US006965961B1

(12) United States Patent

10y Patent No.: US 6,965,961 Bl

Scott 45) Date of Patent: Nov. 15, 2005
(54) QUEUE-BASED SPIN LOCK WITH (56) References Cited
TIMEOUT

(75) Inventor: Michael L. Scott, Rochester, NY (US) U.S. PATENT DOCUMENTS
: ‘ : . 6,128,672 A * 10/2000 Lindsleyccccoeeuee.n. 710/19
(73) Assignee: E?{wgss‘ty of Rochester, Rochester, 6243778 B1* 6/2001 Fung et al. woooo....... 710/113
(US) 6,480,918 B1* 11/2002 McKenney et al. 7107200
(*) Notice: Subject to any disclaimer, the term of this 6,668,291 B1* 12/2003 Formn et al. 710/54

patent 1s extended or adjusted under 35 * cited by examiner

U.S.C. 154(b) by 413 days.
Primary FExaminer—Donald Sparks

(21) Appl. No.: 10/377,024 Assistant Examiner—Ngoc Dinh

(74) Attorney, Agent, or Firm—Blank Rome LLP
(22) Filed: Mar. 3, 2003

(57) ABSTRACT
Related U.S. Application Data
(60) Provisional application No. 60/361,063, filed on Mar. ‘ o
1, 2002. A queue-based spin lock with timeout allows a thread to
obtain contention-free mutual exclusion 1n fair, FIFO order,
(51) Int. CL7 oo, GO6F 12/00 or to abandon its attempt and time out. A thread may
(52) US.CL oo 710/310; 710/39; 710/40; ~ handshake with other threads to reclaim its queue node
710/45: 710/54; 710/200; 710/263; 718/102: immediately (in the absence of preemption), or mark its
718/108 queue node to allow reclamation by a successor thread.
(58) Field of Search 710/39, 40, 45,
710/54, 200, 263; 718/102, 108 33 Claims, 12 Drawing Sheets

B MARKS A's NODE TRANSIENT

A B C
W - (W - (W
T - (W - (W

T ~ L — [w] BMARKS ITS OWN NODE LEAVING
HiE L — [w] CDEREFERENCES B's NODE

T IR — Tw] CMARKS B's NODE RECYCLED
W _ |R] — [w] BMARKS A's NODE WAITING
_w — W] BLEAVES QUEUE

U.S. Patent Nov. 15, 2005 Sheet 1 of 12 US 6,965,961 B1

X FIG. 1A
-———-——-

B MARKS A's NODE TRANSIENT
T ~ L — Tw] BMARKSITS OWN NODE LEAVING

T B — [w| CDEREFERENCES B's NODE
T B3 — [w| CMARKS B's NODE RECYCLED
- |w [R — [W] BMARKS A's NODE WAITING
W — {w] BLEAVES QUEUE

A B Q
Tl il F1G. 1B

Hil ~ w] BMARKS A's NODE TRANSIENT

T - o "] BMARKS ITS OWN NODE LEAVING
His B] BUPDATES LOCK TAL POINTER
(L B MARKS A's NODE WAITING

B — | BLEAVES QUEUE

U.S. Patent Nov. 15, 2005 Sheet 2 of 12 US 6,965,961 B1

A e C FIG. 1C
OB O

1086
D.._—D\ B MARKS ITS OWN NODE AND LEAVES

e |] [] CDEREFERENCES B's NODE AND RECLAIMS IT
L=~ L

ﬁ\ja BQ FIG. 1D

[Je——{ J=——1 | BMARKSITSNODE

] B UPDATES TAIL POINTER, RECLAIMS ITS NODE,
M AND LEAVES

D
808 : 802

806 810

GLOBAL
ADDRESS E CROSSBAR
BUSSES

JU
J U

1 !
! !
! | FIG. 8
! !
! !

U.S. Patent Nov. 15, 2005 Sheet 3 of 12 US 6,965,961 B1

et FO2A

step1 [=—af s—F 1]
Tep
STEP 3 ACTION BY B
STEP 4

oreps [0 T
STEP6 | | _F*————————_F | | BLEAVESQUEUE; ACTIONBYC

A > d FIG. 2B
([P [T

STEP1 | | [T ILs - |

STEP3 [| = | | 7> acnonsyB
STEP 4 []

steps [[T, =

v

STEP 6 [:[;[:z-—-——[j B LEAVES QUEUE

U.S. Patent Nov. 15, 2005 Sheet 4 of 12 US 6,965,961 B1

L yd o7 FIG. 2C
W= W[]
208 206
W W[G W[
W= WG]

BN

--—w
v

ACTION BYB

W[T WL e (W]
ACTIONBYC
W] - L w]
h ° - FIG. 2D
W g W]
W] P W] —
W] W] —

ACTIONBYB

Wi WL =

wi _Iwjt .

US 6,965,961 B1

Sheet 5 of 12

Nov. 15, 2005

U.S. Patent

U.S. Patent Nov. 15, 2005 Sheet 6 of 12 US 6,965,961 B1

FIG. 4A

3.5 —a— NUMA
—+— CLH
3 - - —%— MCS
- 2 E "F———A — y 1 o— TATAS
0O F
=
s |
Ll 2 ;
p .'
1
s f
© 15
=1]
1 ; A A \ A -
0.5 ;
) A
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
PROCESSORS
4.5
4 —8— MCS fry
—— CLH_try
3.5 —a— TATAS
a
2 3
8 ® W
3 2.9 ~ —
A
2 T
= 15

0.5 — ———

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
PROCESSORS

U.S. Patent Nov. 15, 2005 Sheet 7 of 12 US 6,965,961 B1

FIG. 4C

120%
—8— MCS try
100% —e— CLH _try
—o— TATAS
80% - -
60%
40%
20%
0%
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
PROCESSORS
4.5 ®— NUMA
4 - —+— CLH
—— MCS
—0— MCS _try
—o— CLH_try
—o— TATAS

MICROSECONDS

1 2 3 45 6 7 8 9 10 11 1213 14 15 16
PROCESSORS

U.S. Patent Nov. 15, 2005 Sheet 8 of 12 US 6,965,961 B1

FIG. 4E

12 —— NUMA
—+— CLH
10 —— MCS

é’ 8 L ~ —e— CLH _try
3 6 ' jﬁ o
%, v 7,y
& //qw-'f-:"
= 4 /4 7
—— ?
) —
0 — T
4 8 12 16 20 24 28 32 36 40 44 48 50
PROCESSORS

14 — —&— NUMA

12
»n 10
0
5
Q 8
7
=
& 6
=

4 8 12 16 20 24 28 32 36 40 44 48 50
PROCESSORS

U.S. Patent Nov. 15, 2005 Sheet 9 of 12 US 6,965,961 B1

120%

100%

80%

60%

40%

20%

0%

120%

100%

80%

60%

40%

20%

0%

FIG. 4G

4 8 12 16 20 24 28 32 36 40 44 48 30
PROCESSORS

FIG. 4H

—a— MCS fry

—e— CLH_try
—a— TATAS

4 8 12 16 20 24 28 32 36 40 4 48 30
PROCESSORS

U.S. Patent

1S / ITERATION

Nov. 15, 2005

FIG. SA

Sheet 10 of 12

16

24

32 40
THREADS

48

56

64

120

100

80

US 6,965,961 Bl

—o—TAS-Bplain
—o—TAS-Btry
—0o—MCS-NBtry
—»—CLH-NBtry
—a—MCStry
—+—MCSplain
—a—C| Htry
—o—CLHplain

60 PERCENT SUCCESS

40

20

U.S. Patent Nov. 15, 2005 Sheet 11 of 12 US 6,965,961 B1

F1G. 6A

16 —e—CLHtry
—o—MCStry
—o—MCS-NBtry
12 - - —*—CLH-NBtry

14

1S /ITERATION

8 10 12 14 16
THREADS

100

80

60
PERCENT SUCCESS

40

20

U.S. Patent Nov. 15, 2005 Sheet 12 of 12 US 6,965,961 B1

FIG. 7A

350 ————————— —a—CLHtry
Et i —o—MCStry
3 -) —o—MCS-NBtry
g 250 1 —=—CLH-NBtry
T
= 200 — —
=
D
Wi 450
0
=
= 100 —~ -

—
50
0
10 12 14 16
THREADS

120
o

100 =
/)
»
o

80 o
0
e

60 2
Lil
LLl
o

40 o
LL]
=
-

20 —
N
LLI

US 6,965,961 Bl

1

QUEUE-BASED SPIN LOCK WITH
TIMEOUT

REFERENCE TO RELATED APPLICAITTON

The present application claims the benefit of U.S. Provi-
sional Application No. 60/361,063, filed Mar. 1, 2002,
whose disclosure 1s hereby incorporated by reference 1n its
entirety into the present disclosure.

STATEMENT OF GOVERNMENT INTEREST

The work leading to the present invention was supported
in part by NSF grants EIA-0080124, CCR-9988361 and

CCR-0204344 and by DARPA/AFRL contract number
F29601-00-K-0182. The government has certain rights in

the 1nvention.

FIELD OF THE INVENTION

The present invention is directed to a spin lock for use on
shared-memory multi-processor computing devices and
more particularly to a queue-based spin lock with timeout.

