(12) United States Patent

Belcsak et al.

US006957191B1

US 6,957,191 Bl
Oct. 18, 2005

(10) Patent No.:
45) Date of Patent:

(54)

(75)

(73)

(21)
(22)

(86)

(87)

(60)

(51)
(52)
(58)

(56)

5233514 A

AUTOMATED FINANCIAL SCENARIO
MODELING AND ANALYSIS TOOL HAVING
AN INTELLIGENT GRAPHICAL USER
INTERFACE

Inventors: Ladislav V. Belcsak, San Francisco, CA
(US); Luke Lee, Fairfield, CA (US);
David J. Collop, Oakland, CA (US);
Mark R Bewsher, Tilburon, CA (US);
Thadeus H Niemira, San Bruno, CA
(US); Dennis D. Moritz, San Rafael,
CA (US); Stephen G. Cohn, Orinda,

CA (US)

Assignee: Babcock & Brown LP, San Francisco,
CA (US)

Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by O days.

Appl. No.: 09/530,040
PCT Filed: Feb. 3, 2000
PCT No.: PCT/US00/02776

§ 371 (c)(1),
(2), (4) Date: Sep. 14, 2000

PCT Pub. No.:. WO00/46717
PCT Pub. Date: Aug. 10, 2000

Related U.S. Application Data

Provisional application No. 60/118,743, filed on Feb. 5,
1999,

Int. CL7 oo, GO6F 17/60
US.Cl .. 705/38; 705/39; 715/700
Field of Search 705/36, 37, 38,

705/42, 35, 5; 715/700, 531

References Cited

U.S. PATENT DOCUMENTS

8/1993 Ayyoubi et al.
(Continued)

¥~ @yider User

/_,12

fm
14
‘(_4"
18

Engine
2 -

Oudput Davices Fite 170 and Cplex
_ Support Functions (Optimization})

24 _ Hand
Disk

FOREIGN PATENT DOCUMENTS

WO WO 97/38353 10/1997

(Continued)

OTHER PUBLICAITONS

21°" Century; Money, Banking and Commerce; Thomas P.
Vartanian; Fried, Frank, Harris, Shriver & Jacobson; 1998§;
p. 13.%

Primary Fxaminer—Robert P. Olszewski
Assistant Examiner—Elaine Gort

(74) Attorney, Agent, or Firm—Nixon and Vanderhye P.C.
(57) ABSTRACT

A financial scenario modeling and analysis tool, including a
ographical user interface which enables a user of the tool to
create a graphical model of a financial scenario, generally
including at least one financial transaction, on a display
screen, and an engine operable, 1n response to creation of the
ographical model, to automatically generate information,
such as financial or mathematical information, which at least
partially models at leat a part of the financial scenario using
information collected by the engine during creation of the
ographical model. The graphical user interface enables the
user to create party graphics respectively representing par-
ties to the financial deal, and to generate financial instrument
graphics representing financial instruments, wherein each
financial 1nstrument graphic connects two of the party
oraphics. The engine generates, 1n response to the creation
of a graphical model, an 1nstrument information, such as an
object or template, for each of the instruments i1n the
oraphical model. The tool includes a natural date language
and a formula language for use 1n modeling a scenario. The
tool enables optimization of optimizable parameters defined

in the scenario, and 1ncludes a user-friendly, book-like and
CAD-like user interface.

18 Claims, 22 Drawing Sheets

Deal 28
Opportunity

Draw Party Diagram
30 (defines parties involved,

payrnents, and fiow of money)

- Define and modify dales in
T Time Organizer chapter

Modify data and numbees in
34"} Smart Paper, instruments Payment
Organizer and Party chaplers

Raview deal in all chapters

42-1

- Run Optimizer I

Cienarate repors fn ¥
reports chapter
Daal 45
Presented

US 6,957,191 Bl

Page 2
U.S. PATENT DOCUMENTS FOREIGN PATENT DOCUMENTS
5,383,113 A 1/1995 Kight et al. WO WO 99/30261 6/1999
5,839,118 A 11/1998 Ryan et al.
5,852,811 A * 12/1998 ALKINS .ccovvvvivivvinvennnnnn.. 705/36 WO WO Q0737736 112000
5,918,217 A 6/1999 Maggioncalda et al.
5999918 A * 12/1999 Williams et al. 705/36 * cited by examiner

U.S. Patent Oct. 18, 2005 Sheet 1 of 22 US 6,957,191 B1

o

12 14

16 Builder User
18 End U
navser User Interface

File 1/0 and Cplex
Support Functions (Optimization)

26

24

g, 1

U.S. Patent Oct. 18, 2005 Sheet 2 of 22 US 6,957,191 B1

Deal 28
Opportunity

Draw Party Diagram
(defines parties involved,
payments, and flow of money)

Define and modify dates in
32 Time Qrganizer chapter

Modify data and numbers in

30

3 Smart Paper, Instruments Payment
Organizer and Party chapters
Yes Deal Acceptable :
No
38

Optimize Deal

Yes

Review deal in all chapters

Run Optimizer

GGenerate reports in 40
reports chapter
Deal 46
Presented

Figo. 2

U.S. Patent Oct. 18, 2005 Sheet 3 of 22 US 6,957,191 B1

New Model

Click new party too!

Click location of new
party in diagram

Select new party name
Click new party tool

Click location of new
party in diagram

Select new party name

Draw instrument line

~ Select instrument type

Another Party or
Instrument

NoO

Model Created

Fig. 3

U.S. Patent Oct. 18, 2005 Sheet 4 of 22 US 6,957,191 B1

New Smart Paper

New Heading _No

Name Heading

Indexed Heading

Add & Name Index
Enter Index Formula

Add Parameter

No

Yes
Yes

Add & Name
Parameter

Enter Parameter

Formula

Finished

U.S. Patent

Fipe— W SO

;‘tiiplhr.ﬂ I aa

ol

Oct. 18, 2005

Sheet 5 of 22

US 6,957,191 B1

oy
a b
N A
yros,
"': ma I_l

e g e g e e e =i
.,

Byl —f — —A-m s a - L

Lo LRI} HH!I':!'III-
- o res ~wilisbresh [L]

o 1.

AL
L

1 il L_»

y B |=_.q-___-|- ‘.u -...-n_'-

4
f
]
r

L. Advaniage - New File IEhanq#*d]
r"‘,_g {0k 1ok

A

A L T et s EE b =y

P I

Cto

.

Flm

.,.,I 1! - 4--1-
.." 4--.:--"-“

r'r\'q_- "

.-.Jxl'l"‘"'“-_-:'_'}_ 570 bt
b - =,

L]
Y e i e P —C

L ! -I-i.-.._-q.—_ sy oy ol -

l--_i

.,1

ANV m e A T = P gl

S SRR VRN

[o R

1-.-.-.--|-1 'F.-' r-—ﬁ'ﬁrr-'

L r Bl e . o W T

s r " A s aE T L

[P P O w—] —

- n_“"-.-r o o TH -

J ‘-:I:"-F\"_-‘; .l_:}'

-

- F

ur-.
:.F .|_-ﬁ- -l-ll.|-I!|F-|--IFI - -~

L s T
—r——.rl.llt “,r‘ﬁ'ﬂ l';-ﬂ':'J

P T

ﬂ-‘-"d.

-.L-.'r

4
-

=i

Y g Y R Sy et el

%

Iy

- nt

. LR T
H‘.-h.-'-l-—-L-"—" -l't‘-

-

1
emr

r

LIS T T

“"“ LIV
—']
e el
LA |

bitYes' -

o

._,*, “ Ll" | P __Tl ;.fl_

| Ay

.,. . >
".1—1_,!'-L Ll'- t LA

N _ [' - ol -, — -
t‘l‘ H‘] el "'i-':.‘.','::-_‘_“-‘-' L -;_1:1.- .
F. . o i .,..-.'_.,".‘f -

L

#
¥

.
| -
" .a"
- '
-
- 1
. . .
. '
————r— -

| w7

I-}lr-tr ’
”1'4.
il Y

- -l'l—."

[
L]
j!.!

1h.-l 1 .
|] 'l_
L TR I8

i

bay
Fy =

' IIE.
™
T

1

.H}':' -

r L]

1

~FATELIN vl
|
vy

e b

4 u

el T

* et

-l =

4'-*‘1,“.:._" :
—— Pk P ol
'A'Irj-i F'-r
i-rdﬂ--u-' -.ll" - i'.:-_.-_.....l.."‘l-—-....
P o e ﬂﬁp—;fﬂh“ﬂ‘lﬂ-ﬂ; """i-r!-l-ll-‘.-ll-

e L r-r #____‘._-r.-

-r'r.,. i
‘.Il.F-ﬂ- ‘-E-l-.p

""{‘ -

=

iy _:-{,'-F.--q -"': g
i LR
a

J.JI }"'"I'_;_--
Ty e e
SO

= -:I"-i R

l—"b"llhl.__'l'h_...?__"

--'!'-'I-

-l. r
¥
,,.,.“..1_,\. -

I

1

k
.

L

-

ALt L T LI W TLETS

- s
—

3 B g B ¥ PN Uy st i

gl
L X
—-—

iy o Bl e el iy o, By, f SRR By W,

T ',)
{ -:.i--l- i.'!h_l"..i'r +-:p-ih
e LA L r- - ..-H "r"'"r"l."h._rl"-r:-rl_“f-ﬁ'

-k ..-..-n:: o Sl
: I"-I' "d"‘:-?l,.- - L - lltl w'
‘t‘" o —'.‘-p.:.!:-': " -.--;:‘.'u't ’1.'

l-" "r- » ll - ‘i n -
4 llli_l-uf'..'_' i * -l'll]"-r ok ...r'l-..,p.-t
) il e A 'qr - —

e

T

F
.

it
Ll

-

."'I:"..'..-
1y
LR
Sy w P

S

=
E'-i’-“

Al
] e =
- - - . W
_ur " " '
r ud]) . - T~ - .
. '
- - L] -
— ey - . w8 —————— e e L e S ——— T — T i

U.S. Patent Sheet 6 of 22

Oct. 18, 2005 US 6,957,191 B1

I‘.? -ﬂtrhﬂnmm: - HEH Fih‘: lEhanuﬂdl

,l\‘,ﬂ__#q'

Ef‘ *r
..1- . j"il' ; i E lliru r.-_..l_ }"Il LA TYVTL L

arT T a. I'"

Lo . . . - - - v p LR LI — Y N A Tr =
h '-'-. ! - L" - r B) . - - h * ' i' * 4 .l' " L] Lt [L === r J_- "-‘ - -
- —_ - - L] L] L] L Py e’ -y T ""Ill-ll-l - - - S T [— 4... W _dea
A T - —--l— ‘t..r'-'qq:,-—- ""*"'TT bl --.-... - - - ey mm e —— o - -
] 1 .
- ' . - . . s -, L - oaa o
- "4 - - |- .. L] L] - r -

.a-.a.,._

— .

)
]

=TT R O
ﬂ'ﬁw‘ﬂ?““;
i ..-.1.:1
l-li)
-""1 me,

U PN Fs A
' 1, Ovgrfir g1 -
4 'l--lu.----l\.-i. - -

Eallal |

] []
LA '.J-_'.i.'.n.._.. - - '
. - 1 '
F
-

o
L]

i...r-"q_ s

1
v
L L]
.
-
Y
-
]
.

é
L ‘Jii‘.
.Il—-l-.'\-..-l'

v b=
b |
L
[l |

[

.l,.._'l.I..
L]
o |
"
F N TR T

'1‘}, - ™

. : (LS TN
-erimpnd

Ao .

L]
r ol f By
Rl

R

[

1)
il
L B " .I'-H ity "
-.LL:I.'LL L
— N Y -EE— S i b

e
A

LI

it T

Ly Y 18
e ny
s T RS n b T
T

Tiria
1437

> 1N &1
TRINDD

o T BE.
— 'H ﬁ.ﬁ! AL B By
.h'rl.- T = - wmila M _I—p-' !#‘*
oA " - r
.~;_‘.;;-..,...; T ES ﬁgp.,*‘,‘;‘:‘gﬁ.n?g b) -’Cu.;-’é-ﬂ,‘r};
.o . " R | Jﬁl -~ —— T
: b_q_r_,‘h:f‘ et e

--l-h."‘\l"-i"-....---l---u._ .

= EE R L—EmA . o — -

=] &5

. #‘% -t . '|'_ 1 '___ - "J I'I
A ’ﬂbﬁf"‘* E :#] : {f"L‘-:

5 4 Adnmlﬂge - Hew F:Iu Il:hanr]!:dl

- ---—H—*—.—_‘_—_

11m?m'yﬁ C

L e

e g}',.“.-— "-‘}'T.::: f
i- l"ll" pp P J._._*I:__..-l_.h._..._-.-l
L -' M. ". I &
:*LI.#_ -F""" ﬁ.ﬂ 1"&-11-%}

- Ay -t
, “:}-c:—"i*-;-ﬁ:‘-ﬂ '.i ‘:‘"'..‘1 h.‘r..*n.'r.r"‘r"," '{-':J“.,

Al " " vt vl g L T lln"'l--r

H- r.r-Tr‘:"' l-.lﬂ-'a-r.ﬂ.., A et Y e o

TE |

¥

-'ri-j'i-:"rrh

. -'«'-.1'- | X

K X » 1y
RN

]
,

.l l.q'il-'.“-
1
b

! *.L,_];L* _
o ‘;-

i
.:.fr

r

Ly Er
y2ops
P 1*—*1

Vel

4
»

————— - . — g =
=
[

—-—--T-:llu.
-r..- -i'id,l_ 1 “‘

Sp———
™ p]
":11'.:';::‘

§ r

1 :- f L]

1.!::
I .

-

e o - 2 1y e g oo

wa

a
il

g :i'. 15:‘1-';':'1

1- TR
Rl

.
- wgt

BT F o o T

R ANRORTH:
Fpm iy X,
k3 EUFe

1.1-

I"--‘.Lr‘"-.
.
e
O R

d M . 1-_ ﬂi.__. .i_-..l _ i | ™ q._ r
I TT __.._: R ".._. __..__ “Xre A . ﬂm:q w,ﬁﬂm

_ T s - NSRS

e ffF M __..*q ﬁuﬂw...r .n_,.,._.-rur.____
it e BT _. v .,_..,,__ ._W:., :
&L.ﬁrp_h U e, o P A e i [.ﬁw.,w +

Eg “— i_'.ﬂ.l.-.. ik ¥R F T e cWT R RS T TR TR ' FETTEIT TET OR T oR
—._.._

.m.__._.“i-.‘w _ .Ell.l - ek 1A Y, B al .
r -1t h_
Hagi ¥

e
.T.; _:,_.._ |
i ITERES
|
8

o o (BT G

US 6,957,191 B1

e -

. Jl!*'.'
4.-.. .

v
- lh

S

[

-
o il B
[rTa———

oy 2

-

a- -_
f‘.—f .

.
L L
I'I :‘.‘;

r
—

rsii AL

"l.

i i T

R
-
1

—h

1

-
-
EE R -, Pyl s L " mta

LI B L
v M gl oy -

St g
o ma oA 1.-_.'4. . -
- P f e
' -1*11 -;-h.'hq- I+

BT { b e aer—

.F“i‘r:*_-ri s

.-'_| +

-
o IR Ll A o
T gy
-

rk
e RE]
AT . T

< H"I":'“"-ﬂ W ..-'-l.‘... L

ot i

et
L 3
70a

e

. -
=i . .
b —— 1
1

‘.. T"‘T'::"‘

.:l...-..'-"'.il-.....l bl

¥ a e

Sheet 7 of 22

L 8

RS
r]
TR
!
(T

[

il B T S

L]
N]
- __|
| =
y 4
F -
J
F] r
i_ n
. .y
. []
H _

it

iy A
e

I ——
*_r o

W s |

-

L ra "--H:_.| . o

-

TTr.L"'
.'-.._—..l
_1-.-""
L T

—le'ugr wp—
i

F¥20um aa h'--—ulvll:ll---—lJ Hiul

BF.

il

[——

-
] .
]

L

-
; .

[
-
L -_—— il s —mbad L R

- —-h--n-p-—-.-_.—.-f'-',.-'l-l--hl-b "‘“—ll e e der——yr

wrrd
- ¥

-—--r-l -

e

-
-

-
—_ . ‘_ H
L=
— pp—
— . m
et B

Tl

'.__ "'.r"_:

&) Bonowings
2. SubTorel Sources

2, SubTotak DebtSer
Y SubTotatk Outfiows

Ty AL
& investment

- or
a * _puh 5 aTa

TS
Sup
&8 SourcesOffunds

[3
-
L

i |

ol
Tl
Ll

-
—

- -‘-ﬁ""d"‘" - — A L Il
—

]

"II-‘-... F. 'LI 4

e
i

r.

[Bl ¥ B
L
Pas

!

Oct. 18, 2005

R e

SO NNT Y TREETMIN L. T

= _,...___:ﬁ_q-?..r _PA. 'ﬂ.,ri‘. T e LR ri..-.ﬂﬂk_ﬂ H kaaﬁﬁm

g i e L i e .Jf:....H.l[.ﬂltLT..r..h il

:_,zﬁ,ﬂ.n.ﬂ “,,. 7]

#hh —_._. .___
m...,.:-__.. "

Ll A

U.S. Patent

dvdnlage - New Fite lt—hﬂngﬂdl

I-I.I-. Nk ko

Ty j— gl = g Pl oy T i

50

| 5 Advoniagt - New Fie {Lhanged)

-i
1

4=

=]
; - -

w

AL By Py ooE L
T
(R TR Y A ,_..._

-
.-.
' -
4 4 .l .‘.
..:-.._... T._.u-_.vw.w

- —————

= -
L

wrr

(G WA
-ﬂ-.."l:;_‘.l"._..

&

U.S. Patent Oct. 18, 2005 Sheet 8 of 22 US 6,957,191 B1

! Advanlaqe - New Hile [Lhonged)
[G s
2 inre o bl 7 |

- pl— - F k. T3 T i T e .
[g _{'1.*. i R e

-

S T -.

} :;

| .
Eum

n
]

LY

¥

| "

FiTomi :31.Dec 2000231 Dec2001.531i0Dec3 20025

A "
Al 2l ..i T ™ gy il [=

.
n =y [' + W oy PR = - —F

¥ ¥ L]
- - L |

L

N, - '
[. L]

..I"'1 - gy P
e g

-—y
1
- e -

g s
‘ lr .Lu

A%
r

t

i
s 4
ropant

[148.484)

PrinopaiPaid
2 SubTotal DebtSer [45.484]
2 SubTotsl Outiows (148.484]
<3 invesmant
=3 SourcesOfFund
&9 Bormowings
2 SubTotnl Sources
2, SubTotnl investment
2 SubTowl: ProTexCash (146.484)
2. SubTotal: AftetTexCash (148.484)

ity
ot L |
'

L |

=N
L]

4 .qn
't

¥on
Fon
:,Er

.rr- .

!-"':f'" %
W T,

-ﬂ'l‘..

T
w43

s u Teen PR LY H Fa ™ "
- 1) AR LN
T B RPN B P iy i N gt f .)

)

X

.

o

-
o

4

W oy e ow e e L]

il bl o il iy e LR B e e e o WL W e ey e «......J..l
ll-t._w-
-

an
g‘m
m|{ @
o

- -
:‘.;‘i ‘.ﬁli
T R ——

1 bl sllrve w1,

Ak S
] = I:.I
- B bl e S o madmh o omae -
LI TR TR S TRy N [NS e

rh

L. Advantage - Hew Fde [Changed]

[ry - 75 ™ - : ,
o [A AEF e : ; S A] : -
aley —— . . i - PIRSE B W PTlAL IY

P S Ly ':"** ij;"?- iy
. . 1 1_ '.‘_" L A _. n ..1. "I"I ;
t q " i" 1!-'1"'-"‘ i e '=-—-ﬁ-’--—--r

. _ R I e D
. .""'_ ‘ri :I » r;-:.:-—;-* : ' . .

M b I Ll

- - .u
P T .:' v
1] [el ;.ﬂ; i i _ by --.‘.'- II..
_ ﬁ-‘tﬁ'r’- 3 Al ol |
: Pl -‘w —— i 'I e :

b ek
|]

l!'-h;-""- = .. 1w Fa

"ra b r'-lu.'l"-a-ﬁ-';" J'..j ir:'-‘ﬂﬁf'

-_i a-.;.l:-.- P TR

rg gl
| L "".l
i g .WT 2,
i :
m e ne R T T T T T

-ww . m

- ?.. <

NN WM B ABCOC # B R O
Contidential Anstysls

Debt Amortization Schedule

-
] h-.:!-

: |

AL

-tww A .

133

;A gt
L
_.ll-'-l-flr':i*uh.

- ar -

alhebve X . T
Pl AL

= ke g =T W R

r
|
Y

¥ o
) .‘
i
al
pliall Bl
L]
b

1
roota

g A e —
LY

-

L

|]
] 111.”..' LI" .

oAl A8

Landerfilerrn Hore
kxua{exrrwng
£.760000Y par yaor
a3 515 81

1004 yuwy

2308 yuns

S ———— - L]
2w "lia
- ol F s g AR e o a

Xl

z
a
SULITO RN

n II II L
= -IL'F.L: T T ey

4"

I

*
T
Lo« U

L RLIYEFTY
Ly

. ’.mmmm__—““_- ot L
Il N

N . ’ yr - ' '-- T [' g L] : ' - . 1 r_ rdq- '.

. | C * N b :.1 L]

— ‘ - B o " -

b
Y

L

w
-

s omb s LErE ey e b Perligeenr R e ARy o
gL,
]]
. li"'""l.p.l]
1

F'S FF
.‘:
et

- .:""I;:E'E': <

.
iy

3L
u ey |
W

!
k
E

h
1
]
I :
i ma v " -
poolle B L e A y . L .

'

i

L
*

U.S. Patent Oct. 18, 2005 Sheet 9 of 22 US 6,957,191 B1

LesseeNameHere

ardAsse
SoftAsset urchaseOp EBO Fies:dual
V
LessorNameHere
Fee

\/ \/ \/
FeeReceipients LenderNameHere } | FederalTaxAuthority

Fig. 13

S. Patent

Oct. 18, 2005

-

L }:f:.:r i_;:_

Sheet 10 of 22

a - . - b
- R ok
- - k- - ---1'.. L
L omaor wm et daa o oart W o,
L ALY M Tt wee
® AL d ™ . am= [
T
a b il
[of L]

NP L QR A XD L
VRS AN AT 3

L b il o

-

-
el]
I b it T R R

gl w1 Pt gl 5 -y gy

" e e &:t' ' WAty ety
R IR

N i O Y

Pl e L e WY KL

. e P oo
L e
, .

‘o

Y gt | . P i

=l F!.;-.r '

US 6,957,191 B1

o

[+ m=mah - . e A PR—
- T g b Eggyr' WAk, & .
- - . W F - = oy

—— Ty F ma omm T -

-
oy fo oy

. " 'ﬂ'--“'l-"-.l-l--i"\

4 "tk oad. 2

-
[me Y 5 roa '
‘i!.,_"'-- - s - - T

1-"-“-# - 'r ---‘l--‘ o -—-L.-.-L

=il

:} - .u-hl'h- i

"-I-f--ll'--—- -

i
L e »
. LI
T
l—————

Ml
r-'-l.-ll-'q_-lr'-_q'-‘ll _Hl'rhq-'
ey R -i‘

ET

.l. |'I|" -

L]
£X
»
o R PRI NPT PO Y

]
".-F
L |

y F A
i
-.d

- hll*
t" F
)
"
i
T

&

tl{l
**-.F'
A

.F _'_ I*- r-l
.
ta
oo SO

s
RelAg
40
| W I q-.hll ll.'.q.p-.l‘.._l-l -l-.-l haa

"%
[‘-‘} &

‘h
]

et B A

M 4 .
%
W vk Smn

-

_l'-'
AAMAS

o
-

L)

A r‘
nd
——be=!'D A T dghad g

F 0
Ay
o

My ¥
':"' n‘ 1

L . | Fg 1 '
[n“-t,:i.',,- LT
"-"
e

b,
o
ot

A
TR Y WIS AT A

L)
eyt
&8

A
D OO
7’ v]

il

H i:::':::" [

. -
- il —

U.S. Patent Oct. 18, 2005 Sheet 11 of 22 US 6,957,191 B1

- W= -'-t"'.h.- :'
i w # T " -
. - - =" — L - .
T =B I - - - . llamiﬂl‘.. - - - u - r -
T R e N T e N T I R T oy I ' [
LT TR e Pal s . ._.i*-‘-:u;"h" [X L F.-Jq. % . - _'_'f'l‘r' -.' AT .
. - - ' o S . . N " . -
' "o : »n ® - - F. S = . . oam ™ [T Y -l

4 8

I Iy '

o T ' D . y ' . - “e - .
- r:j.n‘*‘.“ﬁ:.'h:,.:" BT e - ' - ' _ T NI SamETy g
LS . T oy ' el oo ' ' S -
.-.‘.n.-l-.'-i--—l-r-;b!.q:-...ai-ﬂ.-u;q. e . i . N , T "

i

Ma

3 .ul.* ui*. :-..

(5 o

UAFENLERSAYY N

d
4

]

'-

]
riﬁ-

*
¥ ” I**T‘ lh.'l" 'l"f}l

B

L
o
-"-‘.

)
*y
[]
N
-

i
11‘
‘l

Y
cardin

-
'I w1
LF

»
’F

o Tl
F R

bl] .il’..
bt ﬂl‘il)
red e
T O A

'ﬂ-.-'\:l-ju=i..'l.

I
4 & []
R ey

- [
7
7 T

*
&

ey
Jli"
L]

5

I
s .ri
TR AL, SR AT S

L W ok

™ t‘"“" - 'b"‘-‘ - e __-l-.-l'- . . " l‘;.%‘ﬂ‘; .‘?PET-“ :.-;- ﬁ' -;': ;.;..;%';-.—.¥ - g ﬁl‘? 1'-:-‘ - L] h- - -'i' .
] IT‘EII;j‘, ‘:' 5 . - "rr. l|. 'i - i‘ﬂ X .||_ - - el ﬂ ﬁﬁ ﬁ\;&.- ."_.'-'. .I..h' {' - .'- ﬂ"'. 11‘] ‘E.-'. -I il‘.?\ﬁ{"ﬁ -.’ .
ik ap lnpg. =" . r YT - Wma - o’ - : - - - L} - iy LI N
.~ el . = el . ¥y - e e i . " ";.,'- P ":— Pl ety i, L b R ":"-1?.1"‘-'; ™ :f"-r - "h.'l-':"-n N

..:..‘ e -.-'-l-__."_ ‘-I.'I. ‘::_‘:ﬁ-_.-hmmnj“;:-r_—q.: r.'.'-r:l:.-‘r-ll'{"l..l...i-t_l.___i- "lJ_....--J_.._'.. .,__-_-..:...-..l.___--il- i mh R Ly “"'.'-T--l'-‘--'lp- B - R A m A mm —m ma A aaL g R W mm we E b— _ aliea h , I-"--:ﬁ- wmm:j

- +
-

A o maswm am om0 Ll - - - . - - — a = = s= - - -_ —_— . - - - = - - -r wwr -

Fig. 15

U.S. Patent Oct. 18, 2005 Sheet 12 of 22 US 6,957,191 B1

A
II".I

- AL

Advanlaq'i.. - DTE for patu-nt ddl:

e S Edhigs Booka0 phore el -,

- {-n_ r :' I s
H.. .n'.hlr*n —'-':IJ -.*.’."r E‘ |.""'_.'~:“‘_-?

i ﬂv"-"'—""r"-# "-vl'-ul '. . -

r - - - s ' T
- s - - - 1 Lo . - - ar el " a - -

-lu-l---u.‘m J_;I{- "ﬁ"'ﬁ'"

anrvversan({(2 Jan 1333 Readual 3years (2 Jan. 2011 12y Om 3d
Aesadual Closing+16p 3 Dec, 2014 16y Om O

——
v R - [- —p—pr _-—— - - - - - -a = — - - — Ay - e - - - - - hn - - e g - —-—--——ll-l-l-ﬂ.h E ol] -
.-

1 12/30/58 1273014

HardAsset
| 84
12730/98

SoftAsset

1 12720793
Rent

—tt t 4 4+

12/30/98 12730714
Ralsidun.l

US 6,957,191 B1

Sheet 13 of 22

Oct. 18, 2005

U.S. Patent

- g . . -y g

LY U4 b ERAES .

etk kL R Emy e s
Yl P e o "l

-.T._.L.j

T X L
R R PR I b’ P e

e S B I O A T e
l..l....r.....v-..-.._.u.-_.._. H

FRERFE Iy TR ._r...l.“

. L--.-.._..__r.u.-.
LS I.-....II...I.-_II.I.I.I E N Y e TS

' (SRS AL

F lr Hr..”-. .‘r I1-l.l

=== e ._.-...I..I..I..Ill_'....-l_ﬁlull....l

r.._.._.._-“r_. .___-..._..__.- -.-.l._.-_ o .__.... :

= =~
- . - J
« &b
- 4
1

L
i e

r
Fu
III

-

12y Om 3d
16y Om Od

&

- 4w
'I.

