(12)

United States Patent

Redington et al.

US006957326B1

US 6,957,326 Bl
Oct. 138, 2005

(10) Patent No.:
45) Date of Patent:

(54)

(75)

(73)

(*)

(21)
(22)

(60)

(51)

(52)
(58)

(56)

METHODS AND APPARATUSES FOR
EXECUTING THREADS

Inventors: Jerry Redington, Amherst, NH (US);
Dan Green, Boxboro, MA (US)

Assignee: Turin Networks, Petaluma, CA (US)

Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35
U.S.C. 154(b) by 317 days.

Appl. No.: 10/185,210

Filed: Jun. 27, 2002

Related U.S. Application Data

Provisional application No. 60/302,269, filed on Jun.
28, 2001.

Int. CL” ... GO6F 9/44; GOOF 9/52;

GO6F 9/54
US.CL o, 712/228; 712/247
Field of Search 712/228, 247

References Cited

U.S. PATENT DOCUMENTS

5,933,627 A * §/1999 Parady 7127228

6,128,728 A * 10/2000 Dowling 712/228
6,170,051 B1* 1/2001 Dowling 712/225
6,195,739 B1* 2/2001 Wright et al. 712/19

OTHER PUBLICATTONS

Merriam-Webster’s Collegiate Dictionary, 2001, Merriam-
Webster Incorporated, Tenth Edition, p. 1196.%

* cited by examiner

Primary Examiner—Daniel H. Pan
(74) Attorney, Agent, or Firm—Blakely, Sokoloft, Taylor &
Zaiman LLP

(57) ABSTRACT

A first process thread 1s executed by a RISC processor using
data 1n a first register set. While executing the first process
thread, a second register set 1s loaded with data associated
with a second process thread. The second register set has a
similar number of registers as the first register set. After the
execution of the first process thread 1s completed, the second
process thread 1s executed using the data in the second
register set.

32 Claims, 18 Drawing Sheets

Event Detected(Tag,Flags)

Tag:=process D

550

Flags:=dynamic process state

RegSet]..| = empty
?

595

No

Yes

ind = next empty RegSet|.] 560

addr = mem(Tag)

I DMA memory into
RegSet{ind] using the
following DMA address
relationship
f(addr,Flags)

DMA start addr = addr,Flags
DMA length = #of Registers
in RegSet[ind]

DMAaddr =

565

570

U.S. Patent Oct. 18, 2005 Sheet 1 of 18 US 6,957,326 Bl

105

Memory 100
EEEgi I|Ia||g| | Aray 120

130 RISC Processor
110 135

Process
State

Secondary

RISC

Loader .
Register RISC
Set Processor
140 Computation|
Primary uni
RISC 145
Register
Set
10
100

RISC Processor

Secondary
105 RISC

W Memory Register RISC
| Set Processor
Flag | Ta Arra 1 .
Y 20 130 135 Cqmputatnon
110 ' Primary Unit
Process

145

RISC 7%
Register

Set V

140

State
Loader

FIG. 1B

U.S. Patent Oct. 18, 2005 Sheet 2 of 18 US 6,957,326 Bl

Init
All RegSets| | = empty

Set RISC Processor PAUSED 155
RegSet[] = Loaded

?

150

ind = Point RISC processor 165
to next loaded RegSet|]
Set RISC Processor IN-SERVICE 170
Start Process Thread

175

No Thread
blocked?

Yes

Yes

RegSet{ind] = empty
Free RegSet resource

RISC Processor PAUSED 185

FIG. 1C

180

U.S. Patent Oct. 18, 2005 Sheet 3 of 18 US 6,957,326 Bl

205

Tag 230

215

Nata Process
Structures State
Loader

225

FIG. 2A

U.S. Patent Oct. 18, 2005 Sheet 4 of 18 US 6,957,326 Bl

Event Detected(Tag,Flags)
Tag:=process ID
Flags:=dynamic process state

RegSet]..] = empty n
?

Yes

250

Ind = next empty RegSet|..] 260

DMA start addr = Tag

DMA Iength = #of Registers 265
In RegSet|ind]

DMA memory into
RegSet[ind] 270

FIG. 2B

U.S. Patent Oct. 18, 2005 Sheet 5 of 18 US 6,957,326 Bl

305
Memory Memory
Array Indirect Array 320
330
Tag
315
' Nata ' Process
iag
324 Loader

325

322

FIG. 3A

U.S. Patent Oct. 18, 2005 Sheet 6 of 18 US 6,957,326 Bl

Event Detected(Tag,Flags)
Tag:=process |D
Flags:=dynamic process state

RegSet|..] = empty n
?

Yes

ind = next empty RegSet].] 360

DMA start addr = mem(Tag)
DMA length = #of Registers
in RegSet[ind]

DMA memory into
RegSet{ind] 370

FIG. 3B

350

365

U.S. Patent Oct. 18, 2005 Sheet 7 of 18 US 6,957,326 Bl

405

e

415 _
Process
gtartlactu res State
Loader

410

425

FIG. 4A

U.S. Patent Oct. 18, 2005 Sheet 8 of 18 US 6,957,326 Bl

Event Detected(Tag,Flags)
Tag:=process ID
Flags:=dynamic process state

RegSet]..] = empty n
?

Yes

450

Ind = next empty RegSet]..] 460

DMA start addr = Tag,Flags

DMA length = #of Registers 465
In RegSet{ing]

DMA memory into
RegSet[ind] using the
following DMA address
relationship
DMAaddr = f(Tag,Flags)

470

FIG. 4B

U.S. Patent Oct. 18, 2005 Sheet 9 of 18 US 6,957,326 Bl

505
Memory Memory

Array Indirect Array 520
530

510 515

Data Process

Aadress Structures

State
Loader

524

022

F1G. 5A

U.S. Patent Oct. 18, 2005 Sheet 10 of 18 US 6,957,326 Bl

Event Detected(Tag,Flags)
Tag:=process ID 590
Flags:=dynamic process state

RegSet[..] = empty n
?

