US006938041B1

a2y United States Patent US 6,938,041 B1

(10) Patent No.:

Brandow et al. 45) Date of Patent: Aug. 30, 2005
(54) JAVA-BASED DATA ACCESS OBJECT 5,566,330 A 10/1996 Sheffield
5,594,899 A 1/1997 Knudsen et al.
(75) Inventors: David John Brandow, Guelph (CA); 5,682,535 A 10/1997 Knudsen
John Murray Childs, Waterloo (CA); 5884312 A * 3/1999 Dustan et al. 707/10
Robert Donald Close, Guelph (CA): J. 6,012,067 A * 12000 Sarkar ..o...c.cooivvsvee 703/3
Y. Eric Giguere, Waterloo (CA); Geno 6,094,655 A 7/2000 Rogers et al. 707/10
' . ’ ’ 6,185,567 B1 * 2/2001 Ratnaraj et al. 705/26
Coschi, Waterloo (CA) 6249291 Bl 6/2001 Popp et al.
(73) Assignee: Sybase, Inc., Dublin, CA (US) * cited by examiner
(*) Notice: Subject to any disclaimer, the term of this Pm?mry Examu:aer%reta Robinson
: . Assistant Examiner—S R Pannala
patent 1s extended or adjusted under 35 (74) Attorney, Agent, or Firm—John A. Smart; G. Mack
U.S.C. 154(b) by 634 days. Riddle
(21) Appl. No.: 09/562,641 (57) ABSTRACT
(22) Filed: May 1, 2000 A Database Development System 1s described that provides
methodologies for creating a Java-based database control
Related U.S. Application Data object (the “Java DataWindow”) for use in a Client/Server
(60) Provisional application No. 60/131,929, filed on Apr. 30, Database System. The methodology provided by the present
1999. invention maintains the DataWindow properties (e.g., SQL
(51) Int. CL7 oo GO6F 7/00 Statement for data to retricve, format specifications, and the
(52) U.S. Cl 707/10: 707/102: 707/103 like) at a server-side DataWindow component residing at an
58 F'- l-d fS """" h """""""" ’ 707/1 02” 0. 103 application server. A corresponding client-side DataWindow
(58) Field of Searchcccovrvrr. > T component, embedded for instance 1n a target HIML page,
(56) References Cited knows how to query the server-side DataWindow compo-

nent for dynamically streaming the DataWindow’s

U.S. PATENT DOCUMENTS properties, so that they may be applied at run-time on the

i
|
|
t
I
!
!
I
i
i
[
|
E
1
I
1
1
|
1
1
[
|
i
|
|
I
!
I

client side. After an end user has entered 1n the input desired,

5"5“21’477 A 6/1992 Koopmans et al. the changes are determined by the client-side DataWindow
5,148,154 A 9/1992 MacKay et al. . ‘
5179.652 A 1/1993 Rozmanith et al. component and flushed back to the server-side DataWindow
5204947 A 4/1993 Bernstein et al. component at the application server. The server-side DataW-
5,293.615 A 3/1994 Amada indow component, 1n turn, can effect the changes to the back
5,367,619 A 11/1994 Dipaolo et al. end database, as appropriate.
5396587 A 3/1995 Reed et al.
5,410,704 A 4/1995 Norden-Paul et al. 34 Claims, 25 Drawing Sheets
200
CLIENT(S NETWORK SERVER
Z 70() . 220 230

E E 240

; § DATABASE SERVER

E 'E 260 ' ENGINE

E E 261 ' PARSER

E i !

. SQLSTM(S) 263 NORMALIZER INDEXES/

211 | : ’ I MANAGER
E i 265. | ~1{COMPILER
R RALLS) (——/\/—> 266 =' OPTIMIZER
: : 267 CODE GENERATOH TABLE(S)
— | -
eS| 269 l EXECUTION ONIT I
§ 270~} T{ACCESS MET 0DS |

U.S. Patent Aug. 30, 2005 Sheet 1 of 25 US 6,938,041 B1

100
104
105
POINTING
DEVICE
106
SCREEN 102
DISPLAY
107 103 MAIN
MEMORY
MASS
STORAGE
/0
CONTROLLER
o6 101
CENTRAL
OUTPUT PROCESSOR
DEVICE
10 CACHE
MEMORY

109

FIG. 1A

US 6,938,041 B1

Sheet 2 of 25

Aug. 30, 2005

U.S. Patent

145/]

J0V4d31NI
d35/]

14

G

dl Il

(SINYHOOHd

NOILVOI'1ddV

Gl

051

W31SAS ONILVH3d0

T13HS
SMOUNIM

1IN0
SWady

0L}

Ovl

US 6,938,041 B1

Sheet 3 of 25

Aug. 30, 2005

U.S. Patent

ST I
0G4 -
(S)31gvL

dIDVNYWN
/SAX3ANI

WILSAS
d3aAd4S 3Svav.lva

Ov¢

SAOHL3IW SS3I00V

|

LINN NOILND3X3
i)

HOLYH3NID 300D
H3AZINILJO~|.

" HITIdWODN
9

X4
dINGIS

¢ Il

0L¢

69¢

£9¢
99¢

G9¢

&3¢

19¢
09¢

002

(S)1TNSTY
AYINO

.

-~

(S)WLS 10S

0cc
HHOMLIN

LG

(S)IYNINHE3L

HO (S)0d

0L
(S)INIITD

U.S. Patent Aug. 30, 2005 Sheet 4 of 25 US 6,938,041 B1

Customer Order_ Order_ Product
table header item table
table table
do?:ﬂgzﬁts j> Order Entry State
table application | table

<}:[> = Create, retrieve, update, and delete

< = Retrieve only
Sales_ Quarterly_
Sales_rep
table summary extract
table table

Yy b7

Q__D — Create, retrieve,

Order Entry update, and delete
application (= = Retrieve only

FIG. 3B

U.S. Patent Aug. 30, 2005 Sheet 5

of 25 US 6,938,041 Bl

@

User starts the Order
Entry application.

)

@ Prompt user for
information needed to
log on to the main

database
(ANCHRBAY.DB).

S~

O

From here, let user
choose from a variety of

—

Let user retrieve an

existing customer or
enter information for a

activities... new one
~_
Choices:
N Y
Nispla Execute other
| play PowerBuilder
Save, update, or information from applications to
delete the current the sales ppdis B
customer. database motintioynal
(ABNCSALE.DB). ~formation.
e . \ I 4 - ‘
Isplay _ _ Exit from the
documents Display online Order Ent
concerning) Help about the application (gnd
company policies Order Entry lg ; off from the
and procedures application. magin database)
(via MS Word). |
_ - _ J _ __/

/

Go to the order
information for
current customer
(to perform order
maintenance
activities).

