(12) United States Patent

Lentz et al.

US006954844B2

US 6,954,344 B2
*Oct. 11, 2005

(10) Patent No.:
45) Date of Patent:

(54)

(75)

(73)

(21)
(22)

(65)

(60)

(51)

(52)

(58)

MICROPROCESSOR ARCHITECTURE
CAPABLE OF SUPPORTING MULTIPLE

HETEROGENEOUS PROCESSORS

Inventors: Derek J. Lentz, Los Gatos, CA (US);
Yasuaki Hagiwara, Santa Clara, CA
(US); Te-Li Lau, Palo Alto, CA (US);

Cheng-Long Tang, San Jose, CA (US);

Le Trong Nguyen, Monte Sereno, CA

(US)
Assignee:

Notice:

U.S.C. 154(b) by 88 days.

This patent 1s subject to a terminal dis-

claimer.

Appl. No.:
Filed:

10/449,018
Jun. 2, 2003

Prior Publication Data

US 2004/0024987 Al Feb. 5, 2004

Related U.S. Application Data

Continuation of application No. 09/884,943, filed on Jun.
21, 2001, now Pat. No. 6,611,908, which 1s a continuation of
application No. 09/253,761, filed on Feb. 22, 1999, now Pat.
No. 6,272,579, which 1s a division of application No.
08/915,913, filed on Aug. 21, 1997, now Pat. No. 5,941,979,
which 1s a continuation of application No. 08/442,649, filed
on May 16, 1995, now Pat. No. 5,754,800, which 1s a
division of application No. 07/726,893, filed on Jul. 8, 1991,

now Pat. No. 5,440,752.

US. Cl 712/29; 710/243

Field of Search

Seiko Epson Corporation, Tokyo (JP)

Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35

GO6F 13/14; GO6F 13/36

712/29, 1, 28,
712/30, 32, 33, 38; 710/243, 240, 241,
242, 249, 316, 317

(56) References Cited
U.S. PATENT DOCUMENTS
4,315,308 A 2/1982 Jackson
4,482,950 A 11/1984 Dshkhunian et al.
4,597,054 A 6/1986 Lockwood et al.
4,719,569 A 1/1988 Ludemann et al.
4,829,467 A 5/1989 Ogata
4,916,604 A 4/1990 Yamamoto et al.
4,991,081 A 2/1991 Bosshart
5,089,951 A 2/1992 Iijima
5,097,409 A 3/1992 Schwartz et al.
5,140,682 A 8/1992 Okura et al.
(Continued)
FOREIGN PATENT DOCUMENTS
DE 3931514 Al 3/1990
EP 0 205 801 A1l 12/1986
EP 0214 718 A3 3/1987
(Continued)

OTHER PUBLICATTONS

Agarwal, A. et al., “APRIL: A Processor Architecture for
Multiprocessing,” Proceedings of the 17th Annual Interna-

tional Symposium on Computer Architecture, IEEE Com-
puter Society Press, pp. 104—-114 (1990).

(Continued)

Primary Fxaminer—Dung C. Dinh
(74) Attorney, Agent, or Firm—Sterne Kessler Goldstein &

Fox PLLC

(57) ABSTRACT

A memory control unit for controlling access, by one or
more devices within a processor, o0 a memory array unit
external to the processor via one or more memory ports of
the processor. The memory control unit includes a switch
network to transfer data between the one or more devices of
the processor and the one or more memory ports of the
processor. The memory control unit also includes a switch
arbitration unit to arbitrate for the switch network, and a port
arbitration unit to arbitrate for the one or more memory
ports.

23 Claims, 9 Drawing Sheets

NETWORK

~- PORT &

\WRDATA |
57 PORTO |
IEB DATA™)| INTER-

FACE
ADpR ™ POAT
enTRLC7? 1§

ARB
onTRL(&

UNIT ¥
CNTRL {0
71

-y

r———

SWITCH

THLIND NYIN

84V 5nNd

THEND "D0ddIL0Nw
JAAY NYW

4

12 (~10 -9

[v.Llvd Nvin

I 1
> | oy e
=
~
¢ 7
o

"""""""""""

____...:‘.‘.. 55‘-\ pMCU
57 , 55
N\ WRDATA| CNTRL 7% 7On
o |BDDATA[~100 GAEHELGNTHL 717,
L
cacue| DDA | S707 |BREhE WRDATA
GNTRL "‘-'.'UEF FACE | D DATA 72
CNTRL [-103 ~73
- o4 74]
i
I
I
2N ' °° 80,80
| _RD DATA — %ﬁ CNTRL /7
1 [ADDA | TP JeacHE(SNTRL
5 .
cacHE[m-_ INTER-| o5 para 707w
| CNTRL | ~172 | 82
R I 2 — ~-83
52~ 57
RW DATA MSTR CNTAL 90,50,
R/W DATA SLV oNTARL /9797
itk l“_ i R
| oy AL | T VO | RD DATA |
» CNTRL | “123 FACE 00
ADDR [-124 WHR DATA
C T i 1""93 .
| ADDR | 125 _
L — g4
- TO YO BUS 33

oNTRL(&7
= L
FAU

A*
3 3 A
LY

s

in

e

I
2
-,
uy
\\
R
=
|
==,
.

-
Oy | PORT N

CNTHL! N

onTrL(0y | INTER- /] 6, 25y |
(L] FACE 7 Hr]

CNTRL(%0 ¥ b4
71

ONTRLL ¥ | poRT H |

CNTRL(87w || ARB 14

1 !
eNTRL(OTw | \pay, [[TPORTN
PN-.-/ HE

US 6,954,844 B2

5,148,533
5222223
5,226,125
5,261,057
5,283.903
5,301,278
5,303,382
5,430,884
5,436,869
5,440,752
5,471,592
5,604,865
5,666,494
5,754,800
5,041,979
6,219,763
6,272,579

2002/0059508

(M MM MMM
g~ s~ Ra~EavEaviiaw

<~ T T T T YT YT

FOREIGN PATENT DOCUMENTS

Page 2
U.S. PATENT DOCUMENTS JP 2-181855 7/1990
IP 3-127157 5/1991

e i g i

971992
6/1993
7/1993

11/1993

2/1994
4/1994
4/1994
7/1995
7/1995
8/1995

11/1995

2/1997
9/1997
5/1998
3/1999
4/2001
3/2001
5/2002

Joyce et al.
Webb, Jr. et al.
Balmer et al.
Coyle et al.
Uehara
Bowater et al.
Buch et al.
Beard et al.
Yoshida

Lentz et al.
Gove et al.
Lentz et al.
Mote, Jr.
Lentz et al.
Lentz et al.
Lentz et al.
Lentz et al.
Lentz et al.

0214 718
0 222 074
0 222 074
0 319 148
0 319 148
0 348 076
55-53722
58-178432
63-216159
64-88761
1-183779
1-255042
2-37592
2-71357
2-79153

Z LR LR

3/1987
5/1987
5/1987
6/1989
6/1989
12/1989
4/1980
10/1983
9/1988
4/1989
7/1989
10/1989
2/1990
3/1990
3/1990

OTHER PUBLICATTONS

Corsini, P. and Prete, C.A., “Architecture of the MuTeam
system,” IlLE Proceedings E—Computers And Digital Tech-
niques, The Institution of Electrical Engineers, vol. 134, Part
E, No. 5, pp. 217-227 (Sep. 1987).

Earnshaw, W., “The N4—A High Performance Three
Dimensional Multiprocessor Computer System,” IRFE
WESCON Convention Record, vol. 32, No. 29/2, pp. 1-8
(Nov. 1988).

Johnson, M. Superscalar Microprocessor Design, Prentice-
Hall, Inc., ISBN 0-13-875634-1, copy of entire book
submitted (1991).

Popescu, V. et al.,, “The Metatlow Architecture,” IFEE
Micro, IEEE, pp. 10-13 and 63-73 (Jun. 1991).

Slater, M., “AMD 2867ZX Combines 286 and PC System
Logic,” Microprocessor Report, vol. 4, No. 17, MicroDesign
Resources Inc., p1(4) (Oct. 3, 1990).

Slater, M., “386SL Brings 386 Power to Notebook Com-
puters,” Microprocessor Report, vol. 4, No. 18, MicroDe-
sign Resources Inc., pp. 1 and 10-14 (Oct. 17, 1990).
Weiss, R., “Third—generation RISC processors,” EDN, pp.
96—104, 106 and 108 (Mar. 30, 1992).

Patterson, D.A. and Hennessy, J.L., Computer Architecture:
A Quantitative Approach, Morgan Kaufman Publishers, Inc.,
ISBN 1-55880-069-8, copy of entire book submitted
(1990).

English-Language Abstract of German Patent Publication
No. DE 3931514, from Dialog File No. 351: Derwent WPI,

1 page.
English-Language Abstract of Japanese Patent Publication
No. 02-071357, from http://www19.1pdl.jpo.go.jp, 2 Pages.

