(12) United States Patent

Geist et al.

US006957404B2

US 6,957,404 B2
Oct. 18, 2005

(10) Patent No.:
45) Date of Patent:

(54) MODEL CHECKING WITH LAYERED
LOCALIZATION REDUCTION

(75) Inventors: Danny Geist, Haifa (IL); Anna
Gringauze, Haifa (IL); Sharon Keidar,
Yokneam (IL)

(73) Assignee: International Business Machines
Corporation, Armonk, NY (US)

(*) Notice: Subject to any disclaimer, the term of this

patent 15 extended or adjusted under 35
U.S.C. 154(b) by 174 days.

(21) Appl. No.: 10/328,112

(22) Filed: Dec. 20, 2002
(65) Prior Publication Data
US 2004/0123254 Al Jun. 24, 2004
(51) Int. CL7 .o GO6F 17/50
(52) US.CL ..., 716/4; 716/1; 716/2; 716/3;
716/4; 716/5; 703/14
(58) Field of Search 716/2, 4; 717/124,
717/152; 703/14
(56) References Cited
U.S. PATENT DOCUMENTS
6,484,134 B1 * 11/2002 Hoskote 703/14
6,501,400 B1 * 7/2003 Yangc.ccccoeeveiuienaenen. 716/2
6,643,827 B1 * 11/2003 Yangc.ccccveeveeueennenenn. 716/2
6,725,431 B1 * 4/2004 Yangccccccveevevnnennenenn. 716/4
2002/0144236 Al * 10/2002 Beer et al. 717/124
2003/0208732 Al * 11/2003 Yangccccceeevvvivinininnnen. 716/4

OTHER PUBLICAITONS

Mir et al., “Modeling and verification of embedded systems
using Cadence SMV”, Mar. 7-10, 2000, Electrical and
Computer Engineering, 2000 Canadian Conference on , vol.:

1, pp.: 179-183 vol. 1.7

Vakilotojar et al., “RTL verification of timed asynchronous
and heterogeneous systems using symbolic model check-

mng”, Jan. 28-31, 1997, Design Automation Conference
1997. Proceedings of the ASP-DAC "97. Asia and South

Pacific, pp.: 181-188.*

Yunja et al., “Model checking software requirement speci-
fications using domain reduction abstraction”, Oct. 6—10,
2003, Automated Software Engineering, 2003. Proceedings.
18th IEEE International Conference on , pp.: 314-317.%

Ammann et al., “Abstracting formal specifications to gen-
erate software tests via model checking”, Oct. 24-29, 1999,
Digital Avionics Systems Conference, 1999. Proceedings.

18th , vol.: 2, pp.: 10.A.6—1—10.A6-10 vol. 2.*

Kamhi et al., “Adaptive variable reordering for symbolic
model checking”, Nov. 812, 1998, Computer—Aided

Design, 1998. ICCAD 98. Digest of Technical Papers. 1998
IEEE/ACM International Conference on, Nov. 812, 1998,
pp.: 359-365.%

Sreemani et al., “Feasibility of model checking software
requirements: a case study”, Jun. 17-21, 1996, Computer
Assurance, 1996. COMPASS °96, ‘Systems Integrity. Soft-
ware Safety. Process Security’. Proceedings of the Eleventh
Annual Conference, pp.: 77-88.%

E. Clarke, O. Grumberg, S. Jha, Y. Lu, H. Veith, ‘Counter-
example—guided Abstraction Refinement,” In Proc. Comput-
erAided Verid., pp. 154-169, Jul. 2000.

E.M. Clarke, O. Grumberg and D.A.I Peled, “Model Check-
ing”’, MIT Press, pp. 171-180, Dec. 1999,

* cited by examiner

Primary Fxaminer—A. M. Thompson
Assistant Examiner—Helen Rossoshek
(74) Attorney, Agent, or Firm—Steven C. Kaufman

(57) ABSTRACT

A method for verifying a property of a complete model of a
system under study includes abstracting at least some of the
variables from the model so as to produce an abstract model
of the system. Beginning with an initial state 1n a state space
of the abstract model, an abstract path i1s found through the
state space of the abstract model 1n accordance with the
transition relation to a target state defined by the property. A
subset of the abstracted variables 1s restored to the abstract
model so as to produce an mntermediate model of the system,
and the property on the complete model 1s verified based on
the intermediate model.

40 Claims, 6 Drawing Sheets

US 6,957,404 B2

e

S ce - -
5 : S91]19d01d
Z =
-4 "7 -
" N 8¢
—
S
2

¢ .

U.S. Patent

US 6,957,404 B2

Sheet 2 of 6

Oct. 18, 2005

U.S. Patent

U.S. Patent Oct. 18, 2005 Sheet 3 of 6 US 6,957,404 B2

Input Model M And Specification ~-40
Formula ¢

1

l__Project M Onto Abstract Mod_e.l M! -4

0
44— True On Abstract Yes
Model? L
eturn
“Pass
Reconstruct Cou nterexample
Path = On M Such That Path =«
On Abstract Model [s A
Prolectlon Of
50 Reconstruct|on
successful

Return

Reflne abstract ModeTl o4

_*__—__

Fig. 3

U.S. Patent Oct. 18, 2005 Sheet 4 of 6 US 6,957,404 B2

48

V' = Variables In Abstract ~-60
Model M'
Add Variables In Support(V') 'IT(;V'|~ 62

Projet;t_ Model M Onto New b4
Abstract Model M" Based On V'

v

Reconstruct One Layer n* | 66

L Based On ', M', M"
68 NO .
| l
Yes Reconstruction
Unsuccessful
(STEP 50)
More NO
70 Variables To Add? _>——
Yes 72 —?___ TC _— T[“
ﬁl_‘_Mll ’ ‘Jt""‘—ﬂ: I _._74
v

US 6,957,404 B2

N
O

Oct. 18, 2005

R Wl IIIIIIIIIIIIII i i !
< 06 -7 Af.wo. c6

j'lIIIIIIIiIIIIIIIIIII’Il_II.I-.I_‘_II._

Sheet 5 of 6

U.S. Patent
|
I
|
|
I
I
I
Y
|
|
|
|
I
I
I
I
I
)
I
I
I
|
|
|
|
|
I
|
I
I
I
I
|
I
I
I
I
I
I
I
I
:
I
|
|
I
|
|
I
|
I
I
I
I

U.S. Patent Oct. 18, 2005 Sheet 6 of 6 US 6,957,404 B2

54

\ Reconstruction Failed At
' Stage i+1

Project States S; Onto 100
variables Of M’

102

Image Projected States In M"

Find Minimal Set Of Variables 104
Over Which Image And S,
Are Inconsistent

Yes Minimal

Set ContainsVariables >~5’105
Not In M' ?

No

I Project State §i+1 Onto Variables In M I_J 108

l Preimage Prbjected States In M |\J 10

B | Y
Find Minimal Set Of Variables Qver 112
Which Image And S; Are Inconsistent

Y

[Add New Variables To | 106
Model M

Fig. 6

US 6,957,404 B2

1

MODEL CHECKING WITH LAYERED
LOCALIZATION REDUCTION

FIELD OF THE INVENTION

The present invention relates generally to design automa-
fion and verification, and specifically to design verification
based on symbolic model checking.

BACKGROUND OF THE INVENTION

Model checking 1s a method of formal verification that 1s
gaining 1n popularity as a tool for use 1n designing complex
systems, such as integrated circuits. Model checking 1is
typically carried out automatically by a symbolic model
checking program, such as SMV. Model checking methods
are described generally by Clarke et al. in Model Checking
(MIT Press, 1999), which is incorporated herein by refer-
ence.

To perform model checking of the design of a device, a
user reads the definition and functional specifications of the
device and then, based on this mmformation, writes a set of
properties {¢ } (also known as a specification) that the design
1s expected to fuliill. The properties are written 1n a suitable
specification language for expressing temporal logic rela-
tionships between the inputs and outputs of the device. Such
languages are commonly based on Computation Tree Logic
(CTL) and/or Linear Time Logic (L'TL). A hardware model
M (also known as an implementation) of the design, which
1s typically written 1n a hardware description language, such
as VHDL or Verilog, 1s then tested to ascertain that the
model satisfies all of the properties in the set, 1.€., that M I=¢,
under all relevant input sequences.

Symbolic CTL model checking mmvolves computing the
transition-relation (TR) of the model, and then applying the
model checking algorithm to verity a given formula. One of
the most useful features of model checking 1s its ability,
when a property ¢ 1s found to be false on M, to construct a
sequence of states and transitions (known as a path, or trace)
that leads to the problematic state of the design. This path 1s
called a counterexample. It can be used by the engineer in
understanding and remedying the design defect that led to
the failure of the model. In many cases, however, the full TR
1s too big to be computed, or the model state space
“explodes™ before the model checker can find a counterex-
ample or, 1n the alternative, verily the formula 1n question.