P :—H

i
.l-‘ A
.u..- Rl
ER]

30Dec.1538 0O
30Dec. 2014

e B

.

oy
— g e,

- rWq w7

o

1,

0 o

L]
[e

e il
ey

N |

L
i

iy

-
I--
o T

' s
- —._-_-.IL

b]

- p——
-'---

-
-

arny{02 Jan 1999 Restdual-3 years 02 Jan, 2011

16y

30 Dec 1938
ANNIVers

2 FletypErgltg e, b e Al W kel w T e P P RO

Ao "k

g m i

"'i'll'"" e T

EBO
17211

s LTl R el g

H - F- le-

-

'-.‘I.#ﬁ | .-f‘_-"

almt m

_.,_i-l" '\L
TN E T LN

- -
i
L

. A L :I

LN B
Y o -

lr"l'_,.'-lq_... N oL
L

BaseOutcome

TR T

F

8
X
@
Q

- -,

e

. -r"‘;"i".

[

)) L] L
or b .._....' L

rag L eabk

L % o |
1y
S e-_,.........:. ~

U.S. Patent Oct. 18, 2005 Sheet 14 of 22 US 6,957,191 B1

E,;Advantaut: QTE for Dd“r-"l adc [Ehdngedl

-|- rmy --u.-..-..

."_..,Q EOR - Qﬂ-,,.A I :'; .

- -,y r’._".] :_
:'J
LN

- o - -
-
L-" -.i-"- .
- - . "y
-r . Mk am - . S - .. - oma . . -
—_— s _aw '.l'-‘-l—-"'—-"-:'l'-‘-'l.."" - R TRl P C e S Pt~ {.i',.- .-.--1-!-!‘ re . -lch--ﬂr—irlrh---'fl"q-h -rrru-r'?l.._'.i—_ri.l-_-

- ..-rri--r--rl-"— ‘Il"' Fﬁ'ﬂ'r S — wr"ﬁﬁrrr-mmii I'F- -i.-f‘f-ﬂ-—th-p_:-l“-‘,

.--. .i"""'-'- —*—‘:::r"'l'"}'_;_;;_ - -'-r-r e Ty A it
.*' rr -..Ir*':.-- : i , ,.- ""F : -"il;_.- 1) ¢
Ir _1_. _I'ﬂ'j""l-ﬁ'.l' — --- -..-_r_.‘. r 3 -.) . a- . . b

=l '

4 g AT

A1} -

o]

P

!

- L I
l.IF-

S I-“J‘J“"':,rl.!"l

Daoutde-click hece o enter formula
30.0000%

- wa

] InterestB ate

aitDates > N Dec 1998
i

U.S. Patent Oct. 18, 2005 Sheet 15 of 22 US 6,957,191 B1

2, Advanlage - QTE for patent. adc

g e —
| E G Hooks® <2 T IPADeE 547,000

= - g

b Ry T -.‘-

T ﬁ. < 3 wll e 4 -
Ii.j @i in | ' ' m i fﬂ-_
[VAN : s — el

) -*1- B Lt i r. =l ey - - r | . - | -) H) -] o '-:“4- .h'"
- T A E:'" - Ry - ; ol i - ; i . — ; r gy ¥ ;'L‘i"-. — rewnd -
. 'r""-._.t Pt e ¥ ol . . r . . - - h . - Y L I .
-'a.q,!-.—..- R L —— = S - - -

L L e T T

A2) Ei B

- T r -..‘—" ‘lrll_—l'"h‘ i

. . ﬂ. 1'-1 - -
o .

N
SPL ;--.',-"_r,'- T e

..-"' ‘4_?..1.'_#-:.-'

i

L3

3

' LT
AP LT A L YR |

L]

[W . PR W Y B ot i 2 ol -

1
]

nr MY 2 .)Jan AN [I2.08an AR 17 e AL IPAF WK IFR W
0.0D 00D 0.00 0.00
aao 0.00 0.00 000

] -I-I-l —

£

.....p.il-. l...;l..

I T %

- %

]
[=== T W

L]

L.

-
3

—rug

LT
[P

U.S. Patent Oct. 18, 2005 Sheet 16 of 22 US 6,957,191 B1

1w AL :
i3

-y i

—— o et B

, ——— —a— r -- - e T | . -
T TN L S TSI T T IR ST T
- L - - - '..‘.l m r - o, "r -
-——'-..—".-_:EI--# - -—l—-{'_ : - r”-‘:i— : *

Y S,

--_-': ._1-- _‘_‘f- el & ai ;-" R r .t-' - - - . . ﬁ:’iﬂ\;}t :'E-,...f' :‘:\::_ L .
N £ Nl imd v B Ryl A = .2 —h Fo A Lt L TR
L e gl ;: b i palit L, . - - . s -

o ke

- -.'r"r"?'r"‘_'- LM

't & "E‘ et ,'_' i!, s Eranas: _*' araml-mr

"II-‘-:,'. k .
e e | [R T T

r - - -
- - - Lar k
¥ .-, - a
.] F
- [r——— -— [e———— - .

I_f'_?:ﬁ IRS.URT Resulls BounitsTest AnnuabizedRent >e MinAnnusiARowed Tt + B ptimizationdd argin)

oz T 'f"_f_‘;_ tRS.URY Aexults BoundsTest Annuafizediient <= MarAnnuatASowed™]1-Opiinizationd argin)

hwﬁ IRS.MMICalculations Optimizel astRentDate ZeroRent = 0
[‘f-‘a],':*:hg[IRS. MM Calcyiations. Dptimizel astAentDate OptCashThiowofiCeiing >= CathThrowolfT oD ate+0 ptimizationM argin T oD o

- s L 4
I'j. TR | € confull Return AequitedMminum Investment Balance >« D

SRR 1 £ confull Retun AequiredMininum Investment Balance = 0 on Last{YieldDates)
f il £ conFull Retumn. RequiredMininym SinkingFund Balance >= 0
i} Econful RetunResulls TolalATCash >+ Nolndex MmANMmusailashPet*Coxt*Cazhl erm
2] EconEB0.Acturn.RequiredMinmum Investment Balance >= 8
EconERD Retimn RequiredMinimm investment Balance = 0 on Lasi(YieldDates)
Econf BO_Retum. RequiredMinioum. SinkingFund.Balance >= 0

1 EconEBO Retum Rosulis TotalATCash >= WNolndex: MinAnmusiCashPet*Cost"CashTem
i
5]l RenlSchedule AdvanceAmesrs. AdvanceRent o 0

i RAent Schedule AdvanceAnears. AireausRent >= 0

Fig. 21

U.S. Patent Oct. 18, 2005 Sheet 17 of 22 US 6,957,191 B1

- . - .’
. !) I L} L]
R
- LA s -
A -
-
- - = - e

- : . y - ‘ . Y oillsi] - ")
ol LY Ly .-|| - _“ ,..._-h FII - o r - -ﬂ
- - - #_,-J‘ ——— 'r - ' -

l'_ Nov 21,1998 BascoOCK & BROwN INC. 317 PM

HE
; 3 Confidential Analysis
% % Lessee Benefit Present Value
| al B Avilable Cosh Presert Value 260653208
3E 5 Less Deposit = 200 834 .07
11 BE Lessae Benelit Prasent Yalue 59.008.80
1 B on 30 Dec, 10080
B
(o | i Discounted o S.0000% pe! year
' "1 1-'.'
18
-z J Datn Deposit Cash ntorest Principa Balanoe
r'-_:::ﬁ To Datansa
** 30 Dec. 19%8 200.634 .07 8.00 0.060 Q.00 200.634 .07
& 02 Jan, 1999 0.00 8% 7 (58 7YY 200.689 .81
t 02 Janu. 2000 0.00 10.034 .49 {10,034 .49) 210.724.30
C 02 Jan, 2001 5.00 10,5%6 .21 {10,536 .21) 221.280.%1
£ 92 Jan. 2002 5.00 11,063 .03 133,065 .09) 253,3523.%¢
Ao 02 Jenn. 2003 b.00 11.634 .18 111.616.28) 243.932. 71
¢ i 02 Jaxn, 2004 0.00 12.196 .95 (12,198 .9%) 2%6_.1%8 .70
A _,—; 02 Jan, 2009 0.00 12,805 .83 (12,006.83) 260,943.5)

......

ATy B g . W w— ey L, 3

T LY - . + + : - r - - P - _.-_" r_. I | '-.--‘ -
!lu-l‘l-l-h."‘" hgi'l‘h Tl :I'.-.-ll-*"l-r-—-l---l“ll-l-ll d ey ey S AT -

T amwﬁww“ alnac;.usggj_mmc, 1999 m;uaq.-nzunnf 3T Doc 20

_uz..... L e P el e« i AN

@) RantReceived 1.247 056 D 390 70,147 70
'i # ResidualReceived 200,000 _ o o
S, SubTotal Infows 1.447 056 0 330 70.147 70,
& Outflows
&3 DsbtServicePaid
& InterestPaid (308.979) (208) (37.421) (357
i (8 PrincipalPeid {738,367 0 [182) (32,726 343
." ¥ SubTotal DebtSer [1.048 346) 0 (330 {70,147) 701
{, 2, SubTotal: Outflows [1.048,346) 0 (330) (70.147) [70.1
y &3 Investment
; £3 SourcesOfFunds
: @ Borrowings 739,367 739,367
: % SubTotal Sources 738,357 739,367
; &3 UsesOfFunds
‘ () AssetsPurchased (1.000.000) [1.000.000)

() InitslFeesPaid __[15.000) {15,000}

3. SubTota) UsesOff (1 015,000) (1.015.000)

T | sk Pm .r-.-.-]

2, SubTotel: investment [2755633) _[275633) _ -
: Y SubTotal: PreTaxCash 123,077 (275.633) 0 0
H] Texes (43.077) 24,566 72.874 72.296 71.5
1l 3 SubTotal AterTexCash 80.000 (251.067) 72.874 72.296 71.5

Fig. 23

U.S. Patent Oct. 18, 2005 Sheet 18 of 22 US 6,957,191 B1

’-h-:_-ll.-... 1 _I_.___'_.r 1
o - i] o
pcs L Bt -

i o e o

RentDates > 4] N O g o d I Ny ZIHR NG AL
Rents . 100 100 100

Rentl ates > J) Jan |99

N MJJan. 2000 MJan 2000 F 2 2 |
Rents ° 50 s 100

[
[3
[|

JlJan ZNRAl SUNoy. 2ZULID 1Y Jan XY

. ; Y [I NOY ANl
TotalRents ¢ 50 100 [100 100 100

nualD ates 2 30 NMNp 2 U NOS L) U Now, JULT W Nay SRIZ SU Nav, AU

AnnualRents ¢ 100 175 200

(L]
n:
1
A

- -
1
t=
LS
+
- Y
-
[3
At
5
iy 2
F o
.
[.y
.-..'
-
L |
Sk |

i Hentlates -» = starting today annusl fo

2 Rents © =100

.’i 5 Plane2

J gentiates -» = starting Q1 Jan 1989 annus) fc

y
o
r-

5
g
®

= 80, 75,100 thereafter

B Totals

TotalD ales > B 3N PIane] femoeates Plane?2 RenmtDates
TotaRents * = subtotal(Arcraft, Rents)
B Annuall ctals

A LSl) &t Bd

L3 AnnuaRents ¢ = TolaRents

N

n “J‘IE_

-2 = starting today ¢ 1l 10!

Fig. 25

U.S. Patent Oct. 18, 2005 Sheet 19 of 22 US 6,957,191 B1

Simple Loan Example

Simple Loan - Values

Inputs
Scalars
Cost 1,000,000.00
Calendar Actual_365
RateSchedule
RateDates - 01Jan, 2000 O1Jan,200% 01Jan, 2002 O1Jan, 2003 01 Jan, 2004 01 Jan, 2005
Rate 4di 8.2500% 8.2500% 8.5000% 8.5000% 8.7500% 8.7500% . . .
Payments
PaymentDates - 01Jan, 2000 0%Jul,2000 01Jan, 2001 O1Ju}, 2001 0OtJan, 2002 01 Jul 2002
InputAmounts o 0.00 90,909.09 80,909.09 90,909.09 90,909.09 90,909.09 ...
Armortization
AmortDates = 01Jan, 2000 01 Ju!, 2000 01 Jan, 2001 01 Jul, 2001 01 Jan, 2002 01 Jul, 2002
Principal ° 0.00 60,876.43 63,078.19 66,112.55 67.770.57 7100440 ...
Interest 4 30,032.66 27.830.90 24,796.54 23,138.52 1990469 ...
DebtService o 0.00 90,909.09 30,909.09 90,909.09 30,909.09 90,908.00 . ..
Balance o 730,064.69 669,18826 606,110.07 539,997.53 472.,226.96 401.222.56 . . .
PVFactor o 1.00 0.96 0.92 0.89 0.85 082 - - .
Result
LoanAmount 730.,064.69

ig. 26

U.S. Patent Oct. 18, 2005 Sheet 20 of 22 US 6,957,191 B1

Simple Loan - Formulas

Inputs

Scalars
Cost =1000000
Calendar =timeline.Calendar

RateSchedule
RateDates = =starting first (PaymentDates) armual ending last (PaymentDates)
Rate i =Table: 8.25% for 2; 8.5% for 2; 8.75% thereafter

Payments

PaymentDates = =StartDates: Starting 01 Jan 2000 semiannual for 11
InputAmounts o =0; Cost/{COUNT {PaymentDates)) thereafter

Amortization

AmortDates — =ActsLike(PaymentDates): PaymentDates

Principal o =DebtService-Interest

Interest 4 =Arrears:previous (Balance)*Rate*periodlinterval (-1)

DebtService » =InputAmounts

Balance o =Previous(Balance,LoanAmount)-Principal

PVFactor e = Previous(PVFactor,l)/{l+{(Rate*PeriodInterval(-1)))
Result

LoanAmount =SUM (PVFactor*DebtService)

Fig. 27

U.S. Patent Oct. 18, 2005 Sheet 21 of 22 US 6,957,191 B1

Present Value and IRR Example
PV IRR - Values

Inputs
Investor = InvestorParty
Calendar = European_30_360
CashFlow_Summary
ProjectDates = 01tMar,1899 15 Apr,1999 15Jun,1999 15 Sep,1999 15 Dec,1999 15 Mar,2020
tnvestor_PTCF o (67,006,051)
Investor_Taxes o 2,179,058 2,179,058 2,179,058 2,179,058 0
Investor_ATCF o (67,006,051) 2,179,058 2,179,058 2,179058 2,179,058 0
IRR_Calculation
FirstiRRDate 28 Feb,1993
LastiRRDate 31 Mar, 2020
IRRDates - 28 Feb,1999 31 Mar, 1999 30 Apr,1999 31 May, 1999 30 Jun,1999 31 Mar,2020
InvestmentBalance 0 (67,006,051) (65,587,269) (66,331,447) (64,905,010) 18
Eamings 4 0 (760,276) (744,177) (752,621) 0
PV_Calculation
PVRate_Effective 10.0000%
PVRate_Nominal 9.5680%
PVDates - 01 Mar, 1999 01 Apr, 1999 01 May, 199901 Jun, 1999 01 Jul, 1999 01 Jan,2019
PVFactor o 100.0000% 99.2089% 98.4240% 97.6454% 96.B7289% 15.1024%
Base PTCF o« (67,006,051) 20,660,833
Discounted_PTCF o (67,006,051) D D 0 0 3,120,275
Base_ATCF o (67,006,051) 2,179,058 2,179,058 17,396,295
Discounted_ATCF o (67,006,051) 0 2,144,717 0 2110917 2,627,253
PV_Summary
PVOfPTCF_UsingFunction 6,346,148
PVofPTCF_UsingSP 6.346,148
PVofATCF_UsingFunctio 17,740,438
PVofATCF_UsingSP 17,740,438
IRR_Summary

NominaliRR_UsingSearch 13.6156%
NominallRR_UsingFunction 13.6156%
Effective!RR 14.4983%

U.S. Patent Oct. 18, 2005 Sheet 22 of 22 US 6,957,191 B1

PV IRR - Formulas

Inputs
Investor = InvestorParty
Calendar = Buropean 30_360

CashFlow_Summary

ProjectDates - = dates (collectpayments (Investor, "AfterTaxCash"))
Investor_PTCF o = collectpayments {Investor, "PreTaxCash®")
Investor_Taxes e = collectpayments (Investor, °Taxes")
Investor_ATCF o = collectpayments (Investor, "AfterTaxCash®)
IRR_Calculation
FirstiRRDate = MonthEndOf (First (Dates (CollectPayments {Invesotr, "AfterTaxCash”)))-1 Month
LastiRRDate = MonthEndOf (Last (Dates{CollectPayments (Invesoty, "AfterTaxCash®))))
{RRDates — = starting FirstIRRDate monthly ending LastIRRDate
investmentBalance o = Cumulative {Investor ATCF}+Cumilative (Barnings)
Eamings <¢ = Arrears: Previous(InvestmentBalance*NominalIRR UsingSearch*periodinterval)
PV_Calculation
PVRate_Eftective = NoIndex: 10%
PVRate_Nominal = NoIndex: 12*((1+PVRate_Effective)”(1/(12))-1)
PVDates - = starting Closing monthly ending Completion
PVFactor o = 1; previous (PVFactor/(l+PVRate Nominal*PeriodlInverval)) thereafter
Base_PTCF ¢ = Investor_PTCF
Discounted_PTCF e = PVFactor*Investor_ PICF
Base ATCF e = Investor ATCF
Discounted_ATCF o = PVFactor*Investor ATCF
PV_Summary
PVofPTCF_UsingFunction = daily_present value(Base PTCF,PVRate_Nominal, Closing, Calendar)
PVoIPTCF_UsingSP = sum(Discounted PICF)
PVOfATCF_UsingFunction = Daily_present value(Base ATCF,PVRate Nominal,Closing, Calendar)
PVOfATCF_UsingSP = sum{Discounted_ATCF)
IRR_Summary

NominallRR_UsingSearth = Search(-10%,200%, 1E-6%,Last (InvestmentBalance),0):0.13615645
NominallRR_UsingFunction = monthly_ IRR(Investor_ATCF)
EftectiviRR = {{(1+NominalIRR_UsingFunction/12)*(12)-1)

Fig. 29

US 6,957,191 B1

1

AUTOMATED FINANCIAL SCENARIO
MODELING AND ANALYSIS TOOL HAVING
AN INTELLIGENT GRAPHICAL USER
INTERFACE

CROSS-REFERENCE TO RELATED
APPLICATION

This application hereby claims priority on U.S. Provi-
sional Patent Application No. 60/118,743 filed on Feb. 5,
1999, the disclosure of which 1s hereby incorporated by
reference herein in 1ts entirety.

BACKGROUND AND SUMMARY OF THE
INVENTION

The present invention relates to an automated tool for
modeling the cash flows of financial scenarios, which typi-
cally mvolve use of at least one financial instrument,
between various parties to a financial transaction by provid-
ing analysts with the ability to graphically represent the
parties to the transaction, and their complex interrelation-
ships 1n a manner that stmplifies analysis of various options
for completing the deal. In particular, the instant invention
1s directed to a modeling tool that analyzes various aspects
of a proposed financial arrangement between parties to the
transaction on the basis of information provided through a
high level graphical user interface, and prepares competitive
financial proposals, structures the proposals 1n an optimal
manner, and which may further be used to manage and
administer the final transaction to ensure compliance and
delivery of the financial benefits determined by the tool.

The computer has become a critical tool for financial
analysts whose job 1t 1s to analyze extremely complex
financial transactions such as leveraged leases. The com-
puter allows the numerous variables 1n such transactions to
be manipulated and analyzed 1n a fraction of the time
required for these calculations to be performed by hand. Of
course, 1n order to allow a computer to perform useful
functions, whether the area 1s financial analysis or virtually
any other subject, software designed for the particular appli-

cation 1s needed. Such software 1s often referred to as a
“tool.”

Certain software tools for financial analysis of complex
transactions have been developed; however, they have inher-
ent limitations and are very difficult to use for a number of
reasons, including, for example, their inflexibility 1n altering
existing models, their requirement of complex commands
and codes for building and modifying a proposed model, and
theirr inability to manipulate a financial structure at the
higher level of an overview. The invention described herein
was designed to overcome the problems with these earlier
tools and represents a major advance 1n the field of financial
engincering and analysis. The 1nvention incorporates
extremely sophisticated aspects of computer aided design
(CAD) resulting in a graphical user interface unique to
financial analysis. As a result, an analyst using the mnvention
1s able to quickly and easily analyze many different potential
scenarios and to determine optimal terms for the particular
transaction under consideration. For example, this novel
approach gives the analyst the ability to see partial results
when building a model, provides the financial analyst with
dynamic overviews (pictures) of the financial structure that
can be directly manipulated to alter the financial structure,
and provides an object-oriented distinction between high
level structure and financial details which allow the user to
defer details until they become available or relevant.

As described 1n greater detail below, an important part of
the invention 1s a computer software engine which has been

10

15

20

25

30

35

40

45

50

55

60

65

2

designed to automatically obtain and generate information
relating to a particular financial transaction or scenario in
response to inputs from the user. The software engine and
the CAD-like graphical user interface have been designed to
work cooperatively together 1in order to create a graphical
representation of the particular transaction or scenario on the
screen of the analyst’s computer. The system 1s designed to
allow the analyst to cause this graphical representation to be
manipulated, modified or revised so that information useful
to many different aspects of the transaction or scenario can
be quickly and easily obtained. The end result 1s a system
that 1s easy to use, extremely flexible and far more efficient
than prior financial analysis tools.

There are many automated financial engineering and
analysis tools currently available for use by analysts to
determine various components of a financial transaction and
to optimize the transaction based on the particular data
assoclated with the parties to the transaction. One such
well-known tool 1s provided by Warren and Selbert, Inc., of
Santa Barbara, Calif. and 1s referred to as “ABC”. ABC has
been used by analysts to generate various alternatives within
the constraints of a particular financial instrument and
optimize the results so that analysts can generate a deal that
1s acceptable to all parties to the transaction. One such
commonly used financial mstrument 1s referred to as a
multiparty leveraged lease. There are various other propri-
etary systems that provide such automated financial analy-
S1S.

However, all of these known systems suffer from numer-
ous disadvantages. For example, the ABC program, and
others like 1t, require the use of complex commands and
codes for building and altering a proposed model. Moreover,
the models typically must be built prior to having the ability
to view any intermediate results. This, in combination with
the complex programming-like language that 1s required,
results 1n a very long learning curve for analysts who use the
tool. Furthermore, the model, once built and run, does not
typically enable the analyst to easily change variables or to
casily view the resulting change 1n the transaction.

A primary source of these problems 1s the complex and
inflexible user interface typically associated with these
known tools. Another problem with such prior art tools 1s
that they do not enable a user to model the financial deal
visually and mathematically and in a manner which enables
interfunctionality and dependency between the visual model
and the mathematical model. As a result, the tools currently
in use provide limited ability to deal with higher levels of
complexity and the ever expanding universe of evolving
financial products 1n use today, and which will be used 1n the
future. Additionally, the inflexible interface makes 1t very
difficult for different analysts to be able to discern the exact
relationships and variables of a model that another analyst

may have been manipulating when the model was being
built and later modified.

To overcome the above and other shortcomings with prior
art financial modeling tools, the present 1nvention provides
a much more user friendly, flexible tool incorporating easy
to understand graphics and interfaces to enable more effi-
cient and practical application of the tool. To that end, the
invention provides a financial modeling tool that addresses
model complexity with a graphical CAD-like approach to
financial and/or mathematical modeling, which facilitates,
among other things: the ability to see partial results while
building a model; a short learning curve; the ability to make
changes when the user views the results of the analysis;
flexible “point and click” interfacing; easy handling of
indexed data; integrated and automatic handling of certain

US 6,957,191 B1

3

variables, e.g., taxes and accrual; menu of building blocks,
¢.2., loans, rents, fees, purchases, etc.; menu of built in
reports; and an interactive and intelligent graphical repre-
sentation of the model.

In accordance with an 1mportant aspect of the instant tool,
a soltware engine, hereinafter referred to as “engine”, 1s
provided 1n the tool and i1s programmed to automatically
obtain and generate mnformation on a financial scenario in
response to the user creating a graphical representation of
the scenario with the CAD-like user interface. In other
words, the manipulation of the graphical user interface to
generate a visual representation of the scenario automati-
cally results 1n the generation of information, such as
formulas, objects, templates, timelines, calculations,
constraints, parameters, optimizable parameters, cash flows,
reports, or any other suitable information that 1s helpful in
modeling the scenario represented by the visual representa-
tion created by the user using the CAD-like interface. The
information generated preferably at least partially model at
least a portion of the scenario. After drawing a scenario, such
as a proposed financial deal, using the interface, the interface
enables the user to enter data and formulas, edit the infor-
mation automatically generated by the engine 1n response
thereto, and to further define the scenario 1n a manner which
enables the engine to fully model and analyze the scenario.
Once the scenario 1s fully modeled, the tool gives the user
the ability to instruct the engine to attempt to optimize the
scenario, either directly or by creating formulations to be
optimized and passing the formulations to a separate opti-
mizing program. Once the deal 1s optimized, the results can
be viewed by the user using the intertace. The scenario can
also be modified by the user and new results based on the
modification can be viewed. When the visual representation
of the scenario 1s modified, the engine automatically modi-
fies the information previously generated 1n a manner which
corresponds to the modification to the visual representation.

In accordance with a main aspect of the mstant invention,
a financial transaction modeling and analysis tool 1s pro-
vided which includes: a graphical user interface which
enables a user of the tool to create a graphical model of a
financial scenario, generally including at least one financial
transaction, on a display screen; and an engine operable, 1n
response to creation of the graphical model, to generate
information which at least partially models at least a part of
the financial scenario using information collected by the
engine during creation of the graphical model.

The graphical user interface preferably enables the user to
create party graphics respectively representing parties to the
financial scenario, and to generate financial instrument

graphics representing financial instruments, wherein each
financial instrument graphic connects two of the party
ographics. The party graphics and the financial instrument
graphics define the graphical model of the financial scenario.
Preferably, the financial instrument graphics indicate a
direction of flow, relative to the financial mnstrument repre-
sented thereby, between the parties connected by the finan-
cial mstrument graphic.

In accordance with an important aspect of the instant
invention, the engine generates, 1n response to the creation
of a graphical model, an 1nstrument information, such as an
instrument object or template, for each of the 1instruments 1n
the graphical model. Once an instrument i1s defined, the
oraphical user interface enables the user to interact with the
mnstrument information, such as adding scenario speciiic
mstrument data to each of the instrument objects generated
by the engine. The instrument data entered 1n connection
with the 1nstrument object constitutes either a fixed part of
the financial scenario or a variable part of the financial
scenario.

10

15

20

25

30

35

40

45

50

55

60

65

4

The graphical user interface also enables the user to enter
and define date information relating to the financial trans-
action for use by the engine. Preferably, the graphical user
interface 1s operable to display the date information 1in
ographical form on the display screen. The tool preferably
enables the date mnformation to be entered using a natural
date language, wherein the engine 1s operable to process the
date information from the natural date language.

In accordance with another aspect of the invention, the
oraphical user interface enables the user to modily the
ographical model of the financial scenario, and the engine 1s
operable, 1n response to the modification of the graphical
model, to modify the information previously generated 1n
accordance with the modification of the graphical model.