US 6,954,844 B2

Sheet 1 of 9

Oct. 11, 2005

U.S. Patent

26, 1€ 0 £

Of1 diHO HOSSI0HC Ofl
H3HLO 13NH3H13 ving TVI03dS

2r It e OF
SAg O TVNOILJO v
€
S8 o se] F¢T o s 2 9
28 28 e
9 N = p 3
HOSS300Hd
T Ofl 3S04HNd Of! O/l
NHOSS300dd| | Tvioads | [eH0SS300Hd | [¢HOSS3I0Hd

g1/

_
108 1NOD NOILYHLigdY SNd '!
T

SNg JYLND HOSS300HdILNA 4
SNg Haay 100/MOY M +
SNg v.Lva NV Y

5g - 24 oo

./

MY

[Ol

US 6,954,844 B2

Sheet 2 of 9

Oct. 11, 2005

U.S. Patent

N LH0Od

4 ~

ool ||l

iiiii
et '

'TARELEEERNER S . X, fr—
A YRR LN il Ay, gy
-. ‘
. . . i gl = e
: L A I T LT R LN L L L] *

MAU ADDR <

M | o

ZEEl

HENI
N

£l

~ T A

A%
2. mm r‘..-

2& N G\“\
z:_qmj N) THIND €€ SNG O/1 OL ~—
b6 . 9zt
gy || Mg) 194NO 06 HOAv zi~| daav
1804 | [y),) TdAIND vivd UM pCI~| HAAY
40V L~
Vo) 1HND v vy REETL 2dh u_mwnw notr
-Mmﬁ_ Nog) THLNO Oon | 1z
N LHOd [N,) THLND Nig'6- TELNO %MFNJ?DEE
e e |
N g/ a0V Nog'06-" THLND HLSIN VIVO M -
N g/ 00K a4 &5
£9 e1l _
. Npg ./ daM zg HAQV ZHIN
4! ‘ . 30V THIND
Y ey AUy Emgmm.&o 99 1.g3INi| s | IHOVO,
| v
g..-—_ V| te) TELNO HIND — [3HIVIT oy < 9av.
) THIND V1
guy || g/ 184N Nog0g " . ~
LH0d {1 3 TdIND “
—
5. HLIND “
bL v0!
LNn | 060 =5 e/~ HAQY
gyY X
1HOd | 044 19O z/~ vlvaayg | 30vd
T T HILNI T E e 3HOYO
Jov4 |29 MHOMLAN| . 7 SHOVO[L0 d
SEETEN V1Ya ay HOLIMS YA Vi TH1IND d 001~ Y1ivd dy
0 LHOd |t Nogios - TBINO T EAZE .
v.Lva M ﬁ ¢
°d /% pG NoW ™ os Al%lﬂmm

01

b

2 m Jd o«
O o o =
~ g = <
Z 5 Z2 B
> 3 0 2
o 0 2 s
> =
O g IHOS
=

)

=

U.S. Patent Oct. 11, 2005 Sheet 3 of 9 US 6,954,844 B2

“““““““ -]_."54
SWITCH NETWORK ¢

I

[
|
I
| - N
| 6T T g
> 2
| L @ &, o |
| D ~ Q !
| EI {II gI D:II
| 2z 33
)y)) U
l ' I o
l * | PORT & &
| | -~
| | PORT INTERFACE
| EARLY REQ | 2
| I ATTR |
| ADDRESS 702 I
- I
T .
| FIFO R
. I
| 130
D CACHE | |
INTERFACE | || {60 78
| WRITE DATA | WD
g} 1 FIFO
131 62 ——
[G b
READ DATA | - -
s)] FIFO
: 9
| 132
I REQ ['7013 ,
] BEER
GRANT CNTRL P
' SWITCH , ARD
| ARB | REQ CNTRL UNIT
l UN'T \ |
' |
7 1a 70a
55 58 -7143 | |
/1b | PAU@
GRANT 142
CNTRL

———

|
|
|
| 141
|
|

140

FIG._3

U.S. Patent Oct. 11, 2005 Sheet 4 of 9 US 6,954,844 B2

SWITCH NETWORK

[3:0]
(63:0]

Ssw_WD [31:0]

SW_RD

SW_IDBST

SW_ REQ [28:0]
MAU ADDR BUS

- MAU CNTRL BUS

PORT INTERFACE
161

A E—

SNP ADDR

SNOOP
ADDR

GEN

ADDR |74
CNTRL

16

D CACHE
INTERFACE:
I
|

0 l N
163 i D
F1IFO
130

— -~ RD
1D FIFO
164
$FFFF 132

-*
65]] READ ‘

DATA

55:

eyl e e e

FIG._4

U.S. Patent Oct. 11, 2005 Sheet 5 of 9 US 6,954,844 B2

PORT @ INTERFACE

M

INSIDE
CHIP

QOUTSIDE
CHIP

172
N

Sy juEpmy S RN S p— T

6
BUS | BUS ARB
ChTAL Ciﬁ'%L CN? ARBITER
INTERFACE] 782 UNIT | 183 :
| 12
- CNTHL . BUS ARB
181 | CNTRL
|
| MULTI-
| PROCESSOR
| CNTRL
z 10
55 |
- SNP_HIT
MULTI- ITV R |
PROCESSOR
INTERFAGC CONTROL

l
|
| SNOOPADDR || 173
56 | 176 CNTRL
N Y |
1
|
|

CNTRL 179 !
178
INTERFACE QN}F"—
177

\

MAU CNTRL

FIG._5

U.S. Patent Oct. 11, 2005 Sheet 6 of 9 US 6,954,844 B2

SWITCH NETWORK

- 190
D CACHE ,/
D CACHE
__wrerrace e

ADDRESS [,
I |
| |
' NEW REQ]
| r |
‘ 194 |
| |
P l
| | ADDR |
| 192) , A
| PREV '
, REQ
o
I
bl oo
|
l 191
| ROW MATCH
e ; ! 195

55 -
51

U.S. Patent Oct. 11, 2005 Sheet 7 of 9 US 6,954,844 B2

HIGHEST PRIORITY

INTRINSIC PRIORITY) A
— [TV REQ

10 REQ/ROW M

D CACHE REQ/ROW M

[CACHE REQ/ROW M

INTRINSIC PRIOR
R — 7 10 HI PRIORITY REQ

D CACHE REQ/DENY PRIORITY

[CACHE REQ/DENY PRIORITY

INTRINSIC PRIORITY \

= 1O REQ

INTRINSIC PRIORITY

‘ D CACHE REQ

INTRINSIC PRIORITY

I CACHE REQ

10 REQ/HOG
F’G._ 7 LOWEST PRIORITY

US 6,954,844 B2

Sheet 8 of 9

Oct. 11, 2005

U.S. Patent

] i
i
" 1
) |
i i
. i
' I
; |
) I
: |
X |
i I
‘ 1
L !
i
|
1
|
]
»
1
. |
[
|
. “
|
. |
1
)
* i
i
i
’ |
1
|
_ . —
.)
! ! _
|
L "
" ! .
|
»
i
]
L
)
T _ |
w)
)
]
_ _ .
__ |
' _ -— |
“ i
' ;
" [
! ”lllll

]

8 Il

B s sl s o o o S e e e e W e o = =

m w _ m |

J S E

m STTOAD EILSVITLY | m |

m | _”_ | m |

w LL OM 0L OM 10aM | 00 aM m
w _ " | HQOV

w _ M m |

[
[
|

034 UM MC
Ol

03y GYH MC
JHOVO [

|
]
I
|

6 "Old

US 6,954,844 B2

| m | __ | w
m " | “ m m m
" | m | ” m " "
| ! _ . “ | “ " __
“ "] m | " "_ J
M L1 E LOOM | 00 QaM m m _
= " - gav m m O3H HM MZ
M m HAAY | gmpay | 03¢ w | m o)
~— " , : “.
Y _ . " | m "
= m m " m _
7 | " " “ r
m m _ _ _ m | D34 Q" Ml
m m * m | JHOVO]
Lf) ” “ _ : " _
— ' ! : _
S I S S S o
- TSIIDOAD EILSVIT LY __“ |
v _ | | m m : _
o m | . m | m |
- ” | : | “ |
m | " m
w m Rel®
m m — _ |
m “ “. | “ SITOAD €LLSYIT IV m |
“ " | " _ ! S e L ..v._I_U

U.S. Patent

US 6,954,544 B2

1

MICROPROCESSOR ARCHITECTURE
CAPABLE OF SUPPORTING MULTIPLE
HETEROGENEOUS PROCESSORS

CROSS-REFERENCE TO RELATED
APPLICATTONS

The present application 1s a continuation of application
Ser. No. 09/884,943, filed Jun. 21, 2001 now U.S. Pat. No.
6,611,908, now allowed, which 1s a continuation of appli-
cation Ser. No. 09/253,761, filed Feb. 22, 1999, now U.S.
Pat. No. 6,272,579, which 1s a divisional application of
application Ser. No. 08/915,913, filed Aug. 21, 1997, now
U.S. Pat. No. 5,941,979, which 1s a continuation application
of application Ser. No. 08/442,649 filed May 16, 1995, now
U.S. Pat. No. 5,754,800, which 1s a divisional application of
application Ser. No. 07/726,893 filed Jul. 8, 1991, now U.S.
Pat. No. 5,440,752. The present application 1s also related to
the following application:

1. HIGH-PERFORMANCE RISC MICROPROCESSOR
ARCHITECTURE, mvented by Le Nguyen et al, SMOS-
7984MCF/GBR, application Ser. No. 07/727,0606, filed Jul.
8, 1991, now abandoned;

2. EXTENSIBLE RISC MICROPROCESSOR
ARCHITECTURE, invented by Quang Trang et al, SMOS-
7985MCF/GBR, application Ser. No. 07/727,058, filed Jul.
8, 1991, now abandoned;

3. RISC MICROPROCESSOR ARCHITECTURE WITH
ISOLATED ARCHITECTURAL DEPENDENCIES,
invented by Yoshi Miyayama, SMOS-7987MCFEF/GBR/
RCC, application Ser. No. 07/726,744, filed Jul. 8, 1991,

now abandoned;

4. RISC MICROPROCESSOR ARCHITECTURE
IMPLEMENTING MULTIPLE TYPED REGISTER SETS,
invented by Sanjiv Garg, SMOS-7988MCF/GBR/RCC,
application Ser. No. 07/726,773, filed Jul. 8, 1991, now U .S.
Pat. No. 5,493,687,

5. RISC MICROPROCESSOR ARCHITECTURE
IMPLEMENTING FAST TRAP AND EXCEPTION
STATE, invented by Quang Trang et al, SMOS-7989MCEF/
GBR/WSW, application Ser. No. 07/726,942, filed Jul. §,
1991, now abandoned;

6. SINGLE CHIP PAGE PRINTER CONTROLLER,
invented by Derek J. Lentz, SMOS-7991MCEF/GBR/HKW,

application Ser. No. 07/726,929, filed Jul. 8, 1991, now
abandoned,;

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to microprocessor architec-
ture 1n general and 1n particular to a microprocessor archi-
tecture capable of supporting multiple heterogeneous micro-
ProCessors.

2. Description of the Related Art

A computer system comprising a miCroprocessor archi-
tecture capable of supporting multiple processors typically
COmprises a memory, a memory system bus comprising data,
address and control signal buses, an input/output I/O bus
comprising data, address and control signal buses, a plurality
of I/O devices and a plurality of microprocessors. The 1/0O
devices may comprise, for example, a direct memory access
(DMA) controller-processor, an ethernet chip, and various
other I/O devices. The microprocessors may comprise, for
example, a plurality of general purpose processors as well as
special purpose processors. The processors are coupled to
the memory by means of the memory system bus and to the
I/0 devices by means of the I/O bus.

10

15

20

25

30

35

40

45

50

55

60

65

2

To enable the processors to access the MAU and the 1/0
devices without conflict, it 1s necessary to provide a mecha-
nism which assigns a priority to the processors and I/o
devices. The priority scheme used may be a fixed priority
scheme or a dynamic priority scheme which allows for
changing priorities on the fly as system conditions change,
or a combination of both schemes. It 1s also 1mportant to
provide 1n such a mechanism a means for providing ready
access to the memory and the I/0O devices by all processors
in a manner which provides for minimum memory and I/0O
device latency while at the same time providing for cache
coherency. For example, repeated use of the system bus to
access semaphores which are denied can significantly reduce
system bus bandwidth. Separate processors cannot be
allowed to read and write the same data unless precautions
are taken to avoid problems with cache coherency.

SUMMARY OF THE INVENTION

In view of the foregoing, a principal object of the present
Invention 1s a computer system comprising a miCroprocessor
architecture capable of supporting multiple heterogenous
processors which are coupled to multiple arrays of memory
and a plurality of I/O devices by means of one or more 1/0
buses. The arrays of memory are grouped into subsystems
with interface circuits known as Memory Array Units or
MAU’s. In each of the processors there 1s provided a novel
memory control unit (MCU). Each of the MCU’s comprises
a switch network comprising a switch arbitration unit, a data
cache 1nterface circuit, an instruction cache interface circuit,
an I/O interface circuit and one or more memory port
interface circuits known as ports, each of said port interface
circuits comprising a port arbitration unit.

The switch network 1s a means of communication
between a master and a slave device. To the switch, the
possible master devices are a D-cache, an I-cache, or an I/O
controller unit (IOU) and the possible slave devices are a
memory port or an 1OU.

The function of the switch network 1s to receive the
various 1nstructions and data requests from the cache con-
troller units (CCU) (I-cache, D-cache) and the IOU. After
having received these requests, the switch arbitration unit 1n
the switch network and the port arbitration unit 1in the port
interface circuit prioritizes the requests and passes them to
the appropriate memory port (depending on the instruction
address). The port, or ports as the case may be, will then
ogenerate the necessary timing signals, receive or send the
necessary data to/from the MAU. If it is a write (WR)
request, the interaction between the port and the switch stops
when the switch has pushed all the write data into the write
data FIFO (WDF) from the switch. If it is a read (RD)
request, the 1teraction between the switch and the port only
ends when the port has sent the read data back to the
requesting master through the switch.

The switch network 1s composed of four sets of tri-state
buses that provide the connection between the cache, IOU
and the memory ports. The four sets of tri-state buses
comprise SW__REQ, SW_ WD, SW_ RD and SW__IDBST.
In a typical embodiment of the present invention, the bus
SW__REQ comprises 29 wires which 1s used to send the
address, ID and share signal from a master device to a slave
device. The ID 1s a tag associated with a memory request so
that the requesting device 1s able to associate the returning
data with the correct memory address. The share signal 1s a
signal indicating that a memory access 1s to shared memory.
When the master device 1s 1ssuing a request to a slave, 1t 1s
not necessary to send the full 32 bits of address on the

US 6,954,544 B2

3

switch. This 1s because 1 a multimemory port structure, the
switch would have decoded the address ,and would have
known whether the request was for memory port 0, port 1 or

the IOU, etc. Since each port has a pre-defined memory
space allotted to 1t, there 1s no need to send the full 32 bits
of address on SW__REQ.

In practice, other request attributes such as, for example,
a function code and a data width attribute are not sent on the
SW__REQ because of timing constraints. If the information
were to be carried over the switch, it would arrive at the port
one phase later than needed, adding more latency to memory
requests. Therefore, such request attributes are sent to the
port on dedicated wires so that the port can start its state
machine earlier and thereby decrease memory latency.

Referring to FIG. 8, the bus SW__ WD comprises 32 wires
and 1s used to send the write data from the master device
(D-cache and IOU) to the FIFO at the memory port. It should
be noted that the I-cache reads data only and does not write
data. This tri-state bus 1s “double-pumped” which means
that a word of data 1s transferred on each clock phase,
reducing the wires needed, and thus the circuit costs. WD0O,
WDO01, WD10 and WD11 are-words of data. Since the buses
are double-pumped, care 1s taken to insure that there 1s no
bus conflict when the buses turn around and switch from a
master to a new master.

Referring to FIG. 9, the bus SW__RD comprises 64 wires
and 1s used to send the return read data from the slave device
(memory port and IOU) back to the master device. Data is
only sent during one phase 1. This bus 1s not double-pumped
because of timing constraints of the caches 1n that the caches
require that the data be valid at the falling edge of CLK 1.
Since the data 1s not available from the port until phase 1
when clock 1 1s high, if an attempt were made to double-
pump the SW__RD bus, the earliest that a cache would get
the data 1s at the positive edge of CLK1 and not the negative
edge thereof. Since bus SW__RD 1s not double-pumped, this
bus 1s only active (not tri-stated) during phase 2. There is no
problem with bus driver conflict when the bus switches to a
different master.

The bus SW__IDBST comprises four wires and 1s used to
send the identification (ID) from a master to a slave device
and the ID and bank start signals from the slave to the master
device.

In a current embodiment of the present invention there 1s
only one ID FIFO at each slave device. Since data from a
slave device 1s always returned 1n order, there 1s no need to
send the ID down to the port. The ID could be stored in
separate FIFO’s, one FIFO for each port, at the interface
between the switch and the master device. This requires an
increase 1n circuit area over the current embodiment since
cach interface must now have n FIFO’s if there are n ports,
but the tri-state wires can be reduced by two.

The port interface 1s an interface between the switch
network and the external memory (MAU). It comprises a
port arbifration unit and means for storing requests that
cause Interventions and interrupted read requests. It also
includes a snoop address generator. It also has circuits which
act as signal generators to generate the proper timing signals
to control the memory modules.

There are several algorithms which are implemented in
apparatus 1n the switch network of the present invention
including a test and set bypass circuit comprising a content
addressable memory (CAM), a row match comparison cir-
cuit and a dynamic switch/port arbitration circuit.

The architecture implements semaphores, which are used
to synchronize software 1n multiprocessor systems, with a

10

15

20

25

30

35

40

45

50

55

60

65

4

“test and set” 1nstruction as described below. Semaphores
are not cached i the architecture. The cache fetches the
semaphore from the MCU whenever the CPU executes a test
and set 1nstruction.

The test and set bypass circuit implements a simple
algorithm that prevents a loss of memory bandwidth due to
spin-locking, 1.e. repeated requests for access to the MAU
system bus, for a semaphore. When a test instruction 1is
executed on a semaphore which locks a region of memory,
device or the like, the CAM stores the address of the
semaphore. This entry in the CAM 1s cleared when any
processor performs a write to a small region of memory
enclosing the semaphore. It the requested semaphore 1s still
resident 1n the CAM, the semaphore has not been released
by another processor and therefore there 1s no need to
actually access memory for the semaphore. Instead, a block
of logical 1’s (SFFFF’s) (semaphore failed) is sent back to
the requesting cache indicating that the semaphore 1s still
locked and the semaphore 1s not actually accessed, thus
saving memory bandwidth.