A number of solutions to this problem have been
proposed, among them localization reduction, as described,

for example, by Kurshan 1n Computer-Aided Verification of

Coordinating Processes (Princeton University Press, 1994),
pages 170-172, which 1s incorporated herein by reference.
Localization reduction starts with an abstraction of the
model under verification, 1.e., with a model 1n which some
of the variables are abstracted by eliminating them from the
model or allowing them to take arbitrary values. As a result
of this abstraction, the transition relation of the abstract
model 1s more compact and easier to compute, but the
behavior of the abstract model typically includes paths that
do not exist in the complete model (also referred to as the
concrete model). If a specification property 1s found to be
true on the abstract model (i.e., no counterexample exists),
then 1t 1s necessarily true on the complete model, as well,
and no further verification of the property i1s needed.

When a counterexample 1s found on the abstract model,
however, 1t 1s not certain that a counterexample exists 1n the
complete model. To determine whether the abstract coun-
terexample 1s valid, the model checker attempts to find an

10

15

20

25

30

35

40

45

50

55

60

65

2

actual counterexample path on the complete model that
corresponds to the abstract counterexample. This process 1s
known as reconstruction of the abstract path. When the
abstract path 1s successtully reconstructed, the counterex-
ample 1s shown to be valid on the complete model, as well,
and can be reported to the user as proof of failure of the
property. When the abstract counterexample cannot be
reconstructed on the complete model, 1t 1s considered to be
spurious and 1s discarded. The abstract model may then be
refined, typically by adding back in some of the variables
that were previously abstracted, and the model checker
continues to seek counterexamples on the refined abstract
model. The process of reconstruction and refinement con-
tinues 1teratively until the property 1s proven true or a valid
counterexample 1s found.

The manner in which the abstract counterexample 1s
reconstructed and, subsequently, the abstract model 1is
refined following a failure of abstraction reduction 1s of key
importance 1n making the localization reduction technique
run eifficiently. A number of authors have attempted to
address the 1ssue of abstraction reconstruction and refine-
ment.

For example, Clarke et al. describe a method for auto-
matic refinement of the abstract model using information
obtained from erroneous counterexamples 1n
“Counterexample-guided Abstraction Refinement,” in Pro-
ceedings of the ITwelfth International Conference on
Computer-Aided Verification (CAV 2000), pages 154—169,
which 1s incorporated herein by reference. According to this
method, as described by the authors, when a counterexample
1s found 1n the abstract model, all the corresponding concrete
paths (i.e., actual paths) are computed in the complete
model. When no concrete path can be found, the abstract
counterexample 1s considered to be spurious. The model
checker then finds the shortest prefix of the abstract coun-
terexample that does not correspond to an actual trace 1n the
full model. The last abstract state 1n this prefix 1s split into
less abstract states 1n such a way that the spurious counter-
example is eliminated from the abstract model. (Note that
cach abstract state in the abstract model corresponds to
multiple states in the concrete model.) Thus, a more refined
abstraction 1s obtained, which 1s then used in seeking and
reconstructing new counterexamples.

Although Clarke et al. showed their counterexample-
cuided refinement method to work in some cases, the
reconstruction of all concrete paths corresponding to a long
abstract path 1n a complex system can 1tself result in state
explosion. Furthermore, determining the optimal refinement
at each iteration 1s a NP-hard problem, and Clarke et al. use
an approximate refinement technique that 1s admattedly
sub-optimal. There 1s therefore a need for more efficient
automatic methods of symbolic localization reduction.

SUMMARY OF THE INVENTION

Preferred embodiments of the present mvention use a
novel, layered approach to path reconstruction in the local-
1zation reduction process. When an abstract path 1s found,
the model checker of the present invention adds a “layer” of
variables to the abstract model, so as to construct a new
abstract model of intermediate abstraction (less abstract than
the original abstract model, but still with fewer variables
than the complete concrete model). The model checker then
attempts to reconstruct the abstract path on the intermediate,
less abstract model. If reconstruction 1s successful, a further
layer 1s added, and reconstruction 1s repeated iteratively over
a sequence of imtermediate models until a corresponding,

US 6,957,404 B2

3

concrete path 1s found 1n the complete model. On the other
hand, if the reconstruction fails on any intermediate model,
it can be concluded that the original abstract model should
be refined, without continuing to full path reconstruction. In
either case, the layered reconstruction process reduces sub-
stantially the computation involved 1n reconstructing long
paths, and thus reduces the likelihood of state space explo-
s101.

In some preferred embodiments of the present invention,
after adding a layer of variables to generate an intermediate
abstract model, the model checker heuristically computes
only a subset of the possible paths corresponding to the
previously-reconstructed abstract path. If the model checker
1s unable to reconstruct the path within the restricted subset,
it backtracks to the preceding (higher) level of abstraction,
and then selects a new subset. In this way, the model checker
1s still able to search all possible paths 1n the abstract state
space, while reducing still further the likelihood of state

space explosion.

The choice of which variables to add 1 each layer 1s
heuristic. In some preferred embodiments of the present
mvention, the initial abstract model includes the formula
variables, 1.¢., the state variables that appear in the specifi-
cation property ¢ that is being verified. An initial layer, or
“cone,” of variables that are in the support of the formula
variables may be added to the abstract model. (The support
of any given variable consists of those variables that directly
influence the value of the given variable according to the
system transition relation.) In the next layer, further vari-
ables 1n the support of the variables 1n the existing model are
added, and so forth through the intermediate models until the
reconstruction 1s complete. Both breadth-first and depth-first
approaches may be taken in choosing the new variables to
add m each layer.

When path reconstruction fails, and the abstract model
must be refined, the variables added to the abstract model are
also chosen heuristically. Preferably, the variables added 1n
refinement are those that caused the previous path recon-
struction to fail, because no values of those variables were
found that were consistent with the abstract path under
reconstruction. If an abstract path i1s then found on the
refined abstract model, the variables 1n the support of the
variables that were added in the refinement stage are pret-
erably mmtroduced 1n an early layer of the path reconstruction
stage.

There 1s therefore provided, 1n accordance with a pre-
ferred embodiment of the present invention a method for
verifying a property of a complete model of a system under
study, the model defining states of the system based on a set
of state variables and a transition relation among the states,
the method including:

abstracting at least some of the variables from the model
so as to produce an abstract model of the system;

beginning with an initial state 1n a state space of the
abstract model, finding an abstract path through the state
space of the abstract model 1n accordance with the transition
relation to a target state defined by the property;

restoring a subset of the abstracted variables to the
abstract model so as to produce an intermediate model of the
system; and

verifying the property on the complete model based on the
intermediate model.

Preferably, verifying the property includes determining
that the complete model satisfies the property when the
abstract model satisiies the property.

Preferably, verifying the property includes performing a
partial reconstruction of the abstract path on the intermediate

10

15

20

25

30

35

40

45

50

55

60

65

4

model, and veritying the property based on the partial
reconstruction. Typically, verifying the property further
includes reconstructing a complete path through the state
space of the complete model based on the intermediate path,
wherein reconstructing the complete path includes repeating
the steps of restoring the subset of the abstracted variables
and performing the partial reconstruction 1n order to gener-
ate a sequence of intermediate models, with respective
intermediate paths reconstructed on the intermediate
models, until the complete path has been reconstructed.

In a preferred embodiment, performing the partial recon-
struction includes identifying a point of failure 1n recon-
structing the abstract path on the mtermediate model, and
modifying the abstract path responsively to the point of
failure, and performing the partial reconstruction based on

the modified abstract path.

In another preferred embodiment, performing the partial
reconstruction includes identifying a point of failure in
reconstructing the abstract path on the intermediate model,
and refining the abstract model responsively to the point of
failure, and repeating the steps of finding the abstract path,
restoring the subset of the abstracted variables, and perform-
ing the partial reconstruction based on the refined abstract
model. Preferably, identifying the point of failure includes
1dentifying one or more of the variables having values 1n the
intermediate model that are inconsistent with the reconstruc-
tion of the abstract path on the intermediate model, and
refining the abstract model includes adding the identified
variables to the abstract model. Most preferably, adding the
1dentified variables includes providing a first binary decision
diagram (BDD) to represent a set of legal states in the
intermediate model, and providing a second BDD to repre-
sent a spurious state 1n the abstract model, and finding a
difference between the first and second BDDs.

Further preferably, performing the partial reconstruction
includes reconstructing an intermediate path on the inter-
mediate model, such that the abstract path 1s a projection of
the 1ntermediate path on the variables of the abstract model.

Preferably, restoring the subset of the abstracted variables
includes adding a layer of the abstracted variables, such that
the variables 1n the added layer are in a support of the
variables 1n the abstract model. In a preferred embodiment,
verifying the property includes performing a partial recon-
struction of the abstract path on the intermediate model,
while adjusting one or more values of the variables m the
added layer so that the partial reconstruction of the abstract
path 1s consistent with the intermediate model. Preferably,
adjusting the one or more values of the variables in the
added layer includes at least one of adjusting the values of
the variables 1n a first abstract state on the abstract path that
1s inconsistent with the intermediate model and adjusting the
values of the variables 1n a second abstract state preceding
the first abstract state on the abstract path.