_

N

Continued on Fig. 48

FIG. 4A

U.S. Patent

Continued from Fig. 4A

— ST

Aug. 30, 2005

O

| et user retrieve an
existing order or enter
information for a new

Sheet 6 of 25

US 6,938,041 Bl

®
—

From here, let user

choose from a variety of

activities...
one.
SN
Choices:
4 N (O ™
Diap| Execute other
. 'SP ay PowerBuilder
Save, update, or information from .
applications to
delete the current the sales displa
order. database . P . y
(ABNCSALE.DB) motivational
' ' information.
_ /L /L
4 | I 4 I 4 I
Display . . Exit fromthe |
documents Display online Order Entry
concerning Help about the

company policies
and procedures
(via MS Word).
o

application (and

4 Print an invoice\
for the current

order or e-maill
invoice
information to

other employees

_ (via MS Mail).

Ordﬁr Etntr:y log off from the
application. main database).
\ VAN _/
e)

L eave the order
information and
go back to the

current customer |

information. l

FIG. 4B

U.S. Patent

Aug. 30, 2005

4

Viozxqo
93984
80598

2556562

01928

03984 Phozx

Order invoice

Qwxo Paxqoh Bzoo Xoz

Mikskj sksjksj sk $4940
Bcsjoeoieo oe $2330
Kkskj sksjksj sk $4940

wWoqzop gaxo

Sheet 7 of 25

Order Entry
application

US 6,938,041 B1

g
Exported
files
-, _
N

FIG. 4C

Yy
I

Quarterly_
extract
table

U.S. Patent Aug.

30, 2005 Sheet 8 of 25

Sybase Sybase
database database

Server
computer

Watcom
database

dBASE
database

US 6,938,041 B1

Oracle
database

Server
computer

Client computer

running
user application

FIG. 5A

U.S. Patent

—

Aug. 30, 2005 Sheet 9 of 25

-

DBMS

DBMS
N/

DBMS
S .
Powersoft ODBC
database interface
interfaces

Database interfaces

N

N/

User application

FIG. 5B

US 6,938,041 B1

On the client
computer or
on server
computers

On the client
computer

U.S. Patent

Table

N

Aug. 30, 2005 Sheet 10 of 25

US 6,938,041 B1

Table

SQL SELECT

statement...

Table

SQL INS

ERT =
statement...

statement...

User application

FIG. 6A

SQL UPDATE \

|

|

SQL DELETE
statement...

U.S. Patent Aug. 30, 2005 Sheet 11 of 25 US 6,938,041 B1
Table l - Table Table
T
I | .
- RV /
T ___AT K;
DEI
manipulation
——— intelligence
l Presentation | .
] I“‘
C . E—
| —
pl==i=i==
DataWindow

F1G. 68

User application

U.S. Patent Aug. 30, 2005 Sheet 12 of 25 US 6,938,041 B1

FIG. 7A

U.S. Patent Aug. 30, 2005 Sheet 13 of 25 US 6,938,041 B1

Help

Anchor Rt
Commpunny

Anchor Xt
Compuany

U.S. Patent Aug. 30, 2005 Sheet 14 of 25 US 6,938,041 B1

A A e
TARTETETANETY,

Battle Creek

TAFTIINAT

U.S. Patent Aug. 30, 2005 Sheet 15 of 25 US 6,938,041 B1

SINGLELINE EDIT PICTURE RECTANGLE OMMAND

ROL CONTROL ONTROL BUTTON
ONTHO CONTROL

STATIC | customer [FuliName . Phame,
CONTROLS| Selection. |2 fadams, Cludio (19866260 _

LINE
CONTROL

0 Pear Place

Lk et T L

San Francisco

L

ATAWINDOW
CONTROLS

GROUPBOX
CONTROL

RADIOBUTTON
CONTROL

U.S. Patent

Aug. 30, 2005 Sheet 16 of 25 US 6,938,041 Bl

File ~ -
New
: Anchor Xut
Retrieve Compnny

S aAVE

ple

A

1A

oo

Battle Cree

Alley

e e

Y
=

Wy

e

Anchor Xt
IBny

Phone Procedures
Company Policies

Sales Competition Inquiry... | 192)5

Employee Motivation 1
Employee Motivation 2
mpluyee

U.S. Patent

Clicked
event of

Compute

menu item

User clicks
here

Aug. 30, 2005

User asks to close
this window

Sheet 17 of 25

Close
event of
the window

= Window1 |~}
Compute Exit
Salary: | $39,700.00 | i
Bonus: -
(oK)
User clicks Clicked

here

FIG. T0A

event of
OK

Command

Button

US 6,938,041 B1

User modifies
this value

Modified
event of
Salary
SingleLine
Edit

U.S. Patent

Script:

— med

event of

Compute
menu item

Aug. 30, 2005

D — Compute Exit

Sheet 18 of 25

-

Close

Script:

event of

the window

Salary: $39,700.00 \
Bonus:
(oK)
Script. / Clicked
event of

— —

FIG. 108

Command
Button

OK

US 6,938,041 B1

Scrp

Modified
event of
Salary

SingleLine
Edit

US 6,938,041 B1

Sheet 19 of 25

Aug. 30, 2005

U.S. Patent

Vil Ol

IWE

{(pIOo 3noqe M) uadp

'uotjljed17dde STIY] Jnoqe uoTIPulOoJUT YlTm IIsn //

syl siuasaad eyl moputm (2@suodsax) 1epouw v AeTdsTtqg // =

nuaw jnoge w
o] JO JUSAD
paxoI|D 10} 1dUOS

= JXo7J 'sueul =S

28TRI = PIIYRUS°'3STT MP

ey M el T e T T T ™

(ATTT %717) nusydod "spInd w- nusurysnd W

*UOTIeD0T Isjuiod //

JusIInD 2yl e nusw dndod B se nusw IpTnb uw 8yl AeTdstip ‘MON //

I

ATTT
X 11

() AID3UTOd
() XI=23Uutod

ATTIT 'X 11 asbsjut

‘Isjutod syl Jjo //

(S2IJeUIPIOOD A pue X} uoIjTsod JUSIIATD SYL IUTWIS]9Ip "‘IsSITH //

FIIEIL PP APl 7 77 i 7777707077777 7077000777707 70007777777

/7
‘Ied NUSW §,MOPUTM 31[3 uUT //

AeTdsTp Apesalle sMm 1EU] NULUW NUSWISNO W 9yl JO uotrjxed //
PTG W 9y3 JO SASTSUOD MOPUTIM I2U03IsSND a3yl I0J ArTdsTtp //
03 Juem am nuauw dndod oyl -nusw dndod v AeTdsTtp usyly //
'(TOIJUOD B U0 3JOU INg) JIS8SIT MOPpUTM 3SY3 Uo ST aajutod [/
U3 STTUM uoIINg SSNoOW JYBTI aY] SHYLTTL A2s1 syl JI //