In accordance with another aspect of the invention, the
engine 1S operable, 1n response to the creation of the finan-
cial instrument graphic, to define roles for parties repre-
sented by the party graphics connected by the financial
instrument graphic, wherein the roles are used by said
engine to deflne the parties interaction with the financial
instrument represented by the financial instrument graphic
when modeling the financial scenario.

The engine 1s preferably operable to determine and dis-
play an optimal solution or result for the financial scenario
relative to at least one of the parties thereto, and to calculate
optimal values for each of the variables defined by the
instrument data based on the optimal solution.

The financial transaction modeling and analysis tool of
the imstant invention preferably includes an extensible
library of predefined financial instruments, and the graphical
user mterface enables the user to select and use one or more
of the predefined instruments during creation of the graphi-
cal model of the financial scenario. In other words, numer-
ous common and canned financial instruments are provided
to the user to facilitate easy modeling of common transac-
fions that may be used 1n financial scenarios.

In accordance with another aspect of the invention, the
engine 1S operable, 1n response to creation of each of the
party graphics to genecrate a party-specific information on
the party, and the graphical user interface enables the user to
retrieve and modily the information in the party-speciiic
information.

In accordance with another aspect of the invention, the
oraphical user mterface includes a worksheet section, also
referred to herein as “smart paper,” which enables the user
to 1nput scenario information which 1s independent of or
supplementary to the date and instrument information relat-
ing to the financial scenario, and the engine 1s operable to
use the scenario mmformation when modeling the financial
scenario. Preferably, the instant tool includes a formula
language for use 1n creating the scenario information,
wherein the formula language includes a library of pre-
defined functions and keywords which can be used by the
user when creating the scenario information.

The worksheet section 1s preferably a non-cell based,
outline based interface for imnputting data and formulas 1n an
outline format. More particularly, the worksheet, also called
“smart paper” herein, 1s a non-cell based calculation inter-
face wherein references are based on a hierarchical outline
rather than a position reference. In a preferred embodiment
of smart paper, the interface enables one formula per row to
be defined in an outline-type format.

The engine 1s preferably operable upon entry of scenario
information, such as deal formulas, 1n the worksheet section
to establish links between related scenario information and

between scenario information and date information, thereby

US 6,957,191 B1

S

establishing a dependence therebetween, and {further
wherein the engine 1s operable to use the links when
modeling the financial scenar1o. Preferably, the tool includes
a library of predefined worksheets for use 1n the worksheet
section, and the graphical user interface enables the user to
select predefined worksheets from the library for use 1n the
worksheet section.

The 1nstant tool also enables a plurality of possible
outcomes to be modeled based on different information
provided by the user.

In accordance with yet another aspect of the invention, the
ographical user interface 1s presented on the display screen 1n
a book-like configuration 1n which a plurality of different
sections of the graphical user interface are represented by
different chapters in the book-like configuration, each of the
chapters having a tab graphic associated therewith, wherein
upon selection of the tab graphic by the user, the user
interface 1s operable to display the chapter associated there-
with. Preferably, the tab graphics are located along a side of
the display screen, and each chapter may include a plurality
of pages, the pages having page tab graphics which are also
displayed to the user when a chapter having the pages is

selected by the user.

Preferably, the graphical user interface enables the user to
view two of the chapters simultaneously 1n a split-screen
format on the display. The engine 1s preferably operable to
update mmformation in each chapter in response to changes
made by the user 1n a chapter.

In a preferred embodiment of the graphical user interface,
the chapters include a diagram chapter for creating the
graphical model, a parties chapter for providing data relating
to the parties, a time chapter for viewing and editing dates
associated with the financial deal, an instruments chapter for
viewing and editing instrument data, a worksheet chapter for
enabling the user to define scenario information or formulas
relating to the financial scenario, an optimization chapter for
use 1n optimizing the financial scenario, a payment chapter
for viewing payment flows in the financial scenario, and a
reports chapter for enabling reports to be generated relating
to the financial scenario.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other objects, features, aspects and advantages
of the 1nstant invention will become apparent to one skilled
in the art upon review of the detailed description of the
invention provided herein when read in conjunction with the
appended drawings, in which:

FIG. 1 1s a block diagram showing the major components
in the modeling and analysis tool of the mstant invention;

FIG. 2 1s a flow chart showing the main functions and
steps involved 1 using the modeling and analysis tool of the
instant invention to model and analyze a financial scenario;

FIG. 3 1s a flow chart showing the main steps used to
create a graphical model of a financial scenario, 1n accor-
dance with the instant invention;

FIG. 4 1s a flow chart showing the main steps used to
create a worksheet, also referred to as “smart paper”, for use
in connection with modeling of the financial scenario, 1n
accordance with the instant invention;

FIGS. 5-12 show, 1n a split screen format, exemplary
information that 1s automatically generated by the engine 1n
various chapters of the instant tool 1n response to creation of
the exemplary graphical representation of a financial sce-
nario shown in the Payment Diagram chapter.

FIG. 13 shows a graphical diagram of an exemplary
financial deal created 1n accordance with the instant inven-

tion;

10

15

20

25

30

35

40

45

50

55

60

65

6

FIG. 14 shows a party graphic being made 1n the parties
chapter as a first step 1n modeling the deal of FIG. 13, 1n
accordance with the instant invention;

FIG. 15 shows a further step i1n creating a graphical
modeling the deal of FIG. 13, wherein two parties and a
financial 1nstrument are shown, 1n accordance with the
instant 1vention.

FIG. 16. shows date information related to the exemplary
deal of FIG. 13 being displayed in the time organizer chapter
of the graphical user interface of the instant invention.

FIG. 17 shows another view of the time organizer of FIG.
16, where an early buy-out option 1s displayed;

FIG. 18 shows a view of the instruments chapter contain-
ing data relating to the exemplary deal of FIG. 13;

FIG. 19. shows an enlarged, partial view of the display
screen of FIG. 18, wherein the interest rate 1s being modi-

fied;

FIG. 20 shows a view of the smart paper chapter of the

instant invention containing information from the exemplary
deal of FIG. 13;

FIG. 21. shows the constraints sub-chapter of the optimi-
zation chapter of the instant invention, containing informa-
tion from the exemplary deal of FIG. 13;

FIG. 22. shows an exemplary report produced in the

reports chapter of the 1nstant invention based on the exem-
plary deal of FIG. 13; and

FIG. 23. shows the payment organizer chapter of the

instant invention containing information on the exemplary
deal of FIG. 13.

FIGS. 24-29 show example uses of the smart paper
feature of the mstant invention.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

Referring now to the drawings, FIG. 1 shows an overview
of the main elements which comprise a preferred embodi-
ment of the financial scenario modeling and analysis tool of
the present invention. More particularly, as shown 1n FIG. 1,
the tool 10 includes a user interface 12 which preferably
enables both builder users 16 and end users 18 to interact
therewith, a software engine 14, an optimizer system 20,
which 1s preferably a software package known as CPLEX
Optimization (version 6.0) offered by CPLEX, ILOG
CPLEX Division, but any other suitable optimization soit-
ware may be used, file I/O and support functions 22, output
device(s) 26 such as a printer, and a hard disk 24 or other
storage device for use 1n storing information and data
provided with the tool 10 and input by the users thereof. The
engine 14 performs all calculations when modeling a deal
using the tool, including parsing of the formula mputs. The
engine 14 also reduces the data representing the deal into an
abstract form for submission to the optimizer 20 1n order to
perform optimization functions for the deal. The user inter-
face 12 and the engine 14 are the main eclements of the
present mvention and will be described in greater detail
below.

In order to enable a better understanding of the instant
invention, the following glossary of definitions are provided
for terms commonly used herein to describe the instant
invention:

Smart Paper—is one of the chapters in the user interface
of the tool. Smart Paper 1s a non-cell based calculation
interface wherein references are based on a hierarchical
outline as opposed to a positional reference. Smart Paper 1s
also referred to herein as a “worksheet.”

US 6,957,191 B1

7

Party—represents a potential (or actual) participant in a
financial transaction or scenario, and as such its meaning 1s
close to that of colloquial English. Parties connect to the
roles of instruments to define the financial interactions
among the parties.

Instrument—is a tool object that encapsulates an atomic
financial transaction among a pair of parties, including the
tax consequences and classification of the transaction (e.g.
rental payments).

Role—is a party connection point of an instrument that
defines how the party interacts with the instrument.

Key Date—is a globally available date defined by the user
in the Time Organizer.

Date Stream—is a chronological pattern of dales that
defines both discrete dates and their relationship to time
per1ods.

Timeline—is a globally available Date Stream defined in
the Time Organizer that can be used for synchronizing
payments and data throughout a user’s model.

Decision—represents a “yes or no” option at some point
in time that 1s available within the transaction being modeled
with the tool, wherein the tool then tracks both the “yes™ and

“no” results.

Outcome—is the result of some specific set of assump-
tions regarding Decisions, 1.. a specific assumption as
regards the “yes” or “no” of each Decision (see also ACOE

below)

Alternative Courses of events (ACOE)—is the full set of
possible Outcomes 1n a model, all of which are active within
the model. For example, a deal or scenario may include the
leasing of an airplane over 20 years where the lessee has the
option to buy the plane after 10 years. One outcome of the
case 15 the 20 year lease, the other would be the 10 year buy
out option.

Decision Handler—is the mechanism within Instruments
that defines the action for a “yes” Decision.

Parameter—is a piece of information within a case which
has a name, a mathematical formula, and a value. The value
can be a number, date stream, formula or other item.

Case—A case 1s a single file created with the tool which
has all the different elements of a single deal or scenario.

Referring now to FIG. 2, there 1s shown a general over-
view of the main steps, according to a preferred embodiment
of the present invention, which are followed when using the
tool 10 to model and analyze a financial scenario, deal or
transaction. As will be described 1n greater detail below, the
tool 10 provides a graphical CAD-like interface which 1is
used to model the flow of financial instruments and data
between various parties to a financial scenario, including,
individual, corporations, istitutions and/or the like. In
accordance with the 1nstant invention, the tool enables users
to visually define the parties involved 1n the scenario and, for
example, the flows of money and assets 1n the form of a
oraphical model of the scenario. Parties are preferably
represented by boxes which display the name of the party.
Arrows are preferably used to represent the flows of 1nstru-
ments. Once the model 1s defined 1n the tool 1n graphical
form, the specifics of each party and the flows are further
defined 1n various interfaces until the model 1s Tully defined.

If the model as defined satisfies the requirements of all
parties 1nvolved, the tool provides an interface which
enables the user to create various reports relating to the
model generated for the scenario. These reports include, for
example, the flow of mstruments and assets over various
time periods. On the other hand, if variables exist in the

10

15

20

25

30

35

40

45

50

55

60

65

3

scenario based on requirements of the parties, the tool
enables the scenario to be optimized. For example, the deal
may require that a party obtain a return on investment of at
least 5%. The party may desire an even greater return
provided all other aspects of the model of the scenario are
satisfied. Such requirements are known as constraints of the
model. The process of optimization involves creating the
best model which satisfies all such constraints and deter-
mines the best possible model based on the requirements and
ogoals of the parties. The instant tool enables optimization
against a number of constraints that may exist in the sce-

nario.

The tool operates 1n two basic modes: build mode and end
user mode. In build mode, the user creates the definition of
certain aspects of the tool, such as creating instruments
which model real world financial instruments. These mstru-
ments are then stored in the tool for use by end users when
modeling a scenario using the tool. In other words, the
builder user provides a library of “canned” instruments
which can be used by the user to more easily and efficiently
model the scenario with the tool. The mstruments involve a
set of 1nputs and calculations based on those inputs. The end
user 1mcorporates the built instruments 1mnto a model and
supplies the real inputs corresponding to the actual deal that
1s being modeled. The build user mode also enables the
builder user to create calculation templates to be used by the
end user 1in conjunction with various instruments.

FIG. 2 1llustrates the steps performed by the end user
when using the tool to model a scenario. More particularly,
when a deal opportunity 28 is presented to a user of the tool,
the first step 30 1s for the user to draw a graphical diagram
of the scenario using the CAD-like user interface section of
the tool. Once the diagram 1s drawn, the next step 32 1s to
define and modily dates relating to the scenario. Once the
dates are defined, the next step 34 1s for the user to modily
data and numbers 1n a worksheet section, also referred to
herein as “smart paper”, in order to provide all of the
information necessary to model the deal. If the deal is
determined to be acceptable 1n step 36, the user can generate
reports (step 40) using a reports section or chapter of the
tool, and then the scenario or deal can be presented (step 46)
to the client or the person contemplating participating in the
deal. If the deal 1s not accepted 1n step 36, but optimization
1s not desired or possible based on the particular deal, the
user can review all of the input (step 44) and edits or modify
the deal as needed to make the deal acceptable. If optimi-
zation is desired, the user can run the optimizer (step 42) and
then review the optimized deal. If the optimized deal 1s then
acceptable, the user can run reports and present the deal to

the client (steps 40 & 46).

As 1ndicated above, one step 1nvolved 1n modeling a deal
using the tool of the instant invention involves creating a
party diagram (step 30) or graphical model of the deal. FIG.
3 shows flow chart of the steps imnvolved in creating this
ographical model. Similarly, FIG. 4 shows the preferred steps
involved 1n creating smart paper or a worksheet 1n step 34
of FIG. 2. It 1s noted that the flow charts of FIGS. 2 and 3
are self-explanatory. Thus, no further explanation of the
particular steps 1n the flow charts of FIGS. 3 and 4 are
provided at this time. However, further details regarding
model creation and smart paper use are provided below.
The Graphical User Interface (GUI)

The following 1s a description of the functionality of the
present invention in terms of the graphical user interface
(also referred to herein as “GUI”). It is noted that, in
accordance with the instant invention, the GUI may be
implemented using Windows 98, Windows NT, MAC, or 1t

US 6,957,191 B1

9

may be Web-based. In other words the instant system may
be implemented on any suitable standalone, networked or
web-based platform. In a preferred embodiment, the tool can
be 1implemented using the following hardware, however any
suitable hardware may be used 1n accordance with the
invention:
A Pentium compatible machine running Windows NT 4 with
service pack 3
64 Megabytes Ram
45 Megabytes hard disk space
Cplex Optimization software version 6.0
Actuate reporting modules including all DLL’s and OCX’s
(Actuate is a commercially available reporting
technology)
Version v4.72.2106.4 or later of ComCitrl32.dll
The 1nstant invention preferably uses a book-like display
as a viewing device. More particularly, the mvention dis-
plays its data as pages 1n a familiar-looking tabbed notebook
confliguration on the display screen. Each tab of the note-
book represents a “Chapter”, corresponding to one part of

system’s functionality. Users can work with one copy of the
book visible (see FIGS. 14-18 and 20-23), or with two

copies visible at once (see FIGS. 5-12). Viewing two copies
of the book lets the user see related “pages™ in both chapters
simultanecously. When two book copies are visible, the
books can turn each other’s pages, so the user can click on
a model component 1n one book to see more detail about that
component 1n the other book. Preferably, the user should
never be more than a couple of clicks away from seeing any
part of the model or system. The GUI 1s designed so that the
user never feels lost inside the program.

The first chapter in the GUI is the Payment Diagram (see
FIGS. 14 and 185), which provides a graphic boxes and
arrows overview ol the relationship among parties and

instruments, as well as the payments the parties make to one
another. This 1s valuable because 1deas for financial struc-

tures are often presented as boxes and arrows drawn on
paper. The payment diagram provides an analogous repre-
sentation. However, as explained herein the payment dia-
gram represents much more than simply a graphic diagram.
The user can control or create the program’s model by
modifying the picture or graphical representation of the deal
shown 1n the payment diagram. An advantage of this
approach 1s that there are no separate languages to learn and
no complicated controls to master. The GUI provides for
instantiation and deletion of parties. The user can drag-and-
drop a box onto the diagram to create a new model
participant, and can delete a box to remove a model partici-
pant. The GUI provides for imstantiation and deletion of
arrows representing financial mstruments which, 1 turn,
represent payments made by one participant to another,
and/or represent the tax effects of those payments. The user
can rearrange who pays what to whom by moving the
instrument arrows from one box to another. The GUI also
enables selection of an overview by possible outcome. In
other words, 1n transactions with several contingencies, it 1s
often helpful to show only those payments contingent on a
particular decision path. The user can rearrange the partici-
pant boxes on the diagram using a drag-and-drop method.
The connected mstrument arrows follow automatically 1n
response to the drag-and-drop operation. The GUI provides
a list of pre-defined instrument types immediately upon
creating the instrument. Double-clicking on an instrument
and party tells the system to show detailed information about
that instrument or party. Clicking the second mouse button
offers a list of actions appropriate for the mnstrument or party
clicked. The GUI also provides navigation to the Payment
Organizer (preset for specified party) via the second-mouse-
button menu

10

15

20

25

30

35

40

45

50

55

60

65

10

The next chapter 1s the Parties chapter. The program
simulates “parties,” which are entities that participate 1n a
financial transaction. It provides automatic creation and
deletion of party-specific information. This party-speciiic
information includes items, such as tax rates, fiscal-year-
ending months, or yield requirements. The GUI provides
support to the Payment Diagram for party detail informa-
tion. The GUI also provides the user with a standardized and
extensible location for party data. Each party can have
individual tax attributes, paying different kinds of taxes to
different governments (U.S. states or foreign countries).

The next chapter 1s the Time and Decision Organizer,
which 1s also called “Time Organizer” in the program for
short (see FIG. 16). In this chapter, the GUI provides users
with control of globally available (case-wide) key dates,
timelines and outcomes (from decisions). This 1s important
because: (a) transactions often require numerous payments
to be synchronized; (b) payments are often contingent; (c)
contingencies can interact or cancel each other out; and (d)
having all these in one place, and graphically editable, can
make a transaction much easier to explain and understand.
In addition, the GUI provides the ability to create, delete,
and edit Key dates, timelines and decisions. This 1s 1impor-
tant because: (a) assumed closing dates usually have to
change; (b) there are constraints on when important deal
events are allowed to occur; and (c) deal economics can be
enhanced or harmed by proper choice of such dates. The
GUI also provides a graphic overview of key dates. Also
provided 1s a graphic overview of instrument payment date
streams, aggregated by timelines. This lets the user see
quickly whether the model’s payments are properly syn-
chronized. The system also provides graphic control of
decision 1nteraction to create and delete mutually exclusive
outcomes. The user can thus see whether decisions occur 1n
the proper order, and that they are also properly contingent
on each other. The GUI also provides the user with control
over the global default for “Calendar” (conventions used for
counting the number of days in an interval). This makes it
casy to modily a model’s calendar convention for use in
Europe, Asia, or the US., 1n addition to following the
particulars of any model. The GUI also provides a “default”
timeline to synchronize newly created Instruments’ activi-
fies automatically.

The next chapter is the Instruments Chapter (see FIG. 18).
Instruments are the containers for the systems built-in finan-
cial expertise. They handle a lot of the routine bookkeeping
that financial models demand, leaving the user free to
concentrate on the nonroutine business aspects of the trans-
action. The GUI of this chapter provides controls for cre-
ation and definition of payment streams between parties, and
the tax effects of such payments on the paying or receiving
party. An expandable library of instruments keeps the system
up-to-date. Instruments have clearly separated and protected
“mput” and “output” sections, so all users can rely on their
integrity. The system connects parties (badges) to payment
streams via role definitions and allows the user to switch
parties. This 1s how the model knows which parties pay or
receive the payments the instrument defines. This chapter
also connects payment streams to payment organizer clas-
sifications (cash and income badges) via role definitions and
allows users to change the classification. This 1s how the
model puts labels on each payment, so that 1t can show up
in an 1nformative place on summary reports.

The system allows paying and receiving parties to have
distinct interpretations of the instrument payments, tax
effects, and classification. This 1s an important feature,
because tax law often makes these distinctions. Instruments

US 6,957,191 B1

11

contain pre-built and pre-tested Smart Paper computation
sections, making the system more reliable and freeing the
user from having to do repetitive programming. The system
automatically activates and deactivates instrument Smart
Paper computation sections according to the user’s selection
of role information for the parties. Thus, sections not 1n use
remain visible and available and do not distract the user.
Glyphs are used to highlight the relationship between role
specifications and the calculations. Specific 1items represent-
ing payment or receipt of funds, or of taxable mmcome or
deductions, are identified with symbols that make those
items easy to find. The system also allows the user to change
the name of the instance of the instrument. These name
changes show up on the party diagram and the payment
organizer, making both of these a lot easier to read and
understand. In addition, model pieces can be named with the
names that other transaction negotiators are using, making
communication a lot easier. The system also automatically
ogenerates the parallel payment streams for different out-
comes using handlers for each possible decision. Each
mstrument can thus generate different speciiic payments
depending on the state of various contingencies. This 1s
important because exercise or non-exercise of certain
options can mandate different behavior on the part of the
same 1nstrument. The system allows the user to modify the
handlers’ termination behavior. Thus, special cases do not
require modifications to the system. In addition, the system
uses Smart Paper “protection” modes to preclude user
corruption of instrument functionality, but otherwise allows
users the ability to modily mstrument Smart Paper. Thus,
users can be confident that canned (and therefore tested and
reliable) model parts are being used, instead of model parts
which may not be correct given an unforeseen peculiarity of
a particular model.

Users can supply their own formulas. Such formulas are
clearly marked, so that other users know they have to
validate the formulas before using the model. The system
also provides canned calculations for specific types of
financial elements (e.g. rent, loans, etc.). These canned
calculations cover a very large fraction of the payments
users would run mto when modeling a financial scenario.
Thus, users will spend little time having to invent new
payment mechanisms. In addition, this set of canned calcu-
lations 1s contained 1n an expandable library, so as the
industry changes, additions can be added to the library to
keep 1t up to date. The system provides the user the ability
to customize the calculations, making use of the invention a
lot easier. Pre-defined reports of the mstrument results are
also provided. As a result, explanations of what an 1nstru-
ment 1s doing are only a click away. The system also allows
the user to specify that an instrument only exists when a
certain decision 1s assumed. Contingent 1nstruments can be
put 1nto the model and will thus automatically be properly
handled. The system also supports automatic decision and
outcome creation for termination values and other make-
whole payments. These contingency dates are too numerous
to 1nclude as separate imstruments or outcomes, and so
including them here provides a compact way of computing
them as a class. In addition to general financial instruments,
the system may also include instruments for advanced
corporate finance operations, such as mergers, acquisitions
and the like.

The next chapter is the Smart Paper chapter (see FIGS. 20
& 25-29). Smart paper is a powerful non-cell based calcu-
lation interface wherein references are based on a hierarchi-
cal outline as opposed to a positional reference. Unlike
spreadsheet programs, smart paper 1s non-cell based and

10

15

20

25

30

35

40

45

50

55

60

65

12

does not rely on a positional reference for use 1n calcula-
tions. Smart paper 1s the bridge between the ease-of-use that
spreadsheet users depend on, and the power of financial and
optimization packages. It makes computations visible,
understandable, and accessible. Users do not need to be
computer programmers or learn to work as programmers 1n
order use the system effectively and efficiently. The system
has enhanced data capabilities, which automatically perform
a lot of rote date-related manipulation that makes spread-
sheets hard to create and even harder to modily. Thus, the
system provides capabilities normally found in relational
database packages. The smart paper chapter 1s the compo-
nent where the user specifies the computations he wants the
system to perform. Users can define values directly, or they
can provide a formula which will tell the system how to
compute the desired values. Smart paper provides user
control over outline-like (i.e. tree-like) format of parameters
and several nested layers of headings. This makes Smart
Paper work much more readable, and provides a mechanism
for the system to resolve (or ask the user to resolve) formula
ambiguities. Smart paper allows the user to create one or
more sheets of smart paper. Related computations can be
kept together, and unrelated ones can be segregated. Tabs are
provided for moving among sheets of smart paper. As a
result, users do not feel lost in the program and are able to
find quickly what they are looking for using the GUI. The
GUI provides controls for viewing “formulas” versus
“results” or both. Thus, users can get immediate feedback as
to whether they have properly specified a formula. The GUI
provides editing capabilities for headings and parameter
names, as well as provides access to the template library and
instantiation of templates. Smart paper defines parameter
name scope and parameter mmdex scope automatically via
outline format. This resolves many “name clashes,” which
would be otherwise inevitable 1n a model of any size. It also
provides a view of dependency relationships among param-
eters. Users can thus identily information relationships
among their parameters. Also provided 1s general support
ogoal-directed “search” for setting parameter values. The
system automates some of the trial-and-error mvolved 1n
changing parameters’ values in order to produce the desired
answer. It also allows the user to specily formulas that define
(dynamically) activation/deactivation of sub-trees. This
ogrves models the ability to be “context-sensitive,” respond-
ing sensibly to particular values of mput data. It also
provides capability for import/export of data and formulas
from/to Microsoit EXCEL or the like. Models can be created

using the system and the system will automatically recon-
struct the model 1n Microsoit EXCEL.

The GUI also provides a date stream bar that always
displays the index of the uppermost indexed stream. The
important pairing between dates and date-indexed data is
therefore always visible on the screen. This eliminates a lot
of meaningless clicking back and forth to keep the index
visible, and eliminates the need for a lot of “split-screen”
display. The GUI supports multiple data-entry modes:
simple-edit, full-edit and rapid-entry. These modes make
constructing models easier and faster. Also, smart paper
items (e.g. headings, templates, formulas, indexes) can be
changed 1nto each other. Tool bar and menus provide editing
to morph, promote, demote, msert, and delete operations.
This eliminates the need for learning a lot of jargon. Instead,
all the alternatives are displayed, and the user can choose the
most logical one. The system also provides graphic feedback
as to the type of indexed data represented by parameters.
Moreover, in accordance with the invention formulas for
dates resemble “English-language” instruction. Formulas

US 6,957,191 B1

13

can be printed, providing human-readable documentation
for a model. This differs significantly from spreadsheets,
wherein formulas consist largely of a list of data locations
instead of 1dentities, resulting in a nearly useless documen-
tation tool for a human. The system creates templates as
white-box functions which allow the user mternal access.
Thus, there 1s no need to refer to external, written docu-
mentation to figure out what a template/function 1s doing,
because all the code 1s right there, visible.

In addition, smart paper has an extremely powerful for-
mula language (with input/edit wizards). This formula lan-
guage automates many tasks which are routine 1n finance but
which are now cumbersome for spreadsheet users. The
formula language, which 1s described 1n greater detail below,
has the following exemplary features:

Uses Prefixes attached to formulas to define special types

of parameters for—

Accrue: Automated accrual over time periods

Table/Interpolate: Data Tables (regular and
interpolated)

Advance: Advance payments

Arrears: Arrears payments

StartDates: Date streams that represent the start of time
periods

EndDates: Date streams that represent the end of time
periods

List: Named members of an ordered set.

ActsLike: Ties one parameter’s type to the type of
another parameter.

Uses Prefixes attached to formulas to define goal-oriented

setting of parameter values

Optimize: To have values set by the Linear Program-
ming optimizer.

Scarch: To have the system set a parameter value based
on a defined target result.

Single formula defines entire array of data.

Array data 1s keyed by index parameter. Thus, there 1s
provided what amounts to a relational database
structure, without making users learn a bunch of rela-
tional database jargon.

Intelligent translation of data from one 1ndex to another
based on the dates and the prefix type.

Relational database capability without making users use a
separate program or even learn relational database
jargon.

Automatic maintenance of minimal name expansion for
parameter references. Names are thus presented as
short as possible, keeping the mental burden down and
reducing the possibility for confusion.

Intuitive, English-like and flexible syntax (and wizards)
for creating date streams. These date streams can thus
be easily changed and maintained, unlike spreadsheets,
which are very rigid 1n their handling of this informa-
tion.

Parameter labels define the parameter name for formula
references. This 1s different from spreadsheets, 1n that,
in spreadsheets, values are identified generally by
where they are, not by their names (despite a cumber-
some facility spreadsheets offer for naming cells).

Notes can be added to any heading or parameter, and the
identify of the user making the note i1s recorded. This
helps with auditing and documentation of models.

Assertions can be added to any parameter. Assertions let
a “product manager” create models and guide future
users 1n the model’s use.

10

15

20

25

30

35

40

45

50

55

60

65

14

Optimization constraints can be added to any parameter.

