inven-
tion;

FIG. 2 1s block diagram depicting an exemplary embodi-
ment of subcomponents of the present invention;

FIG. 3 1s a flow diagram illustrating the functionality
carried out by the present invention;

FIG. 4 15 a code-flow diagram depicting an embodiment
for implementing the present invention;

FIG. 5 presents an 1llustrative physical memory stack and
virtual stack; and

FIGS. 6A-6B are exemplary representations of
pseudocode for carrying out functionality offered by the
present 1nvention.

US 6,965,978 B2

3

DETAILED DESCRIPTION OF THE
INVENTION

The present mvention provides a method and suite of
tools that allow tracking of memory usage of uninstru-
mented binaries by tracking memory allocations, de-alloca-
tions, and 1n-memory presence. In a preferred embodiment,
a memory usage 1s tracked, analyzed, and reported. An
exemplary operating environment for the present invention
1s described below.

Exemplary Operating Environment

Referring to the drawings 1n general and 1nitially to FIG.
1 1n particular, wherein like reference numerals 1dentify like
components 1n the various figures, an exemplary operating
environment for implementing the present invention 1s
shown and designated generally as operating environment
100. The computing-system environment 100 1s only one
example of a suitable computing environment and 1s not
intended to suggest any limitation as to the scope of use or
functionality of the imnvention. Neither should the comput-
ing-environment 100 be interpreted as having any depen-
dency or requirement relating to any one or combination of

components illustrated 1n the exemplary operating environ-
ment 100.

The 1invention may be described 1n the general context of
computer code or computer-executable 1nstructions, such as
program modules, being executed by a computer. Generally,
program modules including routines, programs, objects,
components, data structures, etc., refer to code that perform
particular tasks or implement particular abstract data types.
Moreover, those skilled 1n the art will appreciate that the
invention may be practiced with a variety of computer-
system configurations, including hand-held devices, multi-
processor systems, microprocessor-based or programmable-
consumer electronics, minicomputers, mainirame
computers, and the like. The invention may also be practiced
in distributed computing environments where tasks are
performed by remote-processing devices that are linked
through a communications network. In a distributed com-
puting environment, program modules may be located in
both local and remote computer storage media including
memory storage devices.

With reference to FIG. 1, an exemplary system 100 for
implementing the invention includes a general purpose
computing device 1n the form of a computer 110 including
a processing unit 120, a system memory 130, and a system
bus 121 that couples various system components mncluding
the system memory 130 to the processing unit 120.

Computer 110 typically includes a variety of computer-
readable media. By way of example, and not limitation,
computer-readable media may comprise computer storage
media and communication media. Examples of computer
storage media include, but are not limited to, Random
Access Memory (RAM); Read Only Memory (ROM); elec-
tronically erasable programmable read-only memory (EE-
PROM); flash memory or other memory technology; CD-
ROM, digital versatile disks (DVD) or other optical or
holographic disc storage; magnetic cassettes, magnetic tape,
magnetic disk storage or other magnetic storage devices; or
any other medium that can be used to store desired infor-
mation and be accessed by computer 110. The system
memory 130 includes computer-storage media 1n the form of
volatile and/or nonvolatile memory such as ROM 131 and
RAM 132. A basic input/output system 133 (BIOS), con-
taining the basic routines that help to transfer information
between elements within computer 110 (such as during

5

10

15

20

25

30

35

40

45

50

55

60

65

4

start-up) is typically stored in ROM 131. RAM 132 typically
contains data and/or program modules that are immediately
accessible to and/or presently being operated on by process-
ing unit 120. By way of example, and not limitation, FIG. 1

illustrates operating system 134, application programs 1385,
other program modules 136, and program data 137.