DESCRIPTION OF RELATED ART

Large-scale databases and Internet transaction applica-
tions now demand parallel servers capable of running on
machines with twenty to a hundred processors or more. On
such machines, spin locks are widely used for mutual
exclusion. Traditional test__and_ set-based spin locks, how-
ever, are vulnerable to memory and interconnection conten-
fion and do not scale well to large machines.

Queue-based spin locks avoid contention by arranging for
every waiting thread to spmn on a separate, local flag 1n
memory. The MCS lock of Mellor-Crummey and Scott
(“Algorithms for Scalable Synchronization on Shared-
Memory Multiprocessors™, ACM Transactions on Computer
Systems, Vol. 9, No. 1, April 1991, pp. 21-65) uses a queue
linked from head to tail. It requires only O(L+T) space for
L locks and T threads. Each thread spins on a node that 1t
allocated 1itself, and that may therefore reside in local
memory even on a non-cache-coherent machine. The CLH
lock, developed independently by Craig (“Building FIFO
and priority-queueing spin locks from atomic swap,” Tech-
nical Report TR 93-02-02, Department of Computer Sci-
ence, University of Washington, February, 1993) and by
Landin and Hagersten (“Queue Locks on Cache Coherent
Multiprocessors”, 8th Intl. Parallel Processing Sympositum,
Cancun, Mexico, April 1994, pp. 165-171) uses a queue
linked from tail to head. It also requires only O(L+T) space,
but each thread spins on the node allocated by its predeces-
sor, which will be local only on a cache-coherent machine.

Over the past ten years, queue-based spin locks—the
MCS lock in particular—have been incorporated into a
variety of academic and commercial operating systems,
including Compaq’s Tru64, IBM’s K42 and multiprocessor
Linux systems, the Alewite and Hurricane Systems, and
parallel real-time software from Mercury Computer Sys-
tems.

Outside the operating system, non-scalable test-and-set
locks have come to be widely used 1 commercially impor-
tant applications, notably database systems such as Oracle’s
Parallel Server and IBM’s DB2. Many of these applications
depend critically on the ability of a thread that waits too long
to time out and abandon its attempt to acquire a lock.
Timeout-capable locks (“try locks™) allow a real-time appli-

10

15

20

25

30

35

40

45

50

55

60

65

2

cation to signal an error condition or pursue an alternative
code path. In a database system, they provide a simple
means of recovering from transaction deadlock or preemp-
tion 1n critical sections.

Unfortunately it 1s difficult to combine scalability and
timeout. The problem 1s that while threads competing for a
test-and-set lock are mutually anonymous, and can abandon
their spins without anyone being the wiser, threads 1 a
queue-based lock are linked into an explicit data structure.
A timed-out thread must somehow introduce its neighbors 1n
the queue to one another, even 1n cases where the neighbors
may also be timing out. Craig proposed (“Building FIFO and
Priority-Queueing Spin Locks from Atomic Swap”, Techni-
cal Report 93-02-02, University of Washington Computer
Science Dept., February 1993) that a timed-out thread in a
CLH lock mark 1its node as “abandoned”. When releasing a
lock a thread would skip over (and reclaim) abandoned
nodes. This approach can easily require non-linear space and
non-constant time. Mercury Computer Systems’ version of
the MCS lock mcorporates a timeout mechanism, but aban-
dons fairness: threads that are willing to wait indefinitely
bypass threads with bounded wait times.

The problem of preemption 1n critical sections has
received considerable attention over the years. Alternative
strategies include avoidance, recovery, and tolerance. The
latter approach 1s appealing for commercial applications
because 1t does not require modification of the kernel
interface: if a thread Waits too long for a lock, 1t assumes that
the lock holder has been preempted. It abandons its attempt,
yields the processor to another thread (assuming there are
plenty) and tries again at a later time. In database systems
timeout serves the dual purpose of deadlock recovery and
preemption tolerance.

SUMMARY OF THE INVENTION

It 1s the object of the present invention to overcome the
above-noted problems of the prior art. Specifically, the
invention aims to

(1) provide good performance, both
(a) in the absence of contention, and
(b) when many threads attempt to acquire the lock

concurrently;

(2) maintain fairness, granting lock requests in FIFO (first
in, first out) order;

(3) allow a thread to time out, reclaiming the thread’s
space 1 the queue before the thread would have
reached the head of the queue if 1t had not timed out.

Unfortunately, 1t does not appear to be possible to guar-
antee that space will be reclaimed in bounded time 1n
multiprogrammed systems. The present disclosure therefore
encompasses two variants of the ivention.

In the first variant, a timed-out thread “handshakes” with
its neighbors to reclaim 1ts space before leaving the queue.
Space needs are therefore linear (O(L+T)), but timeout may
be 1ndefinitely delayed on a multiprogrammed system,
because a neighbor thread may be preempted, and thus
unable to cooperate. In the second variant, timeout 1s non-
blocking: a thread i1s guaranteed to leave the queue 1n a
bounded number of its own time steps, whether neighbors
are preempted or not. Space, however, may not be reclaimed
until some successor 1s active. In theory unbounded space
may be required, but experiments confirm that linear space
can be expected 1n practice.

Two preferred embodiments of each lock variant will be
disclosed, one based on the CLH lock and the other on the
MCS lock. The variants with guaranteed linear space but

US 6,965,961 Bl

3

blocking timeout are herein named the CLH try lock and the
MCS ftry lock. The variants with non-blocking timeout are
herein named the CLH-NB try lock and the MCS-NB ftry
lock. In each pair the CLH embodiment is the simpler of the
two, but relies on cache coherence. The MCS embodiments

can be expected to scale better on non-cache-coherent
machines.

In the original CLH and MCS locks, and i the CLH ftry
and MCS try locks, space management for queue nodes 1s
delegated to the callers of the acquire and release operations,
and the queue node passed to MCS_ release or returned
from CLH_ release 1s guaranteed to be available for imme-
diate reuse once the release operation completes. No such
guarantee seems possible for locks with non-blocking tim-
cout. We therefore choose 1n the CLH-NB try and MCS-NB
try locks to perform dynamic space allocation within the
acquire and release operations. To allow the release opera-
tion to find the queue node allocated by the acquire opera-
tion, we arrange for acquire to write a reference to that node
into an extra field (a head pointer) of the lock variable itself,
once the lock 1s held. A serendipitous side effect of this
strategy 1s that the CLH-NB try and MCS-NB try locks can
employ a standard application programming interface (API),
making them suitable for linking with binary-only commer-
cial applications.

BRIEF DESCRIPTION OF THE DRAWINGS

Two preferred embodiments of the invention (one based
on the CLH lock, the other based on the MCS lock), each
with two variants (one with guaranteed linear space but
blocking timeout, the other with non-blocking timeout but
theoretically unbounded space) will be set forth in detail
with reference to the drawings, 1n which:

FIG. 1A shows a sequence of operational steps i a
timeout 1n the CLH try lock, in which the departing thread
1s 1n the middle of the queue;

FIG. 1B shows a sequence of operational steps in a
timeout in the CLH try lock, in which the departing thread
1s at the end of the queue;

FIG. 1C shows a sequence of operational steps 1 a
timeout 1n the CLH-NB try lock, in which the departing
thread 1s 1n the middle of the queue;

FIG. 1D shows a sequence ol operational steps i a
timeout 1n the CLH-NB try lock, in which the departing
thread 1s at the end of the queue;

FIG. 2A shows a sequence of operational steps 1 a
timeout 1 the MCS try lock, in which the departing thread
1s 1n the middle of the queue;

FIG. 2B shows a sequence of operational steps in a
timeout 1 the MCS try lock, in which the departing thread
1s at the end of the queue;

FIG. 2C shows a sequence of operational steps 1 a
fimeout 1n the MCS-NB try lock, in which the departing
thread 1s 1n the middle of the queue;

FIG. 2D shows a sequence of operational steps 1n a
timeout 1n the MCS-NB try lock, in which the departing
thread 1s at the end of the queue;

FIG. 3A shows a worst-case scenario for space in the
CLH-NB try lock;

FIG. 3B shows an impossible scenario for non-blocking,
fimeout and constant space per thread;

FIG. 4A shows microbenchmark iteration time for non-try
locks on a 16-processor Sun Wildfire machine;

FIG. 4B shows microbenchmark iteration time for try
locks on a 16-processor Sun Wildfire machine;

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 4C shows percent acquisition at 25 us patience on a
16-processor Sun Wildfire machine;

FIG. 4D shows 1iteration time at 25 us patience on a
16-processor Sun Wildfire machine;

FIG. 4E shows 1iteration time at 200 us patience on a
56-processor Sun Wildfire machine;

FIG. 4F shows iteration time at 500 us patience on a
56-processor Sun Wildfire machine;

FIG. 4G shows percent acquisition time at 200 us patience
on a 56-processor Sun Wildfire machine;

FIG. 4H shows percent acquisition time at 500 us patience
on a 56-processor Sun Wildfire machine;

FIG. SA shows microbenchmark net iteration time on a
64-processor Sun Enterprise machine;

FIG. 5B shows microbenchmark success rate on a 64-pro-
cessor Sun Enterprise machine;

FIG. 6 A shows microbenchmark net 1teration time on an
overburdened 8-processor machine;

FIG. 6B shows microbenchmark success rate on the
overburdened 8-processor machine;

FIG. 7A shows estimated time preempted per critical
section;

FIG. 7B shows estimated overhead of timeout; and

FIG. 8 shows a schematic diagram of a system on which
either of the preferred embodiments (in either variant) can
be 1mplemented.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

Two preferred embodiments of the invention will now be
set forth 1n detail with reference to the drawings. Two
variants of each embodiment are described: one with guar-
anteed linear space but blocking timeout, the other with
non-blocking timeout but theoretically unbounded space.