Optimization constraints can be “OR’d” together to make
a single constraint that 1s satisfied by any one. Users do
not need to deal with linear programming jargon, which
1s often unfamiliar to them. This makes 1t easy to
specily commonly desired constraints that are difficult
to 1mplement with binary variables m a strict “linear
program’ setup.

An activation formula can be attached to a constraint that
makes the constraint inactive when the formula evalu-
ates false. Thus, constraints can be “data-driven.” This
lets model builders build models for less-sophisticated
users, who can operate complicated models by provid-
ing values for variables.

An activation formula can be attached to a heading to
make the sub-tree (for which it is a root) inactive when
the formula evaluates false.

Glyphs reflect the existence of notes and assertions
including the pass/fail state of assertions. Thus, the user
doesn’t need to open a parameter in order to tell
whether a note or assertion is 1nside 1it.

Glyphs indicate the protected state (if any) of the param-
cters.

Allows for partial null data 1n an array.

The “Collect . . . ()” functions let models be defined
concretely (“add this to that”) or abstract/symbolically
(“add everything labeled principal to everything
labeled interest”). The abstract/symbolic capability
means that product managers can write models that
stand up to use 1n many different contexts.

An extensive range of mathematical functions for use 1n
formulas(see below).

Intelligent/selective recalculation helps program perfor-

mance.

The next chapter is the Optimization chapter (see FIG.
21). In this chapter the system 1s able to solve mathematical
linear programs and other “search for best answer” prob-
lems. It also provides extensive tools for managing and
secing the effect of model constraints. This feature 1s very
important as models get complex, and the number of con-
straints grows to, for example, several dozen. A
deterministic, formula based model can be used as the basis
for an optimizable model: starting with a deterministic
model, the user can simply identify the objective and add
constraints. In accordance with the invention, there 1S no
need to write a separate, optimization-ready version of a
model. The optimization chapter provides an overview of all
optimization constraints and parameters in a case and
defines the objective function for optimization. The system
analyzes the optimization instructions and data contained 1n
a model. It provides diagnostic status indicators for:

™

the mathematical type of optimization problem (e.g.
linear, integer, non-linear, etc.);

the state of the constraints (satisfied or not satisfied).
Thus, a hypothetically optimal solution can be hard-
coded and compared against constraints, identifying
those parts of the hypothetical solution that do not meet
the constraints; and

the state of optimization (e.g. optimal, not optimal,

infeasible, unbounded);

In addition, the system gathers all model constraints for
viewling on one page. This 1s important because constraints
are olten of definitive concern 1n tax-motivated transactions.
The system also sorts constraints by failing, binding, non-
binding, and inactive. This helps negotiators identify the

US 6,957,191 B1

15

critical points 1n their deals, or helps a user figure out why
his model might fail to provide an answer he would expect.
It also provides detail results of the values, slack, shadow
prices or failure margin of constraints. This information
helps the user explain anomalous results, or suggest ways
that financial objectives may be attained at less cost. Also
provided 1s a stmple algebraic list of all constraints, making,
it easier to make sure that no constraints have been mistak-
enly taken out or left in. This list can be printed, and
becomes an important “output” for deal participants to
examine and approve. The system also gathers all optimiz-
able parameters, search parameters, and non-linear param-
cters for display separately on their own pages, helping
make sure that the linear program model has been set up
properly. It also automatically determines whether there are
any parameters causing non-linearity and thus precluding
being solved by the built-in linear optimizer The user can
then more easily decide how to change the model to be
solvable by the available optimizer. The system automati-
cally traces the non-linear parameters to corresponding
optimizable parameters and displays them with the non-
linear parameter. This helps modelers find linear models that
are approximate solutions to otherwise unsolvable nonlinear
problems. The system also allows users to specify facets of
optimization in a way that 1s mtuitive and easy to under-
stand. Constraints are expressed 1n terms of comparisons
and not just formulas. Prior art systems treat formulas with
constraints as one and the same making 1t difficult to discern
between a formula that 1s incorrect and a formula which 1s
correct but not satisfied 1n the model. Constraints are entered
and evaluated separately from the associated formulas mak-
Ing 1t easy to see where the true problem lies. Results from
the optimization software (e.g. CPLEX) are likewise trans-
lated back into these terms producing a result that users can
casily interpret. It also provides button access to the opti-
mizer. The system automatically converts the model to
“optimizable” form for the optimizer, and then re-converts
the optimizer’s solution to code; thus, optimization 1s a
transparent process to the user.

The GUI presents user with detailed progress screen and
saves the results back to the user’s file. The system also
re-evaluates constraints 1n the context of the user’s model to
provide more useful feedback from optimization. This 1s
important because the specific analytical assignment 1s often
to reverse-engineer the set of constraints that produced a
particular answer. The system also automatically invokes
Successive Linear Programming (SLP) when needed to
solve for a search parameter. This saves the user the labor of
having to determine that the problem at hand 1s SLLP and then
perform the SLP by successively invoking the optimizer. It
also automatically combines point-by-point searching and
mathematical optimization, saving the user the labor of
scarching over various valid values of nonlinear data.

The next chapter is the Payment Organizer (see FIG. 23).
The Payment Organizer shows all the payments a given
party receives, or taxable income effects a party might
recognize (contingent on the exercise or non-exercise of a
particular set of decisions, if there are any). In short, this is
the party-specific “bottom-line.” It also provides user top-
level control over payment stream classifications and sum-
mary report of all payments. The system calculates and
summarizes the cash flows and taxable income etfects of all
instruments automatically. It also provides ability to add,
delete, rename and reorganize (tree-like) all payment stream
classifications. The system also provides the capability to
filter payment streams according to party, outcome, or cash
versus taxable income. It also provides capability to view

10

15

20

25

30

35

40

45

50

55

60

65

16

payment stream summary according to any ad-hoc date
strcam specified by the user. Data can be summarized
annually, monthly, daily, or even in combination (daily for
the first couple years, annually thereafter). This is enor-
mously difficult to do in a spreadsheet. Also, categories can
be collapsed to show less detail, or expanded to show more
detail. Categories can also be expanded to show i1ndividual
payments contained in the category for auditing purposes.
Subtotals can be shown on top of items totaled or below
them, with a button-click. This makes reading the reports
casier. The editor for the symbols 1s useable in symbolic-
definition formulas (i.e., “CollectWhatever”). Additionally,
the system provides standard financial statements (income,
balance sheet, funds flow).

The next chapter is Reports (see FIG. 22). The Reports
chapter provides the user with the ability to create, edit, view
and print model data 1n reports that are useable as explana-
tory documents. Users do not have to load data into some
other program for cosmetic improvements. A report can
consist of several sections (each of which could otherwise be
a freestanding report of its own, all arranged on a single
report’s page. The system provides the ability to create
report “sections” (report parts), and provides the ability to
drag and drop report sections on a layout editor to organize
above/below and left/right arrangements of report sections.
It also provides for push-button pivoting of individual
sections of a report so that dates and/or labels can be shown
vertically or horizontally. The system automatically creates
headings for data rows/columns based on parameter names.
The user can change these names. It also supports user-
driven and automatic creation of nested super-headings (i.¢.,
headings running across several columns). This makes
reports more readable because 1t groups data into fewer,
more easlly understandable chunks, and helps the report
reader find a particular column of interest more quickly. It
also provides fitles, headings, footnotes and control over
data format. Reports can thus be “customer-ready” without
having to be imported for clean-up into commercial word-
processing or spreadsheet software. The system also sup-
ports the creation of sets of many reports to be printed or
viewed. This 1s important because the “story” of a financial
product often requires several related reports. It may option-
ally bind reports to user models (so that they are stored with
the model), or to instrument definitions (so that they are
stored with the mstrument definition and thus available 1n
every model in which such an instrument is used). Reports
are language-independent: thus output can be 1n a language
other than the system user’s working language. The user
does not have to speak the output language.

The next chapter 1s Template Builder. A “template” 1s a
white-box piece of pre-built and pre-tested Smart Paper. A
library of such templates provides a large part of the built-in
financial knowledge that users can draw on. This makes 1t
worthwhile for an organization to mvest in well-constructed
Smart Paper pieces that can be reliably shared. The GUI
provides the ability to create Template definitions to be used
for 1instantiation. Generally, only specially trained “builder/
users” would invoke the Template Builder. It provides user
access to protection controls over read/write specifications
of parameters. It also allows the builder of templates to work
in the same manner as 1n regular Smart Paper. Thus, they are
familiar 1n appearance and do not require users to learn how
separate components look and work. The system provides
linkage to the currently active model so as to provide useful
feedback to the builder. It also allows the builder to create,
edit and delete template definitions, and to make these
definitions available to the larger user community.

US 6,957,191 B1

17

The next chapter i1s Instrument Builder. This chapter
provides a special “build” mode for mstrument builders to
create the definitions of instruments. Instruments can be
designed to, for example, calculate tax effects for numerous
governments (U.S. states, foreign countries) simultaneously.
Tax mstruments can be designed to, for example, handle
complex multinational tax interactions (foreign tax credits
and the implications of various international tax treaties).

The next chapter or feature contains Main Menu Items.
These 1tems include an extensive, full-featured on-line

“help” system which provides documentation for system
features and behavior, and also provides financial examples
which can serve as a tutorial; options for adjusting the
program’s appearance (horiz/vert tabs); and a program that
follows the Windows NT “Control Panel” settings for cos-
metics (dates, mouse clicks).

In addition to the above, there are some general features
found 1n several of the chapters or components of the system
described above. For example, print previews are provided
for enabling the user see output before committing it to
paper, thereby saving time, paper, and aggravation. In
addition, general cosmetic formatting capability 1s provided
which 1s similar to that found 1 commercially available
word processing or spreadsheet programs.

Another chapter or feature of the invention provides the
ability to manage multiple cases. A financial analyst may
spend as much time managing and summarizing the cases he
produces as he would spend producing the cases in the first
place. The GUI also provides tree, containment, or list views
of the files. It also provides an overlapping grouping
capability, so files can be treated as a group 1n addition to
individually. The system also provides a mechanism for
extracting key results for several files and presenting them 1n
a tabular report. It also provides file search capabilities based
on the contents of the file 1n addition to the file’s name, as
well as filtering and sorting capability (e.g. show only my
files). A “recent files” section and “all-files” section 1is
provided. This 1s important because a great majority of the
time users work on a single project continuously, and, with
this feature, they don’t have to look through hundreds of
files to find one they were recently working on. The system
intelligently 1dentifies differences between two or more
selected files, making 1t easier to explain their differences. It
also provides capability to reorganize files (i.e. the tree), and
the capability to read and add notes to files. Thus, a file’s
owner can protect the file from changes, while letting
colleagues look at, and then attach notes to the file. In
addition, the system provides detail records of file (e.g.
ancestry). This 1s important because the great majority of
files will probably not be created anew, but rather will be
modified versions of existing files. The ability to track the
changes that produced a file 1s a very advantageous and
time-saving feature.

It 1s noted that not all of the “chapters” discussed above
necessarily have a “Tab” always visible on the GUI. In other
words, some of the chapters or features, 1.e. Template
Builder, are accessed through menu items or other suitable
means for enabling the selection thereof.

Referring now more particularly to FIGS. 5-12, there 1s
shown an example of the Payment Diagram chapter 50,
having a graphical representation 52 of a simple financial
scenario involving a two parties (54 and 56) and a “loan”
instrument arrow 38 connected therebetween. In FIGS. 5-12
the two book view 1s used 1n order to more clearly explain
the functionality of the mvention. It 1s noted that, in FIGS.
5—-12, the Payment Diagram chapter 50 has a reduced size so
that greater information can be seen 1n the other chapters on
the right side of the display.

10

15

20

25

30

35

40

45

50

55

60

65

138

In accordance with an important aspect of the invention,
the Engine 1s operable, 1n response to creating of a graphical
model, to automatically create useful information 1n certain
of the other chapters. More particularly, 1n response to
drawing an instrument in the Payment Diagram chapter,
such as “loan” as shown 1n FIG. §, the engine automatically
generates time lines 62 1n the Time Organizer chapter 60.
This functionality is illustrated in the split screen view of
FIG. 5, wherein the Payment Diagram 50 1s shown on the
left side of the display, while the Time Organizer 60 1is
shown on the right side of the display. The badged parameter
in the instrument marks the most important cash flow which
1s displayed graphically 1n the Time Organizer. It 1s noted
that the engine uses default data for generating the time lines
of FIG. §, and that the user can then edit the information, 1f
necessary, to comply with the particular scenario being

modeled.

Similarly, FIG. 6 shows an instrument calculation that 1s
automatically generated i1n the instruments chapter 68 1n
response to drawing of the “Loan” instrument 38 in the
Payment Diagram chapter 50. Default settings are also used
for this canned loan instrument, but after i1t has been created,
the user can modily the data 1n the instrument chapter as
required to correspond with the particular scenario being
modeled. Thus, by adding an imstrument 1n the payment
diagram 50 the engine automatically generates the instru-
ment definition including related calculation 1n the 1nstru-
ment chapter 68. FIG. 7 shows the badged parameters 1n the
mstrument of FIG. 6. The box to arrow graphic on the left
side of the instruments chapter, as shown 1n FIG. 7, indicates
the 1mportant cash stream which shows up in the cash link
in the payment organizer and 1n the time organizer link. The
triangles and squares combined with the plus and minus
signs (also on the left side of the instruments chapter) show
the tax effect which shows up as the income 1n the payment
organizer.

FIG. 8 shows the mnformation automatically created in the
constraints page of the optimization chapter 70 1n response
to drawing of the instrument shown in the instrument
chapter 50. FIG. 9 shows another page, 1.e. the optimizable
parameter page 70a, of the optimization chapter 70 and the
related information automatically generated by the engine in
response to drawing of the “Loan” instrument.

FIG. 10 shows the information (cash) that is automatically
generated by the engine 1n the payment organizer chapter 72
in response to drawing of the “loan” instrument in the
payment organizer chapter 50. Similarly, FIG. 11 shows the
(Income-tax effects) payment organizer view which is also
automatically generated by the engine. The user can switch
between the view 1 FIG. 10 and FIG. 11 by moditying the
“Payment Type” in the pull-down menu at the top of the
Payment Organizer chapter 72.

Finally, FIG. 12 shows the information that 1s automati-
cally generated 1n the Reports chapter 74 1n response to
creation of the graphical party diagram in the payment
diagram chapter 50 shown therein.

Of course, all of the information shown 1n FIGS. §-12 is
only exemplary, and 1s only based on the exemplary graphi-
cal representation shown 1n the payment diagram 50 which
has the exemplary loan instrument. This information will, of
course, vary depending on the particular instruments used
with the tool and the particular application in which the
invention 1s utilized.

EXAMPLE CASE

The following description provides an example of case or
financial scenario modeled using the tool of the instant
invention.

US 6,957,191 B1

19

This exemplary case 1s called a QTE or Qualified Tele-
communications Equipment case. A graphical representation
of this exemplary financial scenario 1s shown 1 FIG. 13. The
party LessorNameHere 1s the client or main focus of the deal
and 1s called the lessor. The lessor wants the tax eifects
associated with owning QTE equipment. The party
LesseeNameHere, called the lessee, currently owns the
equipment and thus has the tax effects. The lessor proposes
a deal to buy the asset and lease 1t back to the lessee thus
acquiring the tax effects. The lessee still gets to use the
cequipment. To get the lessee to agree to the deal, a portion
of the money used to buy the asset goes to the lessee as well.
The tool 1s used, 1n this example, to model the deal from the
perspective of the lessor. The company, FeeRecipients,
known as the advisor, has been hired by the lessor to arrange
the deal and thus the fee 1s paid to 1it. Likewise, only the
lessor 1s shown to pay taxes because the deal 1s from their
perspective. FIG. 7 provides a graphic representation of this
exemplary financial scenario or deal. The diagram was
created 1n using the tool of the present invention.

The following steps present a high level description of
what 1s happening 1n this deal:

1) The lessor borrows money from the lender
(LenderNameHere in the diagram) to buy the assets.

2) The lessor buys the assets from the lessee as indicated by
the HardAsset and SoftAsset lines (the direction of the
arrow 1ndicates which way the money flows, not the
asset).

3) The lessee pays rent to use the assets.

4) The lessor pays taxes during the deal.

5) The lessor pays a fee to the advisor for arranging the deal.

6) At the end of the lease, the lessor sells the assets to another
party (Generic in the diagram). This is indicated by the
residual line.

7) At some point in the middle of the deal, the lessee can buy
the assets back and terminate the deal. This 1s illustrated
by the PurchaseOp(EBO) line.

Step 1—Draw the Diagram as Shown in FIG. 13 1n the

Payment Diagram Chapter.

The first step 1n creating a case involves drawing the
diagram shown 1n FIG. 13 using the Payment Diagram
chapter 50 of the user interface. The basic steps for this
involve adding the various parties to the diagram, as repre-
sented by boxes, and drawing financial imstruments, as
represented by directional arrows connecting the boxes.
FIG. 14 shows the Payment Diagram interface used to create
the diagram, and also shows the result of the first step
executed 1n this example, wherein a first party 78 named
“LenderNameHere” has been drawn in the Payment Dia-
oram chapter 50 The white area of FIG. 14 1s the drawing
arca where the diagram of the deal 1s created. The tools
above the drawing area are used to create and view the
diagram. For example, the magnifying glasses allow the user
to zoom 1n and out.

This 1mage also shows the general interface for the
product. It 1s noted that not all figures herein show the full
interface of the full chapter. In other words, some of the
figures only show an enlarged partial view of the interface
or chapter. The tabs 76 on the left side of the screen are used
to navigate around the program to the different interfaces or
“chapters” of the user interface. Each major step 1n creating
a deal 1s represented by a chapter. The 1cons under the menu
bar are general purpose tools used, for example, to save a
case to a hard disk or load a new case.

To do this first step, the user clicks the party tool (the
round box with a plus sign) and then clicks in the drawing
arca where he wishes to locate the party. He can then select
from a list of predefined parties or enter his own.

10

15

20

25

30

35

40

45

50

55

60

65

20

When the user adds a new box to the party diagram, such
as party 78, there 1s no specific action 1n the engine, except
for the possible generation of a party object 1n the Parties
Chapter. If this 1s a party that does not appear anywhere else
in the payment diagram, then the engine adds a new section
to the Parties chapter with two parameters which the user
can then edit and augment. The two parameters represent,
for example, the first month of that party’s fiscal year, and
the name of his tax counsel. This data 1s reflected in engine
parameters to provide persistence to the data, and to make
the data available to instruments which will be connected to
this party.

Referring now to FIG. 15, after adding a two or more
parties 78, the user can then begin to add financial instru-
ments 80. The user does this by clicking on the first party(
the one who will be making payments), and dragging a line
to the second party (the one who will be receiving the
payments). The arrow indicates the direction the payments
flow. FIG. 15 shows this next step with two parties and a
single loan 1nstrument. When considering the arrows of an
instrument line, the loan 1s a misnomer because payments or
money flows in two directions. The borrower receives the
loan and then makes payments back. However, the conven-
tion used by this embodiment of the program 1s to show only
the direction in which the loan 1s paid back.

When the user draws an imstrument 80 on the Payment
Diagram, the application creates a representative object 1n
the engine to calculate and generate the calculations and
cash tlows for that instrument. More specifically, the client
application tells the engine General Registry to create a new
instrument object, which initially 1s an empty shell. The
client application reads 1n from a data file the representation
of the imstrument that has been saved by the instrument
designer, and splits this up into graphic and engine data and
passes the engine part to the new Instrument object. The
engine then reconstructs the mstrument from this data; this
includes a hierarchy of parameters and parameter lists, a
couple of mstrument party objects, and a default instrument
handler. Each instrument party contains the role information
needed to create the cash and tax implications for the party
at one end of the instrument arrow. The default instrument
handler contains the information needed on whether and
how to truncate the flows in non-base outcomes. Each
parameter’s formula 1s parsed 1nto its expression objects,
and named references are registered with the general regis-
try’s name reference manager, which, if possible, resolves
them, so that the parameter’s values can be calculated when
needed. As these references are resolved, links are made
between the parameters’ dependency managers so that
changes are correctly propagated through the entire system.
For each decision that the user has created in the time
organizer, the engine creates an instrument handler contain-
ing the information on whether and how to truncate the flows
for outcomes containing that decision. Each handler starts as
a stmple copy of the default handler, but can be changed by
the user. The client tells the engine 1nstrument object the
names of the parties at each end of the arrow. The engine
then looks 1n the parties data to find a section of data for that
party, which it then uses to complete the instrument party
role information (e.g. date of fiscal year end). The engine
instrument synchronizer object then springs into action,
generating the actual flow parameters for each party and
outcome. The mstrument party information 1s used to deter-
mine which parameters contain the cash and tax flows for
that party. For non-base outcomes, the synchronizer searches
for the first decision that terminates the flow, according to
the instrument handlers. It then generates a truncating

US 6,957,191 B1

21

parameter (if necessary), and a final parameter which it
identifies to the internal database by attaching badges indi-
cating the party, cash or mcome classification, outcome,
instrument name, other party and tax authority (for income
flows). The engine internal database recognizes these new
badged parameters and changes any collected data in (for
example) yield calculation templates to update their values.
This process also enables the payment organizer to update its
display to show the new instrument.

The user continues to add parties and mstruments until the
deal 1s modeled fully as shown 1n FIG. 13.

Step 2—Define the Dates

Dates and timelines are defined 1n the Time Organizer as
depicted 1n FIG. 16. In the top portion 82 of this chapter, the
user defines single case dates known as Key Dates. The user
clicks the add date tool (the calendar with a plus sign) and
then enters a name for the date as well as the actual date.
Similar to parties, the dates are stored in the engine and can
be referenced by other parts of the case. The other tools next
to the add date tool are used to modily the dates mncluding
changing or deleting a date.

In the bottom section 84 of the interface, the user defines
the overall deal dates called the EventDates. This sets the
basic start and end of a deal anrd also the periodicity (annual,
quarterly). The user changes the EventDates by right click-
ing on the line and selecting “Edit timeline” from the menu.
The other lines are for visual purposes only. All key dates
defined 1n the deal are shown. Each primary cash flow for an
instrument 1s represented by a line 1n the time organizer.
Badging information stored within the engine for each
instrument defines which 1s the primary cash flow for that
instrument.

For this exemplary deal, the following changes are
defined 1n the Time Organizer:

Closing: Dec. 30, 1998—the date the deal closes and all the
transactions begin (every deal has a closing date)

EBO: Jan. 2, 2011—the date the lessee can option to
purchase the assets back (EBO stands for early buy out)

Residual: Dec. 30, 2014—the date the lease ends

EventDates: from the Closing to the Residual-—the main
deal time line starts at the closing and continues annually
until the residual date

Once the EBO date 1s defined, 1t 1s turned 1nto a “deci-
sion” by the engine, which means the deal splits 1n to two
possible courses or “outcomes”. The normal case, or
BaseOutcome, means the deal comes to term and the assets
are just sold to the market place. The EBO outcome occurs
when the lessee purchases the assets prior to the end of the
deal. For the purpose of financial analysis, all outcomes can
be fully modeled to get the deal approved by the client. The
outcome tool, the triangle with a plus sign (currently dis-
abled in FIG. 16), is used to define an outcome.

When the user adds an outcome to the time organizer
chapter, the engine performs numerous functions. More
particularly, the engine creates a new outcome object to
house data specific to this outcome, with links to the
decision objects which comprise the outcome. For each
tax-like instrument (for which the instrument designer has
specified a “fresh copy for each outcome™), a complete copy
of 1ts parameter, party and classification data 1s generated.
For each instrument, the instrument synchronizer generates
new terminating parameters as necessary. These parameters
terminate the flows generated by this instrument at the first
decision contained 1n the new outcome that has been des-
ignated by the user as a terminating decision in the instru-
ment’s decision handlers. For each instrument, the instru-
ment synchronizer generates new badged parameters to

5

10

15

20

25

30

35

40

45

50

55

60

65

22

identify the flows to the internal database. These parameters
take their value from the terminating parameters defined 1n
the previous section (or the original parameters if not
terminated), with possibly a sign change. They are given
badges based on the data in the party and classification
sections of the instrument; the categories are Party,
Outcome, Cash or Income Classification, Other Party,
Instrument Name and (for income classifications) Tax
Authority. When the internal database receives the informa-
tion about the new badged parameters, 1t signals all effected
collector parameters that a change has occurred. These are
parameters which have been designated as extraction
parameters, or as formula parameters using one of the
special “collect” functions. The next time that their values
are requested, they will re-establish all links with badged
parameters so that the new ones are included. The collector
parameters signal a value change via their dependency
managers to tell all other parameters whose value depends
on theirs that a change has occurred. In this way the flows
generated by the new outcome spread their effect throughout
the model.

FIG. 17 graphically shows the decisions and outcomes
which result from the early buy-out (EBO) option in this
example.

Step 3—Entering Instrument Data

Once the diagram 1s created and the dates are defined, the
user next fills m all the data and calculations necessary to
complete the deal. The first part of this 1s filling 1n 1nstru-
ment data. Instrument data 1s entered in the Instruments
chapter as seen 1n FIG. 18. FIG. 18 shows the Calculations
section of an mnstrument where data, such as the rate of a
loan or cost of an asset, and calculations, such as the
amortization of a loan or depreciation of an asset, are
entered.

The first two tabs near the top of the figure and next to the
“Calculations” tab are used to enter role mnformation for
each party associated with an instrument (as defined by the
payment diagram explained earlier). In FIG. 18, the Bor-
rower tab can be seen where information about the party
borrowing the money for the loan 1s modified such as how
the loan 1nterest 1s deducted. Lender information 1s modified
by selecting the next tab. The Event handlers tab contains the
settings for how the instrument 1s processed if a different
outcome 1s used. For example, loans are generally paid oft
if a deal ends early. The Reports tab lists the reports speciiic
to the mstrument, such as the loan payments.

Starting with the loan instrument, the only item which
needs to change 1s the loan rate. The other default or initial
values for the instrument are sufficient for how the loan
should be setup 1n this deal. Money 1s borrowed at a fixed
rate of 5.0625%. The steps are as follows: 1) Double click
on the current value for the loan rate (this is the Rate
parameter 1n the Calculations section of the Loan
instrument); and 2) Change the value from the default value
to 5.0625%. (See FIG. 19). It 1s noted that the formula
includes additional syntax that idicates how the Rate
parameter 1s to be used throughout the model.

When the user changes the Rate formula in the user
interface, the engine will record the new formula for that
parameter, parse 1t 1nto 1ts expression objects, and transmit
a valuechanged message through the network of dependency
managers for parameters whose values depend on this
parameter. Each of these parameters will then know to
recalculate its value when 1t 1s next requested.

To complete the 1instrument changes, data will need to be
entered for several other instruments. Instrument data gen-
erally falls into two categories. It 1s either a fixed part of a

US 6,957,191 B1

23

deal such as the cost of an asset or the 1nterest rate of a loan.
Or 1t 1s an optimized value that gets calculated when the
optimal solution 1s found. The 1nstruments 1n this case are set
up 1n the following way:

Fixed Data:

Hard Asset—$700,00. The cost of the asset which is gener-

ally a given 1n the deal

SoftAsset—$300,00. The cost of the asset which is generally
a given 1n the deal

Fee—This 1s 1% of the assets purchased and is negotiated
with the client or lessor.

Residual—For this example, the residual 1s actually fixed at
20% of the cost of the assets.

Variable or Optimized Data:

Loan—The loan payments or debt service are optimized to
satisfy the deal (see the optimization step).

Rents—The rent payments are likewise optimized to satisty

the deal.

PurchaseOp(EBO)—The purchase option payments which
are used when the EBO 1s exercised are optimized as part

of the deal.

No changes are needed 1n the Taxes mstrument since this
1s based on the standard federal tax rate.
Step 4—Building Smart Paper

Any data or calculation not specified as date or in the
mstruments 1s entered 1 Smart Paper. Smart Paper 1s a
calculation based feature very similar to a enhanced spread-
sheet (more details on Smart Paper are provided below).
However, while a spreadsheet 1s based on individual cells
linked together strictly by formulas, Smart Paper formulas
know about each other and about links to dates. More
particularly, as explaimned above, Smart Paper 1s a non-cell
based calculation interface where references are based on a
hierarchical outline as opposed to a positional reference. The
linking information 1s stored in the engine. For example, one
formula may contain a set of values linked to the first date
of every year for 20 years. A second formula may only need
the value from a specific date, such as the fifth date, within
the first formula. The second formula need only specity the
specific date and the engine will search out the most appro-
priate value.