The computer 110 may also include other removable/
nonremovable, volatile/nonvolatile computer storage media.
By way of example only, FIG. 1 illustrates a hard disk drive
141 that reads from or writes to nonremovable, nonvolatile
magnetic media, a magnetic disk drive 151 that reads from
or writes to a removable, nonvolatile magnetic disk 152, and
an optical disc drive 155 that reads from or writes to a
removable, nonvolatile optical disc 156 such as a CD-ROM
or other optical media. Other removable/nonremovable,
volatile/nonvolatile computer storage media that can be used
in the exemplary operating environment include, but are not
limited to, magnetic tape cassettes, flash memory units,
digital versatile discs, digital video tape, solid state RAM,
solid state ROM, and the like. The hard disk drive 141 i1s
typically connected to the system bus 121 through a non-
removable memory interface such as interface 140. Mag-
netic disk drive 151 and optical disc drive 155 are typically
connected to the system bus 121 by a removable memory
interface, such as interface 150.

The drives and their associated computer storage media
discussed above and illustrated in FIG. 1 provide storage of
computer-readable 1nstructions, data structures, program
modules and other data for computer 110. For example, hard
disk drive 141 1s illustrated as storing operating system 144,
application programs 145, other program modules 146, and
program data 147. Note that these components can either be
the same as or different from operating system 134, appli-
cation programs 135, other program modules 136, and
program data 137. Typically, the operating system, applica-
fion programs and the like that are stored in RAM are
portions of the corresponding systems, programs, or data
read from hard disk drive 141, the portions varying in size
and scope depending on the functions desired. Operating,
system 144, application programs 145, other program mod-
ules 146, and program data 147 are given different numbers
here to illustrate that, at a minimum, they can be different
copies. A user may enter commands and information into the
computer 110 through mput devices such as a keyboard 162;
pointing device 161, commonly referred to as a mouse,
trackball or touch pad; or a wireless transceiver 163. Other
input devices (not shown) may include a microphone, joy-
stick, game pad, satellite dish, scanner, or the like. These and
other 1mput devices are often connected to the processing
unit 120 through a user-input interface 160 that 1s coupled to
the system bus 121 but may be connected by other interface
and bus structures, such as a parallel port, game port, IEEE
139A port, or a universal serial bus (USB).

A display device 191 1s also connected to the system bus
121 via an interface, such as a video interface 190. Video
interface 190 could also accept an mmcoming video signal.
Display device 191 can be any device to display the output
of computer 110 not limited to a monitor, an LCD screen, a
TFT screen, a flat-panel display, a conventional television,
or screen projector. In addition to the display device 191,
computers may also include other peripheral output devices
such as speakers 197 and printer 196, which may be con-
nected through an output peripheral interface 195.

The computer 110 in the present invention will operate 1n
a networked environment using logical connections to one
Oor more remote computers, such as a remote computer 180.

US 6,965,978 B2

S

The remote computer 180 may be a personal computer and
typically includes many or all of the elements described
above relative to the computer 110, although only a memory
storage device 181 has been 1llustrated 1n FIG. 1. The logical
connections depicted 1n FIG. 1 include a local-area network
(LAN) 171 and a wide-area network (WAN) 173 but may

also 1include other networks, such as connections to a met-
ropolitan area network (MAN), intranet, or the Internet.

When used 1mn a LAN networking environment, the com-
puter 110 1s connected to the LAN 171 through a network
interface or adapter 170. When used in a WAN networking
environment, the computer 110 typically includes a modem
172 or other means for establishing communications over
the WAN 173, such as the Internet. The modem 172, which
may be internal or external, may be connected to the system
bus 121 via the network interface 170, or other appropriate
mechanism. Modem 172 could be a cable modem, DSL
modem, or other broadband device. In a networked envi-
ronment, program modules depicted relative to the computer
110, or portions thereof, may be stored in the remote
memory storage device. By way of example, and not limi-
tation, FIG. 1 1llustrates remote application programs 185 as
residing on memory device 181. It will be appreciated that
the network connections shown are exemplary and other
means of establishing a communications link between the
computers may be used.

Although many other internal components of the com-
puter 110 are not shown, those of ordinary skill 1n the art waill
appreciate that such components and the interconnection are
well-known. For example, including various expansion
cards such as television-tuner cards and network-interface
cards within a computer 110 1s conventional. Accordingly,
additional details concerning the internal construction of the
computer 110 need not be disclosed in connection with the
present mvention.

