(12) United States Patent

Duran

US006941547B2

US 6,941,547 B2
Sep. 6, 2005

(10) Patent No.:
45) Date of Patent:

(54) APPARATUS AND METHOD FOR PORTING
APPLICATIONS TO DIFFERENT
PLATFORMS

(75) Inventor: Aldo Alejandro Duran, Cedar Park,

TX (US)

(73) Assignee: International Business Machines
Corporation, Armonk, NY (US)

(*) Notice: Subject to any disclaimer, the term of this

patent 15 extended or adjusted under 35
U.S.C. 154(b) by 591 days.

(21) Appl. No.: 09/888,451

(22) Filed: Jun. 25, 2001
(65) Prior Publication Data
US 2003/0009747 Al Jan. 9, 2003
(51) Imt. CL7 ..o, GO6F 9/45
(52) US.ClL e, 717/136
(58) Field of Search 717/128, 136—138,
717/146; 713/2
(56) References Cited
U.S. PATENT DOCUMENTS
5,713,009 A * 1/1998 DeRosa et al. 713/2
2002/0138821 Al * 9/2002 Furman et al. 717/128

OTHER PUBLICAITONS

Martin Taylor, “Port Your UNIX Apps to OS/400”, Data-
mation, Apr. 15, 1996.%

Wind/U—The Leading Windows API & MFC Cross—Plat-
form Solution, Bristol Technology, 1999.*

| RECEIVE COMMAND TO
COMPILE PROGRAM

Bob DuCharme, The Operating Systems Handbook, Jun. 15,
2001, McGraw-Hill, Part 1 and Part 4.*

* cited by examiner

Primary Fxaminer—Anil Khatri

Assistant Examiner—Irent J Roche

(74) Attorney, Agent, or Firm—Duke W. Yee; Jeffrey S.
LaBaw; Gerald H. Glanzman

(57) ABSTRACT

Apparatus and method for porting applications to different
platforms. The apparatus and method use a mapping table
function that receives source filenames and directory struc-
tures and maps them to filenames and directory structures
appropriate for a target platform. In a preferred embodiment,
the apparatus and method map flexible filenames and direc-
tory structures, such as 1s found with the Unix filesystem, to
more restrictive filenames and directory structures, such as
1s found with the OS/400 filesystem. In this way, an appli-

cation developer may make use of the more flexible file-
system of conventions such as Unix, when developing
application files and use the apparatus and method to auto-
matically handle converting these more flexible filenames

and directory structures to the more restrictive filenames and
directory structures of platforms to which the application is
to be ported.

39 Claims, 3 Drawing Sheets

710

[MAP FILENAMES USING | - 790
MAPPING FUNCTION

MODIFY DIRECTORY
STRUCTURE USING 730

MAPPING FUNCTION

COMPILE AND
LINK PROGRAM 740

~ STORE PROGRAM

730

U.S. Patent Sep. 6, 2005 Sheet 1 of 3 US 6,941,547 B2

100
\‘
104
: D
:
SERVER
<l
106" STORAGL
FIG. 1
CLIENT
202 204
/
PROCESSOR PROCESSOR
| 206
SYSTEM BUS
200

MEMORY rel
208 ~] CONTROLLER/ | 1/0 BRIDGE
CACHE
t 216
EMORY BRIDGE f 1.

1/0 VODEM NETWORK
BUS ADAPTER

GRAPHICS 222
230~ ADAPTER (218 e 220
PCl BUS
~— BRIDGE
226
HARD DISK - PCl BUS PCl BUS
2 <= oet_
' 228

FIG. 2 AY

U.S. Patent Sep. 6, 2005 Sheet 2 of 3 US 6,941,547 B2

300\
HOST/PCI MAIN AUDIO |
PROCESSOR K= ¢ACHE /BRIDGE [N—~ MEMORY ADAPTER
302 308 S 304 316
g | A T 8
|
UDIO
E Scsl ST | | ADmER EXPSU?ION GA%:PHF[ECRS AVI%EO/
!
| BUS ADAPTER | 2 INTERFACE ADAPTER
!]
312 l
| |
: T
I]
DISK KEYBOARD AND
: DK [~-326 : voDEM | | MEMORY
: -TAPE 178
l l 320 322 304
| CD-ROM ~~330 :‘\—332
| ' FIG. 3
L o o o o e e e e e i ———— A
FLEXIBLE FILENAMES 410 NATIVE FILENAMES 420 430

/

(HIERARCHICAL (SINGLE DIRECTORY

DIRECTORIES) MAPPING STRUCTURE) EXECUTABLE
FUNCTION
FIG. 4
COMPUTING DEVICE
SOURCE CODE (C/C++ FILE) =210
FIG. 6 - COMPILER (LINKER) 500

EXECUTABLE 530

U.S. Patent Sep. 6, 2005 Sheet 3 of 3 US 6,941,547 B2

600 630

610 ?Sygfi (;?L%E) COMPUTING DEVICE

TEMPLATE CODE 040
620 (COMPILER) HNKER
COMPUTING DEVICE 650

FIG. 6

RECEIVE COMMAND TO | _~710
COMPILE PROGRAM

MAP FILENAMES USING | ~720
MAPPING FUNCTION

MODIFY DIRECTORY

STRUCTURE USING 730
MAPPING FUNCTION

COMPILE AND

LINK PROGRAM 740

FIG. 7

US 6,941,547 B2

1

APPARATUS AND METHOD FOR PORTING
APPLICATIONS TO DIFFERENT

PLATFORMS

BACKGROUND OF THE INVENTION

1. Technical Field

The present 1mvention 1s directed to an improved data
processing system. More specifically, the present invention
1s directed to an apparatus and method for porting applica-
tfions to different platforms.

