(12) United States Patent

US006944827B2

10y Patent No.: US 6,944,827 B2

Gao et al. 45) Date of Patent: Sep. 13, 2005

(54) SYSTEM AND METHOD OF DATA 6,654,793 B1 * 11/2003 Wollrath et al. 709/217
TRANSMISSION FOR COMPUTER 6,708,223 B1 * 3/2004 Wang et al. 709/315
NETWORKS UTILIZING HTTP 2002/0042830 A1 * 4/2002 Boseet al. ..coouuenn....... 709/230
2003/0009562 A1 * 1/2003 Heymann et al. 709/227

(75) Inventors: Yang Gao, FI‘@II]OI]L'CA (US); Zheng OTHER PUBLICATIONS
John Shi, San Francisco, CA (US);
Shun Gao, San Jose, CA (US); Rmb2Html] 2.00 Help System, Using the IFRAME feature of
Armeen Mazda, Tiburon, CA (US) Microsoft Internet Explorer, Sep. 10, 1999.*
William Wen, “Creating Lightweight Web Pages,” Interac-
(73) Assignee: Appeon Corporation, Hong Kong tive Developer, Sep. 1999.*
(HK) Implementing HTML Frames, W3C Working Draft Mar. 31,
1997 .*
(*) Notice: Subject to any disclaimer, the term of this [jveWire and Active Server Pages (APS), Jan. 10, 1997.*
patent 1s extended or adjusted under 35
U.S.C. 154(b) by 567 days. * cited by examiner
Primary Examiner—John Cabeca
(21) Appl. No.: 09/916,251 Assistant Examiner—Tadesse Hailu
(22) Filed: Jul. 30, 2001 (74) Artorney, Agent, or Firm—Patterson, Thuente, Skaar &
Christensen, P.A.
(65) Prior Publication Data
(57) ABSTRACT
US 2003/0067480 Al Apr. 10, 2003
The present invention permits textual data to be exchanged
Related U.S. Application Data between a Web page displayed 1n a standard Microsoft Web
(60) Provisional application No. 60/231,842, filed on Sep. 11, browser window and a server, utilizing a non-persistent
2000. HTTP connection. Traditionally, each time textual data is
(51) Int. CL7 oo G09G 5/00 received to the displayed Web page a record is added to the
(52) US.CL . 715/738; 715/740; 709/227 ~ Mustory list. This is problematic as it clutters the history List,
(58) Field of Search 715/733, 760 compromises the functionality F)f the byowser “Back™ and
715/749. 738—740: 719/330. 31 5’ 328? “.Forward” buttons, and results 1n 1.1nd651'rable SEIVEr Opera-
700 /203’ 257 3 45”/733 738? 5 40’ 5 49’ tions to be execu?ed. The present invention utilizes several
’ ’ ’ ’ ’ 766 methods for loading textual data to a displayed Web page,
without adding a URL to the history list. In one aspect of the
(56) References Cited mmvention, a <xml> element 1s used to transmit a HITTP
request for new data and receive the HTTP response. The
U.S. PATENT DOCUMENTS present invention can be used to build a lightweight Web
6,249.822 Bl * 6/2001 Kays et al. o.oveveee... 719330 Page that offers real-time data and interactivity.
6,393,497 B1 * 5/2002 Arnold et al. 719/330
6,523,063 B1 * 2/2003 Miller et al. 709/206 9 Claims, 1 Drawing Sheet
102 106
104
Data Data tljansport
receiver HTTP request/response file
103

. wWeb server
Microsoft

Browser

100: Web enabled

101 system 105

U.S. Patent Sep. 13, 2005 US 6,944,827 B2

102 106
I 104

Data Data tfz.iaenspon

receiver 'l HTTP request/response
103

- Web server
Microsoft €
Browser

100: Web enabled
101 system 105

FIGURE 1

US 6,944,827 B2

1

SYSTEM AND METHOD OF DATA
TRANSMISSION FOR COMPUTER
NETWORKS UTILIZING HTTP

CROSS-REFERENCE TO RELATED
APPLICATTONS

This application claims the benefit of U.S. Provisional
Application No. 60/231,842 filed Sept. 11, 2000.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

Not Applicable

REFERENCE TO A MICROFICHE APPENDIX
Not Applicable

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates generally to transmitting,
information over computer networks, and more particularly,
to a system and method of transmitting data from a server to
a Web page displayed 1n a Web browser.