Yes

ind = next empty RegSet].] 560

addr = mem(Tag)
DMA start addr = addr,Flags

DMA length = #of Registers 909
in RegSet[ind]
DMA memory into
RegSet{ind] using the
following DMA address 570

relationship
DMAaddr = f(addr,Flags)

FIG. 5B

U.S. Patent Oct. 18, 2005 Sheet 11 of 18 US 6,957,326 Bl

630

Control Word |

Data
Structures

Process
State

625 Loader

FIG. 6A

U.S. Patent Oct. 18, 2005 Sheet 12 of 18 US 6,957,326 Bl

Event Detected(Tag,Flags)
Tag:=process |D
Flags:=dynamic process state

RegSet[..] = empty n
?

650

Yes
ind = next empty RegSet]..] 660
cntrl = mem(Tag) 665

DMA start addr = (Tag+1),cntrl
DMA length = #of Registers 670
In RegSet{ind]

DMA memory into
RegSet[ind] using the
following DMA address 675

relationship
DMAaddr = {(Tag,cntri)

FIG. 6B

U.S. Patent Oct. 18, 2005 Sheet 13 of 18 US 6,957,326 Bl

Memory Memory
Array Indirect Array 720

730

Control Word |

Process
Data State
Structures | oader

Address Tag
724

122

FIG. 7A

U.S. Patent Oct. 18, 2005 Sheet 14 of 18 US 6,957,326 Bl

Event Detected(Tag,Flags)
Tag:=process ID
Flags:=dynamic process state

RegSet[..] = empty n
?

750

Yes

ind = next empty RegSet[.] 760

addr = mem(Tag)
cntrl = mem(addr)

765

DMA start addr = (addr+1),cntrl
DMA length = #of Registers 770
in RegSet[ind]

DMA memory into
RegSet|ind] using the
following DMA address 775

relationship
DMAaddr = f(Tag,cntrl)

FIG. 7B

U.S. Patent Oct. 18, 2005 Sheet 15 of 18 US 6,957,326 Bl

805
Memory

820

>
-
—%
Q)
S

830

Tag

810 815 826

Control Word |

Data
Structures

Process

State

895 Loader

U.S. Patent Oct. 18, 2005 Sheet 16 of 18 US 6,957,326 Bl

Event Detected(Tag,Flags)
Tag:=process ID 850
Flags:=dynamic process state

RegSet|..] = empty n
?

Yes
ind = next empty RegSet]..] 860
cntrl = mem(Tag) 865

DMA start addr = (Tag+1),cntrl,Flags
DMA length = #of Registers 870
In RegSet|ind]

DMA memory into
RegSet|ind] using the
following DMA address
relationship
DMAaddr = f(Tag,cntrl,Flags)

875

FIG. 8B

U.S. Patent Oct. 18, 2005 Sheet 17 of 18 US 6,957,326 Bl

905

Memory Memory
Array Indirect Array 920
930
0107 | 1 | 9% _ _
Address Tag Control Word .
rocess
B gtartuactu res State
Q95 Loader
922

FIG. 9A

U.S. Patent Oct. 18, 2005 Sheet 18 of 18 US 6,957,326 Bl

Event Detected(Tag,Flags)
Tag:=process ID
Flags:=dynamic process state

950

RegSet|..] = empty
l?

Yes

ind = next empty RegSet|..] 960

addr = mem(Tag)

cntrl = mem(addr) 905

DMA start addr = (addr+1),cntrl,Flags

DMA length = #of Registers 970
in RegSet{ind]

DMA memory into
RegSet[ind] using the
following DMA address 975
relationship
DMAaddr = f(Tag,cntrl,Flags)

FIG. 9B

US 6,957,326 Bl

1

METHODS AND APPARATUSES FOR
EXECUTING THREADS

RELATED APPLICATIONS

This utility application i1s claiming priority to a provi-
sional application filed on Jun. 28, 2001 having the Ser. No.
60/302,269.

FIELD OF THE INVENTION

The present mvention relates generally to the field of
process state 1nitialization. More specifically, the present
invention 1s related to iitialization of process states 1n RISC
(reduced instruction set computer) processors.

BACKGROUND

RISC processors are designed to perform a smaller num-
ber of types of computer 1nstruction so that they can operate
at a higher speed (perform more million instructions per
second, or millions of instructions per second). Since each
instruction type that a computer must perform requires
additional transistors and circuitry, a larger list or set of
computer instructions tends to make the processor more
complicated and slower 1n operation.

RISC processors 1n general are self-initiating devices.
That 1s they have the ability to mitialize their internal state
and begin a process thread in a deterministic fashion. RISC
processors have two essential mechanisms, a means by
which control information (1.e. RISC instructions) are
fetched from a memory and applied to the RISC processor,
and a means by which data items are imported and exported
from the RISC processor 1tself.

Typically, process threads are begun when an event
response 1s required. The thread begins by placing the RISC
processor 1nto a known state. In the known state, all appli-
cable internal registers are set to an initial state to produce
a deterministic result. This process of imitialization 1s
directed and controlled by the RISC processor. When the
mnitialization completes, the response to the event begins.
The combination of RISC directed initialization and process
thread processing comprises the total compute load for an
event response. In effect the RISC processor has to perform
two serial tasks, mitialization and execution of the process
thread.