2. Description of Related Art

To port applications from one operating system platform
to another operating system platform may be very difhicult
because the target platform may not make use of the same
or similar filesystem as the original platform on which the
application was developed. For example, a Unix operating
system filesystem 1s hierarchical and thus, allows for direc-
tories within directories. Moreover, the filenames in any of
the directories can be up to 254 characters 1n length. An
example of filenames i1n this type of filesystem may be:
/dirNamel/dirName2/then__a_file. name_ which_can__

be_ long like_ this; and
/dirNamel/dirName2/dirName3/then__a_ file_ name__

which__can_ be_ long_ like_ this
Note that the name of the file can be the same when 1t 1s 1n
two different directories and yet represent two different files.

In addition, the Unix filesystem 1s case sensitive. This
means that a filename with lower case letters 1s different than
a filename that uses the same characters 1n uppercase or
mixed case.

Other operating systems, such as MS-DOS and Netware,
may have limitations on the length of filenames. For
example, MS-DOS and Netware each limit the length of the
filenames to eight characters with three characters for the
extension. Examples of MS-DOS and Netware filenames
are:

/dirNamel/dirName2/filename.ext
/dirNamel/dirName2/dirName3/filename.ext

Other operating systems, such as 1Series hosts running
0S/400, have the limitation 1n which the native filesystem
cannot have directories within directories, 1.e. there 1s no
hierarchical filesystem, and the filenames of directories or
files cannot be longer than 10 characters. Thus, 1n an OS/400
operating system, the filenames are of the type:

DIRNAME1/FILENAME
DIRNAMEZ2/FILENAME

Moreover, this filesystem 1s not case sensitive. Thus, a
filename that uses lowercase characters 1s the same as a
filename that uses the same characters 1n upper case or
mixed case.

Because of this difference 1n the capabilities of the file-
systems of the various platforms, there are two basic ways
that an application designed to be used with a plurality of
plattorms may be made compatible with a plurality of
platforms. First, the set of files for the application may be the
same for all platforms. This would require that the files
conform to the most restricted filesystem requirements, 1.€.
filenames with no more than ten characters and no hierar-
chical directory structures.

Second, there may be several different sets of {iles, one for
cach platform. In this way, one operating system lilesystem
would not be limited to the filesystem naming requirements
of the most restrictive filesystem and the inability to use
hierarchical directory structures. The tradeoif, however, 1s
that several sets of source files must be maintained, thereby
increasing the complexity of supporting multiple platforms.

10

15

20

25

30

35

40

45

50

55

60

65

2

Neither of the two above options provides an optimum
solution to making applications compatible with a plurality
of platforms. In the first case, the application must be
designed within the limitations of the most restrictive file-
system. In the second case, the complexity and overhead of
maintaining multiple sets of source files makes this solution
undesirable. Therefore, 1t would be beneficial to have an
apparatus and method for porting applications to multiple
platforms that avoids the drawbacks of the prior art noted
above.

SUMMARY OF THE INVENTION

The present 1nvention provides an apparatus and method
for porting applications to different platforms. The apparatus
and method make use of a mapping table function that
receives source fllenames and directory structures and maps
them to filenames and directory structures appropriate for a
target platform. In a preferred embodiment, the apparatus
and method map flexible filenames and directory structures,
such as 1s found with the Unix filesystem, to more restrictive
filenames and directory structures, such as 1s found with the
0S/400 filesystem. In this way, an application developer can
develop application files without being limited to the most
restrictive filesystem conventions. That 1s, a developer may
make use of the more flexible filesystem conventions of
Unix, for example, when developing application files and
use the apparatus and method of the present invention to
automatically handle converting these more flexible filena-
mes and directory structures to the more restrictive filena-
mes and directory structures of platforms to which the
application 1s to be ported.

BRIEF DESCRIPTION OF THE DRAWINGS

The novel features believed characteristic of the invention
are set forth 1n the appended claims. The invention itself,
however, as well as a preferred mode of use, further objec-
fives and advantages thereof, will best be understood by
reference to the following detailed description of an 1llus-
frative embodiment when read 1n conjunction with the
accompanying drawings, wherein:

FIG. 1 1s an exemplary diagram of a distributed data
processing system 1n accordance with the present invention;

FIG. 2 1s an exemplary diagram of a server device 1n
accordance with the present invention;

FIG. 3 1s an exemplary diagram of a client device 1n
accordance with the present invention;

FIG. 4 1s an exemplary diagram 1llustrating the use of a
mapping table function according to the present invention;

FIG. § 1s an exemplary diagram illustrating a native
compilation according to the present invention;

FIG. 6 1s an exemplary diagram illustrating a cross
compilation according to the present invention; and

FIG. 7 1s a flowchart outlining an exemplary operation of
the present mvention.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

The present invention provides an apparatus and method
of porting applications to a plurality of platforms. Such
porting may be performed in a stand alone computer system
or may be distributed across a number of different comput-
ing devices 1n a distributed data processing system. As such,
a brief explanation of the distributed data processing system,
server devices and client devices 1s provided to aid in
understanding the environments 1n which the present imnven-
tion may be implemented.