Typically, adding the layer of the abstracted variables
includes adding the layer 1n a first intermediate model, and
veritying the property includes performing a partial recon-
struction of the abstract path on the first intermediate model,
and the method further includes repeating the steps of
restoring the subset of the abstracted variables and perform-
ing the partial reconstruction so as to generate a sequence of
intermediate models, beginning with the first intermediate
model, such that for all the mtermediate models following
the first intermediate model, restoring the subset of the
abstract variables includes adding a further layer of the
abstracted variables, wherein the variables 1n the added layer
are 1 a support of the variables in a preceding one of the
intermediate models 1n the sequence.

US 6,957,404 B2

S

Preferably, repeating the step of performing the partial
reconstruction includes reconstructing respective mtermedi-
ate paths on all of the intermediate models, so that for all of
the mtermediate models, the respective intermediate paths
are projections of the intermediate paths reconstructed on
the intermediate models that are later in the sequence.
Further preferably, adding the further layer of the abstracted
variables 1ncludes selecting a subset of the variables 1n the
support of the variables 1n the preceding one of the inter-

mediate models.

In a preferred embodiment, performing the partial recon-
struction 1ncludes:

finding a first set of intermediate model states that are
equivalent to a first abstract state on the abstract path;

taking a partial set of candidates from the first set;

finding a second set of the intermediate model states that
can be reached by one intermediate model transition from
the partial set and are equivalent to a second abstract state on
the abstract path;

iteratively repeating the steps of taking the partial set and
finding a further set of the intermediate model states that can
be reached by one mntermediate model transition from the
partial set so as to find succeeding abstract states 1n an order
according to which the abstract states appear on the abstract
path;

upon determining at an iteration of the step of finding the
further set that there are no equivalent intermediate model
states that can reached by one transition from the set of
intermediate candidates computed 1n a previous iteration,
backtracking to the previous 1iteration and selecting a dit-
ferent partial set of the mtermediate model states; and

continuing to repeat the steps of taking the partial set and
finding the further set and of backtracking to the previous
iteration when there are no equivalent intermediate model
states that can reached by one transition, until the abstract
path 1s completely reconstructed or until backtracking all the
way to the first set of intermediate model states and con-
cluding that the abstract path cannot be reconstructed,
thereby concluding that the abstract model requires refine-
ment.

In a preferred embodiment, finding the abstract path
includes finding a looped abstract path, and wherein veri-
fying the property includes reconstructing an intermediate
path on the intermediate model, such that the intermediate
path 1ncludes a loop, and the abstract path 1s a projection of
the 1ntermediate path onto the abstract model. Typically, the
looped abstract path has a given abstract path length, and
reconstructing the intermediate path includes searching for
the mtermediate path subject to a condition that the inter-
mediate path have an intermediate path length that 1s a
multiple of the abstract path length.

There 1s also provided, in accordance with a preferred
embodiment of the present invention, a method for checking
a complete model of a system under study, the model
defining states of the system 1n a state space based on a set
of state variables and a transition relation among the states,
the method including:

abstracting at least some of the variables from the model
so as to produce an abstract model of the system;

beginning with an 1nitial state 1 the state space of the
abstract model, finding an abstract path through the state
space of the abstract model 1n accordance with the transition
relation to a target state;

restoring a subset of the abstracted variables to the
abstract model so as to produce an intermediate model of the
system,;

10

15

20

25

30

35

40

45

50

55

60

65

6

reconstructing the abstract path on the state space of the
intermediate model so as to generate an intermediate path
through the state space; and

reconstructing the intermediate path on the state space of
the complete model so as to generate a complete path.

Preferably, reconstructing the intermediate path includes
repeatedly restoring respective subsets of the abstracted
variables 1n order to generate a sequence ol intermediate
models, and reconstructing respective mtermediate paths on
the intermediate models 1n the sequence, until the complete
path has been generated.

There 1s additionally provided, in accordance with a
preferred embodiment of the present invention, apparatus
for verifying a property of a complete model of a system
under study, the model defining states of the system based on
a set of state variables and a transition relation among the
states, the apparatus including a verification processor,

which 1s arranged to abstract at least some of the variables
from the model so as to produce an abstract model of the
system and, beginning with an initial state 1n a state space of
the abstract model, to find an abstract path through the state
space of the abstract model 1in accordance with the transition
relation to a target state defined by the property,

the processor being further arranged to restore a subset of
the abstracted variables to the abstract model so as to
produce an intermediate model of the system, and to verily
the property on the complete model based on the interme-
diate model.

There 1s further provided, 1n accordance with a preferred
embodiment of the present invention, apparatus for checking
a complete model of a system under study, the model
defining states of the system 1n a state space based on a set
of state variables and a transition relation among the states,
the apparatus including a model processor which 1s arranged
to abstract at least some of the variables from the model so
as to produce an abstract model of the system and, beginning,
with an 1nitial state 1n the state space of the abstract model,
to find an abstract path through the state space of the abstract
model 1n accordance with the transition relation to a target
state,

the processor being further arranged to restore a subset of
the abstracted variables to the abstract model so as to
produce an intermediate model of the system, to reconstruct
the abstract path on the state space of the intermediate model
so as to generate an intermediate path through the state
space, and to reconstruct the intermediate path on the state
space of the complete model so as to generate a complete
path.

There 1s moreover provided, in accordance with a pre-
ferred embodiment of the present invention, a computer
software product for verifying a property of a complete
model of a system under study, the model defining states of
the system based on a set of state variables and a transition
relation among the states, the product including a computer-
readable medium, 1n which program instructions are stored,
which instructions, when read by a computer, cause the
computer to abstract at least some of the variables from the
model so as to produce an abstract model of the system and,
beginning with an initial state 1n a state space of the abstract
model, to find an abstract path through the state space of the
abstract model 1n accordance with the transition relation to
a target state defined by the property,

the instructions further causing the computer to restore a
subset of the abstracted variables to the abstract model so as
to produce an intermediate model of the system, and to
verily the property on the complete model based on the
intermediate model.

US 6,957,404 B2

7

There 1s furthermore provided, in accordance with a
preferred embodiment of the present invention, a computer
software product for checking a complete model of a system
under study, the model defining states of the system 1n a state
space based on a set of state variables and a transition
relation among the states, the product including a computer-
readable medium, in which program instructions are stored,
which instructions, when read by a computer, cause the
computer to abstract at least some of the variables from the
model so as to produce an abstract model of the system and,
beginning with an initial state 1n the state space of the
abstract model, to find an abstract path through the state
space of the abstract model in accordance with the transition
relation to a target state,

the 1nstructions further causing the computer to restore a
subset of the abstracted variables to the abstract model so as
to produce an intermediate model of the system, to recon-
struct the abstract path on the state space of the intermediate
model so as to generate an intermediate path through the
state space, and to reconstruct the mtermediate path on the
state space of the complete model so as to generate a
complete path.

The present invention will be more fully understood from
the following detailed description of the preferred embodi-
ments thereof, taken together with the drawings in which:

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a schematic, pictorial 1llustration showing appa-
ratus for design verification, 1n accordance with a preferred
embodiment of the present invention;

FIG. 2 1s a schematic representation of a system state
space, 1llustrating reconstruction of an abstract trace, 1n
accordance with a preferred embodiment of the present
mvention;

FIG. 3 1s a flow chart that schematically illustrates a
method for model checking with localization reduction, 1n
accordance with a preferred embodiment of the present
mvention;

FIG. 4 1s a flow chart that schematically illustrates a
method for reconstructing a counterexample path, 1n accor-
dance with a preferred embodiment of the present invention;

FIG. 5 1s a block diagram that schematically illustrates a
set of models with varying levels of abstraction, 1n accor-
dance with a preferred embodiment of the present invention;
and

FIG. 6 1s a flow chart that schematically illustrates a
method for refining an abstract model, in accordance with a
preferred embodiment of the present invention.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS

System and Method Overview

FIG. 1 1s a schematic pictorial illustration of apparatus 2(
for symbolic model checking, in accordance with a preferred
embodiment of the present invention. Apparatus 20 typically
comprises a model processor 22, typically a general-purpose
computer workstation running suitable model checking soft-
ware. The system 1s operated by a user 24, typically a design
or verification engineer. The model checking software may
be downloaded to processor 22 1n electronic form, over a
network, for example, or it may be supplied on tangible
media, such as CD-ROM or non-volatile memory. Processor
22 receives a hardware implementation model 26 of a target
system or device 30 1in development, which may refer to the

10

15

20

25

30

35

40

45

50

55

60

65

3

entire system or device or to a sub-unit, such as a circuit or
functional block. User 24 prepares a path specification 28,
comprising properties for use in model checking of model
26, and selects 1nitial states of the model. System 20
analyzes the model, using methods described in detail
hereinbelow, 1 an attempt to find traces between the nitial
states and target states, which are inferred by processor 22

based on the path specification.