RISC processors generally 1nitialize their process state by
sequencing through a set of 1nstructions. The set of 1struc-
fions set the internal registers to desired values prior to
executing a process thread. This self-configuring 1nitializa-
tion process requires the RISC processor to consume time
(compute cycles or compute bandwidth, not to mention
memory bandwidth) to setup or to initialize the process
thread. For real time short duration applications, the over-
head of process state 1nitialization may be longer than the
execute duration of the real time application itself. This
diminishes the effectiveness of the RISC processor.

SUMMARY OF THE INVENTION

In one embodiment, a method of 1nitializing process states
of a RISC processor 1s disclosed. A first process thread is
executed using data 1n a first register set. While executing
the first process thread, a second register set 1s loaded with
data associated with a second process thread. The second
register set has a similar number of registers as the first
register set. After the execution of the first process thread is

10

15

20

25

30

35

40

45

50

55

60

65

2

completed, the second process thread 1s executed using the
data 1 the second register set.

Other objects, features and advantages of the present
invention will be apparent from the accompanying drawings
and from the detailed description which follows.

BRIEF DESCRIPTION OF THE DRAWINGS

The present mnvention 1s illustrated by way of example 1n
the following drawings 1in which like references indicate
similar elements. The following drawings disclose various
embodiments of the present invention for purposes of 1llus-
tration only and are not intended to limit the scope of the
invention.

FIGS. 1A and 1B are block diagrams illustrating one
embodiment of a RISC computer having a RISC processor,
a primary register set, and a secondary register set 1n
accordance to the present mvention.

FIG. 1C 1s a flow diagram 1illustrating one embodiment of
a RISC processor 1nitialization process in accordance to the
present 1nvention.

FIG. 2A 1s a block diagram illustrating an example of a
direct lookup of data from a memory array by the process
state loader (PSL).

FIG. 2B 1s a flow diagram 1illustrating the direct lookup
process by the PSL using the event tag.

FIG. 3A 15 a block diagram 1illustrating an example of an
indirect lookup of data from a memory array by the process

state loader (PSL).

FIG. 3B 15 a flow diagram 1illustrating the indirect lookup
process by the PSL using the event tag and the indirect
MEMOry array.

FIG. 4A 1s a block diagram 1illustrating an example of a
direct lookup of data from a memory array by the process
state loader (PSL) using the event flags.

FIG. 4B 1s a flow diagram 1illustrating the direct lookup
process by the PSL using the event tag and the event flag(s).

FIG. 5A 15 a block diagram 1illustrating an example of an
indirect lookup of data from a memory array by the process
state loader (PSL) using the event flags.

FIG. 5B 15 a flow diagram 1illustrating the indirect lookup
process by the PSL using the event tag, the indirect memory
array, and the event flags.

FIG. 6A 1s a block diagram 1illustrating an example of a
direct lookup of data from a memory array by the process
state loader (PSL) using a control word.

FIG. 6B 1s a flow diagram 1llustrating the direct lookup
process by the PSL using the event tag and the control word.

FIG. 7A 15 a block diagram 1illustrating an example of an
indirect lookup of data from a memory array by the process
state loader (PSL) using an event tag and a control word.

FIG. 7B 1s a flow diagram 1illustrating the indirect lookup
process by the PSL using the event tag, the indirect memory
array, and the control word.

FIG. 8A 1s a block diagram 1illustrating an example of a
direct lookup of data from a memory array by the process
state loader (PSL) using an event tag, event flags, and a
control word.

FIG. 8B 1s a flow diagram 1illustrating the direct lookup

process by the PSL using the event tag, event flag(s), and the
control word.

FIG. 9A 1s a block diagram 1llustrating an example of an
indirect lookup of data from a memory array by the process
state loader (PSL) using an event tag, event flags, an indirect
memory array, and a control word.

US 6,957,326 Bl

3

FIG. 9B 1s a flow diagram 1llustrating the mdirect lookup
process by the PSL using the event tag, event flag(s), the
indirect memory array, and the control word.

DETAILED DESCRIPTION

A method and an apparatus for 1nitializing process states
are disclosed. In one embodiment, at least two 1dentical and
independent RISC processor register sets are used. A pri-
mary register set 1s used by a current active process thread.
A secondary register set 1s used to 1nitialize a next process
thread. This pipelining of the 1nitialization process provides
for greater utilization of the RISC processor.

Some portions of the detailed descriptions that follow are
presented 1n terms of algorithms and symbolic representa-
tions of operations on data bits within a computer memory.
These algorithmic descriptions and representations are the
means used by those skilled 1n the data processing arts to
most effectively convey the substance of their work to others
skilled 1n the art. An algorithm 1s here, and generally,
conceived to be a self-consistent sequence ol processes
leading to a desired result. The processes are those requiring
physical manipulations of physical quantities. Usually,
though not necessarily, these quantities take the form of
clectrical or magnetic signals capable of being stored, trans-
ferred, combined, compared, and otherwise manipulated. It
has proven convenient at times, principally for reasons of
common usage, to refer to these signals as bits, values,
elements, symbols, characters, terms, numbers, or the like.

It should be borne 1n mind, however, that all of these and
similar terms are to be associated with the appropriate
physical quantities and are merely convenient labels applied
to these quantities. Unless specifically stated otherwise as
apparent from the following discussion, 1t 1s appreciated that
throughout the description, discussions utilizing terms such
as “processing’ or “computing’ or “calculating” or “deter-
mining~ or “displaying” or the like, refer to the action and
processes of a computer system, or similar electronic com-
puting device, that manipulates and transforms data repre-
sented as physical (electronic) quantities within the com-
puter system’s registers and memories 1nto other data
similarly represented as physical quantities within the com-
puter system memories or registers or other such informa-
fion storage, transmission or display devices.