US 6,941,547 B2

3

With reference now to the figures, FIG. 1 depicts a
pictorial representation of a network of data processing
systems 1n which the present invention may be imple-
mented. Network data processing system 100 1s a network of
computers 1n which the present mmvention may be imple-
mented. Network data processing system 100 contains a
network 102, which 1s the medium used to provide commu-
nications links between various devices and computers
connected together within network data processing system
100. Network 102 may include connections, such as wire,
wireless communication links, or fiber optic cables.

In the depicted example, server 104 1s connected to
network 102 along with storage unit 106. In addition, clients
108, 110, and 112 are connected to network 102. These
clients 108, 110, and 112 may be, for example, personal
computers or network computers. In the depicted example,
server 104 provides data, such as boot files, operating
system 1mages, and applications to clients 108—112. Clients
108, 110, and 112 are clients to server 104. Network data
processing system 100 may include additional servers,
clients, and other devices not shown. In the depicted
example, network data processing system 100 1s the Internet
with network 102 representing a worldwide collection of
networks and gateways that use the TCP/IP suite of proto-
cols to communicate with one another. At the heart of the
Internet 1s a backbone of high-speed data communication
lines between major nodes or host computers, consisting of
thousands of commercial, government, educational and
other computer systems that route data and messages. Of
course, network data processing system 100 also may be
implemented as a number of different types of networks,
such as for example, an intranet, a local areca network
(LAN), or a wide area network (WAN). FIG. 1 is intended
as an example, and not as an architectural limitation for the
present invention.

Referring to FIG. 2, a block diagram of a data processing,
system that may be implemented as a server, such as server
104 1n FIG. 1, 1s depicted 1n accordance with a preferred
embodiment of the present invention. Data processing sys-
tem 200 may be a symmetric multiprocessor (SMP) system
including a plurality of processors 202 and 204 connected to
system bus 206. Alternatively, a single processor system
may be employed. Also connected to system bus 206 is
memory controller/cache 208, which provides an interface
to local memory 209. I/O bus bridge 210 1s connected to
system bus 206 and provides an interface to I/O bus 212.
Memory controller/cache 208 and I/O bus bridge 210 may
be mtegrated as depicted.

Peripheral component interconnect (PCI) bus bridge 214
connected to I/0 bus 212 provides an interface to PCI local
bus 216. A number of modems may be connected to PCI
local bus 216. Typical PCI bus implementations will support
four PCI expansion slots or add-in connectors. Communi-
cations links to network computers 108—112 in FIG. 1 may
be provided through modem 218 and network adapter 220
connected to PCI local bus 216 through add-in boards.

Additional PCI bus bridges 222 and 224 provide inter-
faces for additional PCI local buses 226 and 228, from
which additional modems or network adapters may be
supported. In this manner, data processing system 200
allows connections to multiple network computers. A
memory-mapped graphics adapter 230 and hard disk 232
may also be connected to I/O bus 212 as depicted, either
directly or indirectly.

Those of ordinary skill 1n the art will appreciate that the
hardware depicted in FIG. 2 may vary. For example, other

10

15

20

25

30

35

40

45

50

55

60

65

4

peripheral devices, such as optical disk drives and the like,
also may be used 1n addition to or 1n place of the hardware
depicted. The depicted example 1s not meant to 1mply
architectural limitations with respect to the present mven-
tion.

The data processing system depicted in FIG. 2 may be, for
example, an IBM e-Server pSeries system, a product of
International Business Machines Corporation in Armonk,
N.Y., running the Advanced Interactive Executive (AIX)
operating system or LINUX operating system.

With reference now to FIG. 3, a block diagram 1illustrating
a data processing system 1s depicted in which the present
invention may be implemented. Data processing system 300
1s an example of a client computer. Data processing system
300 employs a peripheral component interconnect (PCI)
local bus architecture. Although the depicted example
employs a PCI bus, other bus architectures such as Accel-
erated Graphics Port (AGP) and Industry Standard Archi-
tecture (ISA) may be used. Processor 302 and main memory
304 are connected to PCI local bus 306 through PCI bridge
308. PCI bridge 308 also may include an integrated memory
controller and cache memory for processor 302. Additional
connections to PCI local bus 306 may be made through
direct component interconnection or through add-in boards.
In the depicted example, local area network (LAN) adapter
310, SCSI host bus adapter 312, and expansion bus interface
314 are connected to PCI local bus 306 by direct component
connection. In contrast, audio adapter 316, graphics adapter
318, and audio/video adapter 319 are connected to PCI local
bus 306 by add-in boards inserted into expansion slots.
Expansion bus interface 314 provides a connection for a
keyboard and mouse adapter 320, modem 322, and addi-
tional memory 324. Small computer system interface (SCSI)
host bus adapter 312 provides a connection for hard disk
drive 326, tape drive 328, and CD-ROM drive 330. Typical
PCI local bus implementations will support three or four PCI
expansion slots or add-in connectors.