The first preferred embodiment (variant with blocking
timeout) is called the CLH try lock. It is based on the earlier
CLH lock of Craig (“Building FIFO and priority-queueing
spin locks from atomic swap,” Technical Report TR 93-02-
02, Department of Computer Science, University of Wash-
ington, February, 1993) and of Landin and Hagersten
(“Queue locks on cache coherent microprocessors,” 87 Intl.
Parallel Processing Symposium, Cancun, Mexico, April,
1994, pp. 165-171).

In the standard CLH lock, a thread leaves its queue node
behind when releasing the lock. In its place, it takes the node
abandoned by its predecessor. For a try lock, one would like
to arrange for a thread that times out to leave with 1ts own
queue node. Otherwise, one might need O(PxL) queue
nodes 1n the system as a whole, where P 1s the number of
threads and L 1s the number of locks.

Suppose that thread B wishes to leave (time out) and is
currently 1in the middle of the queue. As shown 1n FIG. 1A,
B’s intended successor, C, 1s already spinning on B’s queue
node. Thus, B can stmply mark the node as “leaving.” C can
then dereference the node to find B’s predecessor, A, and
mark B’s node as recycled, whereupon B can safely leave.
There 1s no race between A and B because A never mspects
B’s queue node.

Complications arise in the situation of FIG. 1B, in which
the departing thread B 1s the last thread in the queue. In this
case, B must attempt to modily the queue’s tail pointer to
refer to A’s queue node rather than 1ts own. We can naturally
express that attempt with a compare__and__swap operation.
If that operation fails, we know that another thread C has
arrived. At this point we might hope to revert to the previous
case of FIG. 1A. However, it 1s unfortunately possible that

US 6,965,961 Bl

S

C may successtully leave the queue after B’s
compare__and_ swap, at which point B may wait indefi-
nitely for a handshake that never occurs. We could protect
against the indefinite wait by repeatedly checking the
queue’s tail pointer, but that would constitute spinning on a
non-local location, something we want to avoid.

That problem can be solved by requiring C to handshake
with B 1n a way that prevents B from trying to leave the
queue while C 1s 1n the middle of leaving. In the middle-
of-queue case, as shown 1n FIG. 1A, B can leave the middle
of the queue as soon as it receives confirmation from C that
no pointer to its queue node remains. In the end-of-queue
case, as shown 1n FIG. 1B, B can leave the end of the queue
once 1t has wupdated the taill pomter, Q, using
compare__and_ swap. The transitions from waiting to leav-
ing and from waiting to available (not shown in figure) are
also made with compare__and__swap, to avoid overwriting a
transient flag.

Like the standard CLH lock, the CLH-try lock depends on
cache coherence to avoid remote spinning. In the CLH-try
lock, it 1s possible for two threads to end up spinning on the
same location. In the fourth line of FIG. 1B, 1f thread A calls
CLH_ release, it will spin until the transient flag reverts to
waiting. If a new thread C arrives at about the same time, it
too will begin to spin on the flag 1n A’s queue node. When
B finally updates the flag, its write will terminate both spins.

The non-blocking variant of the first preferred embodi-
ment 1s called the CLH-NB try lock. As in the CLH lock and
the CLH try lock, a lock variable takes the form of a tail
pointer for a singly linked list of queue nodes. A thread that
wishes to acquire the lock allocates a node, swaps it into the
tail pointer, and then spins on a flag 1n the node ahead of 1t
in line, which was returned by the swap.

The CLH try lock has been modified 1n the CLH-NB ftry
lock to allow non-blocking timeout, as will now be
explained with reference to FIGS. 1C and 1D. In the
CLH-NB try lock, individual queue nodes 102 contain only
a single pointer 104. When nil, this pointer indicates that the
thread spinning on the node must wait. When set to AVAIL-
ABLE (a value we assume to be different from any valid
reference), the pointer indicates that the lock is available to
the thread spinning on the node. When neither nil nor
AVAILABLE, the pointer contains a reference to the previ-
ous node 1n the list, and indicates that the thread that
allocated the node containing the pointer has timed out. Up
until 1ts decision to time out, a thread maintains its reference
to the node on which 1t 1s spinning 1n a local variable, rather
than its queue node (indicated in the figure by starting the
tail of an arrow 106 1n the empty space below a queue node
102).

In the event of timeout, two principal cases arise, illus-
trated mm FIGS. 1C and 1D. In FIG. 1C, departing thread B
1s 1n the middle of the queue, spinning on the pointer in the
node allocated by thread A. When B times out, it indicates
its 1ntent to leave by storing into its own queue node a
reference to A’s node. Thread C, which 1s spinning on B’s
node, notices this change. It updates 1ts own local pointer to
refer to A’s node 1nstead of B’s, and then reclaims B’s node.

Unfortunately, B cannot be certain that C exists. The case
where 1t does not 1s 1llustrated in FIG. 1D. After writing the
reference to A’s queue node mto its own queue node, B
performs a compare__and__swap on the queue tail pointer, in
an attempt to change 1t from a reference to B’s node 1nto a
reference to A’s node. In the middle-of-the-queue case of
FIG. 1C, this operation will fail. In the end-of-the-queue
case of FIG. 1D, 1t succeeds, and B knows that 1t can reclaim
its own queue node. In either case B can return as soon as

10

15

20

25

30

35

40

45

50

55

60

65

6

it has attempted the compare__and_ swap; 1t does not have
to wait for C. If the compare__and_ swap failed, B’s queue
node will not be available for reuse until it 1s reclaimed by
C, or by some other, later thread, if C has also timed out.

The CLH-NB try lock includes one additional departure
from the original CLLH lock. By analogy to the end-of-queue
case for imeout, we can eliminate the extra, “dummy” node
in an unheld lock by performing a compare__and_ swap in
the release operation. This extra atomic operation 1ncreases
the overhead of every critical section, but reduces by the size
of a queue node the space required for an unheld lock.

Because reclaimed queue nodes may be reused, we must
be careful to avoid the so-called ABA problem, in which a
reference to a newly allocated node 1s mistaken for a
reference to a previously reclaimed node. Specifically, once
thread B writes a reference to X 1into node Y, B’s successor
may reclaim Y. If Y’s space 1s recycled quickly and used for
some new queue node Y', which 1s used 1n an attempt to
acquire the same lock for which Y was used, B’s
compare__and__swap may succeed when it should not. We
can avoid this possibility, in this particular case, by using a
memory allocator in which a given block of storage 1is
always allocated by the same thread. Then Y’s space, which
was allocated by B, will be reused only by B, and only after
B has attempted the compare__and_ swap in which the ABA
problem arises.

The second preferred embodiment (variant with blocking
timeout) is called the MCS try lock. It 1s based on the earlier
MCS lock of Mellor-Crummey and Scott (“Algorithms for
scalable synchronization on shared-memory multiproces-

sors,” ACM Transactions on Computer Systems, Vol. 9, No.
1, pp. 21-65, February 1991).

As 1n the CLH lock, an MCS lock variable takes the form
of a tail pointer for a list of queue nodes, but where the CLH
queue 1s linked from tail to head, the bulk of the MCS queue
1s linked from head to tail. After swapping a reference to its
own queue node into the tail pointer, a thread writes an
additional reference to its node into the next pointer of ifs
predecessor’s node. It then proceeds to spin on its own node,
rather than the predecessor’s node. This “backward” linking
allows a thread to spin on a location that 1s guaranteed to be
local even on a non-cache-coherent machine. Unfortunately,
it also makes timeout significantly more complex.

To leave the queue, a thread B must update the successor
pointer in the queue node of its predecessor A so that it
points to B’s successor C, rather than to B. If C later chooses
to leave the queue as well, it will again need to update A’s
queue node, implying that B must tell 1t where A’s queue
node resides. Pointers to both predecessors and successors
must therefore reside 1n the queue nodes 1n memory, where
they can be read and written by neighboring threads. The
MCS-try lock therefore employs a doubly linked queue.

As 1n the CLH-try lock, there are two principal cases to
consider, depending on whether the departing thread B 1s
currently 1n the middle of the queue, as illustrated m FIG.
2A, or at the end of the queue, as illustrated in FIG. 2B.
While waiting to be granted the lock, a thread ordinarily
spins on its predecessor pointer. In the middle-of-the-queue
case, departing thread B first replaces the four pointers into
and out of its queue node, respectively, with leaving other
and leaving self flags (shown as LO and LS in the figures).
It then updates C’s predecessor pointer and relies on C to
update A’s successor pointer. In the end-of-the-queue case of
FIG. 2B, B “tags” A’s nil successor pointer to indicate that
additional changes are pending. Absent any race conditions,
B eventually clears the tag using compare__and__swap.