The Smart Paper 1n this deal 1s built up 1n two ways. First,
the user has a variety of templates he can add that perform
pre-defined calculations. Second, the user can create custom
calculations or enter custom data into Smart Paper. F1G. 20
shows the interface for creating Smart Paper. The main
screen with all the data and calculations 1s where the user
creates his outline of data and calculations. The tools along
the top are used to change the view of Smart Paper and to
operate on speciiic entries in the outline.

Each tab 1s a different sheet of Smart Paper where the user
can create his outline and enter his data and calculations.
When the user adds a piece of Smart Paper, the engine
creates a worksheet in the General Registry. As the user
creates Headings and Parameters in the piece of Smart
Paper, the engine creates mirroring Parameter Lists and
Parameters. When a Parameter 1s created and named, the
engine registers it with the name reference manager. This
will attempt to resolve any outstanding references to this
name by formulas 1n other parameters. It will also see it
references to other parameters of the same name need to be
more fully qualified to prevent ambiguitics. When a refer-
ence to this parameter 1s resolved, the referencing parameter
sets up a link between its dependency manager and that of
the new parameters, so that any changes in value of this
parameter will be signaled to the referencing parameter.

When the user specifies the formula for the new
parameter, the engine parses 1t 1nto 1ts basic expression

10

15

20

25

30

35

40

45

50

55

60

65

24

nodes. Any references to other parameters are registered
with the name reference manager which will attempt to
resolve 1t immediately. I 1t cannot be resolved immediately,
then the name reference manager keeps the request as
pending, 1n case 1t can be later resolved. Any resolved
reference causes links to be set up between the dependency
managers as described above.

As the user enters parameters into Smart Paper, the values
of these parameters are immediately displayed. It does this
by asking the engine to calculate the parameter’s value,
which triggers an evaluation of the parsed expression nodes.
These nodes do the basic arithmetic operations, references to
other parameters and evaluation of functions. The value
returned can be either a scalar or some sort of array. Scalars
are single quantities like numbers, dates, frequencies,
clapsed times, character strings. Arrays are lists of these
scalars.

In FIG. 20, we see that the user has set up five sheets of
Smart Paper. The first one contains all the IRS related
calculations which become 1mportant when optimizing the
deal. A fully optimized deal has certain legal requirements 1t
must meet. The next one calculates the present value benedit
of the deal for the lessee. In fact, the entire purpose of this
deal 1s to maximize the present value benefit. The next two
sheets calculate the lessor’s MISF yield for the EBO and
BaseOutcomes. And the last sheet just has a general collec-
tion of data used throughout the deal. All parts of Smart
Paper except the general section are created using pre-
defined templates.

Step 5—Optimizing the Deal

Optimization 1s the process of 1mposing constraints or
requirements on a case and the varying values and other
parts of the case unfil the best result 1s found. By a
constraint, it 1s meant, for example, that some cases fall
under certain restrictions from, for example, tax laws relat-
ing to leasing and rents which must be satisfied if the case
involves a lease or rents. The elements of a case that can be
varied are called optimizable parameters.

In this deal, we are maximizing the present value benefit
to the lessee. The following constraints exist on this deal and
must be satisfied when optimizing to the best result:

IRS tests for profit, EBO compulsion, minimum investments
and uneven rents

Rent payments must be greater than O

Loan payments and the loan balance must always be greater

than O
Loan payments must be less than rents received
EBO payments must be less than the taxes paid by the lessor
The loan amount must be less than or equal to 80% of the

asset cost
Standard constraints on the calculation of a MISF yield for

both the BaseOutcome and the EBO outcome
The following parameters are then varied to reach the
optimal deal:
The loan payments
The rent payments
The purchase option payments
MISF minimum investment balance

The optimization screen 1s divided 1nto several pages by
the tab across the top of the screen, as shown 1n FIG. 21. The
“Constraints” tab which 1s selected and shown in FIG. 21
shows those aspects of the deal which can’t change or must
be satisfied. These constraints are added to parameters
spread throughout the instruments and sheets of Smart
Paper. The engine collects these and displays them 1n a
precise form for the user to view and evaluate. The Opti-
mizable Parameters tab lists those items which can change.

US 6,957,191 B1

25

The other tabs provide other relevant information to help the
user evaluate his model. The Objective Function shows what
1s being optimized and whether a maximum or minimum
value 1s sought. The user simply clicks the Optimize button
near the top of the screen to start an optimization.

When the user hits the optimize button, the engine ana-
lyzes all the parameter definitions and constraints that the
user has entered, and tries to set up a linear (or mixed
integer) programming representation of these suitable to be
sent to the CPLEX linear optimizer. Assuming that this can
be done, it sends the model to CPLEX, gets the results back
and puts the resulting values for optimizable parameters
back into their formulas.

Step 6—Viewing Output

The final step 1s viewing the data either in the reports
chapter or in the payment organizer. A report from the
reports chapter 1s displayed m FIG. 22. The tools are
provided to allow the user to view different aspects of the
report including zooming in and out or printing the report.

The data for a report 1s collected directly from Smart
Paper and mstruments. The only function the reports chapter
performs 1s formatting the data for professional output.

Likewise, the Payment Organizer chapter, allows the user to
view the data and cash flows according to a speciiic party,
outcome and time frame within the deal. This again 1s only
a viewing interface which collects data directly from the
data and calculations entered 1n other parts of the model. The
Payment Organizer interface i1s displayed in FIG. 23. FIG.
23 shows the annual cash flows for the lessor party from the
base outcome of the deal. The user changes the view by
manipulating the various controls provided at the top of the
screen.

As can be seen from the example case above, the user can
model a financial scenario easily and quickly using the tool
of the present invention.

SMART PAPER EXAMPLES

The following are examples demonstrating the function-
ality of the worksheet section or Smart Paper feature of the
instant invention.

Smart Paper 1s a non-cell based calculation interface
where references are based on a hierarchical outline as
opposed to a positional reference. FIGS. 24 and 25 show a

simple, example piece of Smart Paper created in accordance
with the 1nstant invention, and demonstrates some of the

benefits of the non-cell based formulas used therein.

The smart paper example of FIGS. 24 and 25 show a
portfolio of airplane rents. Under the heading Aircraft, we
see rents for Planel and Plane2. The rents for each aircraft
are paid on different dates and for different amounts. The
Totals section sums all the dates that the rents are paid on
and shows the rents paid on each date. In a sense, this acts
as a summary table. The AnnualTotals section refers directly
to the Totals section but uses an annual date stream as
opposed to the dates each rent 1s paid. This effectively shows
the viewer how much rent 1s paid each year regardless of the
specific day that rent 1s paid.

FIG. 24 shows the values or results of the formulas
created 1n Smart Paper, while FIG. 25 shows the correspond-
ing (or hidden) formulas used to obtain the values in FIG.
24. It 1s noted that the actual rents are just dummy values
used for 1llustration purposes. The two functions used 1n this
example are Subtotal and Union (see description of Formula
Language below). Union collects a bunch of date streams
and combines them into one. Subtotal searches all the
parameters underneath a heading and collects values from
all the parameters with the same name as specified for the
function.

10

15

20

25

30

35

40

45

50

55

60

65

26

From this example, we see some of the benelits of the
non-cell based worksheet of the instant invention. For
example, if another plane 1s added under the heading
Aircraft, and the rent stream 1s called Rents, then the
TotalRents parameter will always show the total of all rents,
because the Subtotal function finds all parameters named
Rents under the Aircraft heading. Likewise, 1f a rent pay-
ment 1s added to any of the existing Rents parameters,
TotalRents 1s automatically updated. In a conventional
spreadsheet, solving these two problems would ultimately
involve 1nserting cells or rows or columns and updating
formulas that sum the data. The hierarchical nature of the
outline, made possible by Smart Paper, lets the same name
be used more than once 1n the manner indicated above. As
a result, a very convenient, flexible and powertul calculation
interface 1s provided by the Smart Paper chapter of the
instant invention.

This example also demonstrates the advantage of the
dynamic non-cell based formulas used 1n Smart Paper. For
example, the AnnualTotals collects all the rents paid for each
year. In a spreadsheet, the user would have to examine each
rent stream and individually select which rent payments fall
in each year. If the Annual table then needed to be changed
to quarterly, the user would have to go back and re-do the
entire process from scratch. However, with the non-cell
based worksheet of the instant invention, formulas know
how to link values to dates so that the final formula can
interpret the mput values based on the actual date rather than
the position the date falls in a spreadsheet, which relies on
positional references rather than the hierarchical references
of the instant invention.

Similar to the AnnualTotals, the TotalDates parameter
benefits from non-cell based references it a new date 1s
entered for any rent stream. The TotalDates will always
collect all rent dates regardless of how many or few there
are.

A second smart paper example 1s shown m FIGS. 26 and
27. This example relates to a simple loan structure 1 which
calculations of the loan amount and its amortization 1s based
on a present value (PV) factor and a fixed debit service. FIG.
26 shows the actual values in this smart paper example,
while FIG. 27 shows the underlying formulas used to
calculate the values. The following table explains the par-

ticular headings, parameters and formulas used in the
example of FIGS. 26 and 27.

SIMPLE LOAN EXAMPLE

Heading/

Parameter Details

[nputs.Scalars

Cost Amount on which loan will be based (i.e., the cost of an
asset)
Calendar Calendar day-counting method to use 1n the calculations

that follow.
Refers to Time Organizer default calendar setting.

[nputs.Rate-
Schedule

RateDates Dates that interest rates are set and the periods to
which those rates apply.

First and Last links the first and last dates of the
current schedule with those of another schedule, which
in this instance i1s the PaymentDates index in the

[nputs.Payments section.

US 6,957,191 B1

27 23
PRESENT VALUE AND IRR EXAMPLE

-continued
Heading/
Parameter Details 5 Heading/
_ Parameter Details
Rate [nterest rates indexed to RateDates
Table means a given value applies to every day 1n its Inputs
period.
For uses a repetition va%ue to map the same value to [nvestor Name of party whose investment is to be analyzed.
a certam.number of periods. Selected list member from category “Party™.
The semicolon (;) symbol stops the current 10 Calendar Day-counting method to use in calculations on this
sequence of values. _ o sheet of Smart Paper.
Thereafter maps the last given value to remaining Selected list member from category “Calendar”.
index dates. CashFlow__
[nputs.- Summary
Payments
_ _ 15 Project__Dates Dates returns the dates of flows found by the
PaymentDates Dates of payment and the periods to which those CollectPayments function.
payments apply. _ CollectPayments 1dentifies all payment flows
StartDates: recognizes the dates that follow as first classified as AfterTaxCash for the Investor
days of periods. parameter.
[nputAmounts DE]?t service paid, based on asset cost and number of [nvestor_ PTCF [dentifies payment flows classified as PreTaxCash
periods. _ _ 20 for the Investor party.
COUNT determines the number of elements in all [nvestor Taxes [dentifies payment flows classified as Taxes for the
array. Therefore, Cost/COUNT (PaymentDates) is [nvestor party.
1,000,000 divided by :—11- o [nvestor_ ATCF Identifies payment flows classified as
Thereafter maps the given value to each remaining AfterTaxCash for the Investor party.
o period. [RR__Calculation
Amortization
_ | _ 25 FirstIRRDate MonthEndOf returns the last calendar day of a
AmortDates Dates of debt service calculations and the periods to month defined by the First, Dates, and
Wthh_thDSE numbers apply. | CollectPayments functions. One month 1s
Actslike ensures that any change in the subtracted from the result.
PaymentDates prefix or dates is automatically passed First{Dates(CollectPayments . . .)) finds the first
o on to the current parameter. o date among the dates of all payment flows
Principal Applied to balance after nferest 1s paid. 30 classified as After'TaxCash for the Investor party.
[nterest Interest due ijf each period, paid in arreats. LastIRRDate As above, except the month for the MonthEndOf
Arrears ‘dppllf:‘fﬁ each amount to the period that function is defined as the Last of all dates for
PTECE}dES the index date. _ _ payment flows classified as AfterTaxCash for the
Previous defines an array in which each value refers [nvestor party.
(relative to its pc:s.iticm on the i.ndex) to the value of the [RRDates Starting and Ending refer to the dates defined
argued parameter in the preceding period. 35 above to specity the First and Last dates for date
For example, Interest 30,036.66 on Jul. 01, 2000 stream.
refers to Balance 730,064.69 on Jan. 01, 2000. Monthly specifies that dates continue monthly
PeriodInterval returns the length in years of a period from the first date in the stream.
on thﬂ current date index. The 1ength. is .5 due to the [nvestmentBalance Cumulative returns the accumulation of all
semiannual dates of the AmortDates index. Investor ATCF values up to each period. The
The offset of -1 instruets the application to use 40 cumulative Earnings values are added to the
the previous period for its calculation, since interest is result.

_ pa.1d N arrears. Earnings Arrears recognizes that each value occurs in
DebtService DII‘ECt_ reference. o arrears. For example, the value on Mar. 31, 1999
Balance Remainder after payment of principal. applies to the period that began Feb. 28, 1999,

Previous defines an array in which each value refers Previous defines an array in which each value
(relative to its position on the index) to the value of the refers to the product of InvestmentBalance in the
argued parameter in the preceding period. . preceding period multiplied by 13.6156%
The second argument for the Previous function (NominallRR__ UsingSearch) times the
tells the application to return the value of the PeriodInterval for the previous period.
LoanAmount parameter to the first period. Thereafter, PeriodInterval returns the length in years of a
each new balance 1s reduced by principal paid during period. With monthly dates and a US__30__360
the current period. calendar, the length is 0.083 . . .
PVFactor Constructs a PV curve. 50 PV Calculation
For Previous, refer to Balance parameter detail.
For PeriodInterval, refer to Interest parameter detail. PVRate_Effective Nolndex: recognizes the value that follows as a
Result scalar, i.e., a single value that is independent of
_ the current date index.
LoanAmount Loan amount based on the PV of the total Debt Service PVRate Nominal As above. The formula that follows converts an
payments. | _ 55 annual rate into a nominal rate.
SUM returns the total of all its arguments; 1.e., the PV _Dates Starting and Ending refer to names of key dates

sum of the products of all debt service payments and

_ in Time Organizer to define the respective first and
the corresponding PV factors.

last dates 1n the date stream, with monthly dates in

between.

Athi.rd smart paper example 1s shpwn i.n FIGS. 28 and 29. Fvbactor SES;Z?E;%;;ZET the current stream. In the
This third example illustrates ways 1n which smart paper can For its first value, Previous divides 1 (the value
be used to determine the nominal daily present value (PV) of the preceding period) by the sum of 1 + 9.5690%
and investor rate of return (IRR) for all pre-tax and after-tax times the period interval value.
cash flows with respect to an investment. Again, FIG. 28 See PeriodInterval in
shows the actual values, while FIG. 29 shows the underlying [RR_Calculation.Earnings above.
formulas used to calculate the values. The following table 65 Thereafter, Previous uses the result of the
explains the particular headings, parameters and formulas preceding period in the calculation for the current

used 1n the example of FIGS. 28 and 29.

US 6,957,191 B1

29

-continued

Heading/

Parameter Details
period.

Base_ PTCF Simple reference.

Discounted_ PTCF Simple arithmetic.

Base_ AI'CF Simple reference.

Discounted_ ATCF Simple arithmetic.

PV__Summary

PVofPTCF__ Daily__Present__Value uses the value of

UsingFunction PVRate_ Nominal to calculate the daily present
value of Base_ PTCF (the base pre-tax cash flow)
as of the Closing date.
Closing 1s not defined on this sheet; 1t refers to
a key date 1n Time Organizer.
The function uses the Inputs.Calendar setting
for the day-counting metrics.

PVoifPTCF__ Sum returns the sum of all values in the

UsingSP Discounted_ AT'CF parameter. The result 1s the
same as the result of the Daily_ Present_ Value
function as argued above.

PVofATCF__ See PVoifPTCF__UsingFunction above.

UsingFunction

PvotATCF__ See PVofPTCF__UsingSP.

UsingSP

[IRR__Summary

NominallRR__
UsingSearch

Search performs iterative calculations until 1t finds
a nominal IRR rate between 10% and 200% that
makes the last investment balance equal to the
target value of 0.

The search increment accuracy is le™®.
Monthly_IRR calculates the nominal monthly
investor rate of return using the dates and values
of the Investor_ ATCF parameter. The result 1s the
same as the search iteration method as argued
above.

Simple arithmetic to convert the nominal IRR to an
annual [RR.

NominallRR
UsingFunction

EffectivelRR

As can be seen from the examples above, the Smart Paper
feature of the instant invention provides a very useful
calculation iterface and tool. It 1s noted that the Smart
Paper tool can, in accordance with the instant invention, be
used independently from the modeling and analysis tool of
the i1nstant mvention as an improvement to spreadsheet
applications.

The Engine

As explained above, the graphical user interface and the
engine provide an intelligent interface which enables data to
be generated which models the deal 1n response to graphical
modeling of the deal by the user. Thus, the graphical model
not only provides a visual representation of the deal, but 1t
also causes the engine to generate useful information which
at least partially model the deal based on the information the
engine 1s able to obtain from actions performed by the user
during creation of the graphical model of the deal.

In the preferred embodiment of the instant invention, the
engine operates 1 accordance with the description below.
More particularly, the engine 1s a computational server
designed to support client applications wanting spreadsheet-
like formula evaluation, manipulation of indexed streams of
quantities and linear and mixed integer programming opti-
mization. The engine has the following main features:

The engine 1s designed as a COM server which can be
mnitiated either in-process or out-of-process. In the latter
case, 1t can be either local or remote, and can handle multiple
clients.

The engine has a hierarchical organization of data; at the
topmost level the predefined general registry can contain
multiple worksheets and instruments; these can contain an

10

15

20

25

30

35

40

45

50

55

60

65

30

arbitrarily deeply nested hierarchy of parameter lists, each
containing parameters and other parameter lists.

The engine has interfaces which stream 1n or out all of the
data that has been specified by the client 1n the form of an
indexed bit stream. This enables the client to save and
restore cases 1n files. The mndex can be used by the client to
view the structure of the data and compare files; 1t 1s used by
the engine to recover as best it can from a corrupted bat
stream. Copies of each index entry are included in the bat
stream so that a client may attempt to recover from a
corrupted index.

Parameter lists may be independently streamed 1n and out.
This enables the client to maintain a library of templates,
which are sets of parameters which can be instantiated into
any case. Instruments may also be independently streamed
in and out. This enables the client to maintain a library of
instruments which can be instantiated into any case.

Each parameter 1s a fundamental calculation unit. It has a
name by which 1t can be referred to by other parameters, a
value, and possibly a means of calculating that value.
Parameters can have badges 1dentifying them to the internal
database. Each badge 1s a list of “category=member”
specifications, where the list of possible categories 1s defined
by the client, though there are specific categories assumed
by instruments. The tool uses categories like “cash
classification”, “party” and “outcome” to model the flows of
a financial model. Parameters can be designated as defining,
results. Each result 1s attached to a specific name, party and
outcome. The result parameters can then be collated by the
client into capsule summary reports, for example. The
values manipulated by the parameters can have many types.
Some are single quantities (scalars) representing numbers,
logical values (true and false), dates, time intervals, frequen-
cies (annual, monthly, etc.), character strings and enumer-
ated types. Other values are arrays, plain, sorted or indexed.
There are also some values which are neither scalars nor
arrays, but become indexed arrays when referred to from a
keyed parameter. These are used to represent income that
will automatically be accrued, for example. There are spe-
cial values to represent null, which is like an empty cell in
a spreadsheet, and the results of calculation errors (e.g.
divide-by-zero).

There are some built-in enumerated types (e.g.
“calendar”), which enumerates the different ways of calcu-
lating the length of time between two dates, and the client
can create 1ts own using special list-definition parameters.

A plain array 1s a set of values mndexed by the natural
numbers (1, 2, 3, ...). Normally there is only a finite number
of elements 1n the array, but limited support i1s provided for
infinite arrays which are regular beyond a certain point. A
sorted array 1s always in ascending order of i1ts elements,
with no duplicates; 1t 1s used for streams of dates represent-
ing events 1n a financial model. An indexed array, or stream,
1s an array which 1s attached to a sorted array for indexing
purposes. This 1s used to represent streams of cash flows 1n
a financial deal, where each flow 1s attached to a date. The
clements of arrays can be other arrays, thus providing
support for multi-dimensional arrays.

A keyed parameter 1s a parameter that has been connected
to another parameter for the purposes of providing a key (or
index) for its array value. Normally, the key parameter has
a date stream (i.e. a sorted array of dates) as its value, and
these represent the dates of the flows defined 1n the keyed
parameter. When a keyed parameter refers to another param-
eter 1n a formula, 1t triggers special calculations to convert
the keys. This 1s normally an “accumulate to date”
algorithm, but can be changed to effect accrual, table lookup,

interpolation and extrapolation by using formula prefixes.

US 6,957,191 B1

31

The normal rules of arithmetic have been extended to
handle all the different types of values, wherever possible.
Thus a date and a time interval can be added to produce
another date. A scalar can be added to an array (it is added
to each element of the array). Two arrays can be added by
adding corresponding elements. If these are indexed arrays,
then the corresponding elements are found by matching the
indexes (i.e. two streams of payments are added by adding
the payments on the same dates).

Parameter values can be specified 1n several ways. The
client could simply specity a value, or 1t could specily a way
of calculating the value. A formula parameter has a formula
specified, which 1s an algebraic combination of constants,
references to other parameters, and functions. A copied
parameter simply duplicates the value of another parameter.
An extracted parameter 1s designed to extract data from the
internal database. In that case, the client specifies a list of
“category=member” specifications and the value 1s calcu-
lated by matching these requirements with the badges of all
parameters, and adding up those which match. This enables
the client to request, for example, all of a certain party’s
rental income, without knowing the details of the instru-
ments 1n the model.

The formula language includes an extensive set of func-
tions to provide spreadsheet capabilities for manipulating
data. Also included are functions for manipulating dates and
arrays. The formula language also 1ncludes a set of prefixes
specified at the beginning of the formula. These prefixes
affect the way that the parameter 1s handled 1n references by
other parameters, and can trigger automatic accrual, table
lookup, mterpolation and extrapolation. The prefixes are
also used to specily variability during optimization and to
trigger search and repetitive calculations.

In addition to the built-in functions, the client can define
custom functions. These are named objects created 1n a
worksheet which can then be referred to from any worksheet
in the same way that a parameter could be, except that the
reference 1s followed by a list of arguments. The definition
of the custom function specifies how the result of the
function 1s to be calculated from 1ts arguments. Arguments
can be specified as mandatory or optional, with a default
value.

There 15 a special formula syntax used to specily date
streams and arrays of values. This uses keywords like
“starting”, “ending”, “then”, “also” to make the specification
of these types of values easier and more understandable. The
engine can provide the client with detailed parsing informa-
fion about formulas. This can be used to write formula
wizards. The engine parses each formula mnto a tree of basic
expression nodes. Each expression node handles a speciiic
job like addition, multiplication, references to other
parameters, function evaluation, etc. Parameters can refer to
themselves 1n expressions with array values provided that
they use either the “previous” or “next” function to avoid a
logical circularity. In this case, the engine duplicates the
expression tree for each element in the array (normally for
cach date), so that the expression nodes can be evaluated
without encountering circular reasoning. More generally, a
set of parameters can form a self-referential group, trigger-
ing duplication for each parameter in the group.

Each expression node keeps 1ts calculated value until 1t 1s
invalidated by a client change. This “intelligent recalcula-
fion” minimizes unnecessary repetition of calculations.
When a formula refers to another parameter, 1t does so by
specifying the other parameter’s name, possible qualified by
the names of 1ts worksheet or 1nstrument and levels of the
parameter list hierarchy. Qualifiers are other names preced-

10

15

20

25

30

35

40

45

50

55

60

65

32

ing the parameter name, separated by periods. Many levels
of qualification are possible, c.g.
“Loanl.Calculations.Amortization.Interest”. Internally, the
general registry has a name reference manager which main-
tains all these references. As parameters or parameter lists
are created, destroyed and renamed by the client, the refer-
ences get automatically updated. Unnecessary qualifiers are
removed. Qualifiers are added 1if the original reference
becomes ambiguous, thus maintaining the intended param-
cter linkages.

Each parameter has a dependency manager which handles
the mvalidation of expression nodes when the client changes
a parameter. When the name reference manager resolves a
reference, the target parameter sets up a link between the
source’s and target’s dependency managers. If the source
value changes, an event 1s triggered 1n 1its dependency
manager which 1s transmitted via the link to the target; in
turn this 1s passed on to the target’s dependents. The
dependency managers can also provide the client with lists
of dependents and precedents for any parameter.

Dependency managers are also created for parameter lists,
worksheets, 1nstruments, and indeed the general registry.
Changes are propagated up the parent chain so that each
level knows when there has been some change inside them.
This mformation can be tapped by clients to provide an
intelligent refreshing mechanism; 1.e. don’t bother to redraw
interfaces for objects which have not changed. The client
requests a modification server for any level from parameter
up to general registry. This modification server can be polled
to determine whether there has been any change since the
last poll.

Scarch parameters are formula parameters with a search
prefix. There are three kinds: the optimization search, the
targeting search and the maximization search. The optimi-
zation search only uses the first three arguments (low, high
and accuracy) to the search prefix; it has no effect on
calculations outside of the optimizer. The other types of
scarch specily a target formula as the fourth arcument. The
targeting search specifies a value to target in the fifth
arcument, while the maximization search uses one of the
keywords “maximum” or “minimum” as the fifth arcument.
Whenever a non-optimizing search parameter’s value 1s
requested, 1t iterates guesses for its value until the target
formula 1s equal to the target value, or maximized, or
minimized, depending on the fifth argument. Its value 1is
saved until the dependency managers invalidate 1t, to avoid
pointless recalculation.

The targeting search preferably uses third-party software
which 1s designed to find the zeroes of functions. This
software does a good job 1f the function 1s monotonic.
However, 1t can get confused by non-monotonic functions
which may have several solutions. The maximization search
uses a custom algorithm which uses quadratic interpolation
to refine the guesses. It depends on the function being fairly
well-behaved as well. However, any suitable application can
be used to perform this function.

The engine has a facility for collating multiple parameters
into a sigle date-indexed table. It 1s called a parameter date
table, and there 1s one in every worksheet (more are avail-
able on request). The client specifies which parameters it
wants 1n the table, and the engine collates their dates and
outputs a combined list of dates and a matrix of values. If the
client wants to collate the data in regular intervals (e.g.
annually), it can specify any number of date buckets; these
override the table’s normal “daily” rule.

The engine maintains a set of client-specified numeric
formatting rules. These can be specified at any level of the

US 6,957,191 B1

33

data tree, from parameter up to general registry. The client
can then request the effective formatting for any parameter,
and use 1t to format numeric values using special engine
calls. The facilities include comma 1nsertion, fixed number
of decimal places, prefixes and suffixes, percentages and
scaling.

The 1nternal database uses a bill-of-materials structure to
enable parameters to collate data which has been 1dentified
via badges on parameters. Inside each category there are
members which can be connected 1 a directed a cyclic
graph structure, with numeric coeflicients applied to each
link. Thus a category representing the parties 1n a deal can
establish ownership links between the parties, e.g. A owns
50% of B. When a parameter which has a badge specifying
party B 1s extracted by a parameter requesting flows for
party A, 1ts values will automatically be multiplied by the
50% factor. The links are also used to establish rules on the
cash classifications, like “after-tax cash” equals “pre-tax
cash” plus “taxes”. The categories and members are com-
pletely arbitrary, and maintained by the client. An interface
1s provided to stream the entire table 1n or out, so that the
client can save a default table 1n a file.

Parameters can extract data from the internal database
cither by designating them as extraction parameters, or by
designating them as formula parameters and using one of the
“collect” functions. Either way, the parameter specifies a list
of category-member pairs and receives back from the data-
base a list of parameters matching those specifications, with
corresponding coeflicients, and 1t then combines their values
to get a value.