2. Description of the Related Art

The Internet 1s a computer network that provides access to
the World Wide Web (“the Web™); a vast collection of pages
comprised of text, hyperlinks, graphical elements, 1nput
elements (e.g. HITML text box), and program code (e.g.
JavaScript). Graphical user interface programs called Web
browsers are employed by Internet users to receive, or
download, the Web pages from servers and display the pages
at their client devices. A Web browser displays Web pages by
interpreting the HI'ML document and executing any pro-
oram code, which results in the showing text, hyperlinks,
ographical elements, and mput elements on a client display
screen.

The rapid increase 1n the number of Internet users and the
ubiquity of the Web browser have prompted companies to
adopt Web pages for delivering, to end-users, time-sensitive
information and mission-critical software applications.
These Web-based applications generally require numerous
transmissions of data between a server and the Web browser.
Traditionally, for each transmission of data, a new page must
be transmitted back to the user or their existing page must be
refreshed. This traditional data transmission model, when
used 1n the context of delivering web-based applications to
end-users, greatly increases the number of redundant Web
page refreshes. Web page refreshes are problematic, because
they result 1 unnecessary server and bandwidth utilization,
and force the user to wait for redundant pages to load. This
negatively 1mpacts the Web-based application’s effective-
ness and the Internet user’s productivity, while compromis-
ing network efficiency and scalability.

Several developments 1llustrate the great effort at reduc-
ing redundant page refreshes and for providing a rich
interactive user experience for Web pages without utilizing
Web browser plug-ins, such as Macromedia’s Flash player
or Microsoit’s ActiveX controls. One of which was devel-
oped and promoted by Microsoft.

Microsoft developed a Java Applet-based technology
called “Remote Scripting”, which allows information to be
exchanged between a displayed Web page and the server,
without having to refresh the page. After several years of
promotion by Microsolt, however, “Remote Scripting” tech-
nology has not been widely adopted by Web developers.
There are several reasons for this:

1. Slow: In order to use “Remote Scripting,” each Web
page must include a Java Applet, acting as the client-

10

15

20

25

30

35

40

45

50

55

60

65

2

side communication proxy, which must 1nitialize Java
Virtual Machine at the client’s computer. Initialization
of Java Virtual Machine and loading of the Java Applet
1s a slow process that introduces an undesirable delay
in displaying the Web page for most personal comput-
CIS.

2. Limited Server Compatibility: “Remote Scripting” only
supports Microsoft Web server software, such as Microsoft’s
[IS (Internet Information Server). Most high traffic and
established commercial Websites, however, use a non-
Microsoft platform or wish not to be limited to only using
the Microsoit platform 1n the future.

As a result of these serious limitations, most Web-based
applications do not or cannot take advantage of Microsoit’s
“Remote Scripting” technology.

Consequently, the most common method for achieving
real-time Web page interactivity today, without Web browser
plug-ins, 1s by using a <iframe> element. The <iframe>
clement serves as the communication proxy for the Web
browser. Data 1s transmitted to the server by utilizing a
<form> eclement and either the “post” or “get” method.
Alternatively, one could transmit data to a Web page without
utilizing the <form> element by dynamically changing the
“src” attribute of an <iframe> element at the Web browser.
The <iframe> method for data transmission overcomes the
limitations of Microsoit’s “Remote Scripting,” but intro-
duces one new serious limitation, which greatly compro-
mises the operation of Microsoft’s Web browser.

Specifically, each time new mnformation 1s loaded mnto an
<iframe> element, a record or URL (Universal Resource
Locator) 1s added to the Microsoft Web browser’s history
list. That 1s, the browser 1s now adding every action per-
formed from the Web page to the history list, rather than just
cach unique Web page. Thus, since each unique Web page
may make several data transmissions, several history
records are now being associated with each unique Web
page. This 1s problematic 1n the context of Web-based
applications for the following reasons:

1. Clutters the history list: users must navigate through a
large directory tree full of redundant entries before
finding the desired Web page.

2. Compromises Web page navigation: users must repeat-
edly click on the “Back” or “Forward” buttons before
being able to leave the current Web page.

3. Produces undesirable application operations: users will
trigger duplicate operations at the server (e.g. charge
my credit card) when navigating with the browser’s
“Back” and “Forward” buttons.

These problems affect many Internet users today as the
majority of these users utilize a Microsoft Web browser.
Furthermore, as Netscape winds down its Web browser
business and Microsoft becomes the de facto Web browser,
this problem will soon plague every single Internet user, and
thus cannot be 1gnored.