The present 1nvention also relates to system for perform-
ing the operations herein. This system may be specially
constructed for the required purposes, or it may comprise a
general-purpose computer selectively activated or reconfig-
ured by a computer program stored in the computer. Such a
computer program may be stored 1n a computer readable
storage medium, such as, but 1s not limited to, any type of
disk 1ncluding floppy disks, optical disks, CD-ROMSs, and
magnetic-optical disks, read-only memories (ROMSs), ran-
dom access memories (RAMs), EPROMs, EEPROMs, mag-
netic or optical cards, or any type of media suitable for
storing electronic instructions, and each coupled to a com-
puter system bus.

The algorithms and displays presented herein are not
inherently related to any particular computer or other sys-
tem. Various general-purpose systems may be used with
programs 1n accordance with the teachings herein, or it may
prove convenient to construct more specialized system to
perform the required method processes. The required struc-
ture for a variety of these systems will appear from the
description below. In addition, the present invention is not
described with reference to any particular programming
language. It will be appreciated that a variety of program-

10

15

20

25

30

35

40

45

50

55

60

65

4

ming languages may be used to implement the teachings of
the 1nvention as described herein.

OVERVIEW

FIGS. 1A and 1B are block diagrams illustrating one
embodiment of a RISC computer having a RISC processor,
a primary register set, and a secondary register set 1n
accordance to the present invention. The RISC computer 10
includes a RISC processor 100, which 1n 1its simplest form
is composed of instruction addressing unit (not shown), data
addressing unit (not shown), a computational unit 145, a
reset mechanism (not shown), and registers 135 and 140
such as, for example, general and specific purpose register
files, control registers, and status registers. All the intelli-
gence and abilities of the RISC processor 100 resides 1n its
instruction set and order of instruction execution. The RISC
processor 100 directs and controls its internal state directly.

In one embodiment, the mitialization process of the RISC
processor 100 1s pipelined using at least two 1dentical copies
of most or all of the internal registers of the RISC processor
100. Referring to FIG. 1A, the RISC processor 100 includes
two register sets 135 and 140. Each of these two register sets
135 and 140 may perform the role of the primary register set
or the role of the secondary register set. For example, as
illustrated 1n FIG. 1A, the register set 140 1s the primary
register set, and the register set 135 1s the secondary register
set. Note the connection illustrated between the computation
unit 145 and the primary register set 1440.

The two register sets 135 and 140 are mutually exclusive
and are peers to one another. When the primary register set
140 1s 1n use by an application, the second or alternate
register set 1335 1s available for loading. In one embodiment,
a process state loader (PSL) 130 is used to load the second-
ary register set 135 in preparation for a context switch (e.g.,
task change). Note the connection illustrated between the
PSL 130 and the secondary register set 135. When the
context switch occurs, the two register sets 135 and 140
switch roles from primary to secondary and vice versa.

Referring to FIG. 1B, after the context switch occurs, the
loading function of the PSL 130 continues with the second-
ary register set 140. This switching back and forth between
the primary role and the secondary role of the register sets
135 and 140 allows for concurrency of execution and
process state loading. The RISC computer 10 also includes
a memory array 120 and an event generator 105. The event
generator 105 1s capable of generating event information,
which imncludes event flag 110 and event tag 1135.

The memory array 120 may be a single memory contain-
ing data 125 to be loaded into the secondary register set 140.
The memory array 120 may also be multiple memories
containing partial data sets, which aggregate to the single
data 125. In either case, the data 125 1s an independent
record of information.

The event tag 115 1s a unique 1dentification used by the
PSL 130 to index into the memory array 120 to extract the
data 125. The data 1235 1s then loaded 1nto the registers of the
secondary register set 140 to identify a process thread. The
PSL 130 may extract the data 125 from the memory array
120 for up to the number of registers in the secondary
register set 140 and then deposit the data 125 into these
registers.

FIG. 1C 1s a flow diagram 1illustrating one embodiment of
a RISC processor 1nitialization process in accordance to the
present invention. The process starts at block 150 where all
the register sets 1n the RISC processor are initialized to
empty, which means that the register sets contain invalid

US 6,957,326 Bl

S

data. At block 155, the RISC processor 1s paused, which
means that the RISC processor 1s not performing any
instruction fetch.

At block 160, a determination 1s made to check if a
register set 1s loaded with data. As described above, the PSL
loads the register set with data from the memory array when
event information 1s received. If there 1s not a register set
that 1s loaded, the process waits and continues to check until
a register set 1s loaded by the PSL. When it 1s determined
that a register set has been loaded with data by the PSL, the
process tlows to block 165. At block 165, an 1index 1s set to
point the RISC processor to the loaded register set. Because
the secondary register set 1s loaded with data by the PSL, the
secondary register set becomes the primary register set. At
block 170, the RISC processor 1s set to be 1n service, which
means the RISC processor executes a process thread (or an
application). The execution of the process thread continues

until the process thread 1s blocked, as shown 1n block 175.
When the thread is blocked, the process of FIG. 1C flows to

block 180.

At block 180, the register set at the index location 1s reset
to empty, which means that the register set becomes an
available resource for the PSL to load other data. When the
register set 1s reset to empty, its role 1s switched from a
primary register set to a secondary register set. At block 185,
the RISC processor 1s paused and not performing any
instruction fetch. The process of FIG. 1C continues at block
160 when another register set 1s loaded by the PSL.

The loading of the secondary register set by the PSL may
be performed as a function of the event information (e.g.,
dynamic event flag, event tag) and the static data located in
another memory array (referred to as an indirect memory
array.