When the computer 110 1s turned on or reset, the BIOS
133, which can be stored in ROM 131, instructs the pro-
cessing unit 120 to load the operating system, or necessary
portion thereof, from the hard disk drive 141 into the RAM
132. Once the copied portion of the operating system,
designated as operating system 144, is loaded mmto RAM
132, the processing unit 120 executes the operating-system
code and causes the visual elements associated with the user
interface of the operating system 134 to be displayed on the
display device 191. Typically, when an application program
145 1s opened by a user, the program code and relevant data
are read from the hard disk drive 141 and the necessary
portions are copied mnto RAM 132, the copied portion
represented herein by reference numeral 1335.

Memory Evaluation

As previously mentioned, the present mmvention may be
described 1 the general context of computer-executable
instructions such as program modules executed by one or
more computers or other devices. The functionality of the
program modules may be combined or distributed as desired
1in various embodiments to evaluate the memory-usage char-
acteristics of an application.

FIG. 2 depicts an 1illustrative implementation of the
present mvention in a computing environment. In FIG. 2,
memory allocation of a target application 212 could be
evaluated using the present invention, which includes appli-
cation 214. Application 214 can take a variety of forms to
evaluate memory usage, as would be appreciated by one
skilled in the art. A skilled programmer may readily appre-

10

15

20

25

30

35

40

45

50

55

60

65

6

clate alternatives to the various subcomponents of applica-
tion 214 without departing from the spirit and scope of the
present 1nvention.

In a preferred embodiment, application 214 includes five
components: a tracking component 216, an execution com-
ponent 218, a controlling component 220—which, 1n a
preferred embodiment, mcludes an annotating component
222 and an optional scripting interface 224—and a parsing
component 226. These subcomponents of application 214
work together to produce a dump file 228, which can be
parsed by parsing component 226. The resultant data can be
used 1 a data file 230 or stored 1n a storage component 232.
From these data outputs, a variety of reports 234 can be
generated.

Target application 212 1s an application whose memory-
usage characteristics are to be evaluated by the present
invention. An advantage offered by the present invention 1s
that target application 212 can be used 1n conjunction with
an uninstrumented binary {ile. Instrumentation 1s a means of
tapping 1nto the behavior of an application. The present
invention enables analysis of target application 212 without
requiring compile or link-time changes to the binary code.
Profiling and analysis tools itroduce the tracking function-
ality 1into an application such as target application 212. In
one embodiment, this can be accomplished using program-
matic hooks—points 1 an application’s code to which
analysis code can be attached.

Some tools add 1nstrumentation hooks at the source level,
some at compile time, some at link time, and some operate
on the linked files. Instrumented binaries are files that have
the described hooks within them. Uninstrumented binaries
are binaries that do not have these hooks in them. Here, the
present nvention can be practiced on uninstrumented bina-
ries, offering a great advantage by obviating a need for
special preprocessing or prepping of the code of target
application 212.

Tracking component 216, 1n a preferred embodiment, 1s a
set of instructions that allows target application 212 to have
its memory usage tracked. In a preferred embodiment,
tracking component 216 1s a DLL module that allows target
application 212 to interact with the other modules of appli-
cation 214. As will be explained 1n greater detail below with
reference to a method for carrying out the present invention,
tracking memory allocations (including deallocations) of
target application 212 can be accomplished by rerouting
function calls to other functions that log memory attributes.

Execution component 218 communicates with tracking
component 216 and controlling component 220 to help
direct the examination of memory-usage characteristics of
target application 212. In a preferred embodiment, execution
component 218 facilitates stack walking to find the call stack
assoclated with various memory allocations. Stack walking,
1s a process of examining a thread’s call stack to determine
how target application 212 1s using memory at a speciiic
execution points or 1ntervals. The process of tracking allo-
cations uses memory resources. Execution component 218
tracks allocation data outside of the memory space associ-
ated with target application 212, thus not affecting the
application’s memory usage. When asked, execution com-
ponent 218 outputs to a file, such as dump file 228, all of the
requested mformation related to memory allocations, deal-
locations, and page faults that occurred during the run.