FIG. 2 1s a schematic representation of a state space 31 of
model 26, providing a conceptual view of the method of the
present invention. The method 1s described 1n detail below,
with reference to FIG. 3. Within state space 31, an abstract
model M' 1s defined with a reduced set of variables. A search
for a counterexample begins from a set 32 of 1nitial states,
labeled S,, which are typically specified by user 24. At each
iteration of the transition relation, processor 22 applies an
image operation to the variables 1n the reduced set 1n order
to map S, 1nto a set 34 of states S,. Subsequent iterations
map each set S; into a successive setS._ ;. The purpose of this
computation 1s to determine whether there 1s a counterex-
ample path II' through the state space of the abstract model
that reaches a set 33 of target states, 1n which one of the
specification formulas 1s false. In the example shown 1n FIG.
2, path IT' passes through states 35 1n each set of states S; in
the abstract model until the path reaches a target state 36 that
intersects with set 33. States 35 of the abstract model are
shown conceptually as extended regions mm FIG. 2, to
indicate that each of these states actually corresponds to a
range ol states 1n the complete model. Similarly, path IT
corresponds to multiple possible paths 1n the complete
model.

Preferably, processor 22 uses an on-the-ily method to find
a counterexample trace 35 in state space 31. Such methods
are described, for example, 1n “On-the-fly Model Checking,
of RCTL Formulas,” Proceedings of the Tenth International
Conference on Computer Aided Verification (CAV 1998),
which 1s incorporated here in by reference. As each new set
34 1s computed, it 1s checked against the path specification
to determine whether there 1s a reachable counterexample
path through state space 31 that reaches a state 1n set 33. The
computation continues until the path reaches a target state,
or until 1t 1s determined that no such path exists.
Alternatively, the entire transition relation of the abstract
model may be computed before searching for a counterex-
ample path. Other methods for computing the transition
relation and finding counterexamples may also be used.

After finding path IT', processor 22 attempts to reconstruct
a path m through state space 31 of the complete model that
corresponds to II'. The process of reconstruction proceeds
iteratively, through a sequence of intermediate models of
successively-decreasing abstraction, as described below. To
reconstruct the path, the states of the complete model are
mapped by the 1mage operation, beginning from set 32, to
successive sets 37 of states. Because the abstract model
includes fewer variables (and therefore more behaviors) than
the complete model, each of sets 37 1s a subset of the
corresponding set 34 of states of the abstract model, as
shown 1n the figure. To successtully reconstruct path 7 1n the
complete model, processor 22 must find at least one state 38
of the complete model that 1s within the range of each
abstract model state 35 on path II', culminating 1n a target
state 39. In symbolic terms, this means that state 35 must be
a projection of at least one state 38 of the complete model,
as described 1n detail hereinbelow. In the example shown 1n
FIG. 2, within set S; of the abstract model, state 35 1is
disjoint from set 37. Therefore, reconstruction of path II' on
the complete model fails. The initial abstract model M' is

US 6,957,404 B2

9

then refined to generate a new abstract model, typically by
adding variables from M to reduce the abstraction of M', and
the reconstruction process 1s repeated.

Definitions

Before proceeding to describe the particular methods of
localization reduction provided by the present invention, it
1s useful to define the terms used in the description that
follows:

A model M has finite set of variables V={v,, . .., v _},
which are referred to as state variables. Each state
variable v, can be equal to one of a finite set of values
D.. Each state 0 in M 1s defined by a particular value
assignment to the variables {v,, ..., v, }.

Expressions are built from variables 1n V, constants from
D, and function symbols (typically mathematical or
Boolean).

Atomic formulas are constructed from expressions and

relation symbols. The set of all atomic formulas is
called Atoms (M).

The support of an atomic formula f 1s the set of state
variables that explicitly appear mm f. For example,
Support(v,+1+(v,/v5)=12)={v,, v,, Vs}.

As described by Clarke et al. in Model Checking (cited

above), a model M can be represented as a Kripke structure
K=(S,I,R,L), including the following elements:

S=D ., x ..
[=S 1s a set of initial states.

. xD_ 1s a set of states

R < SxS 1s a transition relation.

L:S—24msM) i 4 labeling of the states s in S given by
L(s)={f € Atoms(M)|s|=f}.

Based on the Kripke structure, formulas applicable to M can

be represented using ACTL temporal logic, which 1s a

fragment of CTL that 1s particularly useful for symbolic

model checking, as described by Clarke et al.

Various methods can be used to abstract model M {for
purposes of localization reduction. The methods described
hereinbelow use projection for this purpose, which 1is
defined as follows:

Definition 1—State Projection:

Given a state s=(v,, . . ., v,) and a subset of the state
variables V'V, let m=V'| and let1,, . . .,1i be the indices
in increasing order of the state variables that belong to V'.
Then let v =v, ,v\,=V, ..., v, =v, . 'The state projection
of s on V', denoted proj(s,V") is the m-tuple S'=(v,', . . .,
V., that satisfies s'=3(V/V")s(V). In other words, the state
s 1s projected onto the coordinates of the variables con-
tained 1n V'

Definition 2—Set Projection:

Given a set of states S and a set of state variables V', the set
projection S' of the set S on V' is defined as S'={proj(s,
Vs € S}.

Definition 3—Model Projection:

Given a Kripke structure K representing a model M and a
subset of the state variables V', the model projection K' of

K with respect to V' (and the corresponding model M') is
defined as follows:

S'=proj (S, V')

['=proj (I, V')

R={(s";, s',)Is'1=proj (s;, V"), s',=proj (s,, V'), (51, s,)e R}

L(s)={f € Atoms(M")|s'|=f}, wherein Atoms(M') is the
subset of Atoms(M) in which only variables belonging
to V' appear.

Note that M<M' by the definition of model projection.

10

15

20

25

30

35

40

45

50

55

60

65

10

Definition 4—Path Projection:

The projection of a path m={s,, s,, . . ., s} on a set of
variables V' is a set of paths ITI'={S., S, . .., S/},
wherein for all i, S/'=proj(s,, V'). For convenience we
denote I1.'=S,". A projection of a path has a set of states as
path elements, and therefore corresponds to a set of paths
in the complete model.

In the description below of preferred embodiments of the
present invention, the terms abstraction and projection are
used mnterchangeably. Although the principles of the present
invention are applicable using other methods of abstraction,
projection 1s particularly useful 1in automated 1mplementa-

fion of the methods of symbolic abstraction reduction
described herein. When Binary Decision Diagrams (BDDs)
are used to represent states of the model, as 1s the case 1n
many symbolic model checking programs, projections of
sets of states can be calculated conveniently by the standard
BDD operation of existential quantification. An exemplary
implementation of such a projection procedure 1s given

below 1n Table 1.

TABLE 1

BDD PROJECTION

/* Given a list of variables “a” and a BDD “b” the
/* procedure proj generates a BDD that 1s a projection
/* of “b” onto the variables 1n “a”.

bdd__ptr proj(var_list a, bdd_ ptr b)
1
bdd__ptr result;
if(b == ONE || b = = ZERO) return(b);
if(a == ONE) return ONE;
int alevel = GETLEVEL(a);
int blevel = GETLEVEL(b);
if(alevel < blevel)
result = proj(a->next, b);
else if(alevel = = blevel)
result=find__bdd(blevel, proj(a->next, b->left),
proj{a->next, b->right));

else
result = or__bdd(proj(a, b->left), proj(a,
b->right));

return(result);

The transition relation R can be partitioned according to
the state variables as R=MR;, wherein R, = S.xV,". Here V/

is a projection of S' onto {v,'}, and S, is a projection of S onto
some Supp, = V, wherein Supp, 1s the support of variable v,
1.e., the set of state variables that appear in the atomic
formulas that describe the next-state behavior of v,. The next
value of v, 1s independent of the other variables that are
outside its support. The support relationships among the
state variables can be pictured as a graph, in which each
variable 1s a node, and there 1s an edge from v; to v; it v; €
Supp,. This sort of partition 1s particularly apt in modeling
hardware 1implementations and 1s useful 1n the layered path

reconstruction methods described below.

The Abstraction Refinement Process

FIG. 3 1s a flow chart that schematically illustrates a
method for design verification using iterative localization
reduction, in accordance with a preferred embodiment of the
present invention. As noted above with reference to FIG. 1,
the verification process begins when user 24 inputs model 26
and specification properties 28 to processor 22, at an 1ni-
tialization step 40. Processor 22 projects the input model M
onto an 1nitial abstract model M', at an 1nitial projection step
42. Preferably, for a given specification property ¢ under
test, the variables in M' are chosen to be those in the support
of the atomic formulas of ¢.

US 6,957,404 B2

11

Processor 22 performs automated model checking on M,
as described above with reference to FIG. 2, at a model
checking step 44. If no counterexample trace 1s found on M',
it means that the property ¢ 1s true on the abstract model, and
therefore must be true on M, as well. In this case, processor
22 returns an indication to user 24 that the design model
passed this test, at a passing step 46.