From the discussion above, 1t should be apparent that
there 1s a need for better method of transmitting data from
a server to a displayed Web page over HI'TP. Specifically, a
method that offers at least the same benefits of the <iframe>
method, without disrupting the Microsolt Web browser’s
history list. The present invention fulfills this need.

BRIEF SUMMARY OF THE INVENTION

The present mvention permits the downloading of new
information to a Web page within a Microsoft Web browser
through a non-persistent HI'TP connection, and without
utilizing Web browser plug-in, Java Applet, or ActiveX
technology. Furthermore, the present invention accom-
plishes the downloading action to the Web page without
adding a record or URL to the Web browser’s history list.

US 6,944,827 B2

3

Other features and advantages of the present invention
should be apparent and will be better understood by refer-
ence to the drawings and the following detailed description,
which 1llustrate, by way of example, the principles of the
invention.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWING

FIG. 1 shows a system having Web pages on client
computers and Web server constructed in accordance with
the present invention.

DETAILED DESCRIPTION OF THE
INVENTION

Generally speaking, new data 1s transmitted from a server
to a Web page within a Web browser over a non-persistent
or persistent connection, either by utilizing browser-native
or non-browser-native client-side technology. A non-
persistent connection 1s established through the standard use
of HT'TP, whereas a persistent connection 1s typically estab-
lished through the use of TCP/IP or through some non-
standard use of HI'TP. Browser-native client-side technolo-
oles mnclude HTML and JavaScript, whereas non-browser-
native client-side technologies require some type of web-
browser plug-in, such as Microsoft Corporation’s ActiveX,
Sun Microsystems’ Java Virtual Machine, Macromedia Cor-
poration’s Flash, Active State’s Tcl/Tk, or Curl Corpora-
fion’s Surge, just to name a few.

Typically, when transmitting data from a server to a Web
page within a Microsoft Web browser, utilizing a non-
persistent connection and browser-native client-side tech-
nology 1s superior for the following reasons:

1. Low overhead: HTTP (i.e. a non-persistent connection)
closes the socket after data has been transmitted,
whereas a persistent connection does not. Thus,
because each open socket consumes server resources,
using HT'TP 1in a non-persistent connection manner
lowers the server overhead required.

2. Broad reach: Non-browser-native client-side technol-
ogy requires a Web browser plug-in to function, which
usually 1s not included with the Web browser and
requires a software download. Most users are weary of
installing new software on their machines, and/or are
reluctant to wait for the download to complete. Thus, a
Web page that does not require a Web browser plug-in
1s accessible by all Internet users.

3. High performance: many of us who have experience
with Java Applets and other non-browser native tech-
nology are all too familiar with the performance 1ssues
of such technologies. They are generally slow to load
and run, offer inconsistent performance across various
system conflgurations, and can even crash the Web
browser and operating system. On the other hand,
HTML and JavaScript are fast and stable, offering
consistent performance and reliability across any com-
puter configuration.

One disadvantage of utilizing browser-native client-side
technology for downloading data 1s that each time a new text
file or Web page 1s download to the browser, that action 1s
recorded 1n the Web browser’s history list. The Microsoft
Web browser provides no means for erasing a given history
record, once 1t has been added.

The present invention outlines a system and provides
several implementations for downloading new information
to a Web page through a non-persistent HI'TP connection,
utilizing browser-native client-side technology, and prevent-
ing the creation of a given history record.

10

15

20

25

30

35

40

45

50

55

60

65

4

System Configuration

FIG. 1 shows a system 100 consisting of a Microsoft
browser 101, Web page 102, a data receiver 103, a non-
persistent HT'TP network connection 104, a Web server 105,
and a data transport file 106. The Microsoft Web browser
101 utilizes the HTTP connection 104 to request the Web
page 102. Meanwhile, a file exists at the Web server that
contains some data, the data transport file 106, or some
mechanism exists for dynamically generating its data at
runtime. The Web page 102 sends a request for the data
transport file 106, which 1s downloaded to the data receiver
103. Once the data transport file 106 1s contained within the
Web browser 101, its data 1s either displayed to the user or
processed by some client-side scripting (e.g. JavaScript).
System Implementation