US 6,965,961 Bl

7

Unfortunately, there are many potential races that have to
be resolved. The thread at the head of the queue may choose
to grant the lock to 1ts successor while the successor 1s
attempting to leave the queue. Two neighboring threads may

decide to leave the queue at approximately the same time. A 5

thread that 1s at the end of the queue 1n step 2 may discover
in step 5 that 1t now has a successor. In general, the order of
updates to pointers is chosen to ensure that (1) no thread ever
returns from MCS__ fry_acquire until we are certain that no
pointers to its queue node remain and (2) if two adjacent
threads decide to leave concurrently, the one closer to the
front of the queue leaves first.

The non-blocking variant of the second preferred embodi-
ment, called the MCS-NB try lock, will be explained with
reference to FIGS. 2C and 2D. Each node 202 in the queue
includes a pointer 204 to a previous queue node, a pointer
206 to a next queue node, and a status flag 208, which are
used 1n the manner explained below.

To release a standard MCS lock, a thread attempts to
follow 1ts next pointer and update the word on which its
successor 1s spinning. If the pointer 1s still nil, the thread
performs a compare__and_ swap on the lock tail pointer, in
an attempt to replace a pointer to i1ts own node with a nil
pointer. If that attempt fails, then some other thread must be
in the process of linking 1tself into the queue. The releasing
thread waits for 1ts next pointer to be updated, then follows
it and updates the successor’s status flag. LLike handshaking
in the timeout code of the MCS try lock, we must eliminate
the spin 1n release 1f we are to bound the time required by
lock operations.

As 1n the original MCS lock, the backward (next) pointer
in node Y of an MCS-NB try lock (FIG. 2C) allows the
thread B that allocated Y to find the node on which a
successor thread 1s spinning. When nil, Y’s next pointer
indicates that no successor node 1s known. Three additional
values, assumed not to be the same as any valid reference,
correspond to special states. When set to AVAILABLE, Y’s
next pointer indicates that the lock 1s currently available.
When set to LEAVING, 1t indicates that B has timed out and,
further, that no next pointer anywhere refers to Y. When set
to TRANSIENT, Y’s next pointer also indicates that B has
timed out, but that in doing so B was unable to break the
reference to Y from its predecessor node.

The status flag of a queue node has five possible values.
Before linking 1ts node into the queue, a thread mnitializes its
status flag to waiting. Once the link-1n operation 1s complete,
the thread will spin waiting for the value to change. Three
possible values—available, leaving, and transient—mirror
the special values of node next pointers described in the
previous paragraph. The final value—recycled—allows us
to address race conditions in which two threads have refer-
ences to a node that needs to be reclaimed. Whichever thread
uses 1ts pointer last will find the recycled flag, and know that
it 1s responsible for reclamation.

When a thread C performs an imitial swap on the tail
pointer of a lock that 1s not currently available, 1t receives
back a reference to the queue node Y allocated by C’s
predecessor, B. C swaps a reference to 1ts own node, Z, mnto
Y’s next pointer. By using a swap, rather than an ordinary
write (as in the original MCS lock), C can recognize the case
in which B decides to release the lock or to leave the queue
when C has already swapped itself into the tail of the queue,
but before C has updated Y’s next pointer. Among other
things, this mechanism allows B to release the lock without
waiting for C to complete its link-1n operation.

If C’s swap on Y’s next pointer returns AVAILABLE, C

knows that 1t has the lock. Moreover B’s

10

15

20

25

30

35

40

45

50

55

60

65

3

compare__and_swap on the lock tail pointer (which it
performs 1n order to cover the case when 1t 1s the last thread
in the queue) is guaranteed to fail, because C’s original swap
on the tail pointer removed the reference to Y. C therefore
knows that B will neither update Z nor reclaim Y, so C
reclaims Y, writes a reference to Z mto the head pointer field
of the lock, and returns successiully.

If the swap on Y’s next pointer returns LEAVING, C
knows that B has timed out. It also knows, for reasons
similar to those in the preceding paragraph, that B will
neither update Z nor reclaim Y. C updates its private
precedessor pointer to contain the reference found 1n Y’s
predecessor pointer, instead of a reference to Y. C then
reclaims Y and tries again to link itself 1nto line.

Finally, 1f the swap on Y’s next pointer returns TRAN-
SIENT, C knows that B has timed out, but that B’s prede-
cessor, A, has a reference to Y, and 1s planning to use 1it.
Whichever thread, A or C, accesses Y last will need to
reclaim 1t. C swaps a recycled value mto Y’s status flag. If
the return value of the swap 1s waiting, C knows that it has
accessed Y before A, and that A will take responsibility for
reclaiming it. If the return value of the swap 1s available,
leaving, or transient, however, C knows that A has already
accessed Y. C therefore reclaims Y. In either case, C updates
its private predecessor pointer and tries to link itself into line
again, as 1n the preceding paragraph. Seen from A’s per-
spective, any time we update the status flag of a successor
queue node we use a swap operation to do so, and reclaim
the node if the return value 1s recycled.

Once successiully linked into the queue, thread C spins on
the status flag 1n its own queue node, Z. If that word changes
to available, C writes a reference to Z into the head pointer
field of the lock, and returns successtully. If Z’s status flag
changes to leaving or transient, C resets it to waiting and
then behaves as 1t would have 1n the preceding paragraphs,
had 1t found LEAVING or TRANSIENT 1n the next pointer
of 1ts predecessor’s queue node, Y.

If C times out in the algorithm’s inner loop, spinning on
7’s status flag, 1t first stores its private predecessor pointer
into Z’s predecessor pointer. It then attempts to erase the
reference to Z found 1 Y’s next pointer, using
compare__and_ swap. If that attempt succeeds, C swaps
LEAVING 1nto Z’s next pointer and, if necessary, swaps
leaving 1nto the status flag of Z’s successor node. As
described above, C reclaims the successor node if the status
flag was already set to recycled. Finally, 1f Z appears to have
no successor, C attempts to link 1t out of the end of the queue
with a compare__and__swap and, if that operation succeeds,
reclaims Z.

If C fails to erase the reference to Z found in Y’s next
pointer, then 1t knows its predecessor B will try to update Z’s
status flag. It therefore swaps TRANSIENT into Z’s next
pointer and, 1f necessary, swaps transient into the status flag
of Z’s successor node, reclaiming that node 1f its status flag
was already recycled. If Z appears to have no successor, then
C must simply abandon 1t, to be reclaimed by some thread
that calls the acquire operation at some point in the future.

If C times out 1n the algorithm’s outer loop, while
attempting to update a predecessor’s next pointer, 1t mimics
the case of timeout 1n the inner loop: it restores 1ts prede-
cessor’s next pointer, sets Z’s status to leaving or transient,
as appropriate, and then takes the actions described 1n one of
the preceding two paragraphs.

Unfortunately, in order to avoid any spins 1n timeout code,
we must generally return from an unsuccessiul CLH-
NB__acquire or MCS-NB__acquire operation without hav-
ing reclaimed our queue node (that task having been left to

US 6,965,961 Bl

9

some successor thread). As a result, we lose the O(L+T)
overall space bound of the CLH try lock and the MCS try
lock, with L locks and T threads.

Perhaps the simplest pathological scenario occurs in
cither lock when the last thread 1n line 1s preempted. If the
second-to-last thread then times out, its node may go unre-
claimed for an arbitrarily long time. If the third-to-last thread
subsequently times out 1ts node may go unreclaimed as well,
and so on.

Worst-case space needs are in fact unbounded, with as
few as three active threads in the CLH-NB try lock (FIG.
3A). Suppose 1nitially that threads A, B, and C are waiting
for the lock. Suppose then that B and C decide to leave at
approximately the same time and stop spinning on nodes X
and Y. B then writes a reference to X mto Y, but C 1s
preempted before 1t can write a reference to Y mto Z. B’s
compare__and__swap on the lock tail pointer will fail,
because Z 1s 1n the way, and B will return from acquire
without having reclaimed Y. If B requests the lock again it
will get 1into line with a new queue node; call it Y'. Suppose
that B then times out again, decides to leave the queue, and
stops spinning on Z. Only now, let us suppose, does C wake
up again and write a reference to Y into Z. C’s
compare__and__swap on the lock tail pointer will fail
because Y' 1s 1 the way, and C will return from acquire
without having reclaimed Z. This scenario can, in principle,
repeat indefinitely. A stmilar scenario exists for the MCS-NB
try lock.

Ideally, one might hope to design a queue-based spin lock
with non-blocking timeout and an O(L+T) space bound, but
it appears that no such lock 1s possible. Imagine a lock on
which N threads are waiting (FIG. 3B). Suppose now that
N—2 of these threads—all but the first and the last—decide
to leave at essentially the same time. Imagine further that the
last thread 1n line has been preempted, and that the first
thread, which has the lock, 1s 1n a very long critical section.
The departing threads would all like to complete their
timeout operations 1n a bounded number of their own local
time steps. In order to reclaim space while maintaining the
integrity of the queue, we must arrange to introduce the
remaining threads (the first and the last) to each other. But
because the queue embodies only local knowledge, we must
perform O(N) work in order to make this introduction.
While a hypothetical highly clever algorithm might be able
to perform this work in O(log N) time using a parallel
prefix-like strategy, 1t seems clear we cannot do 1t in constant
fime.