On the other hand, if a counterexample trace II' 1s found
in model M' at step 44, processor 22 attempts to reconstruct
a counterexample path © on M, at a reconstruction step 48.
Path 7 1s found 1n such a way that II' 1s a projection of m, as
defined above. The reconstruction is carried out iteratively,
by adding successive layers of variables to create succes-
sively less abstract intermediate models M", as described
below with reference to FIG. 4. Upon completion of the
reconstruction process, processor 22 determines whether a
path 7 can be found on M, at a completion step 50. If so,
processor 22 imforms user 24 that the design has failed to
tulfill property ¢, and returns the counterexample trace 1t has
found, at a failure step 52.

If processor 22 1s unable to find a path w on M of which
trace II' 1s a projection, the processor refines the abstract
model M', at a reflinement step 54. The refinement takes
advantage of information collected at step 48. Details of the
refinement step are described hereinbelow with reference to
FIG. 6. The refined abstract model 1s then retested at step 44,
and the procedure continues as described above until either
the model successtully fulfills the property ¢ at step 44, or
a path w on M 1s found at step 50.

Layered Reconstruction

Reference 1s now made to FIGS. 4 and 5, which sche-
matically show details of reconstruction step 48, 1n accor-
dance with a preferred embodiment of the present invention.
FIG. 4 1s a flow chart that shows a preferred method for
layered path reconstruction. FIG. 5 1s a block diagram
showing models at different levels of abstraction, useful in
understanding the notion of layers as used herein.

To begin the process of path reconstruction, the abstract
model M' 1s given by an initial, reduced set of variables
Vi={v,, ..., v '}, as defined above, at an initial abstraction
step 60. Preferably, V' 1s chosen initially to include the
variables that are 1n the support of the atomic formulas of ¢,
and M' 1s obtained by projecting M onto V'. An abstract
counterexample trace II' 1s found on M/, as described above
in reference to step 44. A new layer of variables 1s then
added to V', at a layer addition step 62. Anew abstract model
M", of reduced abstraction, 1s obtained by projecting M onto
the new reduced set of variables V', at a model projection
step 64.

Preferably, the new layer added at each iteration through
step 62 1s disjoint from the preceding layers and contains
variables 1n the support of the existing V'. Formally, a layer
of variables U, 1s defined as follows, beginning from the
initial set V'

1. U,=V' 1s a layer.

2. Any set U.c support

U; C SuppDrt[U Uk] /

O=f =i—1

Ju

O=k=i—1

layer.

Thus, a new layer may contain the entire support of the
preceding layer (other than the variables already in the
preceding layers), or it may contain a subset of the support.

5

10

15

20

25

30

35

40

45

50

55

60

65

12

A breadth-first or depth-first approach may be taken to
choosing the support variables to add in each layer.
Preferably, if a previous reconstruction step failed, and
refinement of the model was carried out at step 54, then
variables 1n the support of the variables added in the
refilnement stage are given priority for addition to the model
at step 62.

The notion of layers 1s shown graphically mm FIG. 5. A
complete model 80, labeled M, contains a complete set of
state variables 82. The atomic formulas of property ¢ are
represented schematically by operators 84, with a set of
formula variables 86, identified as the initial V'. The vari-
ables 1n a support 88 of the atomic formulas are added to V'
in order to generate a first abstract model 90, labeled M'.
Subsequently, variables 82 1 a remaining set 92 of the
variables 1n M are successively added to the model 1n order
to create new layers. For example, a subsequent abstract
model 94, labeled M", will include variables 82 that are 1n
the support of the variables in support 88. Further layers are
added 1n iterations through step 62, until path m has been
completely reconstructed, or until the reconstruction process
fails.

Returning to FIG. 4, once the new abstract model M" has
been created at step 64, a new abstract path II" 1is
reconstructed, at a path layer reconstruction step 66. The
new abstract path 1s found by using the new model M"
together with the abstract path I1' and the preceding abstract
model M' (on which the abstract path II' was determined).
The method used at step 64 depends on the type of path that
1s to be found, which 1s determined by the model M and the
specification property ¢. A number of alternative methods
for reconstructing a path layer are described below. In any
case, at each pass through step 66, a relatively small number
of variables 1s added to the model before attempting to
reconstruct the path on the expanded variable set.

After each pass through step 66, processor 22 assesses
whether the new path I1" was successtully reconstructed, at
a path assessment step 68. If no new path could be
reconstructed, the processor concludes that the reconstruc-
tion has failed (step 50), and proceeds to refine the original
abstract model (step 54). If II" was successfully
reconstructed, the processor determines whether there are
any more new variables to be added to M", at a variable
checking step 70. If there are no more such variables left in
set 92 (FIG. §), it means that M"=M, so that a complete path
has now been reconstructed. In other words, the processor
determines that I1"=m, at a path completion step 72. The
processor returns the path m as a counterexample of the
specification property at step 52, as described above.

On the other hand, as long as there are more variables
remaining to be added to the abstract model, the processor
proceeds to reconstruct another layer of the path. For this
purpose, it substitutes the new model M" for M', and the new
abstract path II" for II', at a substitution step 74, and then
proceeds to 1terate through the method again, starting from
step 62.

For the sake of completeness, Table 1I below provides a
pseudocode representation of the method shown 1n FIG. 4.

TABLE 11

LAYERED RECONSTRUCTION

reconstruct (IT', M', M"){
HD — HI,
1=1;
U := variables_ of(M");

US 6,957,404 B2

13

TABLE II-continued

LAYERED RECONSTRUCITION

while

(U £Q)A(IT £ D))

U := choose__ n_ variables(support(U)/U) U U;
M" := project__model(M, U);

[T := reconstruct__one__layer(IT", M', M");
if (IT"*'=@) return @; /*refinement needed*/

1 =1+1;

h

return choose_one_counter__example(IT);

The function “reconstruct__one_ layer” in Table II corre-
sponds to step 66 1n the method of FIG. 4. Various different
implementations of this step are possible, as shown in
pseudocode form 1n Tables III, IV and V, below. The choice
of 1mplementation depends on whether or not the counter-
example path that 1s sought includes a loop or not. As 1s
known 1n the model checking art, counterexample traces for
safety properties (such as AG properties, 1n temporal logic
notation) do not contain loops. On the other hand, a coun-
terexample trace for a liveness property (such as an AF
property) must contain a loop. Tables III an IV show two
methods of reconstruction for paths without a loop, while
Table V shows a method for looped paths. These particular
heuristic methods for layered reconstruction are brought
here by way of example. Alternative methods will be appar-
ent to those skilled in the art and are considered to be within
the scope of the present invention.

TABLE 111

RECONSTRUCTION WITHOUT A LOOP - METHOD 1

reconstruct _one layer no_ loopl(IT', M', M"){

last = [IT'|-1;
S =5
1:= 0;

V' := variables_ of(M');
while (i < last){
next s =95,
new :=image(s, M") M next_s
if(new = @){
[*try to see 1f the selection of values in
/* V"/V' can be changed */
suspect = preimage(proj(next_s,V'),M');
if ((suspect M s) = B
/*check whether S;,; can be replaced™*/
new := image(s,M")MN proj(next_s,V');
if(new = 9)
return @;/*refinement needed*/
else /*replace S, */
S 4 1= NEw;

else
return @;/*refinement needed™*/
1= 1+1;
S 1= New;
return I1";

In the listing above, IT'={S,, S,, . . ., S, .}, and the
functions 1mage and preimage correspond to forward and
reverse operations of the system ftransition relation, as
described above. The method of Table III iteratively per-
forms forward image steps on the abstract model M",
beginning from the 1nitial states I", and conjuncts the result
of each step with the corresponding step 1n m'. If the

10

15

20

25

30

35

40

45

50

55

60

65

14

conjunction reaches a dead end (new=0), the method returns
to the preceding step and attempts to modify II' to be
consistent with M". The method of Table III succeeds when
the reconstruction reaches the target state S, _, and fails it
for some S; on II', no corresponding state can be found in
M".

The choice of a specific IT' 1s arbitrary, and the variables
in the states of IT' can take any values that are consistent with
M'. Referring to FIG. 5, for example, variables 82 1n support
88 of V' that were added to create model 90 (M') are “cut
free” of theiwr behavioral dependence on the remaining
variables 1n set 92. Therefore, these “free” variables behave
non-deterministically in M', and their values can be changed
freely 1n order to make them consistent with M". This
change 1s performed in the method of Table III by projecting
the inconsistent state (next_s) onto V' and preimaging the
projected state to preserve only the desired values 1n V'. The
preimage operation 1s preferably performed on M', rather
than the larger state space of M", 1n order to avoid state
explosion. The method of Table III then attempts to find
other values for the variables V" that are in M" but not M’
(i.e., V'"/V") that will make the next state consistent with the
model.