Annotation component 222 prompts execution compo-
nent 218 to make snap shots of various memory-usage
characteristics during the execution of target application
212. These snap shots can include labels related to specific
points 1n time with corresponding text strings that can be

US 6,965,978 B2

7

subsequently evaluated and dumped to dump file 228.
Memory-usage data 1s outputted to dump file 228 along with
corresponding labels and/or time stamps. This raw data can
later be manipulated to provide an array of useful reports
that enable application developers to 1mprove the perfor-
mance of target application 212.

Scripting 1nterface 224 1s an optional scriptable object that
allows automated test scripts to communicate with execution
component 218. Scripting interface 224 also prompts execu-
tion component 218 to mark snap shots and generate dump
files 1n a manner similar to that of annotating component
222. Test scripts are used 1n application development to
automate the testing of the application and ensure that it
operates as expected. It 1s desirable that, to the extent
possible, testing be automated. In a preferred embodiment,
scripting 1nterface 224 uses an IDispatch-able interface to
communicate with execution component 218, but those
skilled 1n the art may appreciate available alternative means
that, by accomplishing similar functionally, are contem-
plated within the scope of the claims.

Parsing component 226 parses dump file 228 into a format
more €aslly usable by a reporting program. For example, 1n
a preferred embodiment, parsing component 226 1s a Perl
script that outputs a CSV (comma separated variable) file,
which can then be read by a spreadsheet program to produce
reports 234. The data file 230 can also be stored 1n storage
component 232 so as to be compared to subsequent execu-
fion runs in the future.

As previously mentioned, the present invention allows the
tracking of memory usage of uninstrumented binaries
including tracking memory allocations, deallocations and in
memory attributes. The present invention seeks to minimize
the working set of target application 212. The “working set”
1s a term known 1n the art of computer programming and
refers to that portion of physical memory that 1s being used
by an application such as target application 212.

Turning now to FIG. 3 a preferred process executed by the
present invention 1s referenced generally by the numeral
300. Process 300 involves the following steps: Track
memory usage at a step 310; analyze tracked data at a step
312; and report the results of the analysis at a step 314.
Those skilled 1n the art will appreciate a variety of ways to
carry out the functionality of process 300. However, pre-
ferred embodiments for realizing the steps of process 300
are included below.

Tracking

Tracking 1s accomplished by rerouting calls originally
targeted for memory allocation and deallocation functions of
target application 212. When target application 212 calls
these functions, the calls are rerouted from an entry point of
the respective calls to locations within application 214.
Application 214 can then analyze the call stack and log
various attributes of the call stack along with additional
information about the call for subsequent analysis. The
intercepted, or hijacked, function 1s then rerouted back to a
point just after the entry point from which 1t was intercepted.
This procedure does not change the behavior of the appli-
cation except for slowing 1t down during the testing phase.

Once the application run is complete (or if specified to do
so while the application is running), application 214 can
output the tracked operations to a log, such as dump file 228.
The log does not have to be 1n a file. It can be 1n any sharable
form, including, but not limited to, shared memory, a named
pipe, private memory with a network connection to access it,
or a database. “Dump file” will be used herein for stmplicity
but 1s not to interpreted as limiting to a “file” per se. This

10

15

20

25

30

35

40

45

50

55

60

65

3

dump file 228 can then be used 1n the analysis phase. Thus,
an exemplary process for tracking memory usage using the
present invention would include rerouting memory-alloca-
tion function calls at a step 316.

One method for rerouting the memory-allocation function
calls 1s to use technology known as detours. Thus, as used
herein, “detours™ has a special meaning that may be incon-
sistent with 1ts plain meaning. Detours 1s a technology for
in-memory binary level patching of applications. Detours
intercept certain functions by rewriting target function
images. Third-party developers often do not have access to
the source code of an application, for example target appli-
cation 212. Detours offer a way to preserve the uninstru-
mented target function (callable through a trampoline func-
tion) as a subroutine for use by the instrumentation.
Accordingly, the present invention can be practiced on
binary files. More information regarding detours and their
implementation can be retrieved from as well as 1n a paper
enfitled “Detours: Binary Interception of WIN32 Func-
tions,” authored by Gaylan Hunt and Doug Brubacher. The
contents of both references are incorporated herein by
reference.