[t would be easy, of course, to obtain an O(LxT) overall
space bound, by remembering the last queue node used by
thread T 1n 1ts attempt to acquire lock L. The next time T
tried to acquire L it could check to see if the node were still
in L’s queue, 1n which case T could resume waiting where
it was when 1t last timed out. This mechanism would have
significant time cost, however, and seems unwarranted 1n
practice.

Performance results will now be disclosed.

In a first set of performance tests, the test-and-
test _and set (TATAS), CLH, CLH-NUMA, MCS, CLH
try, and MCS try locks were implemented using the swap
and compare__and__swap operations available 1n the Sparc
V9 instruction set. (The CLH-NUMA lock was described by
Craig in the above-cited Univ. of Washington technical
report. It uses an extra level of indirection to ensure that
spins are local even on a non-cache-coherent machine.)
Initial testing and single-processor results employed a 336
MHz Sun Ultra 4500. Scalability tests were conducted on a
56-processor Sun Wildfire machine (not to be confused with

10

15

20

25

30

35

40

45

50

55

60

65

10

the Compaq product of the same name) with 250 MHz
processors. Architecturally, the Wildfire machine consists of
four banks of up to 16 processors, each connected by a
central crossbar. Backoll constants for the TATAS lock were
tuned separately for each machine.

The tests employed a microbenchmark consisting of a
tight loop containing a single acquire/release pair. Aside
from counting the number of iterations and the number of
successful acquires (these may be different in the case of a
try lock), the loop does no useful work. Machines used for
tests were otherwise unloaded.

One can obtain an estimate of lock overhead in the
absence of contention by running the microbenchmark on a
single processor, and then subtracting the loop overhead.
Results on the Ultra 4500 are as follows:

TABLE 1
TATAS 137 ns
MCS 172 ns
CLH 137 ns
CLH-NUMA 262 ns
MCS-try 256 ns
CLH-try 274 ns

In an attempt to avoid perturbation due to other activity on
the machine, minima were measured over a series of several
runs. As one might expect, none of the more complex locks
1s able to 1improve on the time of the TATAS lock, though the
CLH lock ties 1t. The extra 35 ns overhead 1n the MCS lock
Is due primarilly to the compare_and_swap 1n
MCS_ release. The CLH-try and MCS-try locks pay and
additional penalty for the extra arcument to their acquire
operations and, 1 the case of CLH-try, the
compare__and__swap 1n CLH_ release. Neither of the try
locks calls the Sun high-resolution timer if 1t 1s able to
acquire the lock immediately. Each call to the timer con-
sumes an additional 250 ns.

One can obtain an estimate of the time required to pass a
lock from one processor to another by running the
microbenchmark on a large collection of processors. This
passing time 1s not the same as total lock overhead; as
discussed 1n the above-cited paper by Magnussen, Landin,
and Hagersten, queue-based locks tend toward heavily pipe-
lined execution, in which the initial cost of entering the
queue and the final cost of leaving 1t are overlapped with the
critical sections of other processors.

FIGS. 4A and 4B show the behaviors of the five queue-
based locks on one bank of the Wildfire machine, with
timeout values (“patience”) set high enough that timeout
never occurs 1n the queue-based try locks. All tests were run
with a single thread on every processor. With only one active
processor, the plotted value represents the sum of lock and
loop overhead with perfect cache locality. The value for the
queue-based locks jumps dramatically with two active pro-
cessors as a result of coherence misses. With three or more
active processors, lock passing 1s fully pipelined, and the
plotted value represents the time to pass the lock from one
processor to the next.

Among the non-try locks (FIG. 4A), CLH-NUMA has a
noticeably greater passing time (3.1 us) than either MCS or
CLH. The passing times for MCS and CLH are just about the
same, at 2.4 us and 2.5 us respectively. Both MCS and CLH
are faster than either of their try lock counterparts, though at
2.7 us, CLH-try beats out the CLH-NUMA lock. At 3.2 us,
MCS-try has the slowest passing time.

While the TATAS lock appears to be passing much faster
than any of the other locks, this result 1s somewhat mislead-

US 6,965,961 Bl

11

ing. The queued locks are all fair: requests are granted 1n the
order they were made. The TATAS lock, by contrast, 1s not
fair: since the most recent owner of a lock has the advantage
of cache locality, 1t tends to outrace 1ts peers and acquire the
lock repeatedly. (This effect would be reduced in a more
realistic benchmark, with work outside the critical section.)
In our experiments successive acquisitions of a queued lock
with high patience occurred on different processors more
than 99% of the time; successive acquisitions of a TATAS
lock occurred on the same processor about 99% of the time.
This unfairness has ramifications for timeout: even with 150
us patience (long enough for every processor, on average, to
acquire and release the lock 10 times), TATAS still fails to
acquire the lock some 4% of the time.

FIG. 4C plots the percentage of time that a processor in
the microbenchmark succeeded 1n acquiring a try lock. For
this test, the timeout interval (patience) has been set at only
25 us. FIG. 4D plots 1iteration time for the same experiment.
With this lower patience level, the MCS-try and CLH-try
locks exhibit distinctly bimodal behavior. With nine or fewer
active processors, timeout almost never occurs, and behavior
mimics that of the non-try locks. With ten or more active
processors, timeouts begin to occur.

For higher processor counts, or for lower patience levels,
the chance of a processor getting a lock 1s primarily a
function of the number of processors that are in the queue
ahead of 1t minus the number of those that time out and leave
the queue before obtaining the lock. As 1s evident 1n FIGS.
4C and 4D, this chance drops off sharply with insufficient
patience. The average time per 1teration also drops, because
ogving up an attempt to acquire a lock 1s cheaper than
waiting to acquire it.

The tradeoff between MCS-try and plain MCS 1s as
expected: At the cost of higher average iteration time (per
attempt), the plain MCS lock always manages to success-
fully acquire the lock. At the cost of greater complexity, the

MCS-try lock provides the option of timing out. The same
tradeoff holds between the CLH and CLH-try locks.

The tradeofls between MCS-try or CLH-try and TATAS
are more 1nteresting. While the iteration time 1s consistently
higher for the queue-based locks (FIG. 4D), the acquisition
(success) rate depends critically on the ratio between
patience and the level of competition for the lock. When
patience 15 high, relative to competition, the queue-based
locks are successiul all of the time. Once the expected wait
fime exceeds the timeout 1nterval 1n the queue-based locks,
however, the TATAS lock displays a higher acquisition rate.
As will be described below, TATAS 1s not able to maintain
this advantage once we exceed the number of processors in
a single bank of the Wildfire machine.

Generally speaking, the results for larger numbers of
processors are comparable to those seen within a single bank
of the machine. Although crossing the interconnect between
banks introduces a fair amount of noise mto the timing
results (see FIGS. 4E and 4F), the MCS-try and CLH-try
locks continue to have very similar iteration times, with
MCS-try coming out somewhat slower than CLH-try.

The mfluence of the interconnect 1s particularly evident in
the MCS-try 1teration time 1n FIG. 4F: an additional bank of
processors, requiring additional traversals of the intercon-
nect, comes mnto play between 16 and 20 processors, and
again between 28 and 32 processors. A third transition point,
between 40 and 44 processors, 1s not visible 1n the figure.

FIGS. 4G and 4H show the establishment of a very long
pipeline for lock acquisition. While the CLH-try lock sees a
lower acquisition rate than the MCS-try lock at very high
levels of competition relative to patience (FIG. 4G), there is

10

15

20

25

30

35

40

45

50

55

60

65

12

a significant intermediate range where 1ts acquisition rate 1s
higher (FIG. 4H and the center of FIG. 4G).

In a second set of performance tests, eight different lock
algorithms have been implemented, again using the swap
and compare__and__swap operations available 1n the Sparc
V9 1nstruction set: TAS-B, TAS-B try, CLH, CLH try,
CLH-NB try, MCS, MCS try, and MCS-NB try. (The TAS-B
try lock 1n this set of experiments 1s 1dentical to the TATAS
lock in the previous set.) The second set of experiments
again employs a microbenchmark consisting of a tight loop
containing a single acquire/release pair. In addition, this
microbenchmark includes optional timed “busywork™ inside
and outside the critical section.

Acquire and release operations are implemented as inline
subroutines wherever feasible. Specifically: for CLH and
MCS both acquire and release are inlined. For TASB, TAS-B
try, and CLH try, inlining 1s used for release and the “fast
path” of acquire (with an embedded call to a true subroutine
if the lock is not immediately available). For MCS try
inlining 1s used for the fast path of both acquire and release.
For CLH-NB try and MCS-NB try the need for dynamic
memory allocation forces both acquire and release to be
implemented as true subroutines.

Performance results were collected on an otherwise
unloaded 64-processor Sun Enterprise 10000 multiproces-
sor, with 466 MHz Ultrasparc 2 processors. Assignment of
threads to processors was left to the operating system. Code
was compiled with the —O3 level of optimization m gcc
version 2.8.1, but was not otherwise hand-tuned. Architec-
turally, the Enterprise 10000 1s a cache-coherent non-uni-
form memory access (CC-NUMA) machine. As shown in
FIG. 8, such a server 800 has 16 system boards 802, each of
which contains 4 processors 804 and a portion 806 of the
oglobal memory. Coherence 1s implemented via snooping on
4 independent global address buses 808. Data 1s transferred
over a separate 16x 16 crossbar 810. The server 800 also can
access a storage medium 812 on which the code to 1mple-
ment the try lock can be supplied.