Because the data receiver 1s lacking today, it 1s the key
stumbling block in this outlined system. Furthermore, in
order for this system to be effective, the data receiver must
be able to download the data transport file without adding a
URL to the Web browser’s history list. The data receiver can
potentially be implemented by any HIML element that has
a “SRC” property and can load a text file (e.g. the data
transport file). Examples of these supported by the Microsoft
Web browser are the HTML <script> element, the HTML
<xml> element, the HTML <iframe> element, and the
HTML <frame> element. Unfortunately, the subset of such
HTML eclements that are traditionally used to load Web
pages, such as the HTML <iframe> element and the HTML
<frame> element, cannot be utilized as-1s. This 1s due to the
fact that for each time a text file 1s downloaded to this subset
of HTML elements, the URL of the text file 1s recorded in
the Web browser’s history list. Thus, further modification 1s
necessary before we can effectively use this subset of HIML
clements for the data receiver.
<script> Implementation

The outlined system can be generally implemented as
follows. We will use a HIML <script> element as an
example. Below you will find the source code for the Web
page, client.htm, and the data transport file, datatranspor-
t.asp.

A global variable 1s defined 1n client.htm for future use.
When the data transport file 1s delivered to the data receiver,
the global variable data_ holder will hold its data so 1t may
be accessible to some JavaScript code or so it may be
displayed to the user.

var data_ holder;

A empty HIML <script> element, the data receiver, 1s
defined 1n client.htm. The data receiver will be used by the
trigger function to download the data transport {ile.

<script language=“JavaScript” 1d="data_ receiver” src=
“></script>

A trigger function 1s defined in client.htm, which will

assign the URL of the data transport file to the data receiver.

Once this occurs, a HTTP request 1s sent to the Web server

for the data transport file. Keep in mind that this trigger

function would be called when a given event occurs, such as
a button click or a timer.

function request_ new__data()

1
h

document.scripts(“data__receiver”).src="data__transport.asp”;

The data transport file, datatransport.asp, when requested,
will invoke the server-side JavaScript and return the new
data, “This 1s new data,” to the data receiver. Keep 1n mind
that datatransport.asp can be implemented as other server
page types, such as JSP or PHP, just to name a few.

US 6,944,827 B2

<script runat=server Language=JavaScript>
Response. Write(“process__new__data(*“This is new datal”);”)

</script>

A callback function, process_ new__data, 1s defined 1n
client.htm. Once the data transport file 1s delivered to the

data receiver, the function process_new_ data will auto-
matically execute, transferring the data contained 1n the data
transport file to the data holder. The data holder can now be
accessed by some JavaScript function to either perform
some evaluation or display 1t to the user.

10

15

6

<xml> Implementation

The outlined system can be generally implemented as
follows. We will use a HTML <xml> element as an example.
Below you will find the source code for the Web page,
client.htm, and the data transport file, datatransport.asp.

A global variable 1s defined 1n client.htm for future use.
When the data transport file 1s delivered to the data receiver,
the global variable data_ holder will hold 1ts data so 1t may
be accessible to some JavaScript code or so 1t may be

displayed to the user.

var data__holder;

A trigger function 1s defined in client.htm, which will
dynamically generate the data receiver, assigning to it the
URL of the data transport file. Once this occurs, a HT'TP
request 1s sent to the Web server for the data transport file.
Keep 1 mind that this trigger function would be called when
a given event occurs, such as a button click or a timer.

function request_ new__data()

{

var dynamic_ xml="<div><XML SRC=*‘datatransport.asp’id="data__receiver’
ondataavailable=*process_ new__data()’></XML><div>";
document.body.insertAdjacentHIML(“BeforeEnd” ,dynamic__xml);

function process_ new__data(data)

1
y

data_ holder=data;

The Web page and the data transport file can be easily
modified so that the data returned 1s dynamically generated.
For example, user mput or other parameters can be passed
to datatransport.asp, such that 1t can be processed by some
server-side business logic, such as performing a database
query and/or calculation. Specifically, you will notice
changes to the trigger function contained 1n client.htm and
changes to the server-side script in datatransport.asp.

The trigger function 1n client.htm will need to pass some
input parameter along with the request for the data transport

file.

function request_ new__data(input)

{

30

35

40

The data transport file, datatransport.asp, when requested,
will invoke the server-side JavaScript and return the XML
data set containing the new data, “This 1s new data.” Keep
in mind that datatransport.asp can be implemented as other
server page types, such as JSP or PHP, just to name a few.
If no server-side scripting is necessary (i.e. the XML data is
not dynamically generated), the XML server page type may
be used.