An operating system runs on processor 302 and 1s used to
coordinate and provide control of various components
within data processing system 300 1n FIG. 3. The operating
system may be a commercially available operating system,
such as Windows 2000, which 1s available from Microsoft
Corporation. An object oriented programming system such
as Java may run in conjunction with the operating system
and provide calls to the operating system from Java pro-
grams or applications executing on data processing system
300. “Java” 1s a trademark of Sun Microsystems, Inc.
Instructions for the operating system, the object-oriented
operating system, and applications or programs are located
on storage devices, such as hard disk drive 326, and may be
loaded mto main memory 304 for execution by processor

302.

Those of ordinary skill in the art will appreciate that the
hardware 1n FIG. 3 may vary depending on the 1implemen-
tation. Other internal hardware or peripheral devices, such as
flash ROM (or equivalent nonvolatile memory) or optical
disk drives and the like, may be used in addition to or in
place of the hardware depicted in FIG. 3. Also, the processes
of the present invention may be applied to a multiprocessor
data processing system.

As another example, data processing system 300 may be
a stand-alone system configured to be bootable without
relying on some type of network communication interface,
whether or not data processing system 300 comprises some
type of network communication interface. As a further
example, data processing system 300 may be a Personal

US 6,941,547 B2

S

Digital Assistant (PDA) device, which is configured with
ROM and/or flash ROM 1n order to provide non-volatile
memory for storing operating system {iles and/or user-
generated data.

The depicted example 1n FIG. 3 and above-described
examples are not meant to 1mply architectural limitations.
For example, data processing system 300 also may be a
notebook computer or hand held computer 1n addition to
taking the form of a PDA. Data processing system 300 also
may be a kiosk or a Web appliance.

As mentioned above, the present invention provides an
apparatus and method for porting applications to multiple
platforms. When developing applications to be used on
multiple platforms, 1t would be most efficient to be able to
use the same tools and the same source code with the same
filenames on each of the platforms. This would help appli-
cation developers to reduce maintenance and complexity of
multi-platform development while allowing the developers
to create applications without having to adhere to the most
restrictive platform requirements.

One way 1n which to provide such ability 1s to have a
mapping table function that can be used to map filenames
and directory structures of application source code to con-
form with the various platforms on which the applications
are to be implemented. The present invention provides such
a mapping table function and an apparatus and method for
using this mapping table function to facilitate porting of
applications to various platforms.

FIG. 4 illustrates the use of the mapping table function
according to the present invention. As shown 1 FIG. 4, a
program having flexible filenames and/or directory struc-
tures 1s 1put to the mapping table function 410. The
filenames and/or directory structures are flexible 1n that they
may be unrestricted 1n size and directory hierarchy or may
be very limited in size and hierarchy, depending on the
preference of the developer that develops the application.
While the present invention may be used to map restrictive
filesystem based applications to less restrictive filesystem
platforms, the most benefit of the present invention 1s
obtained when applications are written 1n the least restrictive
filesystem platforms and the mapping table function 410 is
used to conform these applications to more restrictive file-
system platforms.

The mapping table function 410 operates on the filenames
and directory structure mput to the mapping table function
410, and outputs native filenames. These native filenames
and directory structures are native to the filesystem platform
to which the application i1s being ported. The native filena-
mes and directory structures may then be used with a
compiler 420 for the target platform, 1.e. the platform to
which the application 1s to be ported, to thereby generate an
executable program 430. Thus, for example, a relatively
flexible filesystem based operating system, such as Unix,
may be used to create applications that may be ported to a

relatively restricted filesystem based operating system, such
as 0S/400.

The compiler 420, of the present immvention may be a
native compiler or a cross compiler. When a developer of
applications writes code, the developer uses a compiler to
generate a module. With several modules, the developer can
create an executable file. The process of compiling the code
can be native 1n the target system or can be done using a
cross compiler.

FIG. 5 illustrates an example of native compilation of
computer code. As shown 1n FIG. 5, a developer creates
source code 510, such as C/C++ source code, using com-

10

15

20

25

30

35

40

45

50

55

60

65

6

puting device 500. The computing device 500 1s equipped
with a compiler (and linker) 520 that compiles and links the
source code to thereby generate the executable 530 that may
be used with the operating system of computing device 500.

FIG. 6 illustrates an example of cross compilation of
computer code. As shown 1n FIG. 6, a developer creates
source code 610, such as C/C++ source code, using com-
puting device 600. The source code 610 1s compiled to
template code 620 (also sometimes referred to as wcode)
which may then be provided to a linker 640 1n a second
computing device 630 having a different operating system
platform than computing device 600. The linker 640 then
links the template code 620 to thereby generate executable
650 in computing device 630. Template code 1s code that has
not yet been converted to machine binary. It 1s an interme-
diate code that needs to be translated or further compiled in
the target machine to get the machine instructions.