FIG. 2A 1s a block diagram 1llustrating an example of a
direct lookup of data from a memory array by the process
state loader (PSL). In this example, the event tag 215
(included in an event information) provided by the event
generator 205 1s used by the PSL 230 as an index to the
memory array 220 to access the data 225. FIG. 2B 1s a flow
diagram 1illustrating the direct lookup process by the PSL
using the event tag. The process starts at block 250 where an
event 1s detected. The event includes an event tag and event
flag(s). The event tag is used as process identification. The
event flag(s) are not used in this example. At block 28585, a
determination 1s made to check if a register set 1s empty. It
the register set 1s not empty, the process continues to check
at block 255. When the register set becomes empty, the
process flows to block 260 where an 1ndex 1s set to point to
the empty register set.

At block 265, the event tag 1s used as a starting address
of the data to be extracted from the memory array. Trans-
ferring of the data from the memory array to the registers in
the register set may be performed using, for example, direct
memory access (DMA). The length of the data to be trans-
ferred 1s dependent on the number of registers 1n the register
set 1dentified by the index. At block 270, the DMA operation
1s performed to transfer the data from the memory array to
the registers 1n the register set. The process mm FIG. 2B
continues at block 255 to determine if another register set
becomes empty (or becomes a secondary register sct).

FIG. 3A 1s a block diagram illustrating an example of an
indirect lookup of data from a memory array by the process
state loader (PSL). In this example, the event tag 315
(included in an event information) provided by the event
ogenerator 305 1s used by the PSL 230 as an index to the
indirect memory array 322 to access a beginning address

5

10

15

20

25

30

35

40

45

50

55

60

65

6

324 of the data 325 1n the memory array 320. The data 325
1s then used by the PSL to load the register set.

FIG. 3B 15 a flow diagram 1illustrating the indirect lookup
process by the PSL using the event tag and the indirect
memory array. The process starts at block 350 where an
event 1s detected. The event includes an event tag and event
flag(s). The event tag is used indirectly as process identifi-
cation. The event flag(s) are not used in this example. At
block 355, a determination 1s made to check if a register set
1s empty. If the register set 1s not empty, the process
continues to check at block 355. When the register set
becomes empty, the process flows to block 360 where an
index 1s set to point to the empty register set.

At block 365, the event tag 1s used as an index into the
indirect memory array to get the starting address of the data
in the memory array. This starting address of the data 1s used
as the starting address in the DMA transfer operation. The
length of the data to be transferred 1s dependent on the
number of registers 1n the register set identified by the index.
At block 370, the DMA operation 1s performed to transfer
the data from the memory array to the registers in the
register set. The process in FIG. 3B continues at block 355
to determine if another register set becomes empty.

FIG. 4A 15 a block diagram 1illustrating an example of a
direct lookup of data from a memory array by the process
state loader (PSL) using the event flags. In this example, the
event tag 415 1s used by the PSL 430 as an index to the
memory array 420 to access the data 425. In one embodi-
ment, 1n order to conditionally load specific registers 1n the
secondary register set, the PSL 430 uses the event flag(s)
410. This 1s referred to as flag-based loading. The event
flag(s) 410 provides dynamic state information and may
contain individual or group of flag bits per condition to allow
the PSL 430 to load a single register or to load multiple
registers in the secondary register set. This 1s illustrated by
the connection between the event flag(s) 410 and the PSL
430. Using flag-based loading, the conditional testing and
branching within the process thread can be eliminated,
yielding more efficient and compact code segments. Using
flag-based loading also increases register utilization within
the RISC processor. There 1s no need to use two or more
register values to satisfy a product of a conditional test.

FIG. 4B 1s a flow diagram 1llustrating the direct lookup
process by the PSL using the event tag and the event flag(s).
The process starts at block 450 where an event 1s detected.
The event includes an event tag and event flag(s). The event
tag is used as process identification. The event flag(s) are
used 1n this example to conditionally load the registers in the
register set (referred to as dynamic process state). At block
455, a determination i1s made to check if a register set 1s
empty. If the register set 1s not empty, the process continues
to check at block 455. When the register set becomes empty,
the process flows to block 460 where an index 1s set to point
to the empty register set.

At block 465, the event tag and the event flags are used
to determine a starting address of the data to be extracted
from the memory array. The length of the data to be
transferred 1s determined by the number of registers in the
register set 1dentified by the index. At block 470, the DMA
operation 1s performed to transfer the data from the memory
array to the registers 1n the register set. As shown in block
470, the DMA starting address in this embodiment 1s a
function of the event tag and the event flags. The process in
FIG. 4B continues at block 455 to determine 1f another
register set becomes empty.

FIG. 5A 1s a block diagram 1llustrating an example of an
indirect lookup of data from a memory array by the process

US 6,957,326 Bl

7

state loader (PSL) using the event flags. In this example, the
event tag 515 provided by the event generator 505 1s used by
the PSL 530 as an index to the indirect memory array 522
to access a beginning address 524 of the data 525 m the
memory array 520. The PSL 530 also uses the event flag(s)
510 to conditionally load the data 525 from the memory
array 520 1nto the secondary register set. As described
above, the event flag(s) 510 provides dynamic state infor-
mation and may contain individual or group of flag bits per
condition to allow the PSL 530 to load a single register or
to load multlple registers 1n the secondary register set.

FIG. 5B 1s a flow dlagram illustrating the indirect lookup
process by the PSL using the event tag, the indirect memory
array, and the event flags. The process starts at block 550
where an event 1s detected. The event includes an event tag
and event flag(s). The event tag is used indirectly as process
identification. The event flag(s) are used to conditionally
load the data into the secondary register. At block 555, a
determination 1s made to check if a register set 1s empty. If
the register set 1s not empty, the process continues to check
at block 555. When the register set becomes empty, the
process tlows to block 560 where an 1ndex 1s set to point to
the empty register set.