A write of anything other than all 1’s to a semaphore
clears the semaphore. The slave CPU then has to check the
shared memory bus to see if any CPU (including itself)
writes to the relevant semaphore. If any CPU writes to a
semaphore that matches an entry in the CAM, that entry in
the CAM 1s cleared. When a cache next attempts to access
the semaphore, 1t will not find that entry in the CAM and will
then actually fetch the semaphore from main memory and
set 1t to failed, 1.e. all 1’s.

The function of the row match comparison circuit 1s to
determine 1f the present request has the same row address as
the previous request. If 1t does, the port need not de-assert
RAS and incur a RAS pre-charge time penalty. Thus,
memory latency can be reduced and usable bandwidth
increased. Row match 1s mainly used for dynamic random
access memory (DRAM) but it can also be used for static
random access memory (SRAM) or read-only memory
(ROM) in that the MAU now need not latch in the upper bits
of a new address. Thus, when there 1s a request for access to
the memory, the address 1s sent on the switch network
address bus SW__ REQ, the row address 1s decoded and
stored 1n a MUX latch. If this address 1s considered the row
address of a previous request, when a cache or an IOU 1ssues
a new request, the address associated with the new address
1s decoded and 1its row address 1s compared with the previous
row address. If there 1s a match, a row match hit occurs and
the matching request 1s given priority as explained below.

In the dynamic switch/port arbitration circuit, two differ-
ent arbitrations are performed. One 1s for arbitrating for the

resources of the memory ports, 1.€. port 0. . . port N, and the
other 1s an arbitration for the resources of the address and

write data buses of the switch network, SW__REQ and
SW__ WD, respectively.

Several devices can request data from main memory at the
same time. They are the D- and I-cache and the I0OU. A
priority scheme whereby each master 1s endowed with a
certain priority 1S set up so that the requests from more
“1mportant” or “urgent” devices are serviced as soon as
possible. However, a strict fixed arbitration scheme 1s not
used due to the possibility of starving the lower priority
devices. Instead, a dynamic arbitration scheme 1s used which
allocates different priorities to the various devices on the fly.
This dynamic scheme 1s affected by the following factors:

1. Intrinsic priority of the device.

2. Does the requested address have a row match with the
previously serviced request?

US 6,954,544 B2

S

3. Has the device been denied service too many times?

4. Has that master been serviced too many times?

Each request from a device has an intrinsic priority. [OU
has the highest priority followed by the D- and I-cache,
respectively. An intervention (ITV) request as described
below, from the D-cache, however, has the highest priority
of all since 1t 1s necessary that the slave processing element
(PE) has the updated data as soon as possible.

The 1ntrinsic priority of the various devices 1s modified by
several factors. The number of times a lower priority device
1s denied service 1s monitored and when such number
reaches a predetermined number, the lower priority device 1s
ogrven a higher priority. In contrast, the number of times a
device 1s granted priority 1s also monitored so that if the
device 1s a bus “hog”, 1t can be denied priority to allow a
lower priority device to gain access to the bus. A third factor
used for modifying the intrinsic priority of a request 1s row
match. Row match 1s important mainly for the I-cache.
When a device requests a memory location which has the
same row address as the previously serviced request, the
priority of the requesting device 1s increased. This 1s done so
as to avoid having to de-assert and re-assert RAS. Each time
a request 1s serviced because of a row match, a program-
mable counter 1s decremented. Once the counter reaches
zero, for example, the row match priority bit 1s cleared to
allow a new master to gain access to the bus. The counter 1s
again pre-loaded with a programmable value when the new
master of the port 1s different from the old master or when
a request 1s not a request with a row match.

A write request for a memory port will only be granted
when the write data bus of the switch network (SW__ WD)
1s available. If 1t 1s not available, some other request is
selected. The only exception is for an intervention (ITV)
request from the D-cache. If such a request 1s present and the
SW_WD bus 1s not available, no request 1s selected.
Instead, the system waits for the SW__ WD bus to become
free and then the intervention request 1s granted.

Two software-selectable arbitration schemes for the
switch network are employed. They are as follows:

1. Slave priority 1n which priority 1s based on the slave or
the requested device (namely, memory or IOU port).

2. Master priority which 1s based on the master or the

requesting device (namely, IOU, D- and I-cache).

In the slave priority scheme, priority 1s always given to
the memory ports, e.g. port 0,1, 2 . . . first, then to the IOU
and then back to port), a scheme generally known as a
round robin scheme. The master priority scheme 1s a fixed
priority scheme 1 which priority 1s given to the IOU and
then to the D- and I-caches respectively. Alternatively, an
intervention (ITV) request may be given the highest priority
under the master priority scheme 1n switch arbitration. Also,
an I-cache may be given the highest priority if the pre-fetch
buffer 1s going to be empty soon.

BRIEF DESCRIPTION OF THE DRAWINGS

The above and other objects, features and advantages of
the present mvention will become apparent from the fol-
lowing detailed description of the accompanying drawings,
in which:

FIG. 1 1s a block diagram of a microprocessor architecture
capable of supporting multiple heterogeneous microproces-
sors according to the present invention;

FIG. 2 1s a block diagram of a memory control unit
according to the present 1nvention;

FIG. 3 1s a block diagram of a switch network showing,
interconnects between a D-cache interface and a port inter-
face according to the present invention;

10

15

20

25

30

35

40

45

50

55

60

65

6

FIG. 4 1s a block diagram of a test and set bypass circuit
according to the present invention;

FIG. 5 1s a block diagram of a circuit used for generating,
intervention signals and arbitrations for an MAU bus
according to the present invention;

FIG. 6 1s a block diagram of a row match comparison
circuit according to the present invention; and

FIG. 7 1s a diagram of a dynamic arbitration scheme
according to the present 1invention.

FIG. 8 1s a diagram showing the timing of a write request;
and

FIG. 9 1s a diagram showing the timing of a read request.

DETAILED DESCRIPTION OF THE DRAWINGS

Referring to FIG. 1, there 1s provided 1n accordance with
the present mvention a microprocessor architecture desig-
nated generally as 1. In the architecture 1 there 1s provided
a plurality of general purpose microprocesors 2,3, 4 ... N,
a special purpose processor 5, an arbiter 6 and a memory/
memory array unit (MAU) 7. The microprocessors 2-N may
comprise a plurality of 1identical processors or a plurality of
heterogeneous processors. The special purpose processor §
may comprise, for example, a graphics controller. All of the
processors 2—3 are coupled via one or more memory ports
PORT, . . . PORT,, to an MAU system bus 25 comprising
an MAU data bus 8, a ROW/COL address bus 9, a multi-
processor control bus 10, an MAU control bus 11 and a bus
arbitration control signal bus 12 by means of a plurality of
bidirectional signal buses 13—17, respectively. The bus 12 1s
used, for example, for requesting arbitration to access and
for granting or indicating that the system data bus 8 1s busy.
The arbiter 6 1s coupled to the bus 12 by means of a
bidirectional signal line 18. The MAU 7 1s coupled to the
ROW/COL address and memory control buses 9 and 11 for
transferring signals from the buses to the MAU by means of
unidirectional signal lines 19 and 20 and to the MAU data
bus 8 by means of bidirectional data bus 21. Data buses 8
and 21 are typically 64 bit buses; however, they may be
operated as 32 bit buses under software control. The bus may
be scaled to other widths, e.g. 128 bits.

Each of the processors 2-N typically comprises an input/
output 10U interface 53, which will be further described
below with respect to FIG. 2, coupled to a plurality of
peripheral I/O devices, such as a direct memory access
(DMA) processor 30, an ETHERNET interface 31 and other
I/0 devices 32 by means of a 32 bit I/O bus 33 or an optional
32 b1t I/O bus 34 and a plurality of 32 bit bidirectional signal
buses 35—42. The optional I/O bus 34 may be used by one

or more of the processors to access a special purpose 1/0
device 43.

Referring to FIG. 2, each of the processors 2-N comprises
a memory control unit (MCU) designated generally as 50,
coupled to a cache control unit (CCU) 49 comprising a data
(D) cache 51 and an instruction (I) cache 52 and an I/O port
53, sometimes referred to herein stmply as IOU, coupled to

the I/O bus 33 or 34.

The MCU 50 1s a circuit whereby data and instructions are
transferred (read or written) between the CCU 49, i.e. both
the D-cache 51 and the I-cache 52 (read only), the IOU 53
and the MAU 7 via the MAU system bus 25. The MCU 50,
as will be further described below, provides cache coher-
ency. Cache coherency 1s achieved by having the MCU 1n
cach slave CPU monitor, 1.€. snoop, all transactions of a
master CPU on the MAU address bus 9 to determine
whether the cache 1 the slave CPU has to request new data

US 6,954,544 B2

7

provided by the master CPU or send new data to the master
CPU. The MCU 350 1s expandable for use with six memory

ports and can support up to four-way memory interleave on
the MAU data bus 8. It 1s able to support the use of an
external 64- or 32-bit data bus 8 and uses a modified
hamming code to correct one data bit error and detect two or
more data bit errors.