Layered reconstruction according to the method above
ogrves good results 1n relatively simple cases, but 1 larger
state spaces 1t may lead to explosion, since the number of
counterexamples to be searched 1n the abstract model grows
at each 1iteration. It 1s sufficient, of course, to find a single
counterexample in the abstract model that 1s a projection of
a complete counterexample. Therefore, in an alternative
approach, shown below 1n Table 1V, the abstract counterex-
amples are under-approximated, 1n the expectation that the
under-approximated set will still contain a valid counterex-
ample. This expectation may be frustrated, in that the
under-approximation may preserve 1nvalid abstract
counterexamples, which will turn out not to be projections
of complete counterexamples, while discarding the valid
counterexamples. Therefore, 1n the method of Table IV,
when the layered reconstruction process reaches a dead end,
1t backtracks through previous steps by preimage
computations, until 1t finds a new abstract counterexample
that may be valid.

TABLE 1V

RECONSTRUCTION WITHOUT A LOOP - METHOD 2

reconstruct _one layer no_ loop2(IT', M', M"){

last = [IT'|-1;
for (i : =0 to last —1) S;*" = &;
1:= 0;

V' := variables_ of (M");
Sq = 1" Nproj(S,, V')
while (i = 0 and i < last){
prev := proj(S;, V')
new = proj(S;,1» V');
step = preimage(new, M");
if (stepNS; = @) /*step forward */{
Sir1 = image(step, M")MS;, 43
Si+1 = SUbSE‘t(Si+1);
1=1+ 1;
h
else if (stepMprev =) /*backtracking*/{
S = preimage(S;, ,, M")MNprev/S2;
if (S; = @) return &;
S; = subset(S;);
Sia]l — Siall L S”
1=1-— 1;
)

else return @; /*refinement is needed */

US 6,957,404 B2

15

TABLE IV-continued

RECONSTRUCTION WITHOUT A LOOP - METHOD 2

return I1";

Under-approximation i1s implemented in the method of
Table IV by means of a subsetting function, as 1s known 1n
the model checking art. Subsetting 1s described, for
example, by Ravi et al., in “High-Density Reachability
Analysis,” International Conference on Computer Aided
Design (ICCAD 1995, San Jose, Calif.), pages 154-158,
which 1s mncorporated heremn by reference. This technique
extracts a small, dense subset of the set of states represented
by a given BDD, so that the BDD of the subset 1s small. The
size of the subsetted BDD 1s set heuristically, so as to
prevent state explosion on the one hand, while avoiding
excessive backtracking on the other. The inventors have
found subsetting to a reduced BDD size of 5000 nodes to be
useful 1n model checking of hardware designs. Other meth-
ods of under-approximation may similarly be used.

The method of Table IV performs forward and backward
(image and preimage) steps for as long as possible. The
forward steps proceed as long as the next step of the path 1s
consistent with the model M", continuing either until the
entire trace I1" 1s reconstructed or until the next forward step
does not intersect the next state on the abstract path II'. In
the latter case, the method backtracks to find different
behavior for V"/V' that will make the next forward step
possible. The backtracking continues until forward steps are
again possible, or until no further backward steps can be
taken. In the latter case, the reconstruction fails.

To reconstruct an abstract path with a loop, the corre-
sponding concrete path must contain a loop, as well. A na

1ve, trial-and-error method for finding looped paths is effec-
five In many cases.

The method of Table V below provides a more systematic,
fixed point approach to reconstructing a loop 1n an abstract
path. (A fixed point algorithm computes a transformation on
a set over and over until no change is seen.) In this method,
the mput path II' in the abstract model M' 1s assumed to be
a looped path, without the “tail” from the 1nitial state of the
model to the beginning of the loop. Since a concrete path
may loop several times in one loop of a corresponding
abstract path loop, the present method reconstructs a path

whose length 1s a multiple of the length of the abstract path
loop, |IT]-1.

TABLE V

RECONSTRUCTION WITH A LOOP

reconstruct_a_ loop(IT', M', M"){
old := TRUE;

new = Sp;

last := |IT'|-1;

[1=0;

while ((newold = @) ¢ (new = old)){
1= 1;

new = new.old;

old := new;

step = new;
append(step, I1);
while (i = last)}
step := image(step, M")\S;;

if (step = @)
refine;
else {

10

15

20

25

30

35

40

45

50

55

60

65

16

TABLE V-continued

RECONSTRUCTION WITH A LOOP

append(step, I1);
S; = step;
1:=1+ 1;

h

new = step;

h
h
if (newold = @){
S = NEW;
return extract_loop_ trace(Il, M");

h

else
refine;
h

The method of Table V 1s mnvoked when the abstract path
IT' 1s known to contain a loop. As noted above, the path
typically also has a prefix that leads from an initial state to
some state 1n the loop. The prefix 1s reconstructed by the
method of Table III or IV, while the loop part of the path 1s
reconstructed as detailed in Table V. Thus the procedure
reconstruct__a_ loop receives a path II' that contains only
the loop part of the path. In Table V, assigning TRUE to the
variable old symbolically means that the entire state space S
1s mitially included. At each iteration, the fixed point algo-
rithm removes states from old (the first abstract state in the
loop, which corresponds to a set of concrete states). The
method terminates when 1t reaches an iteration in which old
does not change. Note that each iteration contains an inner
loop of length |IT'|-1, so that the final concrete loop is a
multiple of this length. If the fixed point 1s the empty set,
then there 1s no loop in the path.

In the fixed point method of Table V, upon termination of
the fixed point (new=o0ld), if new is non-empty, then a
concrete loop exists corresponding to the abstract loop. It 1s
possible, however, that not all states 1n S, the abstract set of
states at the start of the loop, are actually on the loop.
Theretfore, the routine extract_ loop_trace chooses one of
the states from S, and iteratively performs backward
(preimage) steps from the chosen state until some state in S,
1s encountered more than once.

Refinement of the Abstract Model

FIG. 6 1s a flow chart that schematically shows details of
refinement step 54, 1n accordance with a preferred embodi-
ment of the present invention. As noted above, processor 22
undertakes step 54 when 1t determines that 1t 1s not possible
to reconstruct a path 7t based on the abstract path I1' that was
found 1n the 1nitial abstract model M' at step 44. The method
of FIG. 6 then refines the 1nitial model by 1dentifying a small
set of the variables 1n V"/V' for which values could not be
found that would have allowed a complete path m to be
reconstructed from II'. This method takes as i1ts point of
departure that the layered reconstruction method at step 66
(FIG. 4) succeeded in reconstructing path ITF** in model M"
up to some state S, on IT, but then was not able to
reconstruct the path to the next state S, ;. Thus, the method
of FIG. 6 relates to particular models M' and M" (with their
corresponding variables V' and V") and particular sets of
states S, and S, ;, 1n M.

The states 1n S, are projected onto the set of variables V',
at a projection step 100. The transition relation of M 1s then
used to 1image the projected set of states in M", at an 1maging
step 102. Processor 22 finds inconsistencies between the
values of the variables in V"/V'1n the projected states in M"

US 6,957,404 B2

17

and the values of the same variables 1n S, ., at a difference
finding step 104. The processor uses a heuristic algorithm to
find a minimal set of the inconsistent-valued variables. It
then checks these variables to ascertain whether these vari-
ables already exist 1n the abstract model M', at a variable
checking step 105. Any of the variables in this minimal set
that are not already in M' are added to M', at a model
localization step 106. This refined model 1s then used in the

next stage of abstract path analysis and reconstruction.

Alternatively, 1f at step 1035 the processor determines that
there are no variables 1n the minimal set that are not already
in M, 1t goes on to project the next set of states S, ,, onto
the variables V' in M', at a new projection step 108. These
projected states are preimaged back to the preceding set of
states, at a pretmaging step 110. In this case, processor 22
finds inconsistencies between the values of the variables in
the preimaged states in M" and the values of the same
variables 1 S, at a new difference finding step 112, again
using a heuristic algorithm to find a minimal set of the
inconsistent-valued variables. The variables in this minimal
set that are not already in M' are then added to M' at step 106,
for use 1n the next stage of abstract path analysis and
reconstruction.

Table VI below presents the method of FIG. 6 1n
pseudocode form:

TABLE VI

REFINEMENT

refine(S;, S;,;, M', M"){
V' := variables_ of(M");
prev = proj(S;,V');
D := differ(image(prev, M"), S;, ,);
if (D €V"){
new := proj(Sy, 1, V')
D := differ(preimage(new, M"), S,);

h

return add__to_ model(M',D);

The method shown 1n the table uses a heuristic function
differ(A,B) to find the minimal set of inconsistent-valued
variables (step 104 in FIG. 6). The function differ takes two
sets of states A and B, ANB=@, which are preferably
represented as BDDs, and finds a set of variables P such that
proj(A,P) N proj (B,P)=@. The function begins its operation
in the method above by setting P=V". It randomly eliminates
variables from V"/V' in P until proj (A,P) M proj (B,P)=0.
Then, by backtracking one step in the process of variable
elimination, a minimal set of difference variables 1s found.
Preferably, processor 22 attempts eliminating the variables
in a number of different-ordered sequences, and then

chooses the sequence that gives the smallest set of variables
to add at step 106.