At block 565, the event tag 1s used as an index into the
indirect memory array to get the starting address of the data
in the memory array. This starting address of the data and the
event flags are used as the starting address in the DMA
transfer operation. The length of the data to be transferred 1s
dependent on the number of registers in the register set
identified by the index. At block 570, the DMA operation 1s
performed to transfer the data from the memory array to the
registers 1n the register set. As shown 1n block 570, the DMA
starting address 1n this embodiment 1s a function of the event
tag and the event flags. The process in FIG. 5B continues at
block 555 to determine if another register set becomes
cempty.

FIG. 6A 1s a block diagram 1llustrating an example of a
direct lookup of data from a memory array by the process
state loader (PSL) using a control word. In this example, the
event tag 615 provided by the event generator 6035 1s used by
the PSL 630 as an index to the memory array 620 to access
a control word 626. The control word 626 1s used when it 1s
desirable that less than the full number of registers 1n the
register set 1s to be written with the data 625. The control
word 626 in the memory array 620 1s used to direct the PSL
630 to load the data 625 into the register set. For example,
the control word 626 may have bits set to indicate the
registers 1n the register set to be written with the data 625.

FIG. 6B 1s a flow diagram illustrating the direct lookup
process by the PSL using the event tag and the control word.
The process starts at block 650 where an event 1s detected.
The event includes an event tag and event flag(s). The event
tag 1s used as process identification. The event flag(s) are not
used 1n this example. At block 655, a determination 1s made
to check 1f a register set 1s empty. If the register set 1s not
empty, the process continues to check at block 655. When
the register set becomes empty, the process flows to block
660 where an 1index 1s set to point to the empty register set.

At block 665, the event tag 1s used to access a control
word from the memory array. In one embodiment, the
control word is stored contiguously with the data (to be
loaded 1n the secondary register set) in the memory array. At
block 670, the beginning address of the data (i.e., tag+1) and
the control word are used to determine the starting address
for the DMA operation to extract the data from the memory
array. The length of the data to be transferred 1s determined
based on the number of registers 1n the register set identified

10

15

20

25

30

35

40

45

50

55

60

65

3

by the index. At block 675, the DMA operation 1s performed
to transter the data from the memory array 1nto the registers
in the register set. As shown 1n block 670, the DMA address
in this embodiment 1s a function of the event tag and the
control word. The process in FIG. 6B continues at block 6355
to determine if another register set becomes empty.

FIG. 7A 1s a block diagram 1llustrating an example of an
indirect lookup of data from a memory array by the process
state loader (PSL) using an event tag and a control word. In
this example, the event tag 715 provided by the event
generator 705 1s used by the PSL 730 as an index to the
indirect memory array 722 to access an address 724 of the
control word 726 1n the memory array 720. The data 725 1s
contiguous with the control word 726 1n the memory array
720. As described above, the control word 726 1s used when
it 1s desirable that less than the full number of registers 1n the
register set 1s to be written with the data 725.

FIG. 7B 15 a flow diagram 1illustrating the indirect lookup
process by the PSL using the event tag, the indirect memory
array, and the control word. The process starts at block 750
where an event 1s detected. The event includes an event tag
and event flag(s). The event tag 1s used indirectly as process
identification. The event flag(s) are not used 1n this example.
At block 755, a determination 1s made to check if a register
set 1s empty. If the register set 1s not empty, the process
continues to check at block 755. When the register set
becomes empty, the process flows to block 760 where an
index 1s set to point to the empty register set.

At block 765, the event tag 1s used as an index into the
indirect memory array to get the address of the control word
in the memory array. In this example, the address of the
control word 1s consecutive from the beginning address of
the data to be written 1nto the registers 1n the register set.
This beginning address of the data and the control word are
used to determine the starting address of the DMA transfer
operation. The length of the data to be transferred 1s based
on the number of registers in the register set identified by the
imndex, as shown 1n block 770. At block 775, the DMA
operation 1s performed to transfer the data from the memory
array to the registers in the register set. As shown 1n block
775, the DMA address 1n this embodiment 1s a function of
the event tag and the control word. The process 1n FIG. 7B
continues at block 755 to determine if another register set
becomes empty.

FIG. 8A 15 a block diagram 1illustrating an example of a
direct lookup of data from a memory array by the process
state loader (PSL) using an event tag, event flags, and a
control word. In this example, the event tag 815 provided by
the event generator 803 1s used by the PSL 830 as an index
to the memory array 820 to access a control word 826. As
described above, the control word 826 1s used when 1t 1s
desirable that less than the full number of registers in the
register set 1s to be written with the data 825. The control
word 826 1n the memory array 820 1s used to direct the PSL
830 to load the data 825 into the register set. In addition to
using the control word 826, the PSL 830 also uses the event
flags 810 to control the loading of the data 825 into the
register set. As described above, the event flag(s) 810
provides dynamic state information and may contain indi-
vidual or group of flag bits per condition to allow the PSL
830 to load a single register or to load multiple registers in
the register set.

FIG. 8B 1s a flow diagram 1illustrating the direct lookup
process by the PSL using the event tag, event flag(s), and the
control word. The process starts at block 850 where an event
1s detected. The event includes an event tag and event
flag(s). The event tag is used as process identification. The

US 6,957,326 Bl

9

event flag(s) are used in this example to conditionally load
the register set. At block 855, a determination 1s made to
check 1f a register set 1s empty. If the register set 1s not
empty, the process continues to check at block 855. When
the register set becomes empty, the process flows to block
860 where an 1index 1s set to point to the empty register set.