/7

JI17P 0007707770007 7 077007707 7707777007700 0000555

;

MOPUIM
18wolsnd m aul Jo
JuaAa umogquonngy
10} 1du0S

() 39SSY ISTT Mp

T 9TqesIp //
oyl 19599 //

[/ P77 7Pl il
/7
JTUT 2wos ‘JIX2N //
/7
[107 LEP0 7777777777

AT dNd

NHEOLAH

} SsoTeIlEpUIEM IM JT

f 1777707007777 7777
[/

(ssoTelepuiem Im //
M © PapOd 3A,2M //
/A

JT 3SOT =2 TIT™ //

I1UO0D MmoputMmeleqg //

/ Ttelsp mp ut burdA3 Aue pTp IL2SN ISYIaUM O3> ‘utbaq oL //

/

//

fI7700 7770777700707 777 7777077007077 7807777777777 0077777777777/

)

LuojNgpueLIWIGD MauU do
8y} JO JuUsA® pa)dI|D Jo} 1dudS

US 6,938,041 B1

Sheet 20 of 25

Aug. 30, 2005

U.S. Patent

gLl Ol

LXHN
(0) Mmoy¥eleaTeQ TTeASPPIO Mp
11V "MOI W2I]T JUSJIIND 22Ul 23912 //
NOILONNA .
SMOITTe]3ap TT OL T = IS3Uunod TT d0d
T1VO "Ryl ybnoayyl dooT MON //
NOILONMA

///fli.ﬁv JUNODMOY " TIRIDPPAC MP = SMOITTRIL{P TT

"TTelSppIO Mp //
Ut A73jUusIand axe SMOI Wa]lT Aurul MOy sutwIslad //

SMOJITTIRIASP [T buoTt
I93UNos” IT I23H2a3UT

//
"I933ng Aaeutad 9Y3 wWOIJ DUO YOS SJSTSP pur TOIUO0D //
M TTeIDPPIO Mp Yl JO mox yodes ybnoayl dooT ‘3IsATq //
//

SINANGLVLS

1dI4OSHIMOd

SNOILYHVY 1040
318VIavA

SINJWWOD

NN

US 6,938,041 B1

Sheet 21 of 25

Aug. 30, 2005

U.S. Patent

N]

A1 ONH

I- = PT PaY23I83 TT

HS'TH

++ PT pPayl23=aF TT

|
AT aNH

0 = PT paydi=aF TT
NHHIL (PT pay233] TT)IINNSI AT

NAHL 0 =< SpOdTbs edIbs 4T |

‘eDTDbSs HNISN |
SIS0 sSND, WOMA
PT pPayd23a3 TT: OLNI
(w«PT 23ISND, * ,I3W0]1sNdD,)XW LOHTHS

0 = PT payolal T1 I@bojur

" IDWOSND MBU B JI0J PI 9yl sptTaoxd o3 xsqunu // |
1eyUl 031 T Sppe usayl 3I 9Ssegriep a3yl Ul paIols ATjusxand //
PI_3sn) 3soyubTy Syl purjy 03 I0S peppaquws sosn 3dTIDs STUL //

SINJWILVLS
1dig0SHIMOd

INAWILVIS
108

41\\\\Dmoomm§m

US 6,938,041 B1

Sheet 22 of 25

Aug. 30, 2005

U.S. Patent

dLl 9l

AUNOD payull1al TT NHENILAHY

I- = JUnoD pPoyd3al I NHHI - = opooTbs-eorbs 4T _

‘edTbs HNISN
pPIasSnND Te: = ,PT 3ISND I9pI0, HIHAHM
W IDPEDY JI9pPI0, WOIdA
1UNOoD poyUl33aF TIT: OLNI
(.,PT ISPIO, " ,ISPeay I2pIO0,)3unod LIOHATHS

) = JUNOD psy23aF TT I=bL3ajquT

T- U9yl "JoJdI=s IJI « [/

Isaunu 31ryl] usyl ‘sIspIOo JITI «x / /

) UsSyl ‘sSJIopIo ou JI « //

:SoNTRA UIN9DY //

//

s ID2gunu I S,I2W03sSnD 9yl -- Jjusumbae //

U0 So23v]l 17 ‘asedelep 929Uyl UT SI9PIO Aur sey pi1alsp =20 //
07 JIDWO0]lsSnND 33Ul JT 29s 01 TS poppadus sasn uoTiduny sSTyUL //

US 6,938,041 B1

Sheet 23 of 25

Aug. 30, 2005

U.S. Patent

Vel Ol

lllll.i.f.iiii.llll.l.ll-I".-li..lf.II-I'“

UOHBIUIS A PUIND AN (]

_—

| DORJIDIULAALSMOPULMBIRQ

dhddvadikvoddtnvidaboovdAdinvandy,

| nzumwﬁ.—ﬂbwnﬁvhﬂw.}?ﬁm m eI S EEEE S SN R ERE DR R FAGE RSN EEERATENE
AEFSEEEERRAGEESAAERESASENNSEEREBAAEES - m .. ”.. | @Uﬁhhﬂu—.ﬂmm”ﬂmﬂaﬁmv . : m
(P18 IAIDS . S

g1 u0 1RMGOMQ : . :

. N Youea 10| _uﬁ.u_u m r m
arpawplgomeg 7T AN ATUDID s QUILIONEIUS JTUDLN) P

S ¥ . ‘ . b " "

| : m
| - SENKBIL(] 3 wum.,.ﬁa.__._a..%m_.?_ . :
: “ :

' p4 : -

.ML mu@ﬁ:.ﬂwxm h_-.-_—_-_-:.__._-_-i-_-_-_-_-:._-_.__--_..:._-_-_u-__-_.__-.._.-_.._-4!-_-:..-.-_-" . o * m
- : . I — . - (dueuo Y e gasl) -
SAJUD]AL - O DVUDMEMOPUIM IR B B |OJIUCDMOPUL A\ BIR() v
alilllliillliilIl.l:iiI-liiilliii-illil-!!ii-.h "-a._i.il-liiilulllllliii-iliiii.liilil.‘l

AQ pauatuajduy

ued jensia (ruondo

US 6,938,041 B1

Sheet 24 of 25

Aug. 30, 2005

U.S. Patent

dcl Il

—

Arandyqp bhamod yosiamod

uonaesuel) qp-lramod-yosiamod _

|| Q0BLIIUITOS[19M0d | ||||||||||| -

S ELARS €

— ¢

_ 121q0M A _

!