Experimental Results

The 1mnventors have tested the methods of layered recon-
struction described above on a number of actual hardware
models. They compared the results with those obtained by
model checking without localization, and by non-layered
localization using the method of Clarke et al., as described
in the Background of the Invention. For safety properties, in
those cases 1 which the model passed the property, the
localization methods of the present invention generally
succeeded 1n verifying the property 1n considerably less time
and with lower expenditure of computer memory than
Clarke’s localization method or methods without localiza-
tion. The reason for this improvement 1s evidently that the

10

15

20

25

30

35

40

45

50

55

60

65

138

present invention generally allows safety properties to be
verifled on a much smaller model than prior art methods.
There were a number of models on which the computer
performing the model checking using Clarke’s method or a
non-localization method ran out of memory before complet-
ing the verification process. The methods of the present
invention generally succeeded in handling these cases, with
dramatic performance improvements 1n some 1nstances.

When the model under test failed a given safety property,
the results obtained by the methods of the present invention
were comparable to those of model checking methods
without localization. Evidently, when a property fails, a
ogreater number of iterations are typically required through
the reconstruction/refinement method of FIG. 3, so that the
advantage of localization 1s less marked.

In testing liveness properties, the methods of the present
invention were found 1n some cases to be substantially faster
and to use much less memory than non-localization meth-

ods. Both the fixed-point method of Table V and the “naive”
method for reconstructing looped paths, as described above,
were found to give good results. The advantage of the
methods of the present invention over non-localization
methods was less marked in testing of liveness properties
than safety properties.

Although the preferred embodiments described above
make use of symbolic model checking tools and state
representations, the principles of the present invention may
similarly be applied, mutatis mutandis, to other methods of
formal verification, such as ATPG and SAT solving. For
example, Wang et al. describe the use of abstraction refine-
ment 1n trace reconstruction using an ATPG solver in
“Formal Property Verification by Abstraction Refilnement
with Formal, Simulation and Hybrid Engines,” 38¢th IEEE
Design Automation Conference (DAC 2001, Las Vegas,
Nev.), pages 35—40. The use of abstraction refinement in
SAT solving 1s described by Clarke et al., 1n “SAT Based
Abstraction-Refinement Using ILP and Machine Learning
Techniques,” Proceedings of the Sixteenth International
Conference on Computer-Aided Verification (CAV 2002,
Copenhagen); and by Chauhan et al., in “Automated
Abstraction Refinement for Model Checking Large State
Spaces using SAT based Conlilict Analysis,” Formal Meth-
ods in Computer Aided Design (FMCAD 2002). These
publications are incorporated herein by reference. Adapta-
tion of the methods described hereinabove to such ATPG-
and SAT-based techniques will be apparent to those skilled
in the art and 1s considered to be within the scope of the
present 1nvention.

It will thus be appreciated that the preferred embodiments
described above are cited by way of example, and that the
present invention 1s not limited to what has been particularly
shown and described hereinabove. Rather, the scope of the
present 1nvention includes both combinations and subcom-
binations of the various features described hereinabove, as
well as variations and modifications thereof which would
occur to persons skilled 1 the art upon reading the foregoing
description and which are not disclosed 1n the prior art.

What 1s claimed 1s:

1. A method for verifying a property of a complete model
of a system under study, the model defining states of the
system based on a set of state variables and a transition
relation among the states, the method comprising:

abstracting at least some of the variables from the model
so as to produce an abstract model of the system;

beginning with an 1nitial state in a state space of the
abstract model, 1teratively applying an i1mage

US 6,957,404 B2

19

operation, moving forward through the state space 1n
accordance with the transition relation, to the variables
remaining in the abstract model so as to find an abstract
path through the state space of the abstract model to a
target state defined by the property;

restoring a subset of the abstracted variables to the
abstract model so as to produce an intermediate model
of the system; and

verilying the property on the complete model based on the

intermediate model.

2. A method according to claim 1, wherein verifying the
property comprises determining that the complete model
satisfies the property when the abstract model satisfies the
property.

3. A method according to claim 1, wherein verifying the
property comprises performing a partial reconstruction of
the abstract path on the intermediate model, and verilying
the property based on the partial reconstruction.

4. A method according to claim 3, wherein veritying the
property further comprises reconstructing a complete path
through the state space of the complete model based on the
intermediate path.

5. Amethod according to claim 4, wherein reconstructing,
the complete path comprises repeating the steps of restoring
the subset of the abstracted variables and performing the

partial reconstruction 1 order to generate a sequence of
intermediate models, with respective intermediate paths
reconstructed on the intermediate models, until the complete
path has been reconstructed.

6. A method according to claim 3, wherein performing the
partial reconstruction comprises 1dentifying a point of fail-
ure 1n reconstructing the abstract path on the intermediate
model, and modifying the abstract path responsively to the
point of failure, and performing the partial reconstruction
based on the modified abstract path.

7. Amethod according to claim 3, wherein performing the
partial reconstruction comprises 1dentifying a point of fail-
ure 1n reconstructing the abstract path on the intermediate
model, and refining the abstract model responsively to the
point of failure, and repeating the steps of finding the
abstract path, restoring the subset of the abstracted variables,
and performing the partial reconstruction based on the
refined abstract model.

8. A method according to claim 7, wherein 1dentifying the
point of failure comprises identifying one or more of the
variables having values 1n the intermediate model that are
inconsistent with the reconstruction of the abstract path on
the 1ntermediate model, and wherein refining the abstract
model comprises adding the identified variables to the
abstract model.

9. A method according to claim 8, wherein adding the
identified variables comprises providing a first binary deci-
sion diagram (BDD) to represent legal states of the inter-
mediate model, and providing a second BDD to represent a
spurious abstract model state, and finding a difference
between the first and second BDDs.

10. A method according to claim 3, wherein performing
the partial reconstruction comprises reconstructing an inter-
mediate path on the imtermediate model, such that the
abstract path 1s a projection of the mtermediate path on the
variables of the abstract model.

11. A method according to claim 1, wherein restoring the
subset of the abstracted variables comprises adding a layer
of the abstracted variables, such that the variables 1n the
added layer are 1n a support of the variables in the abstract
model.

12. Amethod according to claim 11, wherein veritying the
property comprises performing a partial reconstruction of

10

15

20

25

30

35

40

45

50

55

60

65

20

the abstract path on the intermediate model, while adjusting
onc or more values of the variables in the added layer
abstract path so that the partial reconstruction of the abstract
path 1s consistent with the intermediate model.

13. Amethod according to claim 12, wherein adjusting the
onc or more values of the variables 1n the added layer
abstract path comprises at least one of adjusting the values
of the variables 1n a first abstract state on the abstract path
that 1s 1nconsistent with the intermediate model and adjust-
ing the values of the variables 1n a second abstract state
preceding the first abstract state on the abstract path.

14. A method according to claim 11, wherein adding the
layer of the abstracted variables comprises adding the layer
in a first mntermediate model, and wherein verifying the
property comprises performing a partial reconstruction of
the abstract path on the first intermediate model, and com-
prising repeating the steps of restoring the subset of the
abstracted variables and performing the partial reconstruc-
fion so as to generate a sequence of intermediate models,
begmning with the first intermediate model, such that for all
the imtermediate models following the {first intermediate
model, restoring the subset of the abstract variables com-
prises adding a further layer of the abstracted variables,
wherein the variables in the added layer are 1n a support of
the variables in a preceding one of the intermediate models
in the sequence.

15. A method according to claim 14, wherein repeating
the step of performing the partial reconstruction comprises
reconstructing respective intermediate paths on all of the
intermediate models, so that for all of the intermediate
models, the respective intermediate paths are projections of
the intermediate paths reconstructed on the intermediate
models that are later 1in the sequence.

16. A method according to claim 15, wherein adding the
further layer of the abstracted variables comprises selecting
a subset of the variables 1n the support of the variables 1n the
preceding one of the intermediate models.

17. A method according to claim 16, wherein performing
the partial reconstruction comprises:

finding a first set of intermediate model states that are
equivalent to a first abstract state on the abstract path;

taking a partial set of candidates from the first set;

finding a second set of the intermediate model states that
can be reached by one intermediate model transition
from the partial set and are equivalent to a second
abstract state on the abstract path;

iteratively repeating the steps of taking the partial set and
finding a further set of the intermediate model states
that can be reached by one intermediate model transi-
tion from the partial set so as to find succeeding abstract
states 1n an order according to which the abstract states
appear on the abstract path;

upon determining at an iteration of the step of finding the
further set that there are no equivalent intermediate
model states that can reached by one transition from the
set of intermediate candidates computed 1n a previous
iteration, backtracking to the previous iteration and
selecting a different partial set of the intermediate
model states; and

continuing to repeat the steps of taking the partial set and
finding the further set and of backtracking to the
previous 1teration when there are no equivalent inter-
mediate model states that can reached by one transition,
until the abstract path 1s completely reconstructed or
until backtracking all the way to the first set of inter-
mediate model states and concluding that the abstract

US 6,957,404 B2

21

path cannot be reconstructed, thereby concluding that
the abstract model requires refinement.