Parameter lists can be given an activation formula by the
client. This 1s a formula that should evaluate to true or false.
When the formula evaluates to false, the parameter list and
all of its contents are labeled as mactive. Inactive parameters
do not have values. If an active parameter tries to reference
an 1nactive one, 1t will get an error value. Clients can use this
facility to de-emphasize blocks of the model that are not
currently being used, and prevent useless calculations from
slowing down the program. There are several restrictions on
the formula that can be used—for example, it must not refer
to a parameter 1nside its own parameter list. Invalid formulas
will always make the parameter list inactive. The engine can
supply the reason why a parameter list 1s 1nactive.

The general registry contains a predefined worksheet
called the timeline. This 1s designed to hold basic date and
date stream definitions for the rest of the model, and has
special interfaces to enable the client to manage them. The
fimeline acts as a preferred source of parameters to the name
reference manager. If a reference cannot be resolved within
the parameter’s own worksheet or instrument, then the
timeline 1s searched before going to any other worksheet or
instrument. This gives a “global” nature to the timeline
parameters.

The engine maintains lists of decisions and outcomes.
Decisions are named objects attached to date-valued param-
cters. They are designed to represent points 1 a financial
model from which the deal could proceed in different
directions; €.g. depending on whether an option 1s exercised.
Outcomes are named objects that are the result of saying
whether each decision has been taken or not. The outcome
in which no decisions have been taken always exists and 1s
called the base outcome. Other outcomes can be created by
the client by adding a decision to an already existing
outcome. For example, if the client has created three deci-
sions then there are seven possible outcomes 1n addition to
the base outcome obtained from the seven different ways of
saying which combination of the three decisions has been

10

15

20

25

30

35

40

45

50

55

60

65

34

exercised. These extra outcomes are not created automati-
cally because the decisions may not correspond to 1ndepen-
dent decisions 1n real life—only certain combinations of
decisions may be realistic.

Instruments are objects created by the client in the general
registry. They are like worksheets 1n that they have an
arbitrarily complex parameter list, but they also have data
geared toward modeling financial mstruments like loans,
rent agreements, etc. They simplify designing badges for
parameters.

Each mstrument can have one or more parties specified.
(The tool always uses precisely two parties for each
instrument, corresponding to the two ends of the arrows 1n
the party diagram.) The client can specify a role for each
party. For example 1n an mstrument modeling a loan, the two
parties could be designated “lender” and “borrower”. In the
parameters, the client may refer to the roles in formulas; they
are automatically defined to take the value of the name of the
party filling that role. For example, if there 1s a party called
“MyBank”™ with a role of “lender”, then a formula may use
the 1dentifier “lender” with the same effect as specifying the
character string “MyBank”. This allows instrument builders
to write parameters which automatically follow party sub-
stitutions.

The general registry has a special worksheet called the
parties worksheet. It corresponds with the parties chapter in
the tool. It 1s completely maintained by the client. However,
if an instrument party finds a section 1n the parties worksheet
that has the same name as 1itself, then 1t generates role
parameters echoing the data inside that section. For
example, 1f the parties worksheet has a section called
“MyBank”™ with a parameter called “FirstFiscalMonth”, then
an 1nstrument parameter could refer to 1ts value as “Lender.
FirstFiscalMonth”. (Assuming that the instrument contains a
party with name “MyBank™ and role “Lender”.)

Each mstrument party can have one or more cash
classifications, and each cash classification can have one or
more mncome classifications. Each cash classification gen-
erates cash tlows for that party by specifying the name of a
parameter defined in the instrument, the section of the
topmost parameter list in which to find the parameter,
whether there is a sign change (for paying parties), and the
name of the category member to be used to generate badges.
Each income classification functions similarly with the extra
information of which tax authority to badge 1t for.

Each instrument has a default decision handler which
specifles how the flow-generating parameters are treated in
outcomes 1mnvolving a decision. The client can override this
behavior for any actual decision that has been created. There
are only two possibilities: either the decision 1s 1gnored, 1.€.
has no effect on cash lows, or the flows are truncated at the
decision date. If they are truncated, the client can specify a
formula for an extra amount to be assessed on the decision
date. To generate the flows for a particular outcome, the
carliest truncating decision 1s found which 1s 1n that
outcome, and that controls the flow for that outcome. If there
1s no truncating decision for that parameter 1n that outcome,
the flows are the same as the base outcome flows.

The client may specily for each mstrument that it only
generates flows for outcomes containing a certain required
decision. This 1s designed to model purchase options which
are only present 1f the corresponding decision is taken.

The client may instruct an instrument to generate 1ts own
decision and outcome for the purposes of calculating param-
cters and generating flows. This 1s designed to model
termination values where a set of cash values needs to be
calculated to terminate the deal at any of a fixed set of dates.

US 6,957,191 B1

35

The 1nstrument contains a date-valued parameter which
becomes the decision date; the client can vary this date to get
a table of termination values, or have the engine vary it
automatically by specifying formula parameters with the
TerminateByDate prefix.

The object responsible for generating flows from 1nstru-
ments 15 the instrument synchronizer. Whenever the client
changes some data, the synchronizer regenerates (as
necessary) parameters defining the flows and identifies them
to the internal database with badges. Within each classifi-
cation within each party within each instrument, the syn-
chronizer 1dentifies the instrument parameter representing
that flow according to the client inputs. For each outcome,
it generates an auxiliary parameter which may change the
sign of the flow and/or truncate 1t at the appropriate decision
date. It badges the auxiliary parameters using the categories
“party”, “other party”, “cash or income classification”,
“outcome”, “instrument name” and “tax authority” for
income classifications.

The client may designate that certain instruments are to be
cloned for each outcome. This 1s designed to model tax
payment instruments where the basic parameters have to
take different values for each outcome. In this case, the
instrument synchronizer clones the parameter lists and party
sections for each non-base outcome before generating the
auxiliary parameters. It sets up default collection parameters
for each clone to ensure that parameters extracting data from
the 1nternal database pick the right outcome in each clone.

The general registry may also contain specialists. These
are named objects designed to act like building blocks. Each
specialist contains 1ts own version of the general registry
which can have worksheets and instruments and other
specialists. Since they are in their own registry, there 1s no
contact between them and the world outside; no danger of
references being erroncously resolved. They are safer ver-
sions of the “template” concept. Special parameters are
designated as mputs to and outputs from the specialist, and
they do have interactions,with the world outside the spe-
clalist.

An action 1s a named object representing a calculation that
1s too complicated for simple formulas to accomplish. There
are predefined actions for building the optimization model,
and executing the optimizer. The client can create new
actions 1nside worksheets to do things like targeting and
repetitive (sensitivity) calculations. Also the client can cre-
ate action sequences, which are sequential series of actions,
o create a primitive macro language.

Actions can be executed synchronously or asynchro-
nously. In the latter case, the client starts off the action, and
sits 1n a loop requesting action progress, until the progress
report indicates that the action 1s complete. This enables the
client to provide visual feedback to the user during actions
which could take some time. For example, the client could
display messages sent back from Cplex during optimization.
Internally, actions are executed 1n a sub-thread to free the
main thread to respond to progress requests.

The engine preferably has an interface with the Cplex
optimizer. This 1s a solver, provided by a third-party, of
linear (LP) and mixed integer (MIP) programming prob-
lems. It 1s encapsulated as an out-of-process COM server
which can be run locally or remotely, with multiple users.
The server can be started by the client or by the engine with
the client specitying on which machine to initiate it. The set
of instructions for the Cplex optimizer 1s generated by an
optimizer model. This 1s a named object containing the data
needed for the optimization. There can be more than one
optimizer model 1n each case, 1f desired. An optimizer needs

10

15

20

25

30

35

40

45

50

55

60

65

36

three kinds of information to operate. It must know which
parameters the optimizer can vary, what constraints have to
be satisfied, and what the objective function 1s. For each
parameter with some information pertinent to an optimiza-
fion model, there 1s a model parameter which houses this
information. The client can request a model parameter from
an optimization model for any given parameter 1n the
system.

To specify that a parameter 1s variable 1n a given opti-
mizer model, 1t 1s made an mput parameter and the corre-
sponding model parameter 1s given certain properties defin-
ing the variability, count (for array parameters), continuity
(continuous, binary, integer), and any special ordering
instructions for arrays (increasing, decreasing, SOSI,
SOS2). Alternatively, the parameter can be made a formula
parameter and the formula given an “optimize” prefix; this
only works for the main optimizer model.

To specily constraints, the client requests constraint
parameters from a model parameter. Constraints are param-
cters with some extra properties. The value of a constraint
parameter represents the right-hand-side of a constraint, and
could be a formula involving variable parameters. The
left-hand-side of the constraint is the owning parameter, and
the relation 1s specified by the client: greater-than, equals or
less-than. The client can specily that adjacent constraints be
combined 1in an OR-relation rather than the default AND-
relation. Constraints have their own activation formulas; this
enables the client to activate and de-activate constraints
automatically. Constraints can be turned 1nto assertions by
setting their test-only switch. Assertions do not affect the
optimization, but they can be queried by the client as to
passing or failing just like constraints.

To specity the objective function to an optimizer model,
the client requests a model parameter for each component of
the objective function and sets its “objective function coel-
ficient” property to the appropriate number; a positive
number 1mplies maximization, negative minimization. If
there 1s more than one parameter with a coeflicient, the
optimizer will optimize the sum of the values multiplied by
their respective coeflicients.

The solving of an optimization model 1s done 1n phases.
During the first phase, the formulas involved 1n constraints
(and the objective function) are visited to determine the set
of parameters that contribute (directly or indirectly) to
constraints or the objective function. During the second
phase, the definitions of all these parameters are visited to
determine which are variable. The next few optimization
phases are designed to determine array sizes and array
clement variabilities for those parameters with array values.
This 1s done by generating an auxiliary set of parameters
whose formulas are cloned from the original. The auxiliary
parameters corresponding to parameters that the client has
specified as variable are given special place-holder values
which have a trivial pass-through arithmetic. When the other
auxiliary parameters are evaluated, the result 1s normally a
place-holder value, or an array of such. Wherever a place-
holder value 1s encountered, that represents a variable
(column) to be created in the optimization model.

Next, objects representing the basic variables (columns)
of the model are created, and the coeflicients, or rows, of the
matrix are generated. Some rows correspond to the defini-
fions of parameters, others to the constraints as supplied by
the client. To generate the coeflicients, a special type of
value 1s used which 1s basically a linear combination of
variables. Once an arithmetic of these values has been
programmed, then they can be passed through the normal
expression evaluator, and the rows created from the results.

US 6,957,191 B1

37

A second set of auxiliary parameters with cloned formulas 1s

used to do this. Only client constraints that cannot be

interpreted as bounds on the variables generate rows.
During coeil

icient generation, OR-groups of constraints,
and some non-linear functions are linearized by creating
extra binary variables to “take the decisions”. Functions that
cannot be linearized generate non-linear errors.

After the model has been generated this far, a lot of
information 1s available to the client such as linearity of the
model, lists of constraints and optimizable parameters. The
model 1s finalized by removing any egregious scaling prob-
lems (for example caused by the client defining some
parameters 1n dollars and some in percents), and replacing
some symbolic large and small constants (introduced with
the extra binary variables) with real numbers estimated from
other constants 1n the matrix.

The arrays that Cplex expects as inputs are created and the
model transmitted to the Cplex server. The engine waits until
that server has completed, forwarding any progress mes-
sages back to the client. The results are obtained from the
Cplex server, and put back into the file wherever the client
has specified that parameters are variable. Binding informa-
tion and shadow prices are obtained from Cplex and stored
in the corresponding constraints. To assist users in tracking
down 1nfeasibilities, only the values that the user has speci-
fied as optimizable are put back mto the model; any depen-
dent parameters and constraints are then recalculated from
their formulas, and lists of failing constraints are available
the client (user) to display.

If there are any optimization search parameters, then the
model building and solving steps are repeated using different
oguesses for the search parameters until the best objective
value 1s found. Optimization search parameters are formula
parameters with a search prefix in which only the first three
arguments have been specified (low, high, accuracy). This
kind of search prefix has no effect outside of optimization.
It 1s used by the client to solve for variable parameters which
cannot be specified as variable to the optimization model
without sending the model non-linear. The algorithm for
choosing the guesses 1s a custom quadratic-fit algorithm for
finding the maximum of a function.

For the purposes of generating the optimization model,
any non-optimization search parameters are frozen at their
current values. If one of these has a new value as a result of
the optimization 1n such a way as to invalidate the
optimization, then a message about this 1s generated and sent
to the client, and a special status condition set.

There are two optimization actions provided for the client
to execute. The “optimize” action will perform all of the
above steps. The “build model” action performs only the
first few steps, enough to get the client data on linearity,
constraints, etc. This last action 1s performed by the Advan-
tage optimization chapter to provide visual feedback while
the data to display the chapter 1s being prepared.

The engine can export 1ts model to Microsoit’s EXCEL
software, creating as far as possible a working spreadsheet
model of all the parameter formulas. The exported model 1s
limited 1n that 1t cannot handle date changes or changes 1n
frequency or term that require re-dimensioning of arrays. It
does a good job of formatting the resulting sheets to reflect
the data hierarchy of the model. The client has control over
the sheets and what 1s included m them.

The client can create other types of actions in worksheets.
A marksman 1s a targeting action which works similarly to
the search prefix. Bemng an action, however, 1t can be
executed asynchronously with the client displaying
progress. Each time round the loop, the variable parameter

10

15

20

25

30

35

40

45

50

55

60

65

33

1s guessed, and a speciiied list of actions performed, which
could include optimization and other marksmen. This is
repeated until a target variable reaches a specified value, or
1s maximized or minimized. A matrix 1s a repetitive action
designed to vary a parameter over a range of values, perform
a list of actions which could mclude optimization and
marksmen at each iteration, and store a set of results. These
results are collated into a two-dimensional matrix of values
assigned to a result parameter. An action sequence 1s a set of
actions which 1s executed serially; this could be used to
implement a primitive macro language.

The engine preferably has a background thread which
steals 1dle cycles to perform tasks 1n advance of the client
requesting them. For example, evaluation of parameters,
including searches, and generation of the optimization
model. This can markedly improve interaction speed as the
client may well find that whatever 1t needs to create a display
has already been prepared by the engine. For example, the
engine may submit background optimizations to Cplex so
that should the user decide to press the optimize button, he
would get an 1nstantaneous result.

Formula Language

As explaimned above, the instant invention includes a
powerful formula language which can be used in the
worksheet, as well as 1in other chapters of the invention, to
provide scenario information. This formula language
includes a library of predefined functions and keywords
which can be used by the user when using the tool. An
exemplary set of these functions and keywords which com-
prise the formula language, together with an associated
syntax, 1s provided below.

ABS Function

ABS (Number)

Returns the absolute value of an arcument.

Number 1s any numeric value or expression that 1s a real

number.

Accrue Prefix

Accrue(Calendar):source_ values

Tells the application to recognize values as amounts to be

allocated uniformly to each day in their time periods.

Source values come from one or more previously defined
numbers streams.

If Calendar 1s omitted, the application applies its own
calendar selection method.

To calculate accrual amounts, the application looks at three
factors:

1. Overlap between source periods and accrual periods.

2. Given or selected calendar method.

3. Daily rate of source value (source value divided by
days in source period).

Accruelnterval Function

Accruelnterval (Offset, Calendar)

Accrues Advance or Arrears payments mto a set of user-
defined intervals.

This function differs from 1ts cousin PeriodInterval 1n that
it takes 1nto account the Advance or Arrears nature of
the payment stream 1n which 1t occurs. It combines this
information with the StartDates or EndDates prefix of
the payment stream date index to determine which
interval 1s relevant to the current payment.

Offset 1s an integer that defines the periods in which to
accrue values.

Offset O (or blank) accrues to each interval containing a
value.

Offset +1 accrues to the interval of the next period of
value, offset +2 includes the next two periods of value,
and so on.

US 6,957,191 B1

39

Offset —1 accrues to the interval of the previous period of
value, offset -2 1ncludes the previous two 1ntervals, and
SO On.

Calendar 1s a calendar method such as Actual 360,
European_ 30_ 360, and so on.

If Calendar 1s omitted, the application applies its own
calendar selection method.
Accumulate ByPeriod Function
Accumulate ByPeriod (Stream, Period)
Accumulates values from an indexed array into the over-
lapping periods under a different mdex.

Stream 1S the name of an indexed numbers stream.

Period 1s the name of the date index of periods to serve as
points of accumulation.

Activation Switches
An activation switch 1s a formula that evaluates to True or
False (e.g. x=y) in regard to a heading or a constraint.

An activation switch on a Smart Paper heading 1s sym-
bolized by a blue rectangle.

Headings 1n 1nstruments and templates are activated
through payment classifications rather than activation
switches, so there are no activation symbols 1 those
forms.

If a heading activation switch evaluates to False, the entire
section (heading, subordinates and constraints) is
deactivated, and the section 1s dimmed.

The activation switch for a constraint 1s not symbolized or
visible until you display the constraint in full edit mode.
If the switch evaluates to False, the constraint 1s 1nac-
tive and gets 1gnored during optimization.
Adding an Activation Switch
1. Click the heading or the constrained parameter you want
to modify and press Ctrl+Enter to enter full edit mode.

Enter a heading activation formula in the formula edit
field, or. . . .

Click a constraint name to select 1t, then right-click for a
shortcut menu of options. Choose Add Activation For-
mula and enter the formula 1n the field provided.

Rules for Activation Switches

An activation formula must not depend on anything
optimizable. If 1t does, 1t will always deactivate its
section, even 1t the formula appears to evaluate to True.

An activation formula with an error, orone which evalu-
ates to something other than True or False, will always
deactivate 1ts section.

Functions and Activation Switches
An attempt to reference an inactive parameter returns an
error unless:

You use the WhenActive or Find Value functions to return
an argued value when an 1nactive parameter 1s found.

You use the Subtotal function, which automatically
excludes 1nactive parameters.
ActsLike Prefix
ActsLike(reference):additional formula
Makes a parameter mimic the behavior defined by the
formula for another parameter.

Reference 1s name of parameter to mimic.

The formula that follows the colon (:) can be the reference

parameter name (to use its values) and/or other formula
definition.
Actual__360 Function
This 1s one of four calendar methods you can choose to
evaluate intervals between dates for the purposes of calcu-
lation.

10

15

20

25

30

35

40

45

50

55

60

65

40

Actual 360 divides the actual number of days 1n a given
month mto a year of 360 days.
Actual__365 Function
This 1s one of four calendar methods you can choose to
evaluate 1ntervals between dates for the purposes of calcu-
lation.

Actual 365 divides the actual number of days 1n a given
month mto a year of 365 days.
AddYears Function
AddYears (Dates, Years, Calendar)
AddYears returns a date based on the calculated interval
between a given date and given number of years, using the
day-counting metrics of the current calendar.

The interval 1s internally calculated using the Interval
function, where 1ts Datel and Calendar arguments use
the Date and Calendar argued 1n the AddYears function.

The interval 1s the sum of a whole number-of years and a
fractional part. Only the fractional part 1s affected by
the calendar argument.

Date 1s any date expression.

Years 1s a whole or decimal number to express the number
of years.

Calendar 1s a calendar method such as Actual 360,
European_ 30_ 360, and so on.

If Calendar 1s omitted, the application applies its own
calendar selection method.
Advance Prefix
Advance: values
Defines a payment stream 1n which each payment applies to
the period following the date on which the payment occurs.

In Smart Paper, the »symbol identifies Advance pay-
ments.

After Keyword
After Date

Defines the first value 1n a date stream or maps the first value
in a sorted numbers stream.

In a date stream, use After to begin the stream on the first
anniversary of the After date. The interval to the

anniversary 1s determined by a frequency keyword such
as Annual.

In a numbers stream, use After to key the first value 1n the
stream to the imndex date that follows the given date.

Align Keywords
Alignment keywords anchor the anniversaries 1n continuing
dates to a month/day or the same day each month at a given
frequency. There are two ways to express alignment:
Align Frequency mm/dd
In this expression, you anchor continuing dates (at the given
frequency) to the relative date mm/dd rather than the first
date defined 1n the formula.
Align Monthly On dd
In this expression, you anchor monthly continuing dates to
a day of the month other than the starting date.
Also Keyword
Also Date
Use the Also keyword at the end of a date stream formula to
insert a date that will not otherwise occur according to the
preceding formula.
Anchor Date
An anchor date 1s the point of departure 1n the calculation of
an anniversary or other fixed date.

The anchor date 1s expressed as a relative date modified
by the keyword expressions Align frequency or Align
Monthly On.

US 6,957,191 B1

41

AND Function
AND (conditionl, condition2, . . .)

AND returns a logical value that asserts 1f a set of conditions
are true or false.

Returns True 1if all of the arguments are true.

Returns False 1f any one or more of the arcuments 1s false.

Conditionl, condition2, and so on are the conditions you
want to test for being true or false.
Anniversary (Definition)
An anniversary 1s a date that occurs on the basis of a given
anchor date and frequency.

If the anchor date 1s March 1 and the frequency 1s
Monthly, the first anmiversary of the anchor date is
Aprl 1, the second anmiversary 1s May 1, and so on.
There 1s also an Anniversary function that lets you
calculate the occurrence of an anniversary based on a
set of arguments.

Anniversary Function
Anniversary (AnchorDates, Dates, Frequency)

Returns the last anniversary of an anchor date up to (and
including) a cutoff date. Anniversaries occur at the specified
frequency beginning on the anchor date.

AnchorDate 1s the date from which the anniversary count-
down begins.

Date 1s any date expression for the cutofl date.

Frequency 1s Monthly, Quarterly, Semiannual, or Annual.
Annual Keyword
Annual (or Annually) is a frequency keyword used to define
the interval between continuing dates 1in a date stream.
ArrayBylIndex Function
ArrayByIndex(Array,Index)
Returns the values 1n a source array that correspond to a
grven 1dex position.

Array 1s the name of the indexed array that contains the

value to be returned.

Index is an integer (or array of integers) that refers to the
key location of an index array value against its index.
The reference for the value 1n the first position 1s 1, the
second position 1s 2, and so on.
Array Parameters (Definition)
An array 1s a type of parameter that contains a series of one
or more values. The values are arranged according to a
formula. There are three types of arrays:
Sorted array Stream of values 1 ascending order, with no
duplicates.

A typical sorted array 1s an index parameter, as seen 1n the
underlined set of dates used to coordinate a set of cash
flows.

Since each position on an index parameter may be a key
to a value 1n another array, an index 1s also referred to
as a key parameter.

Indexed array Stream of values 1n the scope of an index

(sorted array).

A typical mndexed array 1s a set of cash flows in a deal,

where each flow is keyed (attached) to a position on a
date 1ndex.

Plain array Stream of values indexed by the natural numbers
(1,2,3,...).
May also be referred to as an unsorted array, as its

clements occur 1n whatever order they are entered 1n
the formula.

ArraySum Function
ArraySum(Array)
ArraySum returns the total of all the values in an array.

Array 1s the name of any array parameter.

10

15

20

25

30

35

40

45

50

55

60

65

42
Arrears Prefix

Arrears: values

The Arrears prefix means that each payment applies to the
pertod that precedes the date on which the payment 1s
incurred.

In Smart Paper, the asymbol identifies Arrears payments.
Badge (Definition)
A badge 1s an mternal ID that associates certain data to a list

member within a category (“category=list member™). For
example:

The category “Instrument” includes the list members
“Rent”, “Asset”, “Loan”, and so on.

The category “IncomeClassification” includes the list
members “RentReceived”, “SourcesOfFunds™, and so
on

Before Keyword
Before date

Defines the last date 1n a date stream or defines the date on
which the last value 1n a numbers stream occurs.

In a date stream, use Before to make the stream end on the
latest possible anniversary (in a continuing dates
sequence) that occurs prior to the given date.

In a numbers stream, use Before to assign the last value
in the numbers stream to the index date that most
immediately precedes the given date.

Bookend Date (Definition)

A bookend date 1s a date index element that does not

represent the beginning or end of a period. The period prefix
used 1n the date index determines the bookend date.

When the StartDates prefix applies, the bookend date 1s
the last date on the index.

When the EndDates prefix applies, the bookend date 1s the
first date on the index.

Calendar Functions

The tool relies on a user-specified calendar method to
evaluate 1ntervals between dates for the purposes of calcu-
lations such as:

mterest on a loan

accrual of payments that cover periods across fiscal years
(for tax purposes)

present value and yield calculations

The active calendar method 1n a calculation affects payment
values because there are more or fewer days 1 a given
interval based on the calendar.

Multiple Calendars in the Same Case

Every case has a global default calendar set 1n Time
Organizer. You can change this default and you can also
use different calendars at local levels (i.e. for an instru-
ment or a sheet of Smart Paper).

In the event of multiple calendars, the application has a
process to determine which one 1s 1n effect for a given
calculation. See Calendar Selection Method.

Calendar Selection Method (Definition)

™

You can specity different calendar methods for different
requirements 1n the same case. If a case has more than one
calendar method, the application uses a decision tree to
determine the method that applies to a particular calculation.

Decision Tree for Calendar Selection

When a case contains multiple calendar methods, the appli-
cation applies the closest method 1t can find based on this
order

US 6,957,191 B1

43

1) Does the formula contain a calendar?

Some prefixes (Accrue, for example) prompt you to select
a calendar method.

You can also add or insert a calendar as a function.

For example, the list of functions available through For-
mula Assistant to add/insert a function includes each of
the four methods: Actual 360, Actual 365, and so on.

2) Failing that, does the current sheet of Smart Paper contain

a parameter named Calendar?

3) Failing that, the application applies the default calendar
method setting 1n Time Organizer.

Cash Prefix

Cash: values

Cash 1s the default prefix for a payment stream when neither

the Advance prefix nor the Arrears prefix 1s given. Use the

Cash prefix (or omit a prefix) to specify that each payment

applies to the date on which 1t 1s 1ncurred.

Categories and List Member Reference

A badge 1s an 1nternal ID that that comprises a category and

one of the list members within that category. Certain func-

tions use the list member portion of a badge as an argument

to collect or extract data.
CEILING Function

CEILING(Number,Significance)
Returns a number rounded up to the nearest multiple you
specily.

For example, to round up the value 575.29 to the nearest

multiple of 0.5, you use the formula CEILING(575.29,
0.5). The application returns 575.50.

Number 1s any numeric expression that you want to round
up.
Significance 1s the multiple to which you want to round

Number. The application rounds the number up away
from zero.

Number and Significance cannot have different signs.
CHAR Function

CHAR(Code)
Returns a character value from the ANSI code you specity.

Code 1s a number between 1 and 255 that specifies a

character on your computer.
CHOOSE Function

CHOOSE(Index, Valuel, Value2, . . .)
Returns a value from a list of arcuments based on an index
number.

Index specifies which value(s) to select from the list of
arcuments. Index can be any scalar or array value,
including numbers or parameter references. For
example, if the value of Index 1s 2, the application
returns the second argument. If Index has a fractional
value, the application truncates the fraction and uses
the resulting integer to select an argument.

Valuel, Value2 and so on are the list of arguments from
which the application selects based on the value of
Index. The arguments can be any number or expression,
including scalar or arrays.

Classifications (Definition)

A classification 1s a financial label. It tells the application

how to retrieve values given a context such as instrument,

outcome, party/role, and so on.

Guidelines for Working with Classifications

1) Keep other arguments in context when given a classifi-
cation argument.

For example, when the Rent instrument 1s instated for the
base outcome, the following two classifications are
active:

5

10

15

20

25

30

35

40

45

50

55

60

65

44

RentPaid by the lessee, and

RentReceived by the lessor.

If you write a Collect function to look for RentPaid but
add filters such as Party=Lessor or Instrument=Asset,
the RentPaid classification 1s meaningless and the func-
tion cannot find the rent paid values.

2) Classifications are spelling-sensitive.

For example, the application recognizes SourcesOfFunds
and Sourcesotffunds, but not SourceOfFunds or Source-
sOfFunding.

Identifying Classification List Members

There are three ways to see a list of payment (income/cash)
classification members.

In Smart Paper

a) In SmartPaper, add a parameter.

b) Change the parameter to a List Member parameter.
In Payment Organizer

a) Change Payment Organizer Data.
In Instrument Chapter

a) Modify Payment Classification Settings for Instrument
CODE Function

CODE(String)
Returns an ANSI code that specifies the first character 1n a
text string.

String 1s a series of text characters or a reference to a
parameter that contains text characters.