IDALISMOPUL M BIR(] ‘

RPINUEIDARGMOPUIBIE]

S oompWITOS

U.S. Patent Aug. 30, 2005 Sheet 25 of 25 US 6,938,041 B1

1300

BEGIN
1301

INVOKE CLIENT-SIDE JAVA DATAWINDOW
(e.%, END USER LAUNCHES HTML PAGE HAVING
MBEDDED JAVA DATAWINDOW CONTROL)

1302

CLIENT-SIDE JAVA DATAWINDOW, IN TURN,
INVOKES GetFullState API CALL

1303

SERVER-SIDE JAVA DATAWINDOW COMPONENT

CONVERTS DATAWINDOW DEFINITION (PROPERTIES) INTO
BINARY STREAM AND TRANSMITS TO THE CLIENT-SIDE

JAVA DATAWINDOW COMPONENT

1304
CLIENT-SIDE JAVA DATAWINDOW COMPONENT
APPLIES DATAWINDOW DEFINITION (PROPERTIES)
TO [TSELF BY INVOKING SetFullState AP CALL
1305
RECEIVE END USER INPUT
FOR INSERTING. DELETING, AND/OR MODIFYING DATA
1306
END USER SIGNALS COMPLETION OF INPUT
(OR OTHERWISE TERMINATES DISPLAY OF
DATAWINDOW COMPONENT)
1307

IN RESPONSE TO END USER COMPLETION,

TRIGGER GetChanges AP| CALL:
DETERMINE CHANGES AND SUBMIT TO

SERVER-SIDE DATAWINDQW COMPONENT
AT APPLICATION SERVER

1308

APPLY CHANGES (IF ANY) TO BACK END DATABASE,
NET OF ANY BUSINESS RULES/LOGIC AT MIDDLE TIER

(oo
FIG. 13

US 6,933,041 Bl

1
JAVA-BASED DATA ACCESS OBJECT

RELATED APPLICATIONS

The present application 1s related to and claims the benefit
of priority from commonly-owned provisional application
serial no. 60/131,929, entitled JAVA-BASED DATA
ACCESS OBIJECT, filed Apr. 30, 1999, the disclosure of
which 1s hereby incorporated by reference. The present
application 1s also related to commonly-owned application
Ser. No. 09/527,983, now U.S. Pat. No. 6,714,928 filed Mar.
17, 2000, the disclosure of which 1s hereby incorporated by
reference.

COPYRIGHT NOTICE

A portion of the disclosure of this patent document
contains material which 1s subject to copyright protection.
The copyright owner has no objection to the facsimile
reproduction by anyone of the patent document or the patent
disclosure as 1t appears 1n the Patent and Trademark Office
patent file or records, but otherwise reserves all copyright
rights whatsoever.

BACKGROUND OF THE INVENTION

The present invention relates generally to information
processing environments and, more particularly, to devel-
opment and execution of database application programs
which operate 1n a Web environment, particularly in the
context of Java applets embedded within HTML pages that
are displayed at an end user’s browser.

Computers are very powerlul tools for storing and pro-
viding access to vast amounts of information. Computer
databases are a common mechanism for storing information
on computer systems while providing easy access to users.
A typical database 1s an organized collection of related
information stored as “records” having “fields” of informa-
tion. As an example, a database of employees may have a
record for each employee. Here, each record contains fields
designating specifics about the employee, such as name,
home address, salary, and the like.

Between the actual physical database itself (i.e., the
records contained in data pages stored on a storage device)
and the users of the system, a database management system
or DBMS 1s typically provided as a software cushion or
layer. In essence, the DBMS shields the database user from
knowing or even caring about underlying hardware-level
details. Typically, all requests from users for access to the
data are processed by the DBMS. For example, information
may be added or removed from data files, mnformation
retrieved from or updated in such files, and so forth, all
without user knowledge of underlying system implementa-
tion. In this manner, the DBMS provides users with a
conceptual view of the database that 1s removed from the
hardware level. The general construction and operation of a
database management system 1s known 1n the art. See e.g.,
Date, C., An Introduction to Database Systems, Volume 1
and II, Addison Wesley, 1990; the disclosure of which 1s

hereby incorporated by reference.

DBMS systems have long since moved from a centralized
mainirame environment to a de-centralized or distributed
environment. One or more PC “client” systems, for instance,
may be connected via a network to one or more server-based
database systems (SQL database server). Commercial
examples of these “client/server” systems include Power-
soft™ clients connected to one or more Sybase SQL
Server™ database servers. Both Powersoft™ and Sybase

5

10

15

20

25

30

35

40

45

50

55

60

65

2

SQL Server™ are available from Sybase, Inc. of Emeryville,
Calif. As the migration to client/server continues, each day
more and more businesses are run from mission-critical
systems which store information on server-based SQL data-

base systems, such as Sybase SQL Server™. As a result,
increasingly higher demands are being placed on server-
based SQL database systems to provide enterprise-wide
decision support—providing timely on-line access to critical
business information (e.g., through “queries”). Accordingly,
there 1s much interest 1n 1improving the performance of such
systems, particularly 1n the areca of database query perfor-
mance.

In existing PC-based client/server application environ-
ments there are situations in which many, perhaps hundreds,
of users having widely variant levels of database expertise
execute sophisticated database queries frequently and regu-
larly on a single, powertul relational database management
system (RDBMS). One example of such a situation is one in
which a database 1s used to track information regarding a
company’s employees. Such a database 1s relied upon and
used many times a day by management stafl, accounting
stafl, and personnel staff for various purposes. Since the
people actually using the database are not necessarily fluent
in database languages or procedures, it 1s necessary to have
an elfective, 1.€., easy to use, and eflicient interface between
the user and the database itsell.

Typically, the interface between the user and the database
1s programmed 1n advance by a database programmer using
an application development package having various data-
base “tools”, which range 1n sophistication from a program-
ming language, e¢.g., the C programming language, to
so-called “application builders” which provide software
routines to automate some tasks, €.g., window managers to
control data presentation effects such as “pop-up” windows,
menu bars, and “pull down” menus. Such an interface
typically employs graphics, color, and animation, all of
which are CPU-intensive functions executed by the front-
end desktop computer.

With the ever-increasing movement of computing to the
Internet, there 1s great interest 1n extending database devel-
opment tools to leverage the connectivity provided by the
Internet. More particularly, developer users are particularly
interested 1n tools that allow application software, including
database application programs, to be “hosted” by the user’s
own browser.