As 1n the first set of experiments, one can obtain an
estimate of lock overhead in the absence of contention by
running the microbenchmark on a single processor, with no
critical or non-critical “busywork™, and then subtracting out
the loop overhead. Results appear 1 table II below. The first
column gives measured processor cycles on the Enterprise
10000. In an attempt to avoid perturbation due to kernel
activity, minima are reported over a series of 8 runs. The
remaining columns indicate the number of atomic operations
(swaps and compare and swaps), shared-memory reads,
and shared-memory writes found in the fast path of each
algorithm. The times for the CLH-NB and MCS-NB try
locks include dynamic allocation and deallocation of queue
nodes.

TABLE II
cycles atomic ops reads writes
TAS-B 19] 0 1
TAS-B try 19] 0 1
CLH 35 1 3 4
CLH try 67 2 3 3
CLH-NB try 75 2 3 4
MCS 59 2 2 1
MCS try 59 2 2 1
MCS-NB try 91 3 3 4

As one might expect, none of the queue-based locks 1s
able to match the time of the TAS-B lock. The closest

US 6,965,961 Bl

13

competitor, the original CLH lock, takes nearly twice as
long. Atomic operations are the single largest contributor to
overhead. The CLH-NB try and MCS-NB try locks, which
are not inlined, also pay a significant penalty for subroutine
linkage.

The 1mportance of single-processor overhead can be
expected to vary from application to application. It may be
significant 1n a database system that makes heavy use of
locks, so long as most threads inspect independent data,
keeping lock contention low. For large scientific applica-
tions, on the other hand, single-processor overhead—Iock
overhead in general—s dwarfed by waiting time at con-
tended locks, and 1s therefore not a significant concern.

By running the microbenchmark on a large collection of
Processors one can again obtain an estimate of the time
required to pass a lock from one thread to another. Because
the 1nitial cost of entering the queue and the final cost of
leaving it are overlapped with the critical sections of other
processors one should subtract from the resulting iteration

fimes only the critical section “busywork™, not the loop
overhead or other non-critical work.

FIGS. 5A and 5B show the net 1teration time and success
rate, respectively, of all eight locks on the Enterprise 10000,
with timeout threshold (patience) of 225 us, non-critical
busywork of 440 ns (50 iterations of an empty loop), and
critical section busywork of 229 ns (25 iterations of the
loop). With a lock-passing time of about 3.4 us in the
MCS-NB try lock, there 1s not quite enough time to finish 63
critical sections before the 64th thread times out
((3400+229)x63>225,000). As a result, the success rate of
the MCS-NB try lock drops sharply at the right end of the
graph, and the CLH-NB try lock 1s just reaching the dropofl
point. The TAS-B try lock, on the other hand, suffers a
severe 1ncrease 1n passing time around 36 processors, with
a corresponding drop-oil 1n success rate. Passing time for the
TAS-B lock without timeout has been omitted beyond 40
processors so as not to distort the scale of the graph. At 64
processors 1t 1s 45.0 us.

Below about 20 processors the TAS-B locks appear to
outperform all competitors, but this appearance 1s somewhat
misleading. The queued locks are all fair: requests are
oranted 1n the order they were made. The TAS-B lock, by
contrast, 1s not fair: since the most recent owner of a lock has
the advantage of cache locality, it tends to outrace its peers
and acquire the lock repeatedly. At 20 processors, 1n fact, the
TAS-B locks are “handed off” from one processor to another
only about 30% of the time, despite the fact that each thread
performs 440 ns of busywork between 1ts critical sections.
Not until more than 36 processors are active does the
handoif rate rise above 50%. System designers considering
the use of a TAS-B lock may need to consider whether this
unfairness 1s acceptable 1n the event of severe contention.

In an attempt to assess the benefits and cost of non-
blocking timeout, results were also collected on a preemp-
tively scheduled system with more threads than processors.
Specifically, the microbenchmark was run with 816 threads
on an 8-processor Sun Enterprise 4500, a symmetric mul-
tiprocessor with 336 MHz processors and separate split-
transaction buses for addresses (snooping) and data. With
increasing numbers of threads comes an 1ncreasing chance
of preemption, not only in the critical section, but also while

waiting 1n the queue. Under these circumstances one would
expect the CLH-NB and MCS-NB try locks to outperform

the handshake-based CLLH and MCS try locks. The obtained
results confirm this expectation.

FIGS. 6A and 6B plot iteration time and acquire success
rate, respectively, against number of threads for the preemp-

10

15

20

25

30

35

40

45

50

55

60

65

14

tion sensitivity experiment. Results were averaged over 16
runs, each of which performed 100,000 acquire/release pairs
per thread. The timeout threshold (patience) was chosen to
produce a modestly overloaded system when running with
onc thread on each of the machine’s 8 processors. As
discussed below, the meaning of “iteration time” 1s rather
complicated in this experiment. The numbers plotted 1n FIG.
6A are T /t1, where T 1s total wall clock time, t 1s the number
of threads, and 1 i1s the number of iterations performed by
cach thread.

As the number of threads exceeds the number of proces-
sors, the success rate plummets, due primarily to preemption
of threads 1n their critical sections. The difference between
blocking and non-blocking timeout then becomes sharply
visible. The CLH-NB and MCS-NB try locks are able to
bound the amount of time that a thread spends waiting for an
unavailable lock; the CLH and MCS try locks cannot.

One can model iteration time 1n this experiment 1 two
related ways. First, successiul acquire operations introduce
critical sections, which exclude one another 1n time. Total
wall clock time should therefore equal the number of
successful acquire operations times the average cost (pass-
ing time, critical section busywork, and time spent pre-
empted) of a single critical section. Let T, be lock passing
time, T be critical section busywork, t again be the number
of threads, and 1 again be the number of iterations executed
by ecach thread. Now measure s, the acquire operation
success rate, and T, the total wall clock time. One can
estimate T, the average time per critical section spent
preempted, via the following equations:

T =sti(T +T +T,)

1
Tx - _(TG-I_T(I)
STt

Note that T can be estimated based on experiments with
ample patience and a dedicated thread per processor.

Second, failed acquire operations and the busy-waiting
prior to successiul acquire operations occur more-or-less in
parallel. Total wall clock time should therefore equal the
total number of unsuccesstul acquire operations times the
average cost (loop overhead, patience, and timeout [hand-
shake] time) of a single failed acquire, plus the total number
of successtul acquire operations times the average wait time,
all divided by the number of processors not busy on the
critical path (1.e. one fewer than the total number of pro-
CESSOTS).

Let m be the number of processors in the machine, T, be
patience, and T, be loop overhead. If we let T, represent the
average lock wait time, then we can estimate T,, the time
required for timeout (including handshaking if necessary)
via the following equations:

I 4]
[T + (1 =s)(T, + Tp) + 5T,,] = —

T, =
m— 1

(1 —5)T}]

[T; + T, +

ﬂzmhhﬂ_ﬂ+%
(1 — $)ii

1 -5

US 6,965,961 Bl

15

This calculation exploits the fact that T, =T,. T, can be
estimated based on single-processor experiments.

FIGS. 7A and 7B plot the estimates of T, and T,, respec-
tively, for the experiments depicted in FIGS. 6A and 6B,
with t>8 threads. Values for T, vary greatly from run to run,
reflecting the fact that preemption in a critical section 1s
relatively rare, but very expensive. Variations among algo-
rithms 1n preempted time per critical section can be attrib-
uted to the rate of success of acquire operations and, to a
lesser extent, lock overhead. Higher rates of success and
lower overhead increase the percentage of time that a thread
1S 1n 1ts critical section, and thus the likelihood that 1t will be
preempted there. FIG. 7B shows that with the CLH-NB and
MCS-NB try locks, a thread can leave the queue within a
modest constant amount of time. In the CLH try and MCS
try locks it can be arbitrarily delayed by the preemption of
a neighboring thread.

The times given 1n FIG. 7B are significantly larger than
the “times” given 1n FIG. 6B. By dividing wall clock time
(T,) by the total number of acquire attempts (t1), FIG. 6B
clfectively pretends that all those operations happen sequen-
tially. The calculations behind FIG. 7B recognize that much
of the work occurs 1n parallel.

As part of the experiments reported in the previous
section, space management routines were imstrumented to
remember the maximum number of queue nodes ever extant
at one time. Across the sixteen measured runs, encompass-
ing six million acquire/release pairs, the maximum number
of allocated queue nodes was 84, or roughly 5 per thread.
The CLH-NB and MCS-NB try locks appear to be roughly

comparable 1n the number of nodes they require.

Given that the experiment was deliberately designed to
induce an unreasonably high level of lock contention, and to
maximize the chance of mopportune preemption, the rela-
tively modest maximum number of queue nodes 1s reassur-
ing: space overhead would not appear to be an obstacle to
the use of non-blocking timeout 1n any realistic setting.