<script runat=server Language=JavaScript>
Response. Write(“<XML><DATA>This is new data</DATA></XML>")
</script>

A callback function, process new_ data, 1s defined 1n
client.htm. Once the data transport file 1s delivered to the

document.scripts(“data__receiver”).src="datatransport.asp?parameter="+input;

h

The server-side script 1in datatransport.asp will need to
extract the mput parameter and utilize it to perform some
action. In this case, 1t 1s stmply appended to the static data
“This 1s new data with 1nput,” and returned to the data
rECelver.

<script runat=server Language=JavaScript>
var input__data=Request(“parameter’);

55

data receiver, the function process new_ data will auto-
matically execute, transferring the XML data contained 1n
the data transport file to the data holder. The data holder can
now be accessed by some JavaScript function to either
perform some evaluation or display it to the user.

Response. Write(“process__new__data(y“This is new data with input ” + input_ data + “\");”);

</script>

US 6,944,827 B2

function process__new__data(data)

1

data__holder=data__receiver. XMLDocument.selectSingleNode(“XML/DATA”).text;

h

The Web page and the data transport file can be easily
modified so that the data returned 1s dynamically generated.
For example, user mput or other parameters can be passed
to datatransport.asp, such that 1t can be processed by some
server-side business logic, such as performing a database
query and/or calculation. Specifically, you will notice
changes to the trigger function contained 1n client.htm and
changes to the server-side script in datatransport.asp.

The trigger function 1n client.htm will need to pass some
input parameter along with the request for the data transport

file.

function request_ new__data(input)

10

15

var data_ holder;

A trigger function 1s defined 1n iframe_ client.htm, which
prepares the data receiver and requests the data transport file.
We dynamically generate a hidden HTML <iframe>
clement, the data receiver, without any value assigned to its
“src” attribute. Because the <iframe> “src” has no value (i.e.
URL) and will never be assigned a URL, the Web browser
will not add a record to 1its history list. However, we must
somehow assign the data transport file to the data receiver.
This 1s accomplished by utilizing the HITML <form>
clement’s “target” attribute to associate the data transport

{
var strURL="“datatransport.asp’parameter="+1nput;
var dynamic_ xml="<div><XMIL SRC="+strURIL+" 1id="data__receiver’
ondataavailable="process_ new_ data() ></XML></div>";
document.body.insertAdjacentHTML(“BeforeEnd”,dynamic_ xml);

h

The server-side script 1in datatransport.asp will need to
extract the mput parameter and utilize 1t to perform some
action. In this case, it 1s simply appended to the static data
“This 1s new data with 1nput,” and returned to the data
recelver.

<script runat=server Language=JavaScript>
var input_data=Request(“parameter”)

30

file with the data receiver. Now we submit the HITML
<form> created earlier. Once this occurs, a HI'TP request 1s
sent to the Web server for the data transport file. Keep 1n
mind that this trigger function would be called when a given
event occurs, such as a button click or a timer.

Response. Write(“<XML><DATA>This is new data with input”+ input__data +

“</DATA></XML>")
</script>

<iframe> Implementation

As mentioned before, the HI'ML elements that are tradi-
tionally used to load Web pages require further modification
before we can effectively use them as the data receiver.
Below we outline a method for utilizing a HTML <iframe>
clement without creating a record in the Web browser’s
history list. Below you will find the source code for the Web

page, iirame__client.htm, and the data transport file, iframe__

datatransport.asp.

A HTML <form> element 1s defined 1n iframe

client.htm, which will later be used by the data receiver to
request the data transport file, 1frame_datatransport.asp.

<form name=“data_ requester” method="“get” action=
“1frame__datatransport.asp”></form>
A global variable 1s defined 1n iframe_ client.htm for
future use. When the data transport file 1s delivered to the
data receiver, the global variable data_ holder will hold its
data so 1t may be accessible to some JavaScript code or so
it may be displayed to the user.

45

50

55

60

65

function request_ new__data()

{

var dynamic__iframe="<div

id="iframe__container’><iframe style= \"visibility:hidden;\"
name=°‘data__receiver’></iframe></div>";
document.body.insertAdjacentHIML("BeforeEnd", dynamic__iframe);

document.forms.data__requester.target="data__receiver";

document.forms.data_ requester.submit();

The data transport file, iframe_ datatransport.asp, when
requested, will return the HI'ML code and data “This 1s new
data.” Once the data receiver loads this Web page, the
callback function defined in iframe client.htm, process__
new__data, will be mmvoked. Keep 1n mind that iframe
datatransport.asp can be implemented as other server page
types, such as JSP or PHP, just to name a few.