At block 865, the event tag 1s used to access a control
word from the memory array. In one embodiment, the
control word is stored contiguously with the data (to be
loaded 1n the secondary register set) in the memory array. At
block 870, the beginning address of the data (i.e., tag+1), the
control word, and the event tag(s) are used to determine the
starting address for the DMA operation to extract the data
from the memory array. The length of the data to be
transferred 1s determined based on the number of registers 1n
the register set i1dentified by the mdex. At bock 875, the
DMA operation 1s performed to transfer the data from the
memory array 1nto the registers 1n the register set based on
the controlling information i1n the control word and in the
event flag(s). As shown in block 875, the DMA address in
this embodiment 1s a function of the event tag, the event
flag(s) and the control word. The process in FIG. 8B
continues at block 855 to determine if another register set
becomes empty.

FIG. 9A 1s a block diagram 1illustrating an example of an
indirect lookup of data from a memory array by the process
state loader (PSL) using an event tag, event flags, an indirect
memory array, and a control word. In this example, the event
tag 915 provided by the event generator 905 1s used by the
PSL 930 as an index to the indirect memory array 922 to
access an address 924 of the control word 926 in the memory
array 920. The control word 926 1s used when 1t 1s desirable
that less than the full number of registers in the register set
1s to be written with the data 925. The control word 926 1n
the memory array 920 1s used to direct the PSL 930 to load
the data 925 into the register set. In addition to using the
control word 926, the PSL 930 also uses the event flags 910
to control the loading of the data 925 into the register set.
The event flag(s) 910 provides dynamic state information
and may contain individual or group of flag bits per condi-
tion to allow the PSL 930 to load a single register or to load
multiple registers in the register set.

FIG. 9B 1s a flow diagram 1llustrating the mdirect lookup
process by the PSL using the event tag, event flag(s), the
indirect memory array, and the control word. The process
starts at block 950 where an event 1s detected. The event
includes an event tag and event flag(s). The event tag is used
as process identification. The event flag(s) are used in this
example to conditionally load the register set. At block 9585,
a determination 1s made to check if a register set 1s empty.
If the register set 1s not empty, the process continues to check
at block 955. When the register set becomes empty, the
process tlows to block 960 where an 1ndex 1s set to point to
the empty register set.

At block 965, the event tag 1s used as an index 1nto the
indirect memory array to access an address of the control
word. This 1s the address in the memory array where the
control word can be accessed. In one embodiment, the
control word is stored contiguously with the data (to be
loaded 1n the secondary register set) in the memory array. At
block 970, the beginning address of the data (i.c.,
address+1), the control word, and the event tag(s) are used
to determine the starting address for the DMA operation to
extract the data from the memory array. The length of the
data to be transferred i1s determined based on the number of
registers 1n the register set identified by the index. At bock
975, the DMA operation 1s performed to transfer the data

10

15

20

25

30

35

40

45

50

55

60

65

10

from the memory array into the registers 1n the register set
based on the controlling information in the control word and
in the event flag(s). As shown in block 975, the DMA
address 1n this embodiment 1s a function of the event tag, the
event flag(s) and the control word. The process in FIG. 9B
continues at block 955 to determine if another register set
becomes empty.
Thus, by using the control word 1n addition to the event
flags, additional load flexibility 1s possible. For example, the
control word may be used to describe how the event flag(s)
influences the loading of the speciiic registers in the register
set. The control word may be accessed directly or indirectly
as a function of the event tag, as illustrated in FIG. 6A, and
FIG. 7A, respectively. The control word may contain either
explicit or implicit formatting information that specifies
which conditional event flag (or groups of conditional event
flag) to evaluate in order to select the appropriate data in the
memory array. The selected data 1s then loaded into the
corresponding speciiic registers in the register set.
Methods and systems for improving process state initial-
1zation 1n a RISC processor have been disclosed. The use of
the 1dentical register sets increases the overall available
computation bandwidth of the RISC processor. The loading
of the process state information into the register set 1s more
time efficient because the loading process 1s no longer tied
to the RISC processor memory load/store facilities. Another
advantage of autonomously loading the RISC processor
without the involvement of the RISC processor 1s the ability
to conditionally load specific registers based on the dynamic
flag conditions.
From the above description and drawings, 1t will be
understood by those of ordinary skill in the art that the
particular embodiments shown and described are for pur-
poses of illustration only and are not intended to limit the
scope of the invention. Those of ordinary skill 1in the art will
recognize that the invention may be embodied in other
specific forms without departing from its spirit or essential
characteristics. References to details of particular embodi-
ments are not 1ntended to limit the scope of the claims.
What 1s claimed 1s:
1. A method performed by a network processor, compris-
ing executing a first process thread using data in a first
register set;
while executing the first process thread, 1n response to an
event having an event tag and an event flag, loading a
second register set with data associated with a second
process thread, wherein the second register set has a
similar number of registers as the first register set,
wherein the event tag indicates a location of a first
memory from which the data 1s loaded and the event
flag 1ndicates which portion of the data stored at the
location of the first memory should be loaded; and

after said executing of the first process thread 1s com-
pleted, executing the second process thread using the
data 1 the second register set.

2. The method of claim 1, further comprising;:

while executing the second process thread using the data

in the second register set, loading the first register set
with data associated with a third process thread.

3. The method of claim 1, wherein the second register set
1s a duplicate of the first register set.

4. The method of claim 1, wherein an amount of the data
assoclated with the second process thread based on a number
of registers 1n the second register set.

5. The method of claim 1, wherein the event tag 1s used
to access a control word from the first memory, wherein the
control word 1s used to indicate an amount of valid data

US 6,957,326 Bl

11

stored 1n the first memory when the amount of valid data 1s
less than the data associated with the second process thread.