In the architecture of the present invention, cache sub-
block, 1.e. cache line, size 1s a function of memory bus size.
For example, 1f the bus size 1s 32 bits, the sub-block size 1s
typically 16 bytes. If the bus size 1s 64 bits, the sub-block

size 1s typically 32 bytes. If the bus size 1s 128 bits, the
sub-block size 1s 64 bytes. As indicated, the MCU 50 1s
designed so that 1t can be programmed to support 1, 2 or
4-way 1interleaving, 1.e. number of bytes transierred per
cycle.

In the MCU 50 there 1s provided one or more port
interfaces designated port P, . . . Py, a switch network 54, a
D-cache interface S5, an I-cache interface 56 and an I/O
interface 57. As will be further described below with respect
to FIG. 3, each of the port interfaces P,—P,, comprises a port
arbitration unit designated, respectively, PAU, . . . PAU,..

The switch network 54 comprises a switch arbitration unit
58.

When the MCU 50 comprises two or more port interfaces,
cach of the port interfaces P,—P,; 1s coupled to a separate
MAU system bus, which 1s 1dentical to the bus 25 described
above with respect to FIG. 1. In FIG. 2, two such buses are
shown designated 25, and 25,. The bus 25,, comprises
buses 8., 9., 10, 11, and 12,, which are connected to port
P, by buses 13,, 14,,, 15,,, 16,-and 17, respectively. Buses
8,17, are i1dentical to buses 817 described above with
respect to FIG. 1. Similarly, each of the port interfaces are
coupled to the switch network 54 by means of a plurality of

separate 1dentical buses including write (WR) data buses 60,

60,, read (RD) data buses 61, 61,, and address buses 62,
62,, and to each of the cache and I/O 1interfaces 3§, 56, §7
by means of a plurality of control buses 70, 71, 80, 81, 90
and 91 and 70,, 71,, 80,, 81, 90,, and 91,, where the
subscript N 1dentifies the buses between port interface P,
and the cache and I/O interfaces.

The switch network 54 and the D-cache interface 55 are
coupled by means of a WR data bus 72, RD data bus 73 and
an address bus 74. The switch network 54 and the I-cache
interface 56 are coupled by means of an RD data bus 82 and
an address bus 83. It should be noted that the I-cache 52 does
not issue write (WR) requests. The switch network 54 and
the I/O mterface 57 are coupled by means of a plurality of
bidirectional signal buses including an RD data bus 92, a

WR data bus 93 and an address bus 94.

The D-cache interface 55 and the CCU 49, 1.e. D-cache
51, are coupled by means of a plurality of unidirectional
signal buses mcluding a WR data bus 100, an RD data bus
101, an address bus 102 and a pair of control signal buses
103 and 104. The I-cache interface 56 and the CCU 49, 1.¢c.
I-cache 52, are coupled by means of a plurality of unidirec-
tional signal buses including an RD data bus 110, an address
bus 111, and a pair of control signal buses 112 and 113. The
I/0 mterface 57 and the IOU 353 are coupled by means of a
plurality of unidirectional signal buses including an R/W-1/0
master data bus 120, an R/W-1/0O slave data bus 121, a pair
of control signal lines 123 and 124 and a pair of address
buses 125 and 126. The designations I/O master and 1/0
slave are used to identify data transmissions on the desig-
nated signal lines when the I/O 1s operating either as a
master or as a slave, respectively, as will be further described
below.

10

15

20

25

30

35

40

45

50

55

60

65

3

Referring to FIG. 3, there 1s provided a block diagram of
the main data path of the switch network 54 showing the
interconnections between the D-cache interface 55 and port
interface P,. Similar interconnects are provided for port
interfaces P,—P,; and the I-cache and 1I/O interfaces 56, 57
except that the I-cache interface 56 does not 1ssue write data
requests. As shown 1n FIG. 3, there 1s further provided in

cach of the port interfaces P,—P,, an identification (ID) first
in, first out (FIFO) 130 which is used to store the ID of a read

request, a write data (WD) FIFO 131 which 1s used to
temporarily store write data until access to the MAU 1is
available and a read data (RD) FIFO 132 which is used to

temporarily store read data until the network 54 1s available.

In the switch network 54 there 1s provided a plurality of
signal buses 140-143, also designated, respectively, as
request/address bus SW__REQ|[28:0], write data bus
SW__WDJ[31:0], read data bus SW__RD[63:0] and
identification/bank start signal bus SW__IDBST][3:0] and the
switch arbitration unit 58. The switch arbitration unit 58 1s
provided to handle multiport I/O requests.

The cache and port interface are coupled directly by some
control signal buses and indirectly by others via the switch
network buses. For example, the port arbitration unit PAU in
cach of the port interfaces P—P,; 1s coupled to the switch
arbitration unit 538 in the switch network 54 by a pair of

control signal buses mncluding a GRANT control line 70a
and a REQUEST control line 71a. The switch arbitration

unit 38 1s coupled to the D-cache interface 55 by a GRANT
control signal line 71b. Lines 70a and 706 and lines 71a and
71b are signal lines 1n the buses 70 and 71 of FIG. 2. A gate
75 and registers 76 and 78 are also provided to store requests
that cause interventions and to store interrupted read
requests, respectively. Corresponding control buses are pro-
vided between the other port, cache and I/O interfaces.

The function of the switch network 54 1s to receive the
var1ous 1nstructions and data requests from the cache control
units (CCU), 1.e. (I-cache 51, D-cache 52, and the IOU 53.
In response to receiving the requests, the switch arbitration
unit 38 1n the switch network 54 which services one request
at a time, prioritizes the requests and passes them to the
appropriate port interface P,—P,, or I/O 1nterface depending
upon the address accompanying the request. The port and
I/O interfaces are typically selected by means of the high
order bits 1n the address accompanying the request. Each
port interface has a register 77 for storing the MAU
addresses. The port interface will then generate the neces-
sary timing signals and transfer the necessary data to/from
the MAU 7. If the request 1s a WR request, the interaction
between the port interface and the switch network 54 stops
when the switch has pushed all of the write data mto the
WDF (write data FIFO) 131. If it is a RD request, the
interaction between the switch network 54 and the port
interface only ends when the port interface has sent the read
data back to the switch network 54.

As will be further described below, the switch network 54
1s provided for communicating between a master and a slave

device. In this context, the possible master devices are:
1. D-cache
2. I-cache

3. 10U
and the possible slave devices are:

1. memory port

2. 10U

The switch network 54 1s responsible for sending the
necessary intervention requests to the appropriate port inter-
face for execution.

US 6,954,544 B2

9

As described above, the switch network 54 comprises
four sets of tri-state buses that provide the connection

between the cache, I/O and memory port interfaces. The four
sets of tri-state buses are SW__REQ, SW__ WD, SW_RD

and SW__IDBST. The bus designated SW__REQ]|28:0] is
used to send the address 1n the slave device and the memory
share signal and the ID from the master device to the slave
device. As indicated above, the master may be the D-cache,
I-cache or an IOU and the slave device may be a memory
port or an IOU. When the master device 1s 1ssuing a request

fo a slave, i1t 1s not necessary to send the full 32 bits of
address on the switch bus SW__REQ. This 1s because 1n the

multiple memory port structure of the present invention,
cach port has a pre-defined memory space allotted to it.

Other request attributes such as the function code (FC)
and the data width (WD) are not sent on the SW__REQ bus
because of timing constraints. The information carried over

the switch network 54 arrives at the port interface one clock
phase later than the case if the information has been carried
on dedicated wires. Thus, the early request attributes need to
be sent to the port interface one phase earlier so that the port
interface can start its state machine earlier and thereby
decrease memory latency. This 1s provided by a separate
signal line 79, as shown in FIG. 3. Line 79 1s one of the lines
in the control signal bus 70 of FIG. 2.

The SW__WDJ|31:0] bus is used to send write data from
the master device (D cache and IOU) to the WD FIFO 131
in the memory port interface. This tri-state bus 1s double-
pumped, which means that 32 bits of data are transferred
every phase. Since the buses are double-pumped, care is
taken 1n the circuit design to insure that there 1s no bus-
conflict when the buses turn around and switch from one
master to a new master. As will be appreciated, double-
pumping reduces the number of required bit lines thereby
mIinimizing expensive wire requirements with minimal per-
formance degradation.

Referring to FIG. 9, the SW__RD|63:0] bus is used to
send the return read data from the slave device (memory port
or IOU) back to the master device. Data is sent only during
phase 1 of the clock (when CLK1 is high). This bus is not
double-pumped because of a timing constraint of the cache.
The cache requires that the data be valid at the falling edge
of CLK1. Since the data is received from the port interface
during phase 1, if the SW__RD bus was double-pumped, the
carliest that the cache would get the data would be at the
positive edge of CLKI1, not at the negative edge of CLKI.
Since the SW__RD bus 1s not double-pumped, this bus is
only active (not tri-stated) during CLK1 and there is no

problem with bus buffer conilict where two bus drivers drive
the same wires at the same time.