18. A method according to claim 1, wherein finding the
abstract path comprises finding a looped abstract path, and
wherein verifying the property comprises reconstructing an
intermediate path on the intermediate model, such that the
intermediate path includes a loop, and the abstract path 1s a
projection of the intermediate path onto the abstract model.

19. A method according to claim 18, wherein the looped
abstract path has a given abstract path length, and wherein
reconstructing the intermediate path comprises searching for
the mtermediate path subject to a condition that the inter-
mediate path have an intermediate path length that 1s a
multiple of the abstract path length.

20. A method for checking a complete model of a system
under study, the model defining states of the system 1n a state
space based on a set of state variables and a transition
relation among the states, the method comprising:

abstracting at least some of the variables from the model
s0 as to produce an abstract model of the system;

beginning with an initial state in the state space of the
abstract model, 1iteratively applying an i1mage
operation, moving forward through the state space in
accordance with the transition relation, to the variables
remaining in the abstract model so as to find an abstract
path through the state space of the abstract model to a
target state,

restoring a subset of the abstracted variables to the
abstract model so as to produce an intermediate model
of the system;

reconstructing the abstract path on the state space of the
intermediate model so as to generate an intermediate
path through the state space; and

reconstructing the intermediate path on the state space of

the complete model so as to generate a complete path.

21. A method according to claim 20, wherein reconstruct-
ing the intermediate path comprises repeatedly restoring
respective subsets of the abstracted variables 1n order to
generate a sequence of intermediate models, and recon-
structing respective intermediate paths on the intermediate
models 1n the sequence, until the complete path has been
generated.

22. Apparatus for verilying a property of a complete
model of a system under study, the model defining states of
the system based on a set of state variables and a transition
relation among the states, the apparatus comprising a veri-
fication processor, which 1s arranged to abstract at least some
of the variables from the model so as to produce an abstract
model of the system and, beginning with an 1nitial state in
a state space of the abstract model, to iteratively apply an
image operation, moving forward through the state space in
accordance with the transition relation, to the wvariables
remaining 1n the abstract model so as to find an abstract path
through the state space of the abstract model to a target state
defined by the property,

the processor being further arranged to restore a subset of
the abstracted variables to the abstract model so as to
produce an intermediate model of the system, and to
verily the property on the complete model based on the
intermediate model.

23. Apparatus according to claim 22, wherein the proces-
sor 1s arranged to determine that the complete model satis-
fies the property when the abstract model satisfies the
property.

24. Apparatus according to claim 22, wherein the proces-
sor 15 arranged to perform a partial reconstruction of the

10

15

20

25

30

35

40

45

50

55

60

65

22

abstract path on the itermediate model, and to verify the
property based on the partial reconstruction.

25. Apparatus according to claim 24, wherein the proces-
sor 1s arranged to reconstruct a complete path through the
state space of the complete model based on the intermediate
path.

26. Apparatus according to claim 25, wherein to recon-
struct the complete path, the processor 1s adapted to repeat-
edly restore successive subsets of the abstracted variables
and perform successive partial reconstructions, 1n order to
generate a sequence of intermediate models with respective
intermediate paths reconstructed on the intermediate
models, until the complete path has been reconstructed.

27. Apparatus according to claim 24, wherein the proces-
sor 1s arranged to 1dentify a point of failure 1n reconstructing
the abstract path on the mtermediate model, and then to
modify the abstract path responsively to the point of failure
and perform the partial reconstruction based on the modified
abstract path.

28. Apparatus according to claim 24, wherein the proces-
sor 1s arranged to 1dentify a point of failure 1n reconstructing
the abstract path on the intermediate model, and to refine the
abstract model responsively to the point of failure, and then
to repeat finding the abstract path, restoring the subset of the
abstracted variables, and performing the partial reconstruc-
tion based on the refined abstract model.

29. Apparatus according to claim 28, wherein the proces-
sor 1s arranged to identify one or more of the variables
having values 1n the intermediate model that are inconsistent
with the reconstruction of the abstract path on the 1nterme-
diate model, and to refine the abstract model by adding the
identified variables to the abstract model.

30. Apparatus according to claim 24, wherein 1n perform-
ing the partial reconstruction, the processor 1s arranged to
reconstruct an intermediate path on the mntermediate model,
such that the abstract path 1s a projection of the intermediate
path on the variables of the abstract model.

31. Apparatus according to claim 22, wherein the proces-
sor 1s arranged to restore the subset of the abstracted
variables by adding a layer of the abstracted variables, such
that the variables 1n the added layer are 1n a support of the
variables 1n the abstract model.

32. Apparatus according to claim 22, wherein the proces-
sor 1s arranged to perform a partial reconstruction of the
abstract path on the mntermediate model, while adjusting one
or more values of the variables 1n the added layer so that the
reconstruction of the abstract path 1s consistent with the
intermediate model.

33. Apparatus according to claim 32, wherein the proces-
sor 1s arranged to add the layer of the abstracted variables in
a first mntermediate model and to perform a partial recon-
struction of the abstract path on the first intermediate model,
and then to repeatedly restore the subset of the abstracted
variables and perform the partial reconstruction so as to
generate a sequence of intermediate models, beginning with
the first mntermediate model, such that a further layer of the
abstracted variables 1s added to all the intermediate models
following the first intermediate model, wherein that the
variables 1n the added layer are 1n a support of the variables
in a preceding one of the intermediate models in the
sequence.

34. Apparatus according to claim 33, wherein the proces-
sor 1s arranged to reconstruct respective intermediate paths
on all of the intermediate models, so that for all of the
intermediate models, the respective intermediate paths are
projections of the mtermediate paths reconstructed on the
intermediate models that are later 1n the sequence.

US 6,957,404 B2

23

35. Apparatus according to claim 22, wherein the proces-
sor 1s arranged to find a looped abstract path, and to
reconstruct an intermediate path on the intermediate model
such that the imtermediate path includes a loop, and the
abstract path 1s a projection of the intermediate path onto the
abstract model.

36. Apparatus according to claim 35, wherein the looped
abstract path has a given abstract path length, and wherein
the processor 1s arranged to search for the intermediate path
subject to a condition that the intermediate path have an
intermediate path length that 1s a multiple of the abstract
path length.

J7. Apparatus for checking a complete model of a system
under study, the model defining states of the system 1n a state
space based on a set of state variables and a transition
relation among the states, the apparatus comprising a model
processor which 1s arranged to abstract at least some of the
variables from the model so as to produce an abstract model
of the system and, beginning with an initial state 1n the state
space of the abstract model, to iteratively apply an image
operation, moving forward through the state space 1n accor-
dance with the transition relation, to the variables remaining
in the abstract model so as to find an abstract path through
the state space of the abstract model to a target state,

the processor being further arranged to restore a subset of
the abstracted variables to the abstract model so as to
produce an mtermediate model of the system, to recon-
struct the abstract path on the state space of the inter-
mediate model so as to generate an intermediate path
through the state space, and to reconstruct the interme-
diate path on the state space of the complete model so
as to generate a complete path.

38. Apparatus according to claim 37, wherein the proces-
sor 1s arranged to repeatedly restore respective subsets of the
abstracted variables 1n order to generate a sequence of
intermediate models, and to repeatedly reconstruct respec-
five mtermediate paths on the intermediate models 1n the
sequence, until the complete path has been generated.

39. A computer software product for verifying a property
of a complete model of a system under study, the model
defining states of the system based on a set of state variables

10

15

20

25

30

35

40

24

and a fransition relation among the states, the product
comprising a computer-readable medium, 1n which program
instructions are stored, which instructions, when read by a
computer, cause the computer to abstract at least some of the
variables from the model so as to produce an abstract model
of the system and, beginning with an 1nitial state 1n a state
space of the abstract model, to iteratively apply an image
operation, moving forward through the state space 1n accor-
dance with the transition relation, to the variables remaining
in the abstract model so as to find an abstract path through
the state space of the abstract model to a target state defined
by the property,

the 1nstructions further causing the computer to restore a

subset of the abstracted variables to the abstract model
so as to produce an mtermediate model of the system,
and to verify the property on the complete model based
on the mtermediate model.

40. A computer software product for checking a complete
model of a system under study, the model defining states of
the system 1n a state space based on a set of state variables
and a ftransition relation among the states, the product
comprising a computer-readable medium, 1n which program
instructions are stored, which instructions, when read by a
computer, cause the computer to abstract at least some of the
variables from the model so as to produce an abstract model
of the system and, beginning with an initial state 1n the state
space of the abstract model, to iteratively apply an image
operation, moving forward through the state space 1n accor-
dance with the transition relation, to the variables remaining
in the abstract model so as to find an abstract path through
the state space of the abstract model to a target state,

the 1nstructions further causing the computer to restore a
subset of the abstracted variables to the abstract model
so as to produce an intermediate model of the system,
to reconstruct the abstract path on the state space of the
intermediate model so as to generate an intermediate
path through the state space, and to reconstruct the
intermediate path on the state space of the complete
model so as to generate a complete path.

	Front Page
	Drawings
	Specification
	Claims