US 6,944,827 B2

<script runat=server Language=JavaScript>
Response. Write("<html><body
onload=parent.window.process__new__data

(\"This%20is %20new%20data\")></body></html>");
</script>

Once the data transport file invokes process__ new__data,
the data contained in the data transport file, “This 1s new
data,” 1s transterred to the data holder. The data holder can

now be accessed by some JavaScript function to either
perform some evaluation or display it to the user.

function process_ new__data(data)

{

data_ holder=data;

h

The Web page and the data transport file can be easily
modified so that the data returned 1s dynamically generated.
For example, user input or other parameters can be passed
to 1frame__datatransport.asp, such that it can be processed by
some server-side business logic, such as performing a data-
base query and/or calculation. Specifically, you will notice
changes to the HTML <form> and trigger function contained
in iframe_ client.htm, and changes to the server-side script
in iframe__datatransport.asp.

A hidden HTML <input> element 1s added to the HIML
<form> element 1n i1frame client.htm, which will later be
used by the data receiver to pass some parameter to the data
transport {ile.

<form name="data__requester" method="get"
action="1rame__ datatransport.asp”">

<input type="hidden" name="parameter">
</form>

The trigger function 1n iframe__client.htm will now need
to also pass some 1nput parameter along with the request for
the data transport file. This occurs in the first line of the
function, when the input parameter 1s assigned to the hidden
HTML <imput> element of the form being submitted.

function request new__data_ with__input(input)
1

var dynamic__iframe="<div

id=*iframe__container’><iframe style= \"visibility:hidden;\"

name=°‘data_ recerver’ ></iframe></div>";
document.body.insertAdjacentHITML("BeforeEnd", dynamic__iframe);
document.forms.data__requester.parameter.value=1nput;
document.forms.data__requester.target="data__receiver";
document.forms.data__requester.submit({);

The server-side script in iframe_ datatransport.asp will
need to extract the input parameter and utilize 1t to perform
some action. In this case, 1t 1s stmply appended to the static
data “This 1s new data with mput,” and returned to the data
recelver.

10

15

20

25

30

35

40

45

50

55

60

10

<script runat=server Language=JavaScript>

var input__data=Request("parameter")

Response. Write(" <html><body
onload=parent.window.process_ new__data
(\"This%20is %20new%?20data%20with%20input%20" +
input_ data+"\")></body></html>");

</script>

The present invention has been described above 1n terms
of presently preferred embodiments so that an understanding
of the present invention can be conveyed. There are,
however, many configurations for network data delivery not
specifically described herein, but with which the present
invention 1s applicable. The present invention should there-
fore not be seen as limited to the particular embodiments
described herein, but rather, 1t should be understood that the
present 1nvention has wide applicability with respect to
network data delivery generally. All modifications,
variations, or equivalent arrangements and implementations
that are within the scope of the attached claims should
therefore be considered within the scope of the invention.

We claim:

1. A method for bringing new data to a Web page
displayed 1n Microsoit Web browser window at a client
device, the method comprising:

displaying, in Microsoft Web browser window of a client
device, a Web page, wherein said Web page no longer
has any active HT'TP connections;

transmitting, to a server, an HT'TP request; and

receiving, from said server, an HI'TP response associated
with said HTTP request,
wherein the transmitting and receiving actions do not utilize
Web browser plug-in, Java Applet, or ActiveX technology,
and do not add a Universal Resource Locator (URL) to said
application’s history list.

2. A method as defined 1n claim 1, wherein information 1n
saild HT'TP response 1s delivered to an HI'ML element of a
Web page that 1s capable of loading a text file.

3. A method as defined 1n claim 2, wherein information 1n
saitd HTTP response 1s delivered to an HITML <script>
clement of a Web page.

4. A method as defined 1n claim 3, wherein information in
said HT'TP response contains only one JavaScript instruction
or line of JavaScript code.

5. Amethod as defined 1n claim 4, wherein said JavaScript
mnstruction automatically executes a JavaScript function
defined 1n said Web page.

6. A method as defined 1n claim 2, wherein information in
saild HTTP response 1s delivered to an HTML <iframe>
clement of a Web page.

7. A method as defined 1n claim 2, wherein information 1n
saild HTTP response 1s delivered to an HTML <xml> ele-
ment of a Web page.

8. A method as defined 1n claims 3,6, or 7, wherein said
information from said HTTP response 1s displayed on said
Web page.

9. A method as defined 1n claims 3,6, or 7, wherein said
information from said HTTP response 1s processed by
program code of a Web page.

	Front Page
	Drawings
	Specification
	Claims