The SW__IDBST]3:0] 1is used to return the identification
(ID) code and a bank start code from the slave to the master
device via the bus 88. Since data from a slave device is
always returned in order, there 1s generally no need to send
the ID down to the port. The ID can be stored in separate
FIFO’s, one FIFO for each port 1n the interface.

Referring again to the read FIFO 132, data 1s put mnto this
FIFO only when the switch read bus SW_RD 1s not
available. If the bus SW__RD 1s currently being used by
some other port, the oncoming read data 1s temporarily
pushed into the read FIFO 132 and when the SW__RD bus
1s released, data 1s popped from the FIFO and transferred
through the switch network 54 to the requesting cache or
[OU.

The transfer of data between the D-cache interface 5§, the
I-cache interface 56, the I/O iterface 57 and the port
interfaces P,—P,, will now be described using data transfers
to/from the D-cache interface 55 as an example.

10

15

20

25

30

35

40

45

50

55

60

65

10

When one of the D-cache, I-cache or IOU’s wants to
access a port, 1t checks to see if the port 1s free by sending,
the request to the port arbitration unit PAU on the request
signal line 706 as shown 1n FIG. 3. If the port is free, the port
interface 1nforms the switch arbitration unit 58 on the
request control line 71a that there 1s a request. If the switch
network 54 1s free, the switch arbitration unit 58 informs the
port on the grant control line 70a and the master, e.g.
D-cache interface 355, that the request 1s granted on the
control line 71b.

If the request 1s a write request, the D-cache interface
circuit 35 checks the bus arbitration control unit 172 to
determine whether the MCU 50 1s granted the MAU bus 285.
If the MCU has not been granted the bus 25, a request 1s
made for the bus. If and when the bus 1s granted, the port
arbitration unit 171 makes a request for the switch buses
140, 141. After access to the switch buses 140, 141 is
oranted, the D-cache interface circuit 535 places the appro-
priate address on the switch bus SW__REQ 140 and at the
same time places the write data on the write data bus
SW__ WD 141 and stores it in the WD FIFO (WDF) 131.
When the data 1s in the WDF, the MCU subsequently writes
the data to the MAU. The purpose of making sure that the
bus 1s granted before sending the write data to the port 1s so
that the MCU need not check the WDF when there 1s a snoop
request from an external processor. Checking for modified
data therefore rests solely on the cache.

If the request 1s a read request, and the port and switch
network are determined to be available as described above,
the port mnterface receives the address from the requesting
unit on the SW__REQ bus and arbitrates using the arbiter for
the MAU bus 9. The MAU arbiter informs the port that the
MAU bus has been granted to it before the bus can actually
be used. The request 1s then transferred to the port by the
switch. When the MAU address bus 9 1s free, the address 1s
placed on the MAU address bus. The port knows, ahead of
fime, when data will be received. It requests the switch
return data bus so that 1t 1s available when the data returns,
if 1t 1s not busy. When the bus 1s free, the port puts the read
data on the bus which the D-cache, I-cache or I/O interface
will then pick up and give to its respective requesting unit.

If the D/I-cache 51,52 makes a request for an I/O address,
the D/I-cache interface 55,56 submits the request to the I/0
interface unit 57 via the request bus SW__REQ. If the I/O
interface unit 57 has available entries 1n 1ts queues for
storing the requests, 1t will submit the request to the switch
arbitration unit 38 via the control signal line 90. Once again,
if the switch network 54 1s free, the switch arbitration unit
58 informs the D/I cache interface 55,56 so that 1t can place
the address on the address bus SW___REQ and, 1f 1t 1s a write
request (D cache only), the write data on the write data bus
SW__ WD for transfer to the IOU. Similarly, if the request
from the D/I cache interface 55,56 1s a read request, the read
data from the I/O interface 57 1s transferred from the I/O
interface 57 via the switch network 54 read data bus
SW__RD and provided to the D/I cache interface 55,56 for
transfer to the D/I cache 51,52.

Referring to FIG. 4, there 1s further provided in the port
interfaces and caches 1n accordance with the present inven-
tion test and set (T'S) bypass circuits designated generally as
160 and 168, respectively, for monitoring, 1.e, snooping, for
addresses of semaphores on the MAU address bus 9. As will
be seen, the circuits 160, 168 reduce the memory bandwidth
consumed by spin-locking for a semaphore.

In the TS circuits 160, 168 there i1s provided a snoop
address generator 161, a TS content addressable memory
(CAM) 162, a flip-flop 163 and MUX’s 164 and 165.

US 6,954,544 B2

11

A semaphore 1s a flag or label which 1s stored 1n an
addressable location mm memory for controlling access to
certain regions of the memory or other addressable
resources. When a CPU 1s accessing a region of memory
with which a semaphore 1s associated, for example, and does
not want to have that region accessed by any other CPU, the
accessing CPU places all 1’s in the semaphore. When a
second CPU attempts to access the region, 1t first checks the
semaphore. If it finds that the semaphore comprises all 1°s,
the second CPU 1s denied access. Heretofore, the second
CPU would repeatedly i1ssue requests for access and could
be repeatedly denied access, resulting in what 1s called
“spin-locking for a semaphore”. The problem with spin-
locking for a semaphore 1s that 1t uses an inordinate amount
of memory bandwidth because for each request for access,
the requesting CPU must perform a read and a write.

The Test and Set bypass circuits 160, 168 of FIG. 4 are an
implementation of a simple algorithm that reduces memory
bandwidth utilization due to spin-locking for a semaphore.

In operation, when a CPU, or more precisely, a process in
the processor, first requests access to a memory region with
which a semaphore 1s associated by 1ssuing a load-and-set
instruction, 1.¢. a predetermined instruction associated with
a request to access a semaphore, the CPU first accesses the
semaphore and stores the address of the semaphore 1n the
CAM 162. Plural load-and-set instructions can result 1n
plural entries being in the CAM 162. If the semaphore
contains all 1’s ($FFFF’s), the 1’s are returned indicating
that access 1s denied. When another process again requests
for the semaphore, 1t checks 1ts CAM. If the address of the
requested semaphore 1s still resident in the CAM, the CPU
knows that the semaphore has not been released by another
processor/process and there 1s therefore no need to spin-lock
for the semaphore. Instead, the MCU receives all 1’s
(semaphore failed) and the semaphore is not requested from
memory; thus, no memory bandwidth 1s unnecessarily used.
On the other hand, if the semaphore address 1s not 1n the
CAM, this means that the semaphore has not been previ-
ously requested or that 1t has been released.

The MAU bus does not provide byte addresses. The CAM
must be cleared if the semaphore 1s released. The CAM 1s
cleared 1f a write to any part of the smallest detectable
memory block which encloses the semaphore 1s performed
by any processor on the MAU bus. The current block size 1s
4 or 8 bytes. In this way, the CAM will never hold the
address of a semaphore which has been cleared, although the
CAM may be cleared when the semaphore has not been
cleared by a write to another location 1n the memory block.
The semaphore 1s cleared when any processor writes some-
thing other than all 1’s to it.

If a semaphore 1s accessed by a test and set instruction
after a write has occurred to the memory block containing
the semaphore, the memory 1s again accessed. If the sema-
phore was cleared, the cleared value 1s returned to the CPU
and the CAM set with the address again. If the semaphore
was not cleared or was locked again, the CAM 1s also loaded
with the semaphore address, but-the locked value 1s returned
to the CPU.

In the operation of the circuit 160 of FIG. 4, the circuit
160 snoops the MAU address bus 9 and uses the address
signals detected thereon to generate a corresponding snoop

address 1n the address generator 161 which 1s then sent on
line 169 to, and compared with, the contents of the CAM

162. If there 1s a hit, 1.e. a match with one of the entries 1n
the CAM 162, that entry 1n the CAM 162 1s cleared. When
a load and set request 1s made to the MCU from, for
example, a D-cache, the D-cache interface circuit compares

10

15

20

25

30

35

40

45

50

55

60

65

12

the address with entries 1n the CAM. If there 1s a hit 1n the
CAM 162, the ID 1s latched 1nto the register 163 1n the cache
interface and this ID and all 1’s (8FFFF) are returned to the
cache interface by means of the MUX’s 164 and 165.

The snooping of the addresses and the generation of a
snoop address therefrom 1n the snoop address generator 161
for comparison 1n the CAM 162 continues without 11l effect
even though the addresses appearing on the MAU address
bus 9 are to non-shared memory locations. The snoop
address generator 161 typically generates a cache block
address (high order bits) from the 11 bits of the MAU row
and column addresses appearing on the MAU address bus 9
using the MAU control signals RAS, CAS and the BKST
START MAU control signals on the control signal bus 11.

Referring to FIG. §, there 1s provided 1n accordance with
another aspect of the present 1nvention a circuit designated
ogenerally as 170 for providing cache coherency. Cache
coherency 1s necessary to insure that 1 a multiprocessor
environment the master and slave devices, 1.e. CPU’s, all
have the most up-to-date data.