Whether using native compilation or cross compilation,
the developer of an application using the present mvention
may use flexible filenames and directory structures, such as
Unix type filenames and directory structures, to create the
application. The present invention 1s then able to take these
flexible filenames and directory structures and convert them,
via a mapping table function, to proper filenames and
directory structures for a target platform. Using a native
compiler, the developer may take the file that he/she created,
apply the mapping table function of the present invention to
generate a filename for the source file that 1s appropriate for
the target platform, and then compile the application
natively. Using a cross compiler, the developer may take the
file that he/she created, compile the file using the cross
compiler, and then generate the new filename appropriate for
the target platform using the mapping table function of the
present 1nvention.

As an example of the manner by which the mapping table
function of the present invention operates to convert flexible
filenames and directory structures to more restrictive file-
names and directory structures, the following examples will
assume that a developer 1s developing an application 1n a
Unix platform and wishes to port the application to an
0S/400 platform. This assumption 1s only made for 1llus-
frative purposes and the present mnvention 1s not limited to
such. Rather, the use of the mapping table function to port
between any two platforms 1s intended to be within the spirit
and scope of the present invention.

The mapping table function of the present invention
essentially receives the flexible filename and directory struc-
ture of the files of an application being developed and
converts them to a more restrictive filename and directory
structure of the target platform. For example, a long filename
and hierarchical directory structure may be converted to a 10
character filename with a single level directory structure.

This may be performed by taking, for example, the first 10
characters from the flexible filename and check to see 1if this
name has already been generated. The check of these first 10
characters may be made against a file or cache table of
previously generated names that 1s maintained by the map-
ping tool function of the present invention.

If the filename was already generated during the mapping
process, a notification may be provided to the developer so
that the developer may select a new filename consistent with
the target platform. Alternatively the mapping table function
of the present invention may automatically assign the file-
name a new designation and recheck the new designation.
This new designation may be generated, for example, by
replacing the last of the selected 10 characters with a number

US 6,941,547 B2

7

or alternate character. If the new designations are already
present 1n the cache table or name file, the mapping table
function may then generate new designations by replacing
the last two of the 10 characters using various combinations,
and so on, until a valid new filename 1s generated.

The hierarchical directory structure may be “flattened” to
a restricted directory structure, such as a single level direc-
tory structure, 1n any of a number of different ways. For
example, the present invention may receive identifiers of the
directory in which temporary files will be created and the
directory of the final product and thus, place all of the files
having the new file names described above, into the final
product directory. Alternatively, the present invention may
oet the directory from the name of the first directory in the
chain of directories 1n the source code. Other similar mecha-
nisms for flattening the directory structure may be used
without departing from the spirit and scope of the present

mvention.

In many programs, the programs are created 1in such a way
that they can easily support multiple platforms with the use
of the present invention. For example, many programs are
created and are linked to libraries so that the C'larlgmg of the
filenames and directory structures does not affect the func-
tioning of the program 1itself. For example, in Unix a
program PGm/dl/execs/A may link to /d1/d2/libx, /d1/d2/
liby and /d1/d2/libc where the names could be long in the
hierarchical directory. However, when these file names are
converted for use with an OS/400 platform, the same pro-
oram will be program A that links to libraries libx, liby and
libz. The user may execute program A and there 1s no need
to know about the change to the filenames and directory
structure because they are linked at build time. At build time,
the mapping table will take care of the name translation.

In other cases, the source code may need to be changed in
view of the changes to the filenames and the directory
structures using the present invention. For example, if
program A 1s created such that it calls program B to do some
task, program A needs to know the location and name of
program B. In this case, programers are to make use of
standards for creating their programs such that all the
filenames of other programs that the program needs to call
are defined 1n such a way that they may be easily changed
using the present mvention. Such a standard may be to use
a header file that defines the programs called by a particular
program.

With such a standard, the present invention may make use
of an automated process for editing such header files and
changing the filenames therein accordingly. For example,
after having processed the filenames as described above, the
present invention may then edit header files associated with
the files that have been processed to change the filenames
therein using the mapping function of the present invention.

For example, 1n a program PgmA.c there may be a
statement:

#include <ThisAppOtherProgramNames.h>
Thus, when the program PgmA.c needs to call another
program, PemB, 1t may use a macro such as:

Sapwn(PGMB NAME, other parameters, . . s
The macro 1s defined, for example, 1n the file ThisAppOth-
crProgramNames.template as follows:

#define PGMB_ NAME “somedir/execs/ProgramB”
At build time, the template ThisAppOtherProgramName-
s.template 1s converted to ThisAppOtherProgramNames.h
changing all the strings with long filenames to short filena-
mes as required.

In other cases, there may be a single executable that calls
all other functions depending on the parameters passed to it.

10

15

20

25

30

35

40

45

50

55

60

65

3

Thus, only one executable 1s needed and everything else 1s
in libraries. Accordingly, the filename changes are then
handled at build time in a similar manner as described
above. Therefore, the source code does not need to be
changed to reflect the changes to the filenames and directory
structure.

An application 1s made of one or more executables. If an
application 1s very simple, like an editor, only one execut-
able may be needed. If an application 1s very complex, then
a plurality of executables may be required. An executable
may, 1n turn, be composed of one or more modules, depend-
ing on the complexity of the executable.

When software developers create applications, the devel-
opers use a compiler, such as a native or cross compiler, and
tools such as the “make” tool or “gnu-make” tool to aid the
developer 1n compiling all of the source code, avoid having
to enter all required commands manually, and help avoid
errors 1n the build of the application, 1.€. a version of the
application that 1s still 1n a development state.