An exemplary 1llustration of the process employed by the
present mvention 1s included with reference to FIG. 4. An
exemplary executable module 412 1s depicted along with an
exemplary DLL file 414, a detour function 416, and a
trampoline function 418. In this example, memory-usage
characteristics of an executable module 412 (“MYEX-
E.EXE”) are desired. Executable module 412, like many
computer-program products, are actually portions of an
entire application. The application often includes other files
to run, most commonly DLL files. Certain calls to certain
functions manipulate the memory usage of target application
212. Proceeding with this simplistic example, exemplary
DLL file 414 (MYDLL.DLL) 1s a module that is used by the
MYEXE.EXE file. To evaluate the memory-usage charac-
teristics of MYEXE.EXE, a single function call will be
tracked: to a function (“FOQO”) within the MYDLL.DLL
module.

In this example, a function call 1s made from executable
file 412 to “MYDLL!FOQO” at position 422 of code segment
423. Processing continues along path 424 to a small code
secgment 426, which reroutes the function to a detour entry
point 428 via path 430. In a typical embodiment, code
secgment 426 1s a single machine instruction and enables an
application such as target application 212 to have 1ifs
memory allocations tracked. The call to function “FOQO” has
been hijacked.

The detour function can be used i1n conjunction with
application 214 to take a snap shot or perform other pro-
cessing of the call stack associated with the memory call
function during steps 318A and 318B. Thus, code segment
431 can be used to facilitate examination of the call stack at
this point. Application 214 can mterrogate the memory
recarding MYEXE.EXE’s memory usage. As previously
mentioned, annotating component 222 and scripting inter-
face 224 can takes snapshots of the memory. The call-stack
data can be retrieved 1n raw format to allow subsequent
stackwalking, or the stack can be analyzed in real time.
Preferably, the data 1s simply tracked and logged at this time
to speed up the tracking process and enable executable 412
to complete 1ts run quickly. In a preferred embodiment,
symbols are used to allow greater accuracy in walking the
stack.

Processing continues upon leaving detour function 416 at
an exit point 432 to trampoline function 418. The trampoline
function 418 1s entered at entry point 434 and exits at point

US 6,965,978 B2

9

438 to return functionality along path 442 to the reentry
point 440, which corresponds to the 1nitial entry point of the
“FOO” function. Thus, the original functionality of the
memory-allocation function call 1s preserved and 1s allowed
to complete.

Processing continues through to code point 444. From this
point 444, execution reenters detour function 416 at entry
point 446 via path 448. Again, a snap shot and other memory
characteristics can be gathered or initiated via code segment
449. Processing exits detour function 416 at point 450 and
returns to code point 452 along path 454. Code point 452 1s
the original reentry path of the function call to “MYDLL-
'FOO.”

Absent the present invention, processing would have
fraveled from point 422 along path 424 to point 426,
entering the exemplary DLL file 414. The “FOQO” function
would have been executed by processing the code from code
point 440 to code point 444. Processing would have then
returned to exemplary executable file 412 at point 452.
Returning to the process and FIG. 3, the data gathered during
the above process described in FIG. 4 1s outputted to a log
record at step 320. This log record 1s the dump file 228 and
typically contains a great deal of data.

During the memory-tracking process 310, many aspects
of an application’s memory usage can be logged, including
the working set, file maps, heap usage, used modules,
page-map usage, page swaps, and virtual memory. To obtain
targeted data, the tracking process can be conducted in
various embodiments. In one embodiment, memory charac-
teristics more speciiic to an application’s physical-memory
presence can be gathered.

Analysis

The next process carried out by the present invention 1s to
analyze the tracked data at a step 312. Parsing component
226 can parse dump file 228 so that analysis can be per-
formed on the data in dump file 228. In a preferred embodi-
ment a Perl script 1s used to analyze the memory allocation
of target application 212 at the module level over time.
Scripting can expose memory-usage characteristics at spe-
cific times during the execution of target application 212.

The analysis phase 312 helps determine the memory behav-
1or of target application 212.