SUMMARY OF THE INVENTION

A Database Development System 1s described that pro-
vides methodologies for creating an HIML database control
object for use 1 a Client/Server Database System The
system includes one or more Clients (e.g., Terminals or PCs)
connected via a Network to a Server. In general operation,
Clients store data in and retrieve data from one or more
database tables resident on the Server by submitting SQL
commands, some of which specily “queries”—criteria for
selecting particular records of a table. The system includes
a “DataWindow”(previously patented and described in
commonly-owned U.S. Pat. No. 5,566,330) that provides a
unique type of component or object used to retrieve, display,
and manipulate data from a relational database or other data
source. DataWindow objects have knowledge about the data
they are retrieving, and present information according to
user-specified display formats, presentation styles, valida-
tion rules, expressions and other data properties, so dynamic
data 1s used 1n the most meaningiul way.

In accordance with the present mnvention, the DataWin-
dow 1s adapted for providing a java-based data access

US 6,933,041 Bl

3

object—a Java DataWindow—that includes both client-side
and server-side components. The approach adopted by the
present invention 1s to maintain the DataWindow properties
at a server-side DataWindow component residing at an

application server. A corresponding client-side DataWindow
component, embedded for instance 1n a target HI'ML page,
knows how to query the server-side DataWindow compo-
nent for dynamically streaming the DataWindow’s
properties, so that they may be applied at run-time on the
client side. After an end user has entered 1n the input desired,
the changes are determined by the client-side DataWindow
component and flushed back to the server-side DataWindow
component at the application server. The server-side DataW-
indow component, 1n turn, can effect the changes to the back
end database, as appropriate.

During run-time operation, the following method steps
execute. First, the client-side Java DataWindow 1s invoked
at the client side application (e.g., Java applet). This may
occur, for example, upon an end user displaying an HITML
page having a Java applet in which the Java DataWindow 1s
embedded. The client-side Java DataWindow begins opera-
tion by invoking the corresponding server-side DataWindow
component via a GetFullState API call. In response to this
call, the DataWindow definition 1s converted into a binary
stream by the server-side DataWindow component at the
application server and is then sent to (i.e., streamed to) the
client. Upon receiving the DataWindow definition, the
client-side Java DataWindow invokes a SetFullState API
call (on itself), for applying the DataWindow definition to
itself. This mncludes invocation of the SQL statement and
format specification, whereupon the database information of
interest 1s display at the Java DataWindow 1n the desired
format (e.g., tabular grid).

After these properties are applied at the client, the Java
DataWindow is ready to (optionally) receive end user input.
Typical end user input includes inserting, deleting, and/or
modifying information that 1s displayed at the DataWindow.
In the event that the end user has provided input, the end user
signals completion of input (or otherwise terminates display
of the client-side DataWindow component), such as by
selecting an “Okay” screen button. This action triggers
another API call, GetChanges. The purpose of the
GetChanges API call 1s to submit to those user-provided
changes to the application server which, 1n turn, will “com-
mit” those changes (to the back end database). In operation,
the GetChanges API call determines internally what has
been changed by the end user, since the data was last
retrieved. To facilitate this process, the Java DataWindow
keeps 1ts own state. Therefore, when GetChanges 1s 1nvoked,
the Java DataWindow generates a stream describing what
has changed, in a format suitable for transmission to the
application server. Now, the client-side Java DataWindow
may 1nvoke SetChanges on the server DataWindow com-
ponent at the application server. This action leads to appli-
cation of those changes to the server-side DataWindow
component. Finally, the server-side DataWindow compo-
nent may, in a corresponding manner, proceed to apply those
changes to the back end database and/or optionally execute
other middle-tier business logic.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A 1s a block diagram of a computer system in which
the present mvention may be embodied.

FIG. 1B 1s a block diagram of a software subsystem for
controlling the operation of the computer system of FIG. 1A.

FIG. 2 1s a block diagram of a client/server system in
which the present invention 1s preferably embodied.

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 3A 1s a block diagram 1llustrating data access 1n the
system using a sample “order entry” application.

FIG. 3B 1s a block diagram illustrating data access to
different database tables (e.g., residing on a server) for the
order entry application.

FIGS. 4A-B represent a flow diagram illustrating pro-
cessing which occurs 1n the order entry application.

FIG. 4C 1s a block diagram 1illustrating various kinds of
output which can be generated from the order entry appli-
cation.

FIG. 5A 1s a block diagram illustrating that information 1n
a client/server environment can be stored 1n different places
(i.c., different servers) and in different formats (e.g., from a
variety of different vendors).

FIG. 5B 1s a block diagram 1illustrating a separate software
layer—database interfaces—employed 1n the system for
handling DBMS specific operations.

FIG. 6A 15 a block diagram 1illustrating use of embedded
SQL within a user’s application.

FIG. 6B 1s a block diagram illustrating use of a Power-
Builder Data Windows component 1n one’s application for
manipulating and displaying database information.

FIG. 7A 15 a diagram 1llustrating windows 1n a graphical
user 1nterface, which are employed as major building blocks
to construct a user interface for an application developed in
the system.

FIG. 7B 1s a bitmap screen shot illustrating different types
of windows provided by the system for use in one’s appli-
cation.

FIG. 7C 1s a block diagram illustrating use of an MDI
(multi-document interface) style window, which can be
employed 1n one’s application.

FIG. 8A 1s a bitmap screen shot illustrating different types
of windows or “controls” which can be employed for
creating a user interface of one’s application.

FIG. 8B 1s a bitmap screen shot 1llustrating group box and
radio button controls.

FIGS. 9A—C are bitmap screen shots illustrating user
interface components for receiving user input, including a
pull down menu, a tool bar, and a popup menu list.

FIG. 10A 1s a block diagram illustrating different events
which are triggered as a result of actions occurring at a user
interface.

FIG. 10B 1s a block diagram illustrating execution of
user-supplied script (instructions), which is triggered in
response to occurrence of an event.

FIG. 11A 1s a diagram 1illustrating use of script or proce-
dural code, for responding to events which occur in the
system.

FIGS. 11B—-C are diagrams illustrating scripts which
include comments, variable declarations, executable
statements, and embedded SQL statements.

FIG. 11D 1s a diagram 1illustrating a script function
employing embedded SQL.

FIGS. 12A-B are block diagrams illustrating client-side
and server-side structures for the Java-based data access
object of the present invention.

FIG. 13 1s a flowchart 1llustrating a method of the present
invention for run-time execution of the Java-based data
access object (“Java DataWindow™).

DETAILED DESCRIPTTION OF A PREFERRED
EMBODIMENT

The following description will focus on the presently-
preferred embodiment of the present invention, which 1s

US 6,933,041 Bl

S

operative 1n a network environment executing client/server
database applications. The present invention, however, 1s not
limited to any particular application or environment. Instead,
those skilled 1n the art will find that the present mmvention
may be advantageously applied to any of those application
or environment where browser-based rendering of 1nforma-
tion 1s desirable, including information from non-SQL data-
base management systems and the like. The description of
the exemplary embodiments which follows 1s, therefore, for
the purpose of illustration and not limitation.