“Make” 1s a tool which controls the generation of
executables and other non-source files of a program from the
program’s source files. The “make” tool gets its knowledge
of how to build a program from a file called the makefile,
which lists each of the non-source files and how to compute
it from other files. More information regarding the “make”
and “gnu-make” tools may be obtained, for example, from
www.gnu.org/software/make/make .html.

The “make” tools also allow developers to have smart
partial builds of an application in which only those modules
that need to be compiled will be compiled and the applica-
fion 1s recreated only with what has changed. The “make”
tools use “makeliles” that are files executed by the compil-
er’s “make” tool. The makefile lists the program modules
that are part of the project and associated libraries that must
be linked. The makelile also includes special directives that
enable certain modules to be compiled differently 1f
required.

The following 1s an example of a makefile that specifies
the rules used 1n a build of an application for the Unix
environment:

COMPILER = gcc
VPATH = /dirl/dir2/dir3
TGTDIR = /dirl/dir2/prod__name
rule 1 to indicate how to compile a module
%.0:%.c
$(COMPILER) -0 $@ -c $
rule 2 to link and create the executable
program.exe: File_ Source_ 1.0 File__Source_ 2.0

$(COMPILER) $ -0 $(TGTDIR)/$@

With this makefile, the only command required by the
developer to execute 1s “gun-make program.exe”. Upon
entering this command, the gun-make tool will use rule 2 10
build the “program.exe”. Rule 2 shows File Source_ 1.0
and File_ Source_ 2.0 are dependencies to build “pro-
gram.exe” . The gnu-make tool cannot build the program.exe
until 1t has the modules of the build. Therefore, the gnu-
make tool will look for a way to build the modules and
identity rule 1. Rule 1 includes the commands to build the
modules File_ Source_ 1.0 and File_ Source_ 2.0.

With the present example, the gnu-make tool will compile
the modules and invoke the GNU Compiler Collection (gcc)
compiler, which 1s a free compiler collection for C, C++,
Fortran, Objective C, and other programming languages,
with parameters as specified by rule 1 in the makefile:

US 6,941,547 B2

9

occ -0 FileSource_ 1.0 -¢ /dirl/dir2/dir3/File_ Source__1.c
ogcc -0 File Source_ 2.0 -¢ /dirl/dir2/dir3/File_ Source_2.c
The gnu-make tool will then link the modules to create an
executable using rule 2:
gcc -0 /dirl/dir2/prod__name/program.exe File_ Source
1.0 File_ Source_ 2.0
To build the same application for an OS/400 platform with
minimum changes 1 the build environment from that
described above, the cross compiler that will handle the
build 1 the same way as the gcc needs to be specified. In
order to do this, the value of the COMPILER wvariable for the
onu-make tool needs to be modified to:
COMPILER=tcc4
When the rule 1s applied and gnu-make tool executes the
commands, the gnu-make tool will call tcc4 1nstead of gcc.
The tcc4 tool, which implements the functions of the present
invention, takes the parameters and converts the long file-
names to filenames that can be used by the O5/400 platform.
As an example, the gnu-make tool invokes the tcc4 tool as
specifled 1n rule 1 of the makefile:
tcc4 -o File_ Source_ 1.0 -c¢ /dirl/dir2/dir3/File_ Source
1.c
tcc4d -o File_ Source_ 2.0 -c¢ /dirl/dir2/dird/File_ Source
2.cC
Internally, the tcc4 tool calls the cross compiler using, for
example:
ilecx -c¢ /dirl/dir2/dird/File__Source__1.c -o File__
Source_ 1.0
The cross compiler generates template code (wcode) and
provides 1t to the mapping table function of the present
invention. The mapping table function of the present inven-
fion maps the flexible filenames to restricted filenames
appropriate for OS/400. In this example, the mapping table
function maps /dirl/dir2/dird/File_ Source_ 1.0 to DIRT/
FILE1 (echo quote RCMD “CRTXMOD DIRT/FILE1”;
echo quit)|ftp dlos445, where DIRT is the target directory
and the FILE1l filename 1s obtained from the first five
characters of the original filename.
After having performed the mapping using the mapping
table, the tcc4 tool links the modules to create an executable:
tcc4 -o /dirl/dir2/prod__name/program.exe File__
Source__ 1.0 File_ Source_ 2.0
Internally, tcc4 will link the modules 1n the OS/400 format
by mapping the flexible filenames to the more restrictive
filenames of the 0OS/400 filesystem. In this particular

example, the filename of the executable will be mapped
from /dirl/dir2/prod_ name/program.exe to DIRX/PROGR

(eccho quote RCMD “CRTPGM DIRX/PROGR DIRT/
FILE1 DIRT/FILE2”; echo quit)|ftp dlos445

FIG. 7 1s a flowchart outlining an exemplary operation of
the present mvention. As shown 1n FIG. 7, the operation
starts with receiving a command to compile a program or
module for use with a different platform (step 710). The
filenames used by the program or module are then mapped,
using the mapping function of the present invention (step
720). The mapping of the filenames may be from a more
flexible filename structure to a more restrictive filename
structure or vice versa depending on the filename structure
used to generate the original module or program and the
filename structure of the target platform.