Taken together, the two sets of experiments confirm that
it 1s possible, given standard atomic operations, to construct
queue-based locks 1n which a thread can time out and
abandon 1ts attempt to acquire the lock. For each of the two
preferred embodiments of the present invention, the variant
with blocking timeout guarantees immediate reclamation of
abandoned queue nodes, but requires that a departing thread
obtain the cooperation of its neighbors. The variants with
non-blocking timeout can safely be used in the presence of
preemption (assuming, of course, that the processor can be
put to other use while waiting for the preempted lock holder

to be rescheduled).

The price of non-blocking timeout 1s an unbounded
worst-case requirement for space. Large amounts of space
appear unlikely to be required 1 practice, however, and
experimental results confirm this expectation.

Results obtained on a 64-processor Sun Enterprise 10000
indicate that traditional test-and-test _ and_ set (TATAS)
locks, which support timeout trivially, do not scale to large
machines, even when designed to back off 1n the presence of
contention. Technological trends would appear to be making
queue-based locks increasingly important, and a timeout
mechanism significantly increases the scope of their appli-
cability. On a single processor, without contention, the
CLH-NB try lock takes about twice as long as the original
(no timeout) CLH lock, which in turn takes about twice as
long as a conventional TATAS lock (with or without tim-
eout). The significance of this single-processor overhead is
unclear: unless threads all access different locks, a lock that

10

15

20

25

30

35

40

45

50

55

60

65

16

secs little contention 1s probably lightly used, and 1ts over-
head 1s unlikely to have a significant impact on overall
program run time.

With 64 processors attempting to acquire the lock simul-
taneously, however, experiments reveal cases 1n which
attempts to acquire a TATAS lock (with backoff) took more
than six times as long as attempts to acquire a CLH-NB try
lock, while failing (timing out) more than 22 times as often
(82% of the time, v. 3.7% for the CLH-NB try lock). While
one of course attempts 1n any parallel program to avoid high
lock contention, pathological cases do imndeed arise 1n prac-
tice, particularly 1n transaction processing systems, and
ograceful performance degradation i these cases 1s of sig-
nificant concern to customers.

For small-scale multiprocessors, TATAS with backofl
continues to be the preferred lock algorithm. Queue-based
locks, however, are attractive for larger machines, or for
cases 1n which fairness and regularity of timing are particu-
larly important. The CLH lock, both with and without
timeout, has better overall performance than the MCS lock
on cache-coherent machines. The CLH-NB try lock is also
substantially simpler than the MCS-NB try lock. The rela-
five performance of the queue-based locks would be
expected to reverse, however, on a non-cache-coherent
machine, even 1f the CLH-NB try lock were modified to
ensure local-only spinning, using an extra level of indirec-
fion 1n the manner suggested by Craig for the original CLH
lock.

The present mnventor has presented papers disclosing the
present invention: “Scalable Queue-Based Spin Locks with
Timeout,” at the 8* ACM Conference on Principles and
Practice of Parallel Programming, Jun. 18, 2001, Snowbaird,
Utah; and “Non-Blocking Timeout 1n Scalable Queue-based
Spin Locks,” at the 217 ACM Annual Symposium on
Principles of Distributed Computing, Monterey, Calif., Jul.
22,2002. The disclosures of both of those papers are hereby
incorporated by reference 1n their entireties mto the present
disclosure.

While two preferred embodiments, with variants, have
been set forth 1n detail, those skilled 1n the art who have
reviewed the present disclosure will readily appreciate that
other embodiments can be realized within the scope of the
invention. For example, the present mvention 1s not limited
to any particular hardware, nor 1s 1t limited to any particular
operating system or programming language. Similarly, on a
non-cache-coherent machine, the CLH try and CLH-NB try
locks could easily be modified to spin only on local vari-
ables, using an extra level of indirection. Therefore, the
present invention should be construed as limited only by the
appended claims.

I claim:

1. A method of implementing a queue-based spin lock
with timeout 1n a computing device running a plurality of
threads, the method comprising:

(a) providing a queue as a linked list of nodes, the nodes
in the linked list representing threads waiting for the
lock, the list being accessed through a tail pointer,

(b) permitting a thread to acquire the lock when the thread
reaches the head of the queue; and

(c) when a thread times out and abandons its attempt to
acquire the lock, removing the node corresponding to
the timed-out thread from the linked list, so that the
nodes of the predecessor and the successor of the
timed-out thread out become neighbors 1n the queue.

2. The method of claim 1, wherein each of the plurality of
threads spins on 1ts predecessor’s node.

US 6,965,961 Bl

17

3. The method of claim 2, wherein a thread that times out
reclaims 1ts own node, handshaking with neighbors 1n the
queue to resolve any race conditions.

4. The method of claim 3, wherein the thread that times
out performs the following:

(a) waits until its predecessor’s node is not marked;

(b) marks its predecessor’s node to prevent the predeces-

sor from timing out concurrently;

(c) waits until its own node is not marked, then marks its
own node;

(d) attempts to swing the tail pointer from its own node to
its predecessor’s node;

(e) if step (d) is unsuccessful, waits until its successor
marks the node of the timed-out thread to indicate that
the successor has updated the successor’s predecessor
pointer; and

(f) reclaims its node and returns.

S. The method of claim 2, wherein a thread that times out
marks 1ts node as abandoned, and the successor reclaims that
node, allowing the timed-out thread to complete 1ts opera-
tion within a bounded number of 1ts own time steps.

6. The method of claim 1, wherein each thread spins on
its own queue node.

7. The method of claim 6, wherein a thread that times out
reclaims i1ts own queue node, handshaking with neighbors in
the queue to resolve any race conditions, and giving priority
for forward progress, where possible, to the thread closer to
the head of the queue.

8. The method of claim 7, wherein the thread that times
out performs the following:

(a) replaces the pointer from its node to the node of its

successor, 1 any, with a special marker;

(b) replaces the pointer to its node from the node of its
successor, 1 any, with a special marker;

(¢) replaces the pointer from its node to the node of its
predecessor with a special marker;

(d) replaces the pointer to its node from the node of its
predecessor with a special marker;

(e) replaces (1) the marker in the successor’s queue node,
if there 1s a successor, or (11) the tail pointer of the list,
if there 1s not a successor, with a pointer to the
predecessor’s queue node;

(f) if the successor exists, waits for the successor to
replace the marker 1n the predecessor’s queue node
with a pointer to the successor’s queue node;

(g) if the successor does not exist, replaces the marker in
the predecessor’s queue node with a nil pointer; and

(h) reclaims its node and returns.

9. The method of claim 6, wherein the thread that times
out marks its queue node as abandoned, and the successor or
predecessor reclaims that node, allowing the timed-out
thread to complete its operation within a bounded number of
its own time steps.

10. The method of claim 9, wherein the thread that times
out performs the following:

(a) replaces with nil the pointer to its queue node found in

its predecessor’s queue node;

(b) marks its own queue node;

(c) marks the queue node of its successor, if any; and

(d) returns;

the successor updates the successor pointer in the queue
node of the predecessor of the timed-out thread, and
then reclaims the queue node of the timed-out thread;
and

if the timed-out thread 1s unable to replace the successor
pointer 1n 1ts predecessor’s queue node due to a race
condition,

10

15

20

25

30

35

40

45

50

55

60

65

138

(¢) the timed-out thread informs its successor, if any, of
the continued existence of the predecessor’s pointer;
(f) the successor uses a swap operation to mark the node
of the timed-out thread when the successor has
removed the node of the timed-out thread from the
queue;

(g) the predecessor uses swap operations whenever it
needs to mark the node of the timed-out thread; and

(h) both predecessor and successor threads reclaim the
node of the timed-out thread if the result of the swap
operation in (f) or (g) indicates that the other thread
(successor or predecessor, respectively) has already
completed 1ts operation, and will not access the node
again.

11. A method of implementing a queue-based spin lock

with timeout 1n a computing device running a plurality of
threads, the method comprising:

(a) providing a queue as a linked list of nodes, the nodes
in the linked list representing threads waiting for the
lock, the list being accessed through a tail pointer;

(b) permitting a thread to acquire the lock when the thread
reaches the head of the queue;

(c) causing each thread to spin on a queue node allocated
by its predecessor; and

(d) indicating an unheld lock by a queue containing only
one node, marked available, or by a queue containing
zero nodes

(¢) causing a thread that releases the lock (by marking its
queue node available), or that times out and marks its
queue node abandoned, to perform a compare-and-
swap operation on the queue tail pointer 1n an attempt
to remove 1ts node from the queue.

12. An article of manufacture for implementing a queue-
based spin lock with timeout in a computing device running
a plurality of threads, the article of manufacture comprising;:

a storage medium readable by the computing device; and

code, stored on the storage medium, for controlling the
computing device to perform the following operational
steps:

(a) providing a queue as a linked list of nodes, the nodes

in the linked list representing threads waiting for the
lock, the list being accessed through a tail pointer,

(b) permitting a thread to acquire the lock when the thread
reaches the head of the queue; and

(c) when a thread times out and abandons its attempt to

acquire the lock, removing the node corresponding to
the timed-out thread from the linked list, so that the

nodes of the predecessor and the successor of the
timed-out thread out become neighbors 1n the queue.

13. The article of manufacture of claim 12, wherein each
of the plurality of threads spins on 1ts predecessor’s node.

14. The article of manufacture of claim 13, wherein a
thread that times out reclaims 1ts own node, handshaking
with neighbors 1n the queue to resolve any race conditions.