Standalone System Hardware

The mvention may be embodied on a computer system
such as the system 100 of FIG. 1A, which comprises a
central processor 101, a main memory 102, an input/output
controller 103, a keyboard 104, a pointing device 105 (e.g.,
mouse, track ball, pen device, or the like), a screen display
device 106, and a mass storage 107 (e.g., hard or fixed disk,
removable disk, optical disk, magneto-optical disk, or flash
memory). Processor 101 includes or is coupled to a cache
memory 109 for storing frequently accessed information;
memory 109 may be an on-chip cache or external cache (as
shown). Additional output device(s) 108, such as a printing
device, may be included in the system 100 as desired. As
shown, the various components of the system 100 commu-
nicate through a system bus 110 or similar architecture. In a
preferred embodiment, the system 100 includes an IBM-
compatible personal computer system, available from a
variety of vendors (including IBM of Armonk, N.Y.).
Standalone System Software

[llustrated 1n FIG. 1B, a computer software system 150 1s
provided for directing the operation of the computer system
100. Software system 150, which 1s stored 1n system
memory 102 and on mass storage or disk memory 107,
includes a kernel or operating system (OS) 140 and a
windows shell 145. One or more application programs, such
as application software programs 155, may be “loaded” (i.e.,
transferred from storage 107 into memory 102) for execu-
tion by the system 100. The system also includes a user
interface 160 for receiving user commands and data as input
and displaying result data as output.

Also shown, the software system 150 includes a Rela-
tional Database Management System (RDBMS) front-end
or “client” 170, which includes database development envi-
ronment and tools. The RDBMS client 170 comprises a
database front-end development environments, such as
Sybase PowerBuilder™ (the preferred embodiment). In an
exemplary embodiment, the front-end will include SQL
access drivers (e.g., Borland SQL Links, Microsoft ODBC
drivers, Intersolv ODBC drivers, and the like) for accessing
database tables from an SQL database server operating in a
Client/Server environment. In the most-preferred
embodiment, RDBMS client/development environment
comprises PowerBuilder Enterprise for Windows, available
from Sybase, Inc. of Emeryville, Calif. Description of
PowerBuilder can be found in the manuals accompanying
PowerBuilder Enterprise, including Application Techniques,
DataWindow Programmer’s Guide, DataWindow Reference,
PowerScript Reference, User’s Guide, and Using the Pow-
erBuilder Internet Tools, which are available from Sybase,
Inc. (and also currently available online at http://
sybooks.sybase.com). Additional description can be found
in application Ser. No. 08/393,049, filed Feb. 23, 1995, now
U.S. Pat. No. 5,566,330. The disclosures of each of the
foregoing are hereby incorporated by reference.
Client/Server Environment

A. General

While the present invention may operate within a single
(standalone) computer (e.g., system 100 of FIG. 1A), the

10

15

20

25

30

35

40

45

50

55

60

65

6

present invention 1s preferably embodied m a multi-user
computer system, such as a Client/Server environment. FIG.
2 1llustrates the general structure of a Client/Server Database
System 200 suitable for implementing the present invention
(e.g., for deploying a database control object created in
accordance with the teachings of the present invention). As
shown, the system 200 comprises one or more Client(s) 210
connected to a Server 230 via a Network 220. Specifically,
the Client(s) 210 comprise one or more standalone Termi-
nals 211 connected to a Database Server System 240 using
a conventional network. In an exemplary embodiment, the
Terminals 211 may themselves comprise a plurality of
standalone workstations, dumb terminals, or the like, or
comprise personal computers (PCs) such as the above-
described system 100. Typically, such units would operate
under a client operating system, such as Microsoft
Windows/MS-DOS for PC clients.

The Database Server System 240, which comprises
Sybase Adaptive Server™ (formerly Sybase SQL Server™)
available from Sybase, Inc. 1n an exemplary embodiment,
generally operates as an independent process (i.€., indepen-

dently of the Clients), running under a server operating
system such as Microsoft Windows NT/2000 (Microsoft

Corp. of Redmond, Wash.), NetWare (Novell of Provo,
Utah), UNIX (Novell), or OS/2 (IBM). The Network 220
may be any one of a number of conventional network
systems, including a Local Area Network (LAN) or Wide
Area Network (WAN), as is known in the art (e.g., using
Ethernet, IBM Token Ring, or the like). The Network
includes functionality for packaging client calls in the well-
known SQL (Structured Query Language) together with any
parameter information into a format (of one or more
packets) suitable for transmission across a cable or wire, for
delivery to the Database Server System 240.

Client/server environments, database servers, and net-
works are well documented i1n the technical, trade, and
patent literature. For a discussion of database servers and
client/server environments generally, and SQL Server™
particularly, see, e.g., Nath, A., The Guide to SQL Server,
Second Edition, Addison-Wesley Publishing Company,
1995. Additional documentation of SQL Server™ 1s avail-
able from Sybase, Inc. as SQL Server Documentation Set
(Catalog No. 49600). For a general introduction to a Local
Area Network operating under NetWare, see Freed, L. et al.,
PC Magazine Guide fto Using NetWare, Ziit-Davis Press,
1991. Amore detailed discussion 1s available 1n NetWare 3.x
and 4.x and accompanying documentation, which 1s avail-
able from Novell of Provo, UT. The disclosures of each of
the foregoing are hereby incorporated by reference.

In operation, the Client(s) 210 store data in or retrieve
data from one or more database tables 250, shown 1n FIG.
2. Typically resident on the Server 230, each table itself
comprises one or more horizontal rows or “records” (tuples)
together with vertical columns or “fields.” A database record
includes information which 1s most conveniently repre-
sented as a single unit. A record for an employee, for
example, may mclude information about the employee’s 1D
Number, Last Name and First Initial, Position, Date Hired,
Social Security Number, and Salary. Thus, a typical record
includes several categories of information about an indi-
vidual person, place, or thing. Each of these categories, 1n
turn, represents a database field. In the foregoing employee
table, for example, Position 1s one field, Date Hired 1is
another, and so on. With this format, tables are easy for users
to understand and use. Moreover, the flexibility of tables
permits a user to define relationships between various items
of data, as needed.

US 6,933,041 Bl

7

In operation, the Client(s) issue one or more SQL com-
mands to the Server. SQL commands may specily, for
instance, a query for retrieving particular data (i.e., data
records meeting the query condition) from the table 250. The
syntax of SQL (Structured Query Language) is well docu-
mented; see, €.g., the above-mentioned An Introduction to
Database Systems. In addition to retrieving the data from
Database Server tables, the Client(s) also include the ability
to insert new rows of data records into the table; Client(s)
can also modily and/or delete existing records in the table.