Prior to conducting a series of analysis algorithms at a
step 326, a list of modules can be specified to be 1gnored at
a step 324. Defining a list of modules that should be
excluded during the analysis phase 1s 1mportant because
certain system modules will always be attributed to making
memory allocations. The 1gnore list instructs all of the
attribution algorithms to ignore the module(s) specified in
that list. Those modules do not appear on the stack as far as
the algorithms are concerned. Accordingly, distinguishments
can be made between an actual (or physical) stack and a
virtual stack. These concepts can be brietly explored with
reference to FIG. 5.

FIG. 5 represents a physical stack 510, an “Ignore list”
512, and a virtual stack 514, which includes a stack top 516
and a stack head 518. Stacks 510 and 514 include a variety
of modules. The module that was allocated to the memory in
the most distant past 1s “E.DLL,” at the stack head 518.
“ADLL” 1s at the stack top 516. “Ignore list” 512 1is
included denoting that modules V, W, X, Y, Z are to be
excluded from various operations. One possible reason for
exclusion of these modules 1s because they operate at the
system level and may obscure or dominate results and

10

15

20

25

30

35

40

45

50

55

60

65

10

reports subsequently created. Accordingly, application 214
may see the stack as virtual stack 514, which “includes” only
modules A, B, C, D and E.

Returning to FIG. 3, at least four algorithms are depicted
that can be used to analyze the data in dump file 228: an “all”
algorithm 326A, a “list” algorithm 326B, a “trigeer” algo-
rithm 236C, and a “filter” algorithm 326D. The aforemen-
tioned names attributed to the various analysis modes are not
to be construed as terms of art. That 1s, the functionality
accomplished by the various modes are aspects of the
present invention, rather than labels. Accordingly, the fol-
lowing description of the various analysis modes may be
roses called by many names but accomplish the functionality
captured by the claims below.

When running a process 1n “all” mode 326 A, application
214 counts current allocations toward the module whose
address shows at the stacks top. This mode 1s usetul for
trying to understand what amount of memory was allocated
by the module at the top of the stack. The last module to
allocate memory gets credit for allocating the memory 1n
that stack. If, however, the module at the top of the stack 1s
in the 1ignore list 5§12, then memory will be attributed to the
next nonignored module 1n the stack. Thus, the “all” mode
326 A provides a per-module report of memory usage over
time for memory allocations made by a module found at the
top of the stack, which 1n this example 1s “A.DLL.” Thus
“all” mode 326A logically presents the following statement:
“<name of module at virtual stack’s top> caused <size>
bytes of memory to be allocated.”

Consider a situation where module E calls module D,
which calls C, which calls B, which calls A; and this
collective calling results consumes 1 MB of memory. Mod-
ule A would be at the stack’s top 516. I a report 234 1s run
in “all” mode 326A, then module A would be charged for

allocating 1 MB of memory.

“List” mode 326B 1s used when certain specific modules
are of interest. An analysis 1n “list” mode receives a list of
modules and attributes allocations for the first module from
the module list, or an “other modules” bucket 1f none i1s
found. “List” mode 326B provides per-module reporting of
memory usage over time for allocations made by modules in
a module list, or in other modules which those modules
called. “List” mode 326B provides information regarding
onc or more modules of interest that were involved 1n
allocating a certain amount of memory. Running “list” mode
326B can be used to make a statement such as: “<name of
module 1n module list> caused <size> of bytes of memory
to be allowed.”

The module list 1s similar to a watch list 1n that 1t identifies
which modules are of 1nterest for tracking purposes. In “list”
mode 3268, the present invention begins at the stack’s top
and compares the module at the stack’s top with the modules
listed 1n the module list. The modules are compared based on
memory addresses by matching the address on the stack with
all the ranges for all the specified modules and 1dentifying
the one that fits the most. If the module at the stack’s top 1s
contained in the module list, the present invention counts the
allocation towards this module. If the module does not exist
in the module list, the present invention moves down the
stack and attempts to find a match again. If no module from
the module list 1s encountered 1n the stack, the allocation 1s
counted to an “other modules™ bucket.