15. The article of manufacture of claim 14, wherein the
thread that times out performs the following;:

(a) waits until its predecessor’s node 1s not marked;

(b) marks its predecessor’s node to prevent the predeces-
sor from timing out concurrently;

(c) waits until its own node is not marked, then marks its
own node;

(d) attempts to swing the tail pointer from its own node to
its predecessor’s node;

(e¢) if step (d) is unsuccessful, waits until its successor
marks the node of the timed-out thread to indicate that

US 6,965,961 Bl

19

the successor has updated the successor’s predecessor
pointer; and

(f) reclaims its node and returns.

16. The article of manufacture of claim 13, wherein a
thread that times out marks its node as abandoned, and the
successor reclaims that node, allowing the timed-out thread
to complete 1ts operation within a bounded number of its
own time steps.

17. The article of manufacture of claim 12, wherein each
thread spins on 1ts own queue node.

18. The article of manufacture of claim 17, wherein a
thread that times out reclaims 1ts own queue node, hand-
shaking with neighbors in the queue to resolve any race
conditions, and giving priority for forward progress, where
possible, to the thread closer to the head of the queue.

19. The article of manufacture of claim 18, wherein the
thread that times out performs the following;:

(a) replaces the pointer from its node to the node of its

successor, 1 any, with a special marker;

(b) replaces the pointer to its node from the node of its
successor, 1f any, with a special marker;

(c) replaces the pointer from its node to the node of its
predecessor with a special marker;

(d) replaces the pointer to its node from the node of its
predecessor with a special marker;

(e) replaces (1) the marker in the successor’s queue node,
if there 1s a successor, or (i1) the tail pointer of the list,
if there 1s not a successor, with a pointer to the
predecessor’s queue node;

(f) if the successor exists, waits for the successor to
replace the marker 1n the predecessor’s queue node
with a pointer to the successor’s queue node;

(g) if the successor does not exist, replaces the marker in
the predecessor’s queue node with a nil pointer; and

(h) reclaims its node and returns.

20. The article of manufacture of claim 17, wherein the
thread that times out marks its queue node as abandoned,
and the successor or predecessor reclaims that node, allow-
ing the timed-out thread to complete its operation within a
bounded number of 1ts own time steps.

21. The article of manufacture of claim 20, wherein the
thread that times out performs the following:

(a) replaces with nil the pointer to its queue node found in
its predecessor’s queue node;

(b) marks its own queue node;
(c) marks the queue node of its successor, if any; and
(d) returns;

the successor updates the successor pointer 1n the queue
node of the predecessor of the timed-out thread, and
then reclaims the queue node of the timed-out thread;
and

if the timed-out thread 1s unable to replace the successor
pointer 1n 1ts predecessor’s queue node due to a race
condition,

(e) the timed-out thread informs its successor, if any, of
the continued existence of the predecessor’s pointer;

(f) the successor uses a swap operation to mark the node
of the timed-out thread when the successor has
removed the node of the timed-out thread from the
queue;

(2) the predecessor uses swap operations whenever it
needs to mark the node of the timed-out thread; and

(h) both predecessor and successor threads reclaim the
node of the timed-out thread if the result of the swap
operation in (f) or (g) indicates that the other thread

20

(successor or predecessor, respectively) has already
completed 1ts operation, and will not access the node
again.

22. An article of manufacture for implementing a queue-

5 based spin lock with timeout 1n a computing device running

10

15

20

25

30

35

40

45

50

55

60

65

a plurality of threads, the article of manufacture comprising;:
a storage medium readable by the computing device; and

code, stored on the storage device, for controlling the
computing device to perform the following operational
steps:

(a) providing a queue as a linked list of nodes, the nodes
in the linked list representing threads waiting for the
lock, the list being accessed through a tail pointer;

(b) permitting a thread to acquire the lock when the thread
reaches the head of the queue;

(¢) causing each thread to spin on a queue node allocated
by its predecessor; and

(d) indicating an unheld lock by a queue containing only
one node, marked available, or by a queue containing
zero nodes

(¢) causing a thread that releases the lock (by marking its
queue node available), or that times out and marks its
queue node abandoned, to perform a compare-and-
swap operation on the queue tail pointer 1n an attempt
to remove 1ts node from the queue.

23. A computing device for implementing a queue-based
spin lock with timeout while running a plurality of threads,
the computing device comprising:

a memory; and

a plurality of processors, 1n communication with the
memory, for running the plurality of threads and for
performing the following operational steps:

(a) providing a queue as a linked list of nodes, the nodes
in the linked list representing threads waiting for the
lock, the list being accessed through a tail pointer,

(b) permitting a thread to acquire the lock when the thread
reaches the head of the queue; and

(c) when a thread times out and abandons its attempt to
acquire the lock, removing the node corresponding to
the timed-out thread from the linked list, so that the
nodes of the predecessor and the successor of the
timed-out thread out become neighbors 1n the queue.

24. The computing device of claim 23, wherein each of
the plurality of threads spins on its predecessor’s node.

25. The computing device of claim 24, wherein a thread
that times out reclaims its own node, handshaking with
neighbors 1 the queue to resolve any race conditions.

26. The computing device of claim 25, wherein the thread
that times out performs the following;:

(a) waits until its predecessor’s node is not marked;

(b) marks its predecessor’s node to prevent the predeces-
sor from timing out concurrently;

(c) waits until its own node is not marked, then marks its
own node;

(d) attempts to swing the tail pointer from its own node to
its predecessor’s node;

(e¢) if step (d) is unsuccessful, waits until its successor
marks the node of the timed-out thread to indicate that
the successor has updated the successor’s predecessor
pointer; and

(f) reclaims its node and returns.

27. The computing device of claim 24, wherein a thread
that times out marks 1ts node as abandoned, and the succes-
sor reclaims that node, allowing the timed-out thread to
complete 1ts operation within a bounded number of 1ts own
time steps.

US 6,965,961 Bl

21

28. The computing device of claim 23, wherein each
thread spins on 1ts own queue node.

29. The computing device of claim 28, wherein a thread
that times out reclaims its own queue node, handshaking
with neighbors 1n the queue to resolve any race conditions,
and giving priority for forward progress, where possible, to
the thread closer to the head of the queue.

30. The computing device of claim 29, wherein the thread
that times out performs the following:

(a) replaces the pointer from its node to the node of its

successor, 1 any, with a special marker;

(b) replaces the pointer to its node from the node of its
successor, 1f any, with a special marker;

(¢) replaces the pointer from its node to the node of its
predecessor with a special marker;

(d) replaces the pointer to its node from the node of its
predecessor with a special marker;

(e) replaces (1) the marker in the successor’s queue node,
if there 1s a successor, or (i1) the tail pointer of the list,
if there 1s not a successor, with a pointer to the
predecessor’s queue node;

(f) if the successor exists, waits for the successor to
replace the marker in the predecessor’s queue node
with a pointer to the successor’s queue node;

(g) if the successor does not exist, replaces the marker in
the predecessor’s queue node with a nil pointer; and

(h) reclaims its node and returns.

31. The computing device of claim 28, wherein the thread
that times out marks i1ts queue node as abandoned, and the
successor or predecessor reclaims that node, allowing the
timed-out thread to complete its operation within a bounded
number of 1ts own time steps.

32. The computing device of claim 31, wherein the thread
that times out performs the following:

(a) replaces with nil the pointer to its queue node found in

its predecessor’s queue node;

(b) marks its own queue node;

(c) marks the queue node of its successor, if any; and

(d) returns;

the successor updates the successor pointer 1n the queue
node of the predecessor of the timed-out thread, and
then reclaims the queue node of the timed-out thread;
and

10

15

20

25

30

35

40

22

if the timed-out thread 1s unable to replace the successor
pointer 1n its predecessor’s queue node due to a race
condition,

(¢) the timed-out thread informs its successor, if any, of
the continued existence of the predecessor’s pointer;

(f) the successor uses a swap operation to mark the node
of the timed-out thread when the successor has
removed the node of the timed-out thread from the
queue;

(g) the predecessor uses swap operations whenever it
needs to mark the node of the timed-out thread; and

(h) both predecessor and successor threads reclaim the
node of the timed-out thread if the result of the swap
operation in (f) or (g) indicates that the other thread
(successor or predecessor, respectively) has already
completed 1ts operation, and will not access the node
again.

33. A computing device for implementing a queue-based
spin lock with timeout while running a plurality of threads,
the computing device comprising:

a memory; and

a plurality of processors, 1n communication with the
memory, for running the plurality of threads and for
performing the following operational steps:

(a) providing a queue as a linked list of nodes, the nodes
in the linked list representing threads waiting for the
lock, the list being accessed through a tail pointer;

(b) permitting a thread to acquire the lock when the thread
reaches the head of the queue;

(c) causing each thread to spin on a queue node allocated
by 1its predecessor; and

(d) indicating an unheld lock by a queue containing only
one node, marked available, or by a queue containing,
zero nodes

(¢) causing a thread that releases the lock (by marking its
queue node available), or that times out and marks its
queue node abandoned, to perform a compare-and-
swap operation on the queue tail pointer in an attempt
to remove 1ts node from the queue.

	Front Page
	Drawings
	Specification
	Claims