Thereafter, the directory structure 1s modified using the
mapping function of the present invention (step 730). The
modification to the directory structure may include flattening
the directory structure from a hierarchical directory structure
to a restricted directory structure, such as a single level
directory structure. The modification of the directory struc-
ture may be based on temporary and/or final product direc-

10

15

20

25

30

35

40

45

50

55

60

65

10

tories defined by the user, based on a first directory in the
hierarchy of directories of the original directory structure, or

the like.

After having modified the filenames and the directory
structure, the program or module 1s compiled and linked
(step 740). If the header files need to be modified to reflect
the changes to the filenames and the directory structure, such
modifications are made prior to compiling and linking the
program or module. Thereafter, the compiled executable 1s
stored for later use (step 750).

Thus, the present nvention provides a mechanism by
which programs created for use with a first platform may be
modified to be used with other platforms having different
filesystems and directory structures. The present mmvention
provides an automated process for performing this mapping
from one platform convention to another such that a human
programmer need not worry himself/herself with making the
modifications manually.

While the present invention has been described above 1n
terms of a tool that 1s implemented 1n a build environment,
the present mmvention 1s not limited to such. Rather the
mapping functions of the present invention may be 1mple-
mented 1n an editor tool that edits files. For example, the
ceditor may internally change the flexible filenames and
directory structure, used by the programmer to create the
files, to more restricted filenames and directory structures.
Thus, the mapping function of the present invention need not
be restricted to operating in a build environment.

It 1s important to note that while the present invention has
been described in the context of a fully functioning data
processing system, those of ordinary skill in the art waill
appreciate that the processes of the present invention are
capable of being distributed in the form of a computer
readable medium of instructions and a variety of forms and
that the present invention applies equally regardless of the
particular type of signal bearing media actually used to carry
out the distribution. Examples of computer readable media
include recordable-type media, such as a floppy disk, a hard
disk drive, a RAM, CD-ROMs, DVD-ROMs, and
fransmission-type media, such as digital and analog com-
munications links, wired or wireless communications links
using transmission forms, such as, for example, radio fre-
quency and light wave transmissions. The computer read-
able media may take the form of coded formats that are
decoded for actual use 1n a particular data processing
system.

The description of the present invention has been pre-
sented for purposes of 1llustration and description, and 1s not
intended to be exhaustive or limited to the mvention in the
form disclosed. Many modifications and variations will be
apparent to those of ordinary skill in the art. The embodi-
ment was chosen and described 1n order to best explain the
principles of the mvention, the practical application, and to
enable others of ordinary skill 1in the art to understand the
invention for various embodiments with various modifica-
tions as are suited to the particular use contemplated.

What 1s claimed 1s:

1. A method of porting a program from a first platform to
a second platform, comprising;:

converting at least one of filenames and a directory
structure of the program from a first platform standard
for the first platform to a second platform standard for
the second platform, wherein the first platform standard
includes a first filename structure and a first directory
hierarchy structure, wherein the second platform stan-
dard mncludes a second filename structure and a second
directory hierarchy structure, and wherein at least one

US 6,941,547 B2

11

of the second filename structure 1s more restricted 1n
length than the first filename structure and the second
directory hierarchy structure 1s more restricted 1n hier-
archy than the first directory hierarchy structure; and

storing the program for use with the second platform.

2. The method of claim 1, wherein converting at least one
of filenames and a directory structure includes shortening
filenames 1n the first filename structure to shortened filena-
mes 1n the second filename structure.

3. The method of claim 1, wherein the first directory
structure 1s a hierarchical directory structure and the second
directory structure 1s a nonhierarchical directory structure.

4. The method of claim 1, wherein the first platform 1s a
Unix® platform and the second platform 1s an OS/400®
platform.

5. The method of claim 1, wherein converting at least one
of filenames and a directory structure of the program 1is
performed 1n a build environment.

6. The method of claim 1, wherein converting at least one
of filenames and a directory structure of the program 1is
performed using a file editor.

7. The method of claim 1, wherein converting at least one
of filenames and a directory structure of the program
includes modifying header files associated with files 1n the
program to reflect the conversion of at least one of the
filenames and the directory structure.

8. The method of claim 1, wherein convening at least one
of filenames and a directory structure includes changing an
original filename and directory structure to a modified
filename and directory structure based on a mapping from
the first platform to the second platform.

9. The method of claim 8, further comprising:

determining if the modified filename and directory struc-
ture already exists; and

further moditying the modified filename and directory
structure 1f the modified filename and directory struc-
ture already exists.
10. The method of claim 9, wherein further modifying the
modified filename and directory structure includes:

notifying a user of a prior existence of the modified
filename and directory structure; and

receiving a selection of a new filename and directory
structure from the user.
11. The method of claim 9, wherein moditying the modi-
fied filename and directory structure includes:

replacing a character of the filename with a number or
alternate character.