6. The method of claim 5, wherein a location of the
control word 1n the first memory referenced by the event tag
1s immediately prior to a location of the data associated with
the second process thread.

7. The method of claim 1, wherein the event flag 1s used
to conditionally load the data associated with the second

process thread into the registers in the second register set.

8. The method of claim 1, wherein using the event tag to
access the data associated with the second process thread
from the first memory comprises:

using the event tag as an index to a second memory to
access an address to index to the first memory, the
address to mdex to the first memory used to access the
data associated with the second process thread 1n the
first memory.

9. The method of claim 8, wherein the address to index to
the first memory points to a control word used to indicate an
amount of valid data stored in the first memory when the
amount of valid data 1s less than the data associated with the
second process thread.

10. The method of claim 8, wherein the address to index
to the first memory points to the data associated with the
second process thread.

11. A computer readable medium having stored thereon
sequences of mstructions which are executable by a system,
and which, when executed by the system, cause the system
to:

execute a first process thread using data in a first register
set;

while executing the first process thread, 1n response to an
event having an event tag and an event flag, load a
second register set with data associated with a second
process thread, wherein the second register set has a
similar number of registers as the first register set,
wherein the event tag indicates a location of a first
memory from which the data 1s loaded and the event
flag indicates which portion of the data stored at the
location of the first memory should be loaded; and

alter said executing of the first process thread 1s com-
pleted, execute the second process thread using the data
in the second register set.

12. The computer readable medium of claim 11, further
comprising 1nstructions to cause the system to:

while executing the second process thread using the data
in the second register set, load the first register set with
data associated with a third process thread.

13. The computer readable medium of claim 11, wherein
the second register set 1s a duplicate of the first register set.

14. The computer readable medium of claim 11, wherein
an amount of the data associated with the second process
thread based on a number of registers 1n the second register
set.

15. The computer readable medium of claim 11, wherein
the event tag 1s used to access a control word from the first
memory, wherein the control word 1s used to indicate an
amount of valid data stored in the first memory when the
amount of valid data 1s less than the data associated with the
second process thread.

16. The computer readable medium of claim 15, wherein
a location of the control word in the first memory referenced
by the event tag 1s immediately prior to a location of the data
associated with the second process thread.

10

15

20

25

30

35

40

45

50

55

60

65

12

17. The computer readable medium of claim 11, wherein
the event flag 1s used to conditionally load the data associ-
ated with the second process thread into the registers 1n the
second register set.

18. The computer readable medium of claim 11, wherein
the 1nstructions to cause the system to use the event tag to
access the data associated with the second process thread
from the first memory comprises instructions to:

use the event tag as an index to a second memory to access
an address to index to the first memory, the address to
index to the first memory used to access the data
associated with the second process thread in the first
memory.

19. The computer readable medium of claim 18, wherein
the address to 1index to the first memory points to a control
word used to 1indicate an amount of valid data stored 1n the
first memory when the amount of valid data is less than the
data associated with the second process thread.

20. The computer readable medium of claim 18, wherein
the address to mndex to the first memory points to the data
assoclated with the second process thread.

21. A system, comprising:

a reduced instruction set computer (RISC) processor, the
RISC processor including a first register set and a
second register set, the second register set being a
duplicate of the first register set; and

a memory coupled to the RISC processor, wherein the first
register set 1s 1nitialized to a first state using a first data
from the memory to enable the RISC processor to
process a first thread, wherein the second register set 1s
nitialized to a second state using a second data from
the memory 1n response to an event while the RISC
processor 1s processing the first thread, and wherein the
event includes an event tag and an event flag, the event
tag indicating a location of the memory from which the
second data 1s loaded and the event flag indicating
which portion of the data stored i1n the location of the
memory referenced by the event tag should be loaded.

22. The system of claim 21, further comprising a process
state loader (PSL) coupled to the RISC processor and the
memory, wherein the PSL loads the first data to the first
register set and the PSL loads the second data to the second
register set while the RISC processor 1s processing the first
thread using the data from the first register set.

23. The system of claim 22, further comprising an event
generator coupled to the PSL and the memory to generate
the event, wherein the PSL loads in response to receiving the
event from the event generator.

24. The system of claim 23, wherein the event tag 1s used
to access one of the first data and the second data from the
memory.

25. The system of claim 24, wherein the event tag 1s used
as an index to the memory.

26. The system of claim 25, wherein the event tag 1s used
to access a control word 1n the memory.

27. The system of claim 26, wherein the control word 1s
used to direct how much of the first data 1s to be loaded 1nto
the first register set and how much of the second data 1s to
be loaded 1nto the second register set.

28. The system of claim 24, wherein the event tag 1s used
as an 1ndex to an indirect memory to access an address to the
memory.

29. The system of claim 28, wherein the address to the
memory 1s used to access a control word 1n the memory.

30. The system of claim 28, wherein the address to the
memory 1s used to access one of the first data and the second
data in the memory.

US 6,957,326 Bl
13 14

31. The system of claim 24, wherein the event further event tag and an event flag, wherein the second resister
includes one or more event flags, and wherein the one or set has a stmilar number of registers as the first register
more event flags are used to conditionally load the first data set, wherein the event tag indicates a location of a first
to the first register set and the second data to the second memory from which the data 1s loaded and the event
register set. 5 flag 1ndicates which portion of the data stored at the

32. A system, comprising: location of the first memory should be loaded; and

means for executing a first process thread using data in a means for executing, after said executing of the first

first register set; process thread 1s completed, the second process thread
means for loading a second register set with data associ- using the data 1n the second register set.

ated with a second process thread, while executing the 10
first process thread, 1n response to an event having an %k k%

	Front Page
	Drawings
	Specification
	Claims