For enhancing the speed 1in which the Database Server
stores, retrieves, and presents particular data records, the
Server maintains one or more database indexes on the table,
under control of an Index Manager. A database index,
typically maintained as a B-Tree data structure, allows the
records of a table to be organized 1n many different ways,
depending on a particular user’s needs. An 1index may be
constructed as a single disk file storing index key values
together with unique record numbers. The former 1s a data
quantity composed of one or more fields from a record; the
values are used to arrange (logically) the database file
records by some desired order (index expression). The latter
are unique pointers or identifiers to the actual storage
location of each record in the database file. Both are referred
to internally by the system for locating and displaying
records 1n a database file. Alternatively, mstead of storing
unique record numbers, a “clustered” index may be
employed. This 1s an index which stores the data pages of the
records themselves on the terminal or leaf-level nodes of the
index.

In operation, the SQL statements received from the one or
more Clients 210 (via Network 220) are processed by
Engine 260 of the Database Server System 240. The Engine
260 1tself comprises a Parser 261, Normalizer 263, Compiler
265, Execution Unit 269, and Access Methods 270.
Specifically, the SQL statements are passed to the Parser 261
which converts the statements 1nto a query tree—a binary
tree data structure which represents the components of the
query 1n a format selected for the convenience of the system.
In this regard, the Parser 261 employs conventional parsing
methodology (e.g., recursive descent parsing).

The query tree 1s normalized by the Normalizer 263.
Normalization includes, for example, the elimination of
redundant data. Additionally, the Normalizer 263 performs
error checking, such as confirming that table names and
column names which appear in the query are valid (e.g., are
available and belong together). Finally, the Normalizer can
also look up any referential integrity constraints which exist
and add those to the query.

After normalization, the query tree 1s passed to the
Compiler 265, which includes an Optimizer 266 and a Code
Generator 267. The Optimizer 1s responsible for optimizing
the query tree. The Optimizer performs a cost-based analysis
for formulating a query execution plan. The Optimizer will,
for instance, select the join order of tables (e.g., when
working with more than one table); it will select relevant
indexes (e.g., when indexes are available). The Optimizer,
therefore, performs an analysis of the query and picks the
best execution plan, which 1n turn results in particular ones
of the Access Methods 270 bemng ivoked during query
execuftion.

The Code Generator 267, on the other hand, converts the
query tree 1nto a set of nstructions suitable for satistying the
query. These instructions are passed to the Execution Unait
269. Operating under the control of these instructions, the
Execution Unit 269 generates calls into lower-level routines,
such as the Access Methods 270, for retrieving relevant

10

15

20

25

30

35

40

45

50

55

60

65

3

information (e.g., row 255) from the database table 250. The
Access Methods operate 1n conjunction with multiple Buffer
Managers to access the data (described in detail in
commonly-owned application Ser. No. 08/554,126, filed
Nov. 6, 1995, now U.S. Pat. No. 5,812,996, and herecby
incorporated by reference), as required by the query plan.
After the plan has been executed by the Execution Unit, the
Server returns a query result or answer table back to the
Client(s).

B. Designing an Application 1n an Integrated Develop-
ment Environment

Before describing how to use a Java access object of the
present mvention 1n detail, 1t 1s first helpful to review the
task of designing an application in the integrated develop-
ment environment (i.c., PowerBuilder™) provided in the
system of the present invention.

1. Requirements

One of the keys to successful application development (in
PowerBuilder or any other development environment) is
designing what a user 1s going to build before he/she begins
building 1t. The way to start this design phase 1s to determine
the detailed requirements that a user’s application must meet
to satisly the needs of the ultimate end users.

Determining requirements entails figuring out, in real-
world terms, what the application 1s to do when someone
uses 1t. A user’s goal should be to specify: A conceptual
walk-through of the application, from the point when users
start 1t to the point when they exit from 1t, and one or more
perspectives of the application’s composition, such as by
flow, by components, by dependencies, or by usage.

To figure out the requirements of a typical client/server
application, 1t 1s helpful to break them down into several
different categories:

(1) Data access—Which database tables the application
needs to use for its data mput and output. Which basic
database operations (create, retrieve, update, delete) the
application needs to perform on these tables.

(2) User interface—How the application is to present this
data to users. How users are to interact with the application
to view the data, manipulate 1t, and navigate through the
application’s various displays.

(3) Processing—What the application is to do with the
data to prepare 1t for display to the user or update to the
database tables. What the flow of control 1s to be as the
application performs its various operations.

(4) Program interaction—What data sharing (if any) the
application needs to do with other programs. What addi-
tional services (if any) the application must get through the
execution of other programs.

(5) Output—What reports the application needs to print
and how it 1s to format them. What other materials (such as
files) the application is to generate as a byproduct of its
processing.

2. Sample Application

Consider an Order Entry application for a hypothetical
company, Anchor Bay Nut Company. Referring back to the
different categories of requirements above, representative
requirements necessary for such an application include the
following.

(1) Data access—As illustrated in FIG. 3A, the Order
Entry application needs to access the company’s main
database (e.g., ANCHRBAY.DB) from the server so that it
can usec these tables. As illustrated in FIG. 3B, the applica-
tion also needs to access the company’s sales database (e.g.,
ABNCSALE.DB) from the server so that it can use these
tables.

(2) User interface—The Order Entry application needs to
present major displays with which the user 1s to interact: One

US 6,933,041 Bl

9

for viewing (retrieving) and maintaining (creating, updating,
deleting) customer data in the Customer database table, and
one for viewing and maintaining order data in the Order
header and Order_ detail database tables. In the course of
supporting these customer and order maintenance activities,
the application must also present a number of more minor
displays (such as for logging on to the databases, soliciting
choices from the user, displaying messages, and more).

(3) Processing—FIGS. 4A—B represent the basic flow of
processing that the user encounters when navigating through
the sample Order Entry application (ignoring many of its
supporting activities for the sake of simplicity).

(4) Program interaction—In support of its customer and
order maintenance activities, the Order Entry application
also needs to access some external programs, including: a
text editor program (e.g., Microsoft Word) to let the user
view documents concerning company policies and proce-
dures; an electronic mail program (e.g., Microsoft Mail) to
let the user send order 1nvoices to other employees; and
other existing applications (e.g., that were created with
PowerBuilder) to display motivational information to the
user.

(5) Output—The Order Entry application should also
produce various kinds of output when requested by the user.
As 1llustrated 1in FIG. 4C, exemplary outputs includes print-
ing an 1voice for a particular order; exporting customer or
order data to a file (using any one of several different file
formats); and extracting quarterly data from the Sales_ rep__
and Sales_ summary tables of the sales database and storing
that data in a new table (e.g., named Quarterly extract).