Enclose String 1n quote marks.
CollectData Function
CollectData (CategoryMemberList)
Collects data from parameters that match up to one or more
badges.
CategoryMemberList 1s an expression of one or more

badges, with one set of quote marks to encase the entire
string. See Categories and List Member Reference.

Use the word and to separate multiple badges.

To reference a party by 1its role rather than the party name,
use the syntax “+Rolename+” as seen 1n the Example
2 parameter.
CollectIncome Function
CollectIncome (Party, Classification, Outcome, Instrument,

OtherParty, TaxAuthority)

Collects income from parameters that match a set of one or
more badges. Each argument position represents a category
and takes a user-specified list member name.

Sece Category and List Member Reference for help on
names for parties, classifications, and so on.

Party 1dentifies the entity whose income flows you want
to collect. You can use either a party name or a role
name for the argument.

Party versus role: you must encase a party name 1n quote
marks, whereas a role name does not require quote
marks.

Classification is the Income classification name (in quote
marks) for the flows to be collected.

Outcome is the name of the outcome (encased in quote
marks) under which income is to be collected. The
function assumes “BaseOutcome” if no outcome 1s
specifled.

Instrument is the name of the instrument (in quote marks)
for which income i1s to be collected. The function
considers all instruments 1f no 1nstrument 1s specified.

OtherParty 1dentifies the other party for flows from two-
party instruments.

You can use a party name in quote marks or a role name
(no quote marks)

US 6,957,191 B1

45

Tax Authority identifies the tax collector for the income to
be collected.

You can use a party name in quote marks (“IRS”) or the
role name TaxCollector without quote marks.

CollectPayments Function
CollectPayments (Party, Classification, Outcome,
[nstrument, OtherParty)
Collects payments from parameters that match a set of one
or more badges. Each arecument represents a category and
takes a user-specified list member name.

See Category and List Member Reference for help on
names for parties, classifications, and so on.

Party identifies the entity whose payments you want to
collect. You can use either a party name or a role name
for the argument.

Party versus role: you must encase a party name in quote
marks, whereas a role name does not require quote
marks.

Classification is the Payment classification name (in quote
marks) for the flows to be collected.

Outcome is the name of the outcome (encased in quote
marks) under which payments are to be collected. The
function assumes “BaseOutcome” 1f no outcome 1s

specifled.

Instrument is the name of the instrument (in quote marks)
for which payments are to be collected. The function
considers all instruments 1f no 1nstrument 1s specified.

OtherParty 1dentifies the other party for flows from two-
party instruments.

You can use a party name in quote marks or a role name

(no quote marks)
CONCATENATE Function

CONCATENATE(Stringl, String2, . . .)
Links multiple text strings into one string.

a String1, String2, and so on are a series of text characters
or a reference to a parameter that contains text char-
acters. Enclose each text string in quote marks.

Constraint/Assertion (Definition)

A constraint/assertion 1s a formula you can add to a param-
cter along with the formula that generates the parameter
values.

The constraint/assertion formula defines the degree to
which values can be re-calculated during optimization.

You can only add a constraint/assertion to a parameter 1n
full edit mode (Ctrl+Enter).

The constraint/assertion can be binding or non-binding.

Binding. Optimization fails if constraint or assertion
cannot be honored.

Non-Binding. Inability to meet the constraint or assertion
1s noted, but does not cause Optimization to fail.
Context Function
Context(Reference)
Returns the full pathname (i.c. SheetName.Heading.Sub-
Heading.Parameter to the given reference.

This 1s useful when you have multiple parameters with the
same name and need to distinguish between them.

For example, 1f you instate the MISFYieldByMonth tem-
plate twice 1n one case, you end up with two parameters
named Input.MinYield.

If you insert a Context parameter 1n the Inputs section of
cach template, you can then use the FindValue or
GetResults function to locate the value under
Headingl.Input.MinYield VEersus
Heading2.Input.MinYield.

5

10

15

20

25

30

35

40

45

50

55

60

65

46

Reference 1s an instrument name, a Smart Paper sheet
name, or any heading or parameter name.

COUNT Function
COUNT(Array)
Counts the number of values 1n an array.

Array 1s a series of values separated by semicolons, or the
name of any array parameter such as a numbers stream
or date 1ndex.

Empty or blank elements in the array are included 1n the
count.
Cumulative Function
Cumulative(Array)
Returns an array in which each value 1s the accumulated
value of all preceding values 1n the argued array.

Array 1s the name of an array parameter, or it can be a
series of values defined by numbers stream keywords.

The opposite function is Difference (returns difference
between each successive element 1n an array or
series of values).

A related function is SumToDate (returns a single
number for the sum value of an array or series of
values as of a given date).

Daily_ Present_ Value Function
Daily_ Present Value (Flows, PVRate, PVDate, Calendar)

Returns the daily present value of a set of cash flows.
Flows 1s the parameter name for a set of cash flows.

PVRate 1s a percentage for the nominal monthly discount
rate.

PVDate 1s any single date expression to which the cash
flows are discounted or accreted.

Calendar 1s a calendar method such as Actual 360,
European_ 30__ 360, and so on.

If Calendar 1s omitted, the application applies its own

calendar selection method.
DATE Function

DATE(Year,Month,Day)

Returns a date value from numeric values that represent a
year, month, and day.

To create a date you can use to produce a date stream
consisting of last days of months, use MonthEndOf.

Year 1s a number from 1900 to 9999.
Month 1s a number that represents the month of Year.

If Month 1s greater than 12, the value 1s added to January
of Year. See Example V1.

If Month 1s less than 1, the value 1s subtracted from
December of Year. See Example V2.

Day 1s a number that represents day of Month.

If Day 1s greater than the days in Month, the value 1s
added to day 1 of Month. See Example V3.

If Day 1s less than 1, the value 1s subtracted from day 1

of Month. See Example V4.
Date AsEntered Function
Date AsEntered (Date)
Returns a date value in format “dd mon, yyyy” (including
the quotation marks).

Date can include a day number between 1 and 31 irre-
spective of the month.
Date Expression (Definition)
A date expression 1s a date included 1n a formula. The date
can be given in any of the following formats (refer to
example):
1) Calendar date, as in 01 Jan. 2000.

2) Parameter reference, as in ClosingDate (where Clos-
ingDate 1s previously defined).

US 6,957,191 B1

47

3) Date location by keyword reference, as in First dat-
estream or Last datestream.

4) Elapsed time before or after a date, as in date +3y.

5) Inserted function that defines a date.
Date Index (definition)
A date 1ndex 1s an array parameter that contains an ascending,
serics of dates. The dates are used to coordinate series of
values according to when they occur over time.

Each element on the index is a key (a point of coordina-
tion for sorting values).

Parameters below the index are indexed arrays of values
that are keyed to the index positions.
Dates Function
Dates (First, Second . . .)
Returns a date stream consisting of dates used to key the
argued numbers stream(s) without regard to the StartDates
or EndDates prefix designation of the source.

If you want true end dates of periods as a result, you must
specily the EndDates prefix with the Dates function.

Otherwise, the returned dates automatically default to the
StartDates prefix and therefore represent the begin-
nings of periods.

First (and so on) is the parameter name of a payment or
mcome stream, or a table of values.

DATEVALUE Function
DATEVALUE(Date)

Converts a text string representation of a date to a date value.

Date 1s any name reference or text string that represents
a date.
DAY Function
DAY (Date)
Returns an integer value (between 1 and 31) for the day of
the month in a date value.

Date 1s any name reference or text string that represents
a date.
DAYS360 Function
DAYS360(Starting Date,Ending Date,Method)

Returns the number of days between two dates on 360-day
calendar (twelve 30-day months).

Starting Date and Ending Date are the two date values you
want to calculate the number of days between. If
Ending Date occurs before Starting Date, a negative
number 1s returned.

Method 1s False to specifty the U.S. method of calculation
or True to specily the European method.
Days365 Function

Days365 (StartDate, EndDate)
Returns the number of days between two dates based on a
365-day year.

StartDate 1s the first date to iclude 1n the count.

EndDate 1s a bookend date that 1s not included in the
count of days.

For example, to obtain a count of days in the period
January 1 to January 31 that includes the 31*, the End
Date 1s February 1.

Days365 returns a negative number 1f StartDate 1s later
than EndDate,
DaysInPeriod Function
DaysInPeriod (Period, Calendar)
Returns the number of days in period according to specified
calendar.

Period 1s two dates from a date index expressed mm/dd/yy
to mm/dd/yy (or using other valid date syntax; see
example).

5

10

15

20

25

30

35

40

45

50

55

60

65

43

Calendar 1s a calendar method such as Actual 360,
European_ 30_ 360, and so on.

If Calendar 1s omitted, the application uses the decision
tree for multiple calendars to choose a method.
DaysInYear Function
DaysInYear (Calendar)

Returns the number of days in a calendar year.

Calendar 1s a calendar method such as Actual 360,
European_ 30__ 360, and so on.

If Calendar 1s omitted, the application uses the decision
tree for multiple calendars to choose a method.

Destination Parameter (Definition)
A destination parameter 1s one in which the formula refers
to another parameter 1n order to use the referenced parameter
as a source of data.
Ditference Function
Difference (Array)
Returns the difference between each successive value 1n an
array or series of values.

Array 1s the name of an array parameter or a series of
values defined by numbers stream keywords.

Also see Cumulative (returns accumulated value of all
preceding values in an array or series of values).

ElapsedTime Function
ElapsedTime (Years, Months, Days)

Returns an elapsed time value in whole numbers for years,
months, and days.

Use this function when other parameters in the case
depend on an elapsed time value.

Each arcument uses any whole number.

Insert commas as placeholders for omitted arguments.
EndDates Prefix

Indicates that each date on the index (except the first date)
represents the LAST day of a period.

Each period begins the day after the index date and ends
on the next index date.

The first date in the index 1s a bookend. It does not
represent the end of a period.

The < symbol indicates the EndDates prefix.
EndDatesOf Function
EndDatesOf (First, Second, . . .)

Returns the combined dates used to organize a set of number
streams, first converting them to end dates if necessary.

This lets you create an index comprising the date values
of various indexed parameters without having to
remember anything about the indexes themselves.

If an argued numbers stream 1s keyed to an EndDates:
date index, the function returns the dates as they appear
on that index.

If an argued numbers stream 1s keyed to a StartDates: date
index, the function first subtracts one day from each
date to return 1t as an end date.

To make the resulting dates represent true end dates, you
must supply the EndDates: prefix as well as the func-
fion. See example.

First (and so on) are the parameter names of numbers
streams (tables, cash and income streams).

The similar EndDatesOfPeriods function slows down
optimization performance, but 1t 1s more flexible 1n
the types of arguments 1t accepts.

EndDatesOfPeriods Function

EndDatesOfPeriods (First, Second, . . .)

Derives period start dates from one or more numbers
streams and/or date indexes, then creates a date index of

US 6,957,191 B1

49

dates that reflect the end dates of the underlying periods.
Also 1ncorporates dates or date streams given as arcuments.

To calculate dates for the result, the function subtracts one
day each from the start dates.

To make the resulting dates represent true end dates, you
must supply the EndDates prefix as well as the func-
tion.

First (and so on) can be any one or more of the following:

Parameter name of a date index with the StartDates prefix
(StartDates is the default if no prefix is present).

Parameter name of a numbers stream (i.. Income or
payment flow, table) that is keyed to a StartDates date
index.

Single date expression or date stream expression.
Ending Keyword
Ending date
Defines the last date 1n a date stream.
European_ 30_ 360 Function
This 1s one of four calendar methods you can choose to
evaluate intervals between dates for the purposes of calcu-
lation

Consists of twelve 30-day months (each month is one 12
of the year).

February 1s given two extra days.

If a period starts or ends on the 31%, the day counts as the
307 of the same month.

For example, the interval of 1* to 31% 1s 29 days.
EVEN Function

EVEN(Number)
Returns a number rounded away from zero to the next even
Integer.
Number 1s the value to round.
Except Keyword
;Except value On date

or

;Except On date

Allows for a break 1n a sequence of values being mapped to
an 1ndex.

The Except term always begins with a; (semicolon)
separator to halt the previous formula sequence.

It 1s optional to include an exception value with the
Except keyword. If you do not provide an exception
value, there is no value shown for the Except date (see
NumberStream2 in example).

Except can only be used at the end of the numbers stream

formula.
EXP Function

EXP(number)
Returns the natural logarithm base e (2.71828182845904)

raised to the power you specily.

Number 1s the power to which you want the application to
raise €.

FALSE Function

FALSE

Returns the logical value False.

FIND Function

FIND(FindText,WithinText,StartNum)

Finds and returns the starting position of a text string within
another text string.

FindText and WithinText are series of text characters (or
references to a parameter that contains text characters)
encased 1n quote marks.

FindText is the text string you want to find (no wildcard
characters).

5

10

15

20

25

30

35

40

45

50

55

60

65

50

Within'Text 1s the text string that contains FindText.

StartNum 1s the character position where you want the
application to start the search. For example, to start
with the third character in WithinText, use a StartNum
of 3. If you omit StartNum, the application uses 1.

If FindText 1s not contained in Within'Text, the application
returns an error.

If StartNum 1s zero or less, or if StartNum 1s greater than
the length of WithinText, the application returns an
CITOT.

FindValue Function
FindValue (Context, Parameter, InactiveNull)
Locates a value given its context within the case.

Context can be any of the following;:

the name of a Smart Paper sheet, heading, or instrument
encased 1n quote marks

the name of a parameter defined with the Context function
(no quote marks)

the name of a parameter that defines an array of sheet
names, heading names, or 1nstrument names

Parameter 1s the name of the parameter that contains the
value you want to find.

InactiveNull lets you specify a value to return in lieu of
the error

InactiveParameter if the context/parameter specification
polints to an 1nactive parameter.
First Function
First (Array)

Refers to the first value 1n a given array.

Array can be a numbers stream or date stream.
First Keyword
First datestream

Refer to the first date 1n a date stream 1n order to use the date
1tself 1n another date stream.

FI.LOOR Function

FLOOR(Number,Significance)
Returns a number rounded down to the nearest multiple you
specily.

Number 1s any numeric expression that you want to round
down.

Significance 1s the multiple to which you want to round
Number. The application rounds the number down
toward zero.

Number and Significance cannot have different signs.
For Keyword
For n

Use the For keyword to repeat a numbers stream value or
extend a date stream sequence.

In a date stream, use For to specily the number of
anniversaries to continue the date stream at its current
frequency.

For n ends the stream after n periods at the given
frequency unless the For stream 1s further defined

following a separator keyword such as ; (semicolon) or
Then.

In a numbers stream, use For to specily the number of
Increments to repeat a value.

Forever Keyword
Forever

Use the Forever keyword 1n date stream 1n licu of an ending
date phrase 1f you want to specily that the stream never ends.

US 6,957,191 B1

51

GetResult Function

GetResult (Result, Party, Outcome, Context,
SubsidiaryParameter)

Locates a SetResult parameter flagged with a matching set
of arcuments and returns the parameter value. Or, if optional
arcuments are 1ncluded, the function can return a subsidiary
parameter value.

Result, Party, and Outcome must exactly match the argu-
ments provided for a previously established SetResult
parameter, including quote marks.

Context 1s the name of a parameter that uses the Context
function to pinpoint its location.

If Context 1s argued without the SubsidiaryParameter
arcument, the GetResult function returns the value of
the Context parameter.

SubsidiaryParameter (which can only be argued in con-
junction with Context) is the name of any parameter
located under the same subheading as the given Con-
text parameter.

IF Function

[F(LogicalTest,ValuelfTrue,ValuelfFalse)

Returns one of two values depending on the results of a
logical test for a true or false condition.

Logicallest 1s any expression that the application can
evaluate to be true or false.

ValuelfTrue 1s any value or expression you want the
application to return if LogicalTest 1s true. If you omat
ValuelfTrue and the Logicallest evaluates to True, the
application returns the value True.

ValuelfFalse 1s any value or expression you want the
application to return 1f LogicalTest 1s false. If you omit
ValuelfFalse and the LogicalTest evaluates to False, the
application returns the value False.

The application can return text if it 1s encased 1n quote
marks.
Index (Definition)

An 1ndex 1s a type of parameter used to coordinate values.

Elements on an index look like an underlined series of
column headings 1n a table.

In rows of values beneath the index, each value 1s keyed
to an element on the 1ndex.

You can create a date index to sort values over time, as

shown here.
INDEX Function

INDEX(Array, FirstIndex,SecondIndex, . . .)
Returns a value from any type of array based on the relative
position of the value within the array.

Array 1s the name of any array or date index parameter.

FirstIndex (and so on) is a whole number representing the
index key position for the value you seek.
INT
INT(number)
Returns a number rounded down to the next integer of lesser
value.

Number 1s any real number you want to round down to the
next lowest mteger.

Interpolate Prefix

Interpolate (Calendar):

Tells the application to interpret each of its values as a

lookup value that 1s linearly applied across its time period,

creating a stepped value for each day in the time period

You can then reference the Interpolate table (by parameter
name) in the formula to calculate values for a destina-
fion parameter.

If Calendar 1s omitted, the application applies its own
calendar selection method.

5

10

15

20

25

30

35

40

45

50

55

60

65

52

If the destination date falls outside the date range of the
Interpolate parameter, the application uses the two
Interpolate dates that are closest to the destination date
to figure the stepped value.

In Smart Paper, the ~“symbol 1identifies a parameter with
Interpolate table values.
Interval (Definition)
An 1nterval 1s the length of a date index period calculated as
a portion of a year.

For example, the first interval on a StartDates index 1s 0.5
if the 1ndex 1s semiannual, 0.25 if the 1ndex 1s quarterly,
and so on.

On a StartDates 1index, the first interval begins on the first
date and ends on the day before the next index date. The
last date on the index is a zero-length interval (starts
and ends on same date).

On an EndDates index, the first date on the index 1s a
zerolength interval (starts and ends on same date). The
second 1nterval begins the day after the first date and
extends through the next date on the index.

Interval Function

Interval (Datel, Date2, Calendar)

Calculates the numbers of years between two dates based on
the day-counting metrics of the given calendar.

The function 1s calculated as the sum of a whole number
of years and a fractional part. Only the fractional part
1s aifected by the calendar designation.

For example, the Interval between Feb. 15, 2000 and Mar.
15, 2001 using the calendar Actual 360 1s 1+28/360,
not 394/360.

For the most accurate results, format the row to permit
multiple decimal places.

Datel and Date2 are any two single date expressions.

Calendar 1s a calendar method such as Actual 360,
European_ 30_ 360, and so on.

If Calendar 1s omitted, the application uses the decision
tree for multiple calendars to choose a method.
If you know Datel and want to add an interval to obtain
Date2, see AddYears.
Key, Keyed (Definition)
A key 1s a point of coordination on an 1ndex that 1s used to
sort values.

Keys can be defined as dates, mtegers, or alphanumeric
strings encased 1n quote marks.

Each value 1n a array below the index 1s “keyed” to one
position (element) on the index.
Keys Function
Keys(Stream)
Returns the index used to coordinate the values 1n a numbers
stream.

A returned date index assumes the StartDates prefix
(whereby dates represent the beginnings of periods),
even 1f the source index uses the EndDates prefix.

You can also use the Dates function to return a date index
or a combination of date indexes.

Stream 1s the parameter name of a payment or mcome
stream.

Last Function
Last (Array)
Refers to the last value 1n a given array.

Array can be any numbers stream or date stream.
Last Keyword
[.ast stream
Refer to the last date 1n a date stream 1n order to use the date
itselt 1n another date stream.

US 6,957,191 B1

53

LEFT Function

LEFT(String, NumChars)

Returns one or more of the leftmost characters of a text
string.

54

Calendar 1s a calendar method such as Actual 360,
European_ 30_ 360, and so on.

If Calendar 1s omitted, the application applies 1ts own
calendar selection method.

String 1s a series of text characters or a reference to a 5 I OWER Function

parameter that contains text characters.
Enclose String 1in quote marks.

NumChars 1s the number of characters you want returned
starting with the first character. NumChars must be
oreater than or equal to zero.

If NumChars 1s greater than the length of String, the
application returns all of String.

If you omit NumChars, the application returns the single
left-most character.
LEN Function
LEN(String)
Counts the number of characters 1n a text string, including
spaces.

String 15 a series of text characters or a reference to a
parameter that contains text characters.

Enclose the text string 1n quote marks.
LN Function

LN(Number)
Returns the natural logarithm of the number you specity.

Number must be a positive real number. The application

returns the natural logarithm of Number.
L.OG Function

LOG(number,base)
Returns the logarithm of a number to a specified base.

Number must be a positive real number. The application
returns the logarithm of the number.

Base 1s the base of the logarithm. If you omit Base, the
application assumes it 1s 10.

L.OG10 Function
LOG10(number)

Returns the logarithm of a number to base 10.

Number must be a positive real number. The application
returns the logarithm of the number to base 10.
Lookup Function
Lookup(OutputList, InputList, LookupValue, Action,
NotFoundValue, Calendar)
Returns the occurrence of values shared between two param-
cters keyed to different indexes.

OutputList 1s a parameter that contains the values to
return where there 1s a match between InputList and
LookupValue.

Can be an indexed array (i.e. numbers stream) or a date
index.
If not specified, OutputList 1s assumed to be the natural

numbers (1; 2; 3 .. .). a InputList is a parameter that
contains or organizes the LookupValue.

Can be an indexed array (i.e. numbers stream), an index,
or an unsorted (non-indexed) array.

If InputList 1s omitted and OutputList 1s an 1ndexed array,
then InputList 1s assumed to be the index of OutputList.
Otherwise, it is assumed to be the natural numbers (1;
2;3...).

If Inputlist 1s an unsorted array, then only exact value
matches are possible (Action must be 0).

LookupValue 1s a parameter that contains the values the
function should search for within the InputList.

Action speciiies a code number for the type of result to
return when an exact match 1s not found.

NotFoundValue specifies the result to be returned if
LookupValue 1s not found 1n InputList according to the
preceding argcuments.

10

15

20

25

30

35

40

45

50

55

60

65

LOWER(String)
Converts a text string to lower case.

String 1s a series of text characters or a reference to a
parameter that contains text characters. Enclose the text
string 1n quote marks.

Max Function
Max (argumentl, argument2, . . .)

Returns a scalar value or array of values, depending on the
number of arcuments given and 1f the Max parameter 1s
indexed.

Argumentn (and so on) 1s any number or parameter name.
MaxByIndex Function
MaxBylIndex (argumentl, argument2, . . .)

Returns array in which each position holds the maximum
value found at the corresponding position within a set of
arguments.

Argumentn (and so on) 1s any number or parameter name.
MaxOfAll Function
MaxOfAll (argumentl, argument2, . . .)

Returns the single maximum value found 1n a set of argu-
ments.

Equivalent to MAX 1n Microsoit Excel.

Argument 1S any number or parameter name.
MID Function

MID(String,StartNum,NumChars)
Extracts one or more characters from within a string.

String 1s a series of text characters or a reference to a
parameter that contains text characters. String contains
the characters you want to extract.

Enclose String 1n quote marks.

StartNum 1s the position of the first character you want to
extract.

If StartNum 1s greater than the length of String or less than
1, the application returns an error.

NumChars 1s the number of characters you want to
extract, starting with the character in the StartNum
position.

If StartNum plus NumChars 1s greater than the length of
String, the application returns the characters up to the
end of String.

Min Function
Min (argumentl, argument2, . . .)
Returns a scalar value or array of values, depending on the

number of arguments given and it the Min parameter 1s
indexed.

Argumentn (and so on) is any number or parameter name.
MinByIndex Function
MinBylIndex (argumentl, argument2, . . .)

Returns array in which each position 1s the minimum value
found at the corresponding position within a set of argu-
ments.

Argumentn (and so on) 1s any number or parameter name.
MinOfAll Function

MinOfAll (argumentl, argument2, . . .)

Returns the single minimum value found 1n a set of argu-
ments.

US 6,957,191 B1

35
Equivalent to MIN 1n Microsoft Excel.

Argumentn (and so on) is any number or parameter name.
MOD Function

MOD(number,divisor)
Returns the remainder of a number after a division.

Number 1s any numeric value for which you want to find
a remainder.

Divisor 1s any numeric value by which you want to divide
the number. If the divisor 1s zero, the application
returns an €rror.

Month Function

Month(Date)

Returns an integer between 1 and 12 that represents the
month in a date value.

Date 1s any single date expression.
MonthEndOf Function

MonthEndOf(Date)

Returns the last calendar day of the month for a given date
scalar or stream.

This function 1s typically used to produce a date stream
consisting of the last days of months, the equivalent of

writing the date constant 31 MON YEAR.

Date streams based on the MonthEndOf date display the
last calendar day of each month, but each date behaves
as the 31* when used in formulas.

Date 1s any single date expression.
Monthly Keyword
Monthly 1s a frequency keyword used to define the interval

between continuing dates 1n a date stream.
Monthly_ MISF__Yield Function

Monthly_ MISF_Yield (Flows, SinkingFundRate)
Returns the nominal monthly MISF yield of a given array of
cash flows.

This function uses a built-in search (invisible to you) to
determine the rate of return to apply to a set of cash

flows 1n order to end up with a net investment balance
of 0 on the last yield date.

Use this function i place of the MISFYieldByMonth

template when you do not need to assert or constrain
the result.

Flows 1s the parameter name for a set of cash flows keyed
to a monthly date index.

If you argue a payment stream that 1s keyed to a different
frequency, the result will be incorrect.

SinkingFundRate 1s a percentage. The default 1s 0%.
Next Function
Next(Array,LastValue)
Returns an array in which, relative to the current position,
cach value refers to the next sequential value 1n a source
array.

Array 1s the name of the current parameter or the name of
a source array from which you want to retrieve the next
values.

This function and the Previous function can be used to
create self-referential formulas.

LastValue 1s a value used to calculate the final value of the
array.
Nolndex Prefix
Nolndex: remainder of formula
Lets you specily that a parameter 1s not keyed to an index,
even 1f the parameter appears to be within the scope of an
index.

Typically, you use the Nolndex prefix to 1dentify a scalar
value that happens to be placed i1n the scope of a date
index.

10

15

20

25

30

35

40

45

50

55

60

65

56

NOT Function
NOT(Condition)

Reverses the logical truth or falseness of the argument.

Condition 1s an expression that the application can evalu-
ate to be true or false. If Condition is true, the appli-
cation returns False. Otherwise, the application returns
True.

Null Function

Nul

Returns a null (blank) value as opposed to the number
ZETO.

ODD Function
ODD(Number)

Returns a number rounded up to the next odd integer away
from zero.

Number 1s the numeric value you want to round up. If
Number 1s an odd integer, the application does not
round 1t up.

On Keyword

On date
Assigns a given value to the given date, or (with the Except
keyword) lets you exclude a value on the given date.

The value can precede the keyword or follow the date.

If the given date does not a match a date 1n the index, the
value 1s 1gnored.
Optimize Prefix
Optimize (Count/Date, Variability, Scale, Restriction):
Tells the application to calculate values to meet the objective
function of a case. An example of an Objective Function 1s
the total cash of a transaction.

If you have entered a constraint on the parameter, the
application calculates an optimized value that meets the
requirements defined by the constraint.

After you perform an optimization in the Optimization
chapter, the application replaces the entire formula 1n
cach parameter that has the Optimize prefix with the
calculated value(s).

If you want to retain a portion of a parameter formula,
split the formula between two parameters.

In one parameter, use the Optimize prefix and enter the
portion of the formula that can be replaced with values.

In the other parameter, do not use the Optimize prefix.
Enter the portion of the formula you want to retain, and
refer to the parameter that contains the Optimize prefix.

You can combine the Optimize prefix with other prefixes
in a formula. For example:
Advance Optimize(argl, arg2, argd, arg4):
Count/Date 1s the number of, or last date of, the elements
in the parameter to be set. If you omit a value for this
arcument, the application returns a value for each
position 1n the parameter index.

For Count/Date, you can also enter the number of periods
(such as 30 years), or the end date (such as Dec. 31,
2010), or the number of elements in the parameter you
want to set.

Variability 1s one of the following functions:
Variable. Allows any value to be returned.

IntegerVariable. Allows integer values only to be
returned.

BinaryVariable. Allows one or zero only to be returned.