Consider a module list that includes {B, D}. The present
invention will attempt to allocate memory to the modules in
the module list 1f they exist in the stack 514. The stack 514
contains module B, which 1s the module closest to the virtual

US 6,965,978 B2

11

stack’s top 516 that also exists in the module list {B, D}.
Thus, 1 MB of memory will be attributed to B.DLL.

“Filter” mode 326(C can be used to determine how a
component uses memory. A component’s module 1s listed 1n
a module listing. Whenever one of the listed modules
appears 1n a stack, memory will be allocated to the module
at the top of that stack. In this way, the component of interest
that uses memory can be seen. “Filter” mode 326C can be
used to make statements such as: “<name of module at top
of virtual stack> allocated <size> bytes of memory due to a
request from a module 1n the module list>.”

“Filter” mode 326C counts current allocation towards the
module whose address shows at the stack’s top, but only 1f
one of the modules specified 1n a module list 1s somewhere
down the call stack. If no modules exist in the call stack that
are listed 1n the module list, then the memory allocated for
that stack gets placed in the “other modules™ bucket. For
example, consider again the virtual stack 514 of FIG. 5 and
a module list that includes {B, D}. Module A is at the stack’s
top 516. In this mode, the present invention will attribute
module A with allocating 1.0 MB of memory because the
stack 514 contains the module B, which also exists 1n the
module list.

“Trigger” mode 326D, can be used to create a report that
details which modules allocate memory using the trigger
module. The trigger mode 1s usetul for determining modules
of interest that are using the module at the top of the stack.
“Trigger” mode 326D runs from a module-investigation
algorithm. The question this algorithm tries to answer 1s:
“which modules contribute to allocations done by the mod-
ule X?7” In one aspect, “trigger” mode 326D 1s the reverse of
“filter” mode 326 C 1n that “filter” examines the effect a
module exerts on the system and “trigger” retrieves the
eifect the system puts on a particular component.

The “trigger” algorithm takes “trigeger” module, and uses
the “list” algorithm to find the “trigger” on the stack. If the
tricger 1s not found, the stack 1s 1gnored. The present
invention then attributes memory to the next module (similar
to “all”), or the “other modules” bucket, if none 1s found.
Only allocations that end up 1n the “interesting” component
are counted, enabling one to retrieve a good picture of how
a certain component 1s being used.

Once the “trigger” 1s found, all the modules “above” and
including the “trigger” module are 1gnored, creating a
“shorter” virtual stack. “Trigger” mode 326D can be used to
make statements such as: “<name of module 1n module list>
module caused the module at the top of the virtual stack:
<name of trigger module> to allocate <size> bytes of
memory.” Or put another way: “<module at top of virtual
stack> caused the trigger <trigger module> to allocate
<s1ze> bytes of memory.”

The present invention performs the “all” algorithm on a
stack. To be a valid trigger, the module that 1s selected while
using the “all” algorithm (the module at the stack top 516)
must be the trigger module. All stacks that do not match this
condition are 1gnored. If the condition 1s met, the next
watched module 1s allocated the memory for that stack. If no
“watched” module exists in the stack (other than the trigger),
then the memory allocated within that stack 1s placed in the
“other modules™ bucket.

To 1illustrate, again consider virtual stack 514 of FIG. 5,
having module list {E, D} where module B is a designated
trigger. Running the “all” algorithm on this stack will result
in module B being identified. Since B 1s the trigger, the
present 1nvention will attempt to attribute the memory
allocated to a module that called B and 1s also 1n the modules

10

15

20

25

30

35

40

45

50

55

60

65

12

list {E, D}. Since D called C and C called B, and D is in the
module list, 1.0 MB of memory will be attributed to D.

Pseudocode for the algorithms that enable the present
invention to operate 1n the aforementioned modes are pro-
vided 1n FIGS. 6 A—6B. Those of ordinary skill in the art waill
appreciate that the pseudocode can be fleshed out and
actually implemented 1n a variety of ways using a variety of
languages and/or application-development tools.