Shown outside of the chip comprising the circuit 170,
there 1s provided the arbiter 6, the memory 7 and the MAU
address bus 9, MAU control bus 11 and multiprocessor
control bus 10. In the circuit 170 there 1s provided a port
arbitration unit interface 171, a bus arbitration control unit
172, a multiprocessor control 173 and the snoop address
generator 161 of FIG. 4. The D-cache mterface 55 1s coupled
to the multiprocessor control 173 by means of a pair of
control signal buses 174 and 175 and a snoop address bus
176. The I-cache mterface 56 1s coupled to the multiproces-
sor control 173 by means of a pair of control signal buses
177 and 178 and the snoop address bus 176. The snoop
address generator 161 1s coupled to the multiprocessor
control 173 by means of a control signal bus 179. The
multiprocessor control 173 1s further coupled to the multi-
processor control bus 10 by means of a control signal bus
180 and to the bus arbitration control unit 172 by a control
signal bus 181. The port arbitration unit interface 171 1is
coupled to the bus arbitration control unit 172 by a control
signal bus 182. The bus arbitration control unit 172 1is
coupled to the arbiter 6 by a bus arbitration control bus 183.
The snoop address generator 161 1s also coupled to the MAU
address bus 9 and the MAU control bus 11 by address and
control buses 14 and 16, respectively.

A request from a cache will carry with 1t an attribute
indicating whether or not 1t 1s being made to a shared
memory. I 1t 1s to a shared memory, the port interface sends
out a share signal SHARED_REQ on the multiprocessor
control signal (MCS) bus 10. When other CPU’s detect the
share signal on the MCS bus 10 they begin snooping the
MAU ADDR bus 9 to get the snoop address.

Snooping, as briefly described above, 1s the cache coher-
ency protocol whereby control 1s distributed to every cache
on a shared memory bus, and all cache controllers (CCU’s)
listen or snoop the bus to determine whether or not they have
a copy of the shared block. Snooping, therefore, i1s the
process whereby a slave MCU monitors all the transactions
on the bus to check for any RD/WR requests 1ssued by the
master MCU. The main task of the slave MCU 1s to snoop
the bus to determine 1if 1t has to receive any new data, 1.e.
invalidate data previously received, or to send the freshest
data to the master MCU, 1.e. effect an intervention.

As will be further described below, the multiprocessor
control circuit 173 of FIG. 5 1s provided to handle
invalidation, intervention and snoop hit signals from the
cache and other processors and generate snoop hit (SNP__
HIT) signals and intervention (ITV__REQ) signals on the

US 6,954,544 B2

13

multiprocessor control signal bus 180 when snoop hits and
mntervention/invalidation are indicated, as will be further
described below.

The bus arbitration control unit 172 of FIG. § arbitrates
for the MAU bus 1n any normal read or write operation. It
also handles arbitrating for the MAU bus 1n the event of an
intervention/invalidation and interfaces directly with the
external bus arbitration control signal pins which go directly
to the external bus arbiter 6.

The operations of intervention and invalidation which
provide the above-described cache coherency will now be
described with respect to read requests, write requests, and
read-with-intent-to-modify requests 1ssued by a master cen-
tral processing unit (MSTR CPU).

When the MSTR CPU 1ssues a read request, 1t places an
address on the memory array unit (MAU) address bus 9. The
slave (SLV) CPU’s snoop the addresses on the MAU bus 9.
If a SLV CPU has data from the addressed memory location
in 1ts cache which has been modified, the slave cache control
unit (SLV CCU) outputs an intervention signal (ITV) on the
multiprocessor control bus 10, indicating that it has fresh,
1.e. modified, data. The MSTR, upon detecting the ITV
signal, gives up the bus and the SLV CCU writes the fresh
data to the main memory, 1.e. MAU 7. If the data requested
by the MSTR has not been received by the MSTR cache
control unit (CCU), the MSTR MCU discards the data
requested and re-asserts 1ts request for data from the MAU.
If the data requested has been transferred to the MSTR CCU,
the MSTR MCU informs the MSTR CCU (or IOU
controller, if an IOU is the MSTR) to discard the data. The
MSTR MCU then reissues its read request after the slave has
updated main memory. Meanwhile, the port interface circuit
holds the master’s read request while the slave writes the
modified data back to memory. Thereafter, the read request
1s executed.

If the MSTR 1ssues a write request, places an address on
the memory array unit (MAU) address bus 9 and a slave
CCU has a copy of the original data from this address 1n 1its
cache, the slave CCU will invalidate, 1.e. discard, the cor-
responding data 1n its cache.

If the MSTR 1ssues a read-with-intent-to-modify request,
places an address on the memory array unit (MAU) address
bus 9 and a slave MCU has the address placed on the address
bus by the master (MSTR), one of two possible actions will
take place:

1. If the SLV CCU has modified the data corresponding to
the data addressed by the MSTR, the SLV will 1ssue an I'TV
signal, the MSTR will give up the bus 1n response thereto
and allow the SLV CCU to write the modified data to
memory. This operation corresponds to the intervention
operation described above.

2. If the SLV has unmodified data corresponding to the
data addressed by the MSTR, the SLV will invalidate, 1.e.
discard, 1ts data. This operation corresponds to the invali-
dation operation discribed above.

Referring to FIG. 6, there 1s provided 1n accordance with
another aspect of the present 1nvention a circuit designated
generally as 190 which 1s used for row match comparison to
reduce memory latency. In the circuit 190 there 1s provided
a comparator 191, a latch 192 and a pair of MUX’s 193 and
194.

The function of the row match comparison 1s to determine
if the present request has the same row address as a previous
request. If 1t does, the port need not incur the time penalty
for de-asserting RAS. Row match 1s mainly used for DRAM
but 1t can also be used for SRAM or ROM 1in that the MAU

need not latch 1n the upper, 1.€. row, bits of the new address,

10

15

20

25

30

35

40

45

50

55

60

65

14

since ROM and SRAM accesses pass addresses to the MAU
in high and low address segments 1n a manner similar to that
used by DRAMS.

In the operation of the row match circuitry of FIG. 6, the
row address including the corresponding array select bits of
the address are stored in the latch 192 by means of the MUX
193. Each time a new address appears on the switch network
address bus SW__REQ, the address 1s fed through the new
request MUX 194 and compared with the previous request
in the comparator 191. If there 1s a row match, a signal 1s
ogenerated on the output of the comparator 191 and trans-
ferred to the port interface by means of the signal line 195
which 1s a part of bus 70. The row match hit will prevent the
port mterface from de-asserting RAS and thereby saving
RAS cycle time.

MUX 193 1s used to extract the row address from the
switch request address. The row address mapping to the

switch address 1s a function of the DRAM configuration
(e.g., IMx1 or 4Mx1 DRAM’s) and the MAU data bus

width (e.g., 32 or 64 bits).

Referring to FIGS. 1 and 3, the external bus arbiter 6 1s a
unit which consists primarily of a programmable logic array
(PLA) and a storage element. It accepts requests for the
MAU bus from the different CPU’s, decides which of the
CPU’s should be granted the bus based on a software
selectable dynamic or fixed priority scheme, and issues the
orant to the appropriate CPU. The storage element 1s pro-
vided to store which CPU was last given the bus so that
either the dynamic or flexible priority as well as the fixed or
“round robin” priority can be implemented.

Referring to FIG. 7, dynamic switch and port arbitration
as used 1n the multiprocessor environment of the present
invention will now be described.

As described above, there are three masters and two
resources which an MCU serves. The three masters are
D-cache, I-cache and IOU. The two resources, 1.e. slaves, are
memory ports and IOU. As will be noted, the IOU can be
both a master and a resource/slave.

In accordance with the present invention, two different
arbitrations are done. One 1s concerned with arbitrating for
the resources of the memory ports (port 0 to port §5) and the
other 1s concerned with arbitrating for the resources of the
switch network 54 buses SW__REQ and SW__WD.

Several devices can make a request for data from main
memory at the same time. They are the D and I-cache and
the IOU. A priority scheme whereby each master 1s endowed
with a certain priority 1s used so that requests from more
“mmportant” or “urgent” devices are serviced as soon as
possible. However, a strict fixed arbitration scheme 1s not
preferred due to the possibility of starving lower priority
devices. Instead, a dynamic arbitration scheme 1s 1mple-
mented which allocates different priority to the various
devices on the fly. This dynamic arbitration scheme 1is
affected by the following factors:

1. Intrinsic priority of the device.

2. There 1s a row match between a requested address and
the address of a previously serviced request.

3. A device has been denied service too many times.

4. The master has been serviced too many times.

As 1llustrated 1n FIG. 7, the dynamic priority scheme used
for requesting the memory port 1s as follows.

Each request from a device has an intrinsic priority. The
IOU may request a high or normal priority, followed by the
D and then the I-cache. An intervention (ITV) request from
a D-cache, however, has the highest priority of all.

Special high priority I/O requests can be made. This
priority 1s intended for use by real-time I/O peripherals

US 6,954,544 B2

15

which must have access to memory with the low memory
latency. These requests can override all other requests except
intervention cycles and row-match, as shown 1n FIG. 7.

The mtrinsic priority of the various devices 1s modified by
several factors, 1dentified as denied service, I/O hog, and
row match. Each time a device 1s denied service, a counter
1s decremented. Once the counter reaches zero, the priority
of the device 1s increased with a priority level called DENY
PRIORITY. These counters can be loaded with any pro-
crammable value up to a maximum value of, 15. Once the
counter reaches zero, a DENY PRIORITY bit 1s set which 1s
finally cleared when the denied device 1s serviced. This
method of increasing the priority of a device denied service
prevents starvation. It should be noted that a denied service
priority 1s not given to an IOU because the 1ntrinsic priority
level of the IOU 1s 1tself already high.