12. The method of claim 1, further comprising compiling
the program natively.

13. The method of claim 1, further comprising compiling
the program using a cross-compiler.

14. A computer program product in a computer readable
medium for porting a program from a first platform to a
second platform, comprising:

first 1nstructions for converting at least one of filenames

and a directory structure of the program from a first

platform standard for the first platform to a second

platform standard for the second platform, wherein the
first platform standard includes a first filename struc-
ture and a first directory hierarchy structure, wherein
the second platform standard includes a second file-
name structure and a second directory hierarchy
structure, and wherein at least one of the second
filename structure 1s more restricted 1n length than the
first filename structure and the second directory hier-
archy structure 1s more restricted 1n hierarchy than the
first directory hierarchy structure; and

10

15

20

25

30

35

40

45

50

55

60

65

12

second 1nstructions for storing the program for use with

the second platform.

15. The computer program product of claim 14, wherein
the first instructions for converting at least one of filenames
and a directory structure include 1nstructions for shortening
filenames 1n the first filename structure to shortened filena-
mes 1n the second filename structure.

16. The computer program product of claim 14, wherein
the first directory structure 1s a hierarchical directory struc-
ture and the second directory structure 1s a nonhierarchical
directory structure.

17. The computer program product of claim 14, wherein
the first platform 1s a Unix® platform and the second
platform 1s an OS/400® platform.

18. The computer program product of claim 14, wherein
the first instructions for converting at least one of filenames
and a directory structure of the program are executed 1n a
build environment.

19. The computer program product of claim 14, wherein
the first 1instructions for converting at least one of filenames
and a directory structure of the program are executed using
a file editor.

20. The computer program product of claim 14, wherein
the first instructions for converting at least one of filenames
and a directory structure of the program include instructions
for modifying header flies associated with files 1n the
program to reflect the conversion of at least one of the
filenames and the directory structure.

21. The computer program product of claim 14, wherein
the first instructions far converting at least one of filenames
and a directory structure include mstructions for changing an
original filename and directory structure to a modified
filename and directory structure based on a mapping from
the first platform to the second platform.

22. The computer program product of claim 21, further
comprising:

instructions for determining if the modified filename and

directory structure already exists; and

instructions for further modifying the modified filename
and directory structure if the modified filename and
directory structure already exists.
23. The computer program product of claim 22, wherein
the 1nstructions for further modifying the modified filename
and directory structure include:

instructions for notifying a user of a prior existence of the
modified filename and directory structure; and

instructions for receiving a selection of a new filename
and directory structure from the user.
24. The computer program product of claim 22, wherein
the instructions for modifying the modified filename and
directory structure include:

instructions for replacing a character of the filename with
a number or alternate character.

25. The computer program product of claim 14, further
comprising third instructions for compiling the program
natively.

26. The method of claim 14, further comprising third
instructions for compiling the program using a cross-
compiler.

27. An apparatus for porting a program from a {irst
platform to a second platform, comprising:

means for converting at least one of filenames and a
directory structure of the program from a first platform
standard for the first platform to a second platform
standard for the second platform, wherein the first
platform standard includes a first filename structure and

US 6,941,547 B2

13

a first directory hierarchy structure, wherein the second
platform standard includes a second filename structure
and a second directory hierarchy structure, and wherein
at least one of the second filename structure 1s more
restricted 1n length than the first filename structure and
the second directory hierarchy structure 1s more
restricted 1n hierarchy than the first directory hierarchy
structure; and

means for storing the program for use with the second
platform.
28. A method of porting a program from a first platform
to a second platform, comprising:

converting filenames and a directory structure of the
program from, a first platform standard for the first
platform to a second platform standard for the second
platform, wherein the first platform standard includes a
hierarchical directory structure and the second platform
standard includes a nonhierarchical directory structure;
and

storing the program for use with the second platform,
wherein the method 1s performed 1n a build environ-
ment.

29. The method of claim 28, wherein the first platform
standard further includes a first filename structure and the
second platform standard further includes a second filename
structure that 1s more restricted in length than the first
filename structure.

30. The method according to claim 29, wherein convert-
ing filenames and a directory structure includes shortening
filenames 1n the second filename structure.

31. The method of claim 28, wherein the first platform 1s
a Unix® platform and the second platform 1s an OS/400®
platform.

5

10

15

20

25

30

14

32. The method of claim 28, wherein converting filena-
mes and a directory structure of the program 1s performed
using a file editor.

33. The method of claim 28, wherein converting filena-
mes and a directory structure of the program includes
modifymg header files associated with files 1n the program
to reflect the conversion of at least one of the filenames and
the directory structure.

34. The method of claim 28, wherein converting filena-
mes and a directory structure includes changing an original
filename and directory structure to a modified filename and
directory structure based on a mapping from the first plat-
form to the second platform.

35. The method of claim 34, further comprising:

determining 1f the modified filename and directory struc-
ture already exists; and

further moditying the modified filename and directory
structure 1f the modified filename and directory struc-
ture already exists.
36. The method of claim 35, wherein further modifying
the modified filename and directory structure includes:

notifying a user of a prior existence of the modified
filename and directory structure; and

receiving a selection of a new filename and directory
structure from the user.
37. The method of claam 36, wherein modilying the
modified filename and directory structure includes:

replacing a character of the filename with a number or
alternate character.
38. The method of claim 28, further comprising compiling
the program natively.
39. The method of claim 28, further comprising compiling
the program using a cross-compiler.

¥ ¥ H ¥ H

	Front Page
	Drawings
	Specification
	Claims