Constant. Does not allow the current value(s) to change.
Use this option to freeze a value from a previous
optimization.

You can also enter a formula for any of the Variability
options. Enter the formula in place of the Variability
option, or refer to a parameter that has the formula.

US 6,957,191 B1

S7

Scale. If Vanability 1s set to Integer or BinaryVariable,
enter the scale you want to use.

Restriction can be one of the following functions:

None. There are not any restrictions on the values
returned.

Increasing. The values returned must be 1n ascending
order (x1<=x2<=x3 .. .).

Decreasing. The values returned must be 1n descending
order (x1>=x2>=x3 .. .).

OnlyOne. Only one of the values returned can be non-
ZETO.

OnlyTwo. Only two of the values returned can be non-
zero, and they must be adjacent.

You can also enter a formula for any of the Restriction
options. Enter the formula 1n place of the Restriction
option, or refer to a parameter that has the formula.

OR Function

OR(conditionl,condition2, . . .)

Returns the logical value True if any of the argcuments are
true. I all of the arguments are false, returns False.

Conditionl, condition2, and so on are the conditions you
want to test for being true or false.

Parameter (Definition)

A parameter 1s data that represents a calculation and can be
used 1n other calculations.

The components of a parameter include 1ts name, its
formula, and the value(s) computed as a result of the
formula.

The formula for one parameter can refer to other param-
cters.
You create and view parameters on sheets of Smart Paper.
PeriodEdge Function

PeriodEdge (Date, Periods, First/Last, Containing/
Following)

Returns the first or last day 1 a period. You can specily
whether you want the day to be 1n the period, or before or
after the period.

Date 1s any single date expression.

Periods 1s the parameter name of the date index that
contains the period of interest.

First/Last requires the logical value True or False.
Enter True to get the last date.
Enter False to get the first date.

Containing/Following requires the logical value True or
False.

Enter True to get a date within the defined period.

Enter False to get a date within the period that follows the
defined period.

PeriodEnd Function
PeriodEnd(Period)

Returns the end date of a period defined by a set of bookend
dates.

Period 1s expressed mm/dd/yy to mm/dd/yy (you cannot
use a parameter reference for either date).

PeriodIntersection Function

PeriodIntersection (PeriodStream1, PeriodStream?2)

Returns a period stream based on the intersecting dates of
two other period streams.

PeriodStreaml1 1s the parameter name of a date stream.

PeriodStream2 1s the parameter name of a date stream.

10

15

20

25

30

35

40

45

50

55

60

65

53

PeriodInterval Function
PeriodInterval (Offset, Calendar)

Maps a numbers stream 1nto a set of user-defined inter-
vals.

If you need to use the period interval for a parameter with
an Advance or Arrears prefix, use Accruelnterval.

Offset 1s an integer that defines the periods in which to
return interval values.

A blank or O offset assumes an interval of each period
containing a value.

A +1 offset assumes the interval of the next period of
value, +2 includes the next two periods of value, and so
on.

A —1 offset assumes the mterval of the previous period of
value, -2 1ncludes the previous two 1ntervals, and so
on.

Calendar 1s a calendar method such as Actual 360,
European_ 30_ 360, and so on.

If Calendar 1s omitted, the application applies 1ts own
calendar selection method.

PeriodLength Function
PeriodLength (Period, Calendar)

Returns the portion 1 years of a period according to
specified calendar.

Period 1s a pair of dates expressed as mm/dd/yy to
mm/dd/yy (do not use a parameter reference).

Calendar 1s a calendar method such as Actual 360,
European_ 30_ 360, and so on.

If Calendar 1s omitted, the application applies 1ts own
calendar selection method.
Periods Function

Periods (IncomeStream)
Returns a stream of periods to which values 1n the given
numbers stream are keyed.

IncomeStream 1s the parameter name of a payment or
Income stream.
PeriodStart Function

PeriodStart (Period)
Returns the start date of a period defined by a set of bookend
dates.

Period is expressed mm/dd/yy to mm/dd/yy (you cannot
use a parameter reference for either date).

PeriodStream Function
PeriodStream (StartDate, DateStream, EndDate)

Creates a period stream from a pair of bookend dates and an
existing date stream.

StartDate 1s the first date of the first period 1n the stream
to be created.

DateStream 1s the parameter name of the date stream that
contains the periods to be used 1n the period stream
following the given StartDate.

EndDate 1s the end date of the last period in the period
stream to be created.
POWER Function

POWER(number,power)
Returns a number raised to the power you specity.

Number 1s any real number you want to raise to a power.

Power 1s the exponent to which you want to raise the
number.

Prefix (Definition)

A prefix 1s a keyword you use at the beginning of a formula.
The prefix applies to all the values 1n the formula and
determines how the values apply to time periods.

US 6,957,191 B1

59

Previous Function

Previous (Array, FirstValue)

Returns an array in which, relative to the current position,
cach value refers to the preceding value 1n a source array.

Array 1s the name of the current parameter or the name of
a source array from which you want to retrieve the
previous values.

The design of this function permits 1t to be self-referential
without returning a circular reference error. See
example.

FirstValue defines a value to assume for the first position
in the resulting array.

The 1nverse of this function 1s the Next function.

Quarterly Keyword
Quarterly 1s a frequency keyword to define the interval

between continuing dates 1n a date stream.
RegularAscendingArray Function

RegularAscendingArray (Start, Step, Number)

Creates an ascending array of in which each value increases
by a specified 1increment.

Start 1s the first value of the array.

Step 1s the amount you want to add to the starting value
and each resulting value to create the next value in the

array.

Number 1s an optional number of values you want 1n the
resulting array.
RegularDateStream Function
RegularDateStream (StartDate, Frequency, Number,
SecondDate, LastDate, Term)
Creates a date stream or date index.

You can obtain the same results with natural stream
language or the date stream composer.

All argcuments are optional, but not all combinations of
arcuments are compatible.

For example, if you provide StartDate, Frequency, and
Number, the SecondDate and Term arguments will
cither repeat or contradict what 1s already defined.

Use any single date expression to express StartDate,
SecondDate, and LastDate.

StartDate 1s the first date 1n the stream.
Frequency 1s Monthly, Quarterly, Annual or Semiannual.

Number 1s the number of dates to be included in the
stream.

SecondDate 1s the second date 1n the stream.

[astDate 1s the last date 1n the stream. Omit LastDate to
create an unterminated stream.

Term 1s the elapsed time between StartDate and LastDate.
It can be given as an elapsed time expression or 1n the

form of the ElapsedTime function.
REPLACE Function

REPLACE(OIldString,StartNum,NumChars,NewString)
Replaces a portion of a text string with another string.

OldString 1s the text string you want to replace. It can be
grven as a series of text characters or as a reference to
a parameter that contains text characters.

Enclose OldString in quote marks.

StartNum 1s the position of the first character in OldString
that you want to replace.

NumChars 1s the number of characters you want to
replace starting with the character in the StartNum
position.

NewString 1s the string you want to insert as a replace-
ment for OldString.

5

10

15

20

25

30

35

40

45

50

55

60

65

60
REPT Function

REPT(String, NumberTimes)

Repeats a text string the number of times you specity.

String 1s a series of text characters or a reference to a
parameter that contains text characters. String 1s the
text string you want to repeat.

Enclose String 1n quote marks.

NumberTimes 1s the number of times you want to repeat
String. If NumberTimes 1s zero, the application returns
an empty text string.

RIGHT Function

RIGHT(String, NumChars)
Returns one or more rightmost characters of a text string.

String 1s a series of text characters or a reference to a
parameter that contains text characters

Enclose String 1in quote marks.

NumChars 1s the number of characters you want to extract
starting with the last character. NumChars must be
oreater than or equal to zero.

If NumChars 1s greater than the length of String, the
application returns all of String.

If you omit NumChars, the application uses 1.
Role (Definition)

A role 1s the name for the set of properties that defines Party
interaction with an Instrument.

Roles are defined by the flow of connective endpoints of
instruments.

For example, when a Rent instrument 1s drawn between
two parties, the connector begins with the Lessee and
terminates with the Lessor to reflect the direction of
payments.

ROUND Function
ROUND(number,num__digits)

Returns a number rounded to the number of digits you
specily.

Number 1s any number you want the application to round
up or down.

Num_ digits 1s the number of digits you want 1n the
resulting number.

If Num__digits 1s greater than zero, then the application
rounds Number to the number of decimal places you
specily.

If Num__digits 1s zero, then the application rounds Num-
ber to the nearest integer.

If Num_ digits 1s less than zero, then the application
rounds Number to the left of the decimal point.

ROUNDDOWN Function ROUNDDOWN(number,num__
digits)

Returns a number rounded down to the number of digits you
specily.

Number 1s any number you want the application to round
down.

Num_ digits 1s the number of digits you want 1n the
resulting number.

If Num__digits 1s greater than zero, then the application
rounds Number down to the number of decimal places
you specity.

If Num__digits 1s zero, then the application rounds the
Number down to the nearest integer.

US 6,957,191 B1

61

If Num__digits 1s less than zero, then the application
rounds Number down to the left of the decimal point.

ROUNDUP Function
ROUNDUP(number,num__digits)

Returns a number rounded up (away from zero) to the
number of digits you specity.

Number 1s any number you want the application to round
up.

Num__digits 1s the number of digits you want 1n the
resulting number.

If Num__digits 1s greater than zero, then the application
rounds Number up to the number of decimal places you
specily.

If Num__digits 1s 0, then the application rounds Number
up to the nearest integer.

If Num__digits 1s less than O, then the application rounds
Number up to the left of the decimal point.

Scalar Parameter (Definition)

A scalar parameter defines a single quantity that does not
change over time or other direction. A scalar parameter 1s not
attached to a key position (such as a date) on an index, even
if the scalar parameter happens to be located 1n the scope of
an ndex.

To create a scalar parameter under an index, use the
Nolndex prefix.

Search Prefix

The Search prefix tells the application to perform search and
repetitive calculations to determine the value of a scalar
parameter.

There are three ways to use the Search prefix:

1) Optimization search (also known as a multistep or 3-step

search)
2) Targeted search (also known as a 5-step search)

3) Maximization search
Optimization Search
Search (LowerBound, UpperBound, SearchAccuracy):

In an optimization search, you set up the Search parameter
formula, then you perform an optimization with an objective
function.

Also known as a multistep search or a three-argument
search.

Successive optimizations are performed until the best
objective function 1s found. For example, “Find the best
EBO date to meet the Present Value objective where PV
objective 1s 1tself an optimized value.”

LowerBound 1s the minimum value 1n the range of values
you want to optimize within. For example, 1f you are
looking for a percentage no smaller than 2%, enter 2%.

UpperBound 1s the maximum value in the range of values
you want to optimize within. For example, 1f you are
looking for a percentage no higher than 25%, enter

25%.

SearchAccuracy 1s the degree of accuracy your search
requires.

For example, enter 0.1 to search for values within 10% of
the target.

Targeted Search

Search (LowerBound, UpperBound, SearchAccuracy,
TargetExpression, TargetValue, TargetAccuracy,
InitialGuess):

10

15

20

25

30

35

40

45

50

55

60

65

62

Secarches for a value for which the target expression equals
the target value. For example:

“Find me an interest rate that will give me 2008 TV over
this term of investment.”

Interest rate=search prefix
200% TV=target value
term of investment=target expression

In this example, the search stops whenever a value 1s
found for which the difference 1s less than the target
accuracy.

LowerBound is the minimum value in the range of values
you want to optimize within. For example, 1f you are
looking for a percentage no smaller than 2%, enter 2%.

UpperBound 1s the maximum value 1n the range of values
you want to optimize within. For example, 1f you are

looking for a percentage no higher than 25%, enter
25%.

ScarchAccuracy 1s the degree of accuracy your search
requires.

For example, enter 0.1 to search for values within 10% of
the target.

TargetExpression 1s the name of the parameter that will
contain the target value.

TargetValue 1s the name of the parameter that defines
objective of the search.

TargetAccuracy 1s the extent to which the search should
continue, 1.€. you can enter a value like ? to truncate the
search (speed it up).

If not supplied, the search continues until the variable 1s
known to be within the SearchAccuracy value.

InitialGuess 1s another way to accelerate the search by
indicating a starting point—i.e. 1f you are expecting a
value between 10% and 15%, set InitialGuess to 10%.

If ImtialGuess 1s omitted, the search starts at the current
value.

Semiannual Keyword

Semiannual (or Semiannually) is a frequency keyword used
to define the interval between continuing dates in a date
stream.

Semicolon (;) Keyword

The semicolon symbol (;)stops the current sequence of dates
or values 1n a stream. The stream then continues or ends
according what follows the semicolon in the formula.

In a date stream, use a semicolon to interrupt the stream
ol anniversaries at one frequency and continue them at
a different frequency.

In a numbers stream, use multiple semicolons to omit
values under key positions 1n an index.

If value; 1s the first portion of the formula, value 1s
assumed to coincide with the first key position on the
imndex.

SetResult Prefix
SetResult (Result, Party, Outcome):

The SetResult prefix lets you define a three-argument 1den-
tity of sorts to bookmark a value. You can then retrieve the
value, when needed, with the Get Result function.

The values you provide for Result, Party, and Outcome
can be arbitrary, provided you follow rules for using
quote marks as given below.

For example, the arguments(*Amo”, “Amas”, “Amat”)
work just as well as (“MyResult”, Lessor,
“BaseOutcome”).

US 6,957,191 B1

63

Result 1s any alphanumeric text encased 1n quote marks.

Party 1s any alphanumeric text encased 1n quote marks, or
it can be the name of a role (without quote marks)
within the case. For example, you can use Lessor when
a Rent 1nstrument 1s present.

Outcome 1s any alphanumeric text encased i1n quote
marks.

SIGN Function
SIGN(number)

Returns the sign of a number. If the number 1s positive, the
application returns 1; if the number 1s 0, the application
returns 0; 1f the number 1s negative, the application returns

-1.
Number 1s any real number.

Source Parameter (Definition)

A source parameter 1s one that contains data you want to use
in another parameter.

For example, 1in writing a formula to show accrued rent,
you would refer to the parameter that contains actual
rent levels as the source of data.

The formula that shows the accrued rent 1s the destination
parameter.

SQRT Function

SQRT(number)
Returns the positive square root of a number.

Number 1s any numeric value.

If the number 1s negative, the application returns an error.
StartDates Prefix

Indicates that each date on the index (except the last date)
represents the FIRST day of a period.

Each period begins as of the index date and ends on the
day before the next index date.

The last date 1n the index 1s a bookend. It does not
represent the start of a new period.

StartDates 1s the default when the date stream formula
does not specify a period prefix.

The -»symbol indicates the StartDates prefix.
StartDatesOf Function

StartDatesOf (First, Second, . . .)

Returns the combined dates used to organize a set of number
streams, first converting them to start dates 1f necessary.

This lets you create an index comprising the date values
of various indexed parameters without having to
remember anything about the indexes themselves.

If an argued numbers stream 1s keyed to an StartDates:
date index, the function returns the dates as they appear
on that index.

If an argued numbers stream 1s keyed to an EndDates date
index, the function first adds one day to each date to
return it as a start date.

First (and so on) are the parameter names of numbers
streams (tables, cash and income streams).

The similar StartDatesOfPeriods function slows down
optimization performance, but it 1s more flexible 1n the
types of arguments it accepts.

StartDatesOfPeriods Function
StartDatesOfPeriods (First, Second . . .)

Derives period end dates for one or more numbers streams
and/or date indexes, then creates a date index of dates that
reflect the start dates of the underlying periods. Also incor-
porates dates or date streams given as arguments.

10

15

20

25

30

35

40

45

50

55

60

65

64

To calculate dates for the result, the function adds one day
cach to the collected end dates.

First (and so on) can be any one or more of the following:
parameter name of an EndDates date index.

parameter name of a numbers stream (1.€. Income oOr
payment flow, table) that is keyed to a EndDates date
index.

single date expression or date stream expression
Starting Keyword
Starting date
Defines the first date 1n a date stream or assigns the first
value 1n a numbers stream to the given date.
SubArray Function
SubArray (Array, Start,Count)
Returns a portion of an existing array as of a specified key
position.

Array 1s the name of any array parameter: a numbers
stream, a date index, and so on.

Start specifies the key position in the source array that
contains the first element you want to retrieve.

Count specifies the number of elements you want to
retrieve from the source array.
SUBSTITUTE Function
SUBSTITUTE (String, OldString, NewString,
InstanceNum)
Substitutes any number of instances of a text string with
another text string.

String 1s the text string in which you want to substitute
characters.

OldString 1s the text string you want to replace.

NewString 1s the text string you want to 1nsert in place of
OldString.

InstanceNum speciiies the instance of OldString you want
to replace. If you omit InstanceNum, the application
changes every occurrence of OldString to NewString.

Subtotal Function

Subtotal (Heading, Index, Parameter)

Returns the total of all values in one or more indexed
parameters of the same name under a given heading.

Heading i1s closest heading above the parameter.

Index is the name of the date index (or other index) to
which the parameter 1s linked.

Parameter 1s the parameter name.
SUM Function

SUM(argumentl,argument 2, . . .)
Returns the sum of all values 1n all of the arguments.

Argumentl, arcument2, can be numbers, logical values
(such as True), or arrays that you want the application

to add.

SumToDate Function

SumToDate (Value, Date)

Returns a single number that 1s the sum of an array up to, but
not including, the specified date.

This function 1s useful in defining a truncation point for an
accrued payment or income stream.

Value 1s the name of a numbers stream.

If Value 1s a non-accrued numbers stream, the function
returns the sum of values on dates that precede the
ogiven date. See Result__ 1 1n example.

If Value 1s an accrued numbers stream, the function
returns the total accrual from the beginning of time up
to (not including) the given date. See Result 2 in
example.

US 6,957,191 B1

65

Date 1s any single date expression.

Date 1s optional in the SumToDate function when 1t 1s
nested inside the Truncate function (SumToDate
defaults to the Truncate date).

Table Prefix
Table: values

The Table prefix tells the application to interpret each value
in the parameter as a stmple lookup value along a date 1ndex.

When you reference the Table parameter 1n the formula to
calculate values for a destination parameter, the application
applies the table value 1n effect as of the Table parameter
period that contains the destination parameter date.

If a date for the destination parameter falls outside the
date range of the Table parameter, the application
applies the Table value that occurs closest to the
destination date.

In Smart Paper, the isymbol 1dentifies a parameter with
Table values.

Table Value Function

Table Value (Table, Value)
Extracts a value or values from a table.

Table 1s the name of any parameter with a Table or
Interpolate prefix.

Value 1s any expression of a single value or array of values
that 1s compatible with the index to which Table i1s
keyed (usually dates).

Then Keyword

Stops the current sequence of continuing dates 1n a date
stream. The stream re-continues or ends according what
follows 1n the formula.

Use Then to create a date stream with different frequen-
cies for different portions of the stream.

Thereafter Keyword

Assigns the given value to each remaining period on the
current index according to the payment prefix, unless:

the Except keyword 1s added, or

the formula also contains the Advance prefix, so that there
1s no value applicable to the last date of the index.

TimeShice Function

TimeSlice (Timeline, StartDate, EndDate)

Returns a date stream using given dates and dates from
another date stream.

Timeline 1s the name of a date stream parameter or a Time
Organizer timeline.

The referenced Timeline must contain at least one date
that falls between the argued StartDate and EndDate.

StartDate 1s any valid date expression.
EndDate 1s any valid date expression later than StartDate.

Today Function
Today

Returns the current date.
TRIM Function
TRIM(String)
Changes multiple blank spaces between words to a single
space.

String 15 a series of text characters or a reference to a
parameter that contains text characters. String 1s the
text in which you want the application to delete spaces.

Enclose String 1n quote marks.

10

15

20

25

30

35

40

45

50

55

60

65

66

TRUE Function

TRUE

Returns the logical value True.

TRUNC Function

TRUNC(number)

Converts a number to an mteger by removing the fractional

part of the number. The application rounds the number down
to the next mteger toward zero.

Number 1s any numeric value.
Truncate Function
Truncate (Value, TruncationDate, TruncationValue)

Returns a numbers stream stops as of the index date that
precedes the given truncation date.

Value 1s the name of a numbers stream.

TruncationDate 1s any single date expression.

TruncationValue 1s an extra amount to add 1n on the actual
TruncationDate.
Union Function
Union(Argumentl,Argument2 . . .)

Combines all values found within the given arguments and
returns an ascending array with duplicates removed.

Typically used to combine multiple date indexes 1nto a
single date index.

Argumentl, argument2, and so on are names of param-
cters or indexes. The arguments can be any scalar or
array value, including constants or parameter refer-
€nces.

Until Keyword

Until date

Assigns the last value m a sorted numbers stream to the key
position that contains the given date.

Unsorted Array (Definition)

An unsorted array 1s a type of array parameter that comprises
a series of independent values. That 1s, the values are not
keyed to an index (even if the unsorted array appears below
an index).

You use the List: prefix to create an unsorted array.

You can give an unsorted array the appearance of an
imndex, but 1t will not behave as an i1ndex.

For example, you cannot key values to unsorted array
clements, and the application cannot calculate or mea-
sure the “value” of unsorted array elements.

UPPER Function
UPPER(String)

Converts a text string to upper case.

String 1s a series of text characters or a reference to a
parameter that contains text characters.

Enclose String 1n quote marks.
US_ 30 360 Function

This 1s one of four calendar methods you can choose to
evaluate intervals between dates for the purposes of calcu-
lation

Consists of twelve 30-day months (each month is one 12%
of the year).

February 1s given two extra days.

The status of the 31° depends on how dates relate to
per1ods.

WhenActive Function
WhenActive(Parameter,Default)

If the first arcument 1s active, the function returns the value
of the first arcument. If first argument i1s 1nactive, the
function returns the second argument.

US 6,957,191 B1

67

Parameter 1s any parameter name.

Default is a number or parameter name for the value(s)
you want the function to return if the status of the first

arcument 1s 1nactive.
YEAR Function

YEAR(Date)
Determines the year for a given date.

Date 1s any single date expression.

As 1s readily apparent from the description of the mnven-
tion above, the mstant financial modeling and analysis tool
provides a user friendly, effective and efficient tool for
modeling financial or other mathematical scenarios of
almost any kind. The graphical user interface combined with
the powerful engine provide a greatly improved modeling
tool as compared to the prior art.

It 1s noted that the invention 1s not limited to modeling,
financial scenarios or deals, but, instead, can be used to
model any scenario involving mathematical values over
fime.

The 1mplementations described above 1illustrate the
characteristics, features and advantages of the present inven-
tion. These implementations, of course, are not exhaustive,
and other implementations within the scope and spirit of the
present invention will be apparent to those skilled 1n the art.
In other words, while the invention has been described 1n
connection with what 1s presently considered to be the most
practical and preferred embodiments, 1t 1s to be understood
that the invention 1s not to be limited to the disclosed
embodiments, but on the contrary, 1s imtended to cover
various modifications and equivalent arrangements which
fall within the true spirit and scope of the appended claims.

What 1s claimed 1s:

1. A financial scenario model creation and analysis tool
that provides computer-aided design for financial
fransactions, comprising:

™

a graphical user interface which enables a user of said tool
to create a diagram of a financial scenario conceived by
the user on a display screen, wherein said graphical
user 1terface enables creation of said financial scenario
diagram by enabling said user to:

define parties involved 1n the financial scenario and add
the parties to the diagram on the display 1n the form of
graphical party objects; and

define financial instruments involved i the financial
scenario and add the financial mstruments to the dia-
ogram 1n the form of graphical financial objects that each
show a physical connection on the diagram between
pairs of said graphical party objects in the diagram,
whereln the user interface further enables the user to
indicate a flow direction on the diagram between the
pairs of said graphical party objects for an obligation
related to the financial instrument connecting said
pairs;

a software engine operable, 1n response to creation of the
diagram of the financial scenario, to create a math-
ematical model for said financial scenario using data
collected by said engine during the creation of said
diagram by said user, wherein creation of said math-
ematical model includes creating variables and math-
ematical relationships between variables based on con-
tent of the diagram,;

wherein said diagram and said mathematical model are
linked within said tool, and said user interface enables
the user to make changes to said graphical party objects
and said graphical financial objects 1n said diagram,
wherein when changes are made by the user to said

10

15

20

25

30

35

40

45

50

55

60

65

63

diagram corresponding changes are made by said soft-
ware engine to the mathematical model; and

further wheremn said user interface enables said user to

perform an analysis of the financial scenario using the
created mathematical model by changing values for the
created variables within the mathematical model and
viewing a result determined by the mathematical
model.

2. The financial scenario model creation and analysis tool
of claim 1, wherein said graphical financial objects indicate
a relationship, relative to said financial instrument repre-
sented thereby, between said pairs of said graphical party
objects.

3. The financial scenario model creation and analysis tool

of claim 1, wherein said mathematical modeling includes
financial instrument information for each of the financial

instruments added to said diagram, and said graphical user
interface enables said user to view and edit said financial

instrument 1nformation.

4. The financial scenario model creation and analysis tool
of claim 1, wherein said graphical user interface enables said
user to enter and define date information relating to said
financial scenar1o for use by said engine, and further wherein
said graphical user interface 1s operable to display said date
information in graphical form on said display screen.

5. The financial scenario model creation and analysis tool
of claim 4, wherein said tool enables said date mmformation
to be entered using a natural date language, said engine
being operable to process said date information from said
natural date language.

6. The financial scenario model creation and analysis tool
of claim 5, wherein said natural data language 1s used 1n said
tool to specily either a single date or a series of dates relating
to said financial scenario, and further wherein expressions
used 1n said natural date language to define a series of dates
include a start date, a frequency and an ending date.

7. The financial scenario model creation and analysis tool
of claim 6, wherein said tool enables a plurality of possible
outcomes to be modeled based on different date information
provided by said user.

8. The financial scenario model creation and analysis tool
of claim 1, wherein said engine 1s operable, 1n response to
said addition of said financial instruments to said diagram,
to define roles for parties represented by said graphical party
objects which are connected by said graphical financial
objects, wherein said roles are used by said engine to define
said parties 1nteraction with said financial instrument repre-
sented by said graphical financial object.

9. The financial scenario model creation and analysis tool
of claam 1, wherein said engine 1s operable to determine an
optimal result for said financial scenario relative to at least
one aspect of the scenario, and to calculate optimal values
for variables relating to said financial instruments repre-
sented 1n said diagram based on said optimal result.

10. The financial scenario model creation and analysis
tool of claim 1, wherein said tool 1s operable to determine an
optimal result for said financial scenario represented by said
diagram.

11. The financial scenario model creation and analysis
tool of claim 10, wherein said graphical user interface 1is
operable to display said optimal result to said user.

12. The financial scenario model creation and analysis
tool of claim 1, wherein said engine 1s operable, 1n response
to creation of each of said graphical party objects, to
generate a party-specilic template for containing speciiic
information on said party, a graphical user interface enabling
said user to edit said information 1n said party-speciiic
template.

US 6,957,191 B1

69

13. The financial scenario model creation and analysis
tool of claim 1, wherein said graphical user interface
includes a worksheet section which enables said user to
input scenario information, wherein said engine 1s operable
to use said scenario information when creating said math-
ematical model of said financial scenario.

14. The financial scenario model creation and analysis
tool of claim 13, wherein said worksheet 1s a non-cell based
calculation interface wherein references used 1n calculations
are based on a hierarchical outline and not on a positional
reference.

15. The financial scenario model creation and analysis
tool of claim 14, wherein said worksheet includes a formula
language for use 1n creating scenario information, said
formula language 1including a library of predefined functions
and keywords.

16. The financial scenario model creation and analysis
tool of claim 15, wherein said engine 1s operable upon entry

10

15

70

of said scenario information in said worksheet section to
establish links between related scenario information and
between scenario information and date information, thereby
establishing a dependence therebetween, and further
wherein said engine 1s operable to use said links when
creating said mathematical model of said financial scenario.

17. The financial scenario model creation and analysis
tool of claim 15, wheremn said formula language further
includes a library of predefined prefixes for use in creating
sald scenario mnformation.

18. The financial scenario model creation and analysis
tool of claam 13, wherein said tool includes a library of
predefined worksheets for use 1n said worksheet section,
said graphical user interface enabling said user to select said
predefined worksheets from said library of pre-defined
worksheets.

	Front Page
	Drawings
	Specification
	Claims