Since the IOU 1s intrinsically already a high priority
device, 1t 1s also necessary to have a counter to prevent it
from being a port hog. Every time the IOU 1s granted use of
the port, a counter 1s decremented. Once the counter reaches
zero, the IOU 1s considered as hogging the bus and the
priority level of the IOU 1s decreased. The dropping of the
priority level of the I0OU 1s only for normal priority requests
and not the high priority I/O request. When the IOU 1s not
oranted the use of the port for a request cycle, the hog
priority bit 1s cleared.

Another factor modifymng the intrinsic priority of the
request 1s row match. Row match will be important mainly
for the I-cache. When a device requests a memory location
which has the same row address as the previously serviced
request, the priority of the requesting device 1s raised. This
1s done so that RAS need not be reasserted.

There 1s a limit whereby row match priority can be
maintained, however. Once again a counter 1s used with a
programmable maximum value. Each time a request 1s
serviced because of the row match priority, the counter is
decremented. Once the counter reaches zero, the row match
priority bit 1s cleared. The counter 1s again preloaded with a
programmable value when a new master of the port 1s
assigned or when there 1s no request for a row match. The
above-described counters are located in the switch arbitra-
tion unit 58.

A write request for the memory port will only be granted
when the write data bus of the switch SW__ WD 1s available.
If 1t 1s not available, another request will be selected. The
only exception 1s for the intervention signal ITV. If
SW__ WD 1s not available, no request 1s selected. Instead, the
processor waits for SW__ WD to be free and then submits the
request to the switch arbiter.

The arbitration scheme for the switch network 54 1s
slightly different than that used for arbitrating for a port. The
switch arbitration unit 58 of FIG. 3 utilizes two different
arbitration schemes when arbitrating for a port which are
selectable by software:

1. Slave priority 1n which priority 1s based on the slave or
the requested device (namely, memory or IOU port) and

2. Master priority wherein priority 1s based on the master
or the requesting device (namely, IOU, D and I-cache).

In the slave priority scheme priority 1s always given to the
memory ports 1n a round robin fashion, 1.e. memory ports 0,
1, 2 . . . first and then to IOU. In contrast, in the master
priority scheme priority 1s given to the IOU and then to the
D and I-cache, respectively. Of course, under certain cir-
cumstances 1t may be necessary or preferable to give the
highest priority under the master priority to an I'TV request
and 1t may also be necessary or preferable to give I-cache a
high priority if the pre-fetch buffer is going to be empty

10

15

20

25

30

35

40

45

50

55

60

65

16

soon. In any event, software 1s available to adjust the priority
scheme used to meet various operating conditions.

Dynamic memory refresh 1s also based on a priority
scheme. A counter coupled to a state machine 1s used to keep
track of how many cycles have expired between relfreshes,
1.e. the number of times a refresh 1s requested, and has been
denied because the MAU bus was busy. When the counter
reaches a predetermined count, 1.e. expired, 1t generates a
signal to the port telling the port that 1t needs to do a refresh.
If the port 1s busy servicing requests from the D or I caches
or the 10U, it won’t service the refresh request unless it
previously denied a certain number of such requests. In other
words, priority 1s given to servicing refresh requests when
the refresh requests have been denied a predetermined
number of times. When the port 1s ready to service the
refresh request, 1t then informs the bus arbritration control
unit to start arbitrating for the MAU bus.

A row 1s preferably refreshed every 15 microseconds and
must be refreshed within a predetermined period, e.g. at least
every 30 microseconds.

When RAS goes low (asserted) and CAS 1s not asserted,
all CPU’s know that a refresh has occurred. Since all CPU’s
keep track of when the refreshes occur, any one or more of
them can request a refresh if necessary.

While preferred embodiments of the present invention are
described above, 1t 1s contemplated that numerous modifi-
cations may be made thereto for particular applications
without departing from the spirit and scope of the present
invention. Accordingly, it 1s intended that the embodiments
described be considered only as illustrative of the present
invention and that the scope thereof should not be limited
thereto but be determined by reference to the claims here-
inafter provided.

What 1s claimed 1s:

1. An apparatus for controlling access by a plurality of
devices internal to a processor to a resource external to the
processor via a plurality of processor ports, the apparatus
comprising;

a plurality of port interfaces, wherein each port interface
corresponds to a respective one of the plurality of
processor ports, 1s configured to receive requests for the
external resource from the plurality of devices, and
includes a respective port arbitration unit configured to
arbitrate for access by the plurality of devices to a
corresponding processor port; and

a switch network configured to transfer said requests from
the plurality of devices to said plurality of port
interfaces, said switch network including a switch
arbitration unit configured to arbitrate for access by the
plurality of devices to said switch network.

2. The apparatus of claim 1, wherein the plurality of
devices include at least one of a data cache, an instruction
cache, or an input/output unit.

3. The apparatus of claim 1, wherein the external resource
COMPrises a memory array unit.

4. The apparatus of claim 1, wherein each port arbitration
unit 1s configured to dynamically assign a priority to a
request.

5. The apparatus of claim 4, wherein each port arbitration
unit 1s configured to dynamically assign a priority to a
request based on an intrinsic priority assigned to the device
that generated said request.

6. The apparatus of claim 4, wherein each port arbitration
unit 1s configured to dynamically assign a priority to a device
request based on a number of times that the device that
generated said request has been denied access to a processor
port.

US 6,954,544 B2

17

7. The apparatus of claim 4, wherein each port arbitration
unit 1s configured to dynamically assign a priority to a
request based on a number of times that the device that
generated said request has been granted access to a proces-
SOr port.

8. The apparatus of claim 4, wherein each port arbitration
unit 1s configured to dynamically assign a priority to a
request based on whether an address associated with said
request matches an address associated with a previously-
serviced request.

9. The apparatus of claim 1, wherein said switch arbitra-
tion unit 1s configured to dynamically assign a priority to a
request.

10. The apparatus of claim 9, wherein said switch arbi-
tration unit 1s configured to dynamically assign a priority to
a request based on whether said request 1s destined for one
of the plurality of processor ports.

11. The apparatus of claim 9, wherein said switch arbi-
fration unit 1s configured to dynamically assign a priority to
a request based on the 1dentity of the device that generated
said request.

12. The apparatus of claim 1, further comprising:

a first signal line to transfer a request pending signal
between one of the plurality of devices and one of said
port arbitration units;

a second signal line responsive to said request pending
signal to transfer a port available signal from said one
of said port arbitration units to said switch arbitration
unit when one of the processor ports 1s available; and

a third signal line responsive to said port available signal
to transfer a switch available signal from said switch
arbitration unit to said one of said port arbitration units
when said switch network 1s available to transfer said
request.

13. In a system including a processor and a resource
external to the processor, the processor including a plurality
of devices and a plurality of ports, a method for controlling
access by the plurality of devices to the external resource via
the plurality of ports, the method comprising:

arbitrating for access by one of the plurality of devices to
one of the plurality of ports;

arbitrating for access by said one of the plurality of
devices to a switch network;

transterring a request for the external resource from said
onc of the plurality of devices to said one of the
plurality of ports via said switch network.

10

15

20

25

30

35

40

45

138

14. The method of claam 13, wherein the plurality of
devices include at least one of a data cache, an instruction
cache, or an input/output unit.

15. The method of claim 13, wherein the external resource
COmMPrises a memory array unit.

16. The method of claim 13, wherein said arbitrating for
access by one of the plurality of devices to one of the
plurality of ports comprises dynamically assigning a priority
to a request generated by said one of the plurality of devices.

17. The method of claim 16, wherein said dynamically
assigning a priority to a request generated by said one of the
plurality of devices comprises assigning a priority to said
request based on an intrinsic priority assigned to the device
that generated said request.

18. The method of claim 16, wherein said dynamically
assigning a priority to a request generated by said one of the
plurality of devices comprises assigning a priority to said
request based on a number of times that the device that
generated said request has been denied access to a port.

19. The method of claim 16, wherein said dynamically
assigning a priority to a request generated by said one of the
plurality of devices comprises assigning a priority to said
request based on a number of times that the device that
ogenerated said request has been granted access to a port.

20. The method of claim 16, wherein said dynamically
assigning a priority to a request generated by said one of the
plurality of devices comprises assigning a priority to said
request based on whether an address associated with said
request matches an address associated with a previously-
service request.

21. The method of claim 13, wherein said arbitrating for
access by said one of the plurality of devices to a switch
network comprises dynamically assigning a priority to a
request generated by said one of the plurality of devices.

22. The method of claim 21, wherein said dynamically
assigning a priority to a request generated by said one of the
plurality of devices comprises assigning a priority to said
request based on whether said request 1s destined for one of
the plurality of ports.

23. The method of claim 21, wherein said dynamically
assigning a priority to a request generated by said one of the
plurality of devices comprises assigning a priority to said

request based on the identity of the device that generated
said request.

	Front Page
	Drawings
	Specification
	Claims