Reporting,

The last stage of the present invention 1s the reporting,
stage, whereby reports 234 are generated from either the
dump file 228 or the data file 230 parsed by parsing
component 226. In this stage, the results produced m the
analysis step 312 are charted and/or logged for comparison
with future runs. Those skilled in the art will appreciate the
vast array of data depictions that can be provided given a

source file such as data file 230, which in a preferred
embodiment 1s a CSV f{ile.

A first exemplary report 234 could include a chart show-
ing per module memory usage over time. This chart could be
tailored according to the algorithm and accounting method
used. This chart can be read by a user to examine the
behavior of target application 212. Another exemplary
report 234 could include a chart comparing the same script
over time thereby depicting improvements or regressions in
individual steps.

As previously mentioned automatic scripts can be used
via scripting mterface 224. The results of these scripts can be
ographed side by side on the same chart to determine whether
the applications memory-usage characteristics are 1mprov-
ing. Another exemplary report 234 could include a chart that
examines peak allocation of multiple scenarios over time.
This chart could be used to check for regressions at a higher
level of abstraction.

Reports 234 are not constrained to graphical depictions.
An exemplary non-chart report includes a report delineating
stacks by number of appearance as well as a most-called-
functions report. Those skilled 1n the art will appreciate that
the reporting system 1s open and has the ability to produce
a vast array of types and charts as needed. Preferably the
results are exported 1n a Web-type format such that the

reports 234 are viewable in a Web browser such as INTER-
NET EXPLORER® made by the Microsoft Corporation of

Redmond, Wash.

In one embodiment, a conventional spreadsheet program
can read data file 230 to produce the aforementioned charts.
Charts can be used to readily 1solate problems associated
with target application 212. One of the main problems
targeted to be resolved by the present mnvention are page
faults. For instance, a user could run the all algorithm to
produce a chart depicting memory allocations for an array of
modules. It could then be readily observed that a particular
module 1s making unnecessary, taxing memory allocations.
To determine the cause of these taxing memory allocations,
a user (or program) could then employ the trigger mode
326D to see what 1s causing the allocations. A user may
determine which modules whose memory usage should be
further contained after determining the specific modules
responsible for making the allocations.

The applications of the present invention abound. The
present invention has been described 1n relation to particular
embodiments, which are intended in all respects to be
illustrative rather than restrictive. Alternative embodiments
will become apparent to those skilled in the art to which the
present invention pertains without departing from its scope.

US 6,965,978 B2

13

From the foregoing, it will be seen that this invention 1s
one well-adapted to attain all the ends and objects set forth
above, together with other advantages which are obvious
and 1inherent to the system and method. It will be understood
that certain features and subcombinations are of utility and
may be employed without reference to other features and
subcombinations and are contemplated and within the scope
of the claims.

The 1nvention claimed 1s:

1. A memory-tracking application that evaluates memory
usage of a target application that may include a plurality of
modules, said memory-tracking application comprising:

a tracking component that enables said target application
to have 1ts memory usage tracked and wherein said
tracking component enables tracking of uninstru-
mented binary code;

a controlling component that creates log of said memory
usage;

an execution component that communicates with said
tracking component and said controlling component to
direct an examination of memory-usage characteristics
of said target application; and

a parsing component that parses said log to create
mMemory-usage reports.

2. The memory-tracking application of claim 1, wherein

tracking said uninstrumented binary code comprises track-
Ing memory manipulations.

10

15

20

25

14

3. The memory-tracking application of claim 2, wherein
memory manipulations include memory allocations, deallo-
cations and in-physical-memory presence attributes.

4. The memory-tracking application of claim 1, wherein
said controlling component comprises an annotating com-
ponent that provides labels related to specific execution
points.

5. The memory-tracking application of claim 1, wherein
said reports comprise one or more of the following:

a per-module report of memory usage at certain point in
time for memory allocations made by or on behalf of
one or more of said modules;

a per-module report of memory usage over time for
memory allocations made by or on behalf of one or
more of said modules;

a first report depicting one or more stacks by number of
appearances;

a second report depicting a hierarchy of functions ordered
by frequency of calls that manipulate memory;

a third report depicting memory-usage behavior of said
application; and

a peak-allocation report.

	Front Page
	Drawings
	Specification
	Claims