Once a user developer (i.€., user other than the end user)
knows the detailed requirements that his/her application
must meet, a user then maps them to features that the
development environment provides. This portion of the
design phase includes specifying the accessing of data (e.g.,
by servers and other data sources); implementing the user
interface (e.g., windows and controls); controlling the appli-
cation’s processing (e.g., events and scripts); extending the
application’s processing (€.g., external programs); and rout-
ing application output (e.g., reports, files, and “pipelines™).

3. Accessing Data: Servers and Other Data Sources

The requirements of an application typically require
access to at least one table and, typically, access to several
tables. Often 1n a client/server environment, such tables are
in different places and different formats. As illustrated in
FIG. 5A, tables may be stored 1n one or more databases;
those databases may be located 1n a variety of locations—on
the client computer, on one or more server computers, or on
a mix, with each of those databases implemented under a
variety of DBMSs (database management systems).

The development environment provides an approach to
data access that enables a user to successtully handle this
potential database diversity in the applications a user builds.
It does this by separating the DBMS-specific aspects of data
access from an application to make it as independent as
possible. This means a user can focus on the logical use of
a table 1 his/her application instead of how that table 1s
implemented 1n one particular database or another.

As 1llustrated in FIG. 5B, the development environment
handles DBMS specifics 1n a separate software layer—
database interfaces—that a user installs on the client com-
puter along with his/her application. This layer consists of
various database interfaces, each of which knows how to
talk to a particular kind of DBMS and how to take advantage
of the unique features of that DBMS. When a user’s appli-
cation requests any kind of access to a database, it relies on
the appropriate database interface (depending on the DBMS
for that database) to carry out the operation.

10

15

20

25

30

35

40

45

50

55

60

65

10

In an exemplary embodiment, two different kinds of
database interfaces are provided for a user’s application to
use: Microsoft ODBC interface and Powersoft database
interfaces. ODBC 1s the Open Database Connectivity API
(application programming interface) developed by
Microsolft to give applications standardized access to diverse
data sources (which are usually databases, but can also be
other kinds of files such as spreadsheets or text files). A user
will design his/her application to use this interface if he/she
wants to access one or more ODBC-compliant databases.
For a database that 1s not ODBC-compliant, the develop-
ment environment offers a variety of native interfaces, each
of which knows how to talk to a specific DBMS (such as
SQL Server or Oracle). If a user wants to access a SQL
Server database, for example, a user will design his/her
application to use the Powersoft SQL Server interface.

A user can design his/her application to use any combi-
nation of these database interfaces. The major benefit of this
layered approach to data access 1s that it helps insulate a
user’s application from the complicated and potentially
dynamic logistics of the typical client/server environment.
As a result, the data access a user designs into his/her
application 1s i1ndependent of a database’s location or
DBMS. Adapting a user’s application to such changes can
often be just a matter of pointing 1t to the database’s new
location and database 1interface. Additionally with the
approach, a user can work with all of the tables 1n his/her
application 1n the same way-using the same table-processing,
features—regardless of the DBMSs that are involved. Even
1in cases where a user wants to take advantage of capabilities
unique to certain DBMSs (such as stored procedures, outer
joins, referential integrity checking), a user will still use
consistent techniques to do so.

In a user’s application, typically numerous places exist
where the application needs to create, retrieve, update, or
delete rows 1n tables. Two basic techniques are provided:
embedded SQL and PowerBuilder DataWindows. With the
former, the user can embed SQL statements in his/her
application to manipulate the rows. The development envi-
ronment supports all of the usual features of this mndustry-
standard language, along with DBMS-specific syntax and
extensions of its own. As 1illustrated in FIG. 6A, a user
employs embedded SQL in places where a user’s design
calls for row manipulation without the need for display. As
llustrated in FIG. 6B, the user uses DataWindows 1n his/her
application to manipulate the rows and display them to the
end user. DataWindows are a special access feature of
PowerBuilder that a user employs for most of the table
processing his/her application design requires. DataWin-
dows contain both the intelligence to do row manipulation
(including creation, retrieval, updating, deletion) and the
presentation (user-interface) abilities to let people see and
work with those rows.

The requirements for the Order Entry application specify
that 1t must process several different tables from the two
databases 1n a variety of different ways. In most cases, the
processing 1nvolves letting the end user display and/or
interact with the table data (using DataWindows). In the
remaining situations (where no display of the data is
involved), the developers can embed SQL statements in the
application to do the job.

4. Implementing the User Interface: Windows and Con-
trols

The user-interface requirements of a user’s application
enable people to interact 1n a number of ways with data that
the application accesses. The user uses windows, such as

windows 701 and 703 1n FIG. 7A, as major building blocks

US 6,933,041 Bl

11

to construct the user interface of an application in the
development environment. Windows—rectangular frames
that a user can usually move and resize on the screen—Ilook
and work just like the windows a user 1s already familiar
with 1n his/her graphical operating. Windows provide fea-
fures a user can use to let people view information, manipu-
late information, and initiate actions.

A user can design the user interface of an application to
involve just one window. More often, however, a user will
involve several different windows, with each one playing a
particular role to help the user get a larger job done. The role
of any individual window 1s usually to present a particular
kind of information and let users interact with that informa-
fion m certain ways. As 1llustrated i FIG. 7B, several
different types of windows are provided that a user can use
in his/her application. Each type has some unique charac-
teristics that make 1t good for fulfilling one or more speciiic
presentation or interaction needs. Main windows (e.g., win-
dow 701) are where a user will usually have users perform
the major activities of the application. Response windows
and message boxes (e.g., window 7085) are good for situa-
fions where one wants to force end users to consider some
information and/or choose some action before they can do
anything else 1n the application. Popup windows and child
windows (e.g., window 703) are handy for displaying addi-
tional pieces of 1nformation, or providing additional
services, that support the users’ activities as they work 1n a
particular main window. As illustrated in FIG. 7C, MDI
(multi-document interface) frames (e.g., frame 721) are
uselful 1n many applications where end users need a conve-
nient and organized way to work with multiple main win-
dows. When placed inside one of these frames, main win-
dows act as sheets (e.g., sheets 723) that users can easily
shuffle around.

As shown 1n FIGS. 8A—B, the development environment
provides a wide range of controls a user can place 1n a
window to hold the information end users need to see and to
implement the interactions end users need to perform. Con-
trols are provided for: (1) displaying and/or manipulating
values (e.g., Static'Text, SingleLineEdit, MultiLineEdit, and
EditMask controls); (2) making choices (e.g., ListBox,
DropDownListBox, CheckBox, and RadioButton controls);
(3) showing information graphically (e.g., Graph,
HScrollBar, VScrollBar controls); (4) dressing up a window
(c.g., GroupBox, Line, Oval, Rectangle, RoundRectangle,
and Picture controls); (5) presenting a user’s DataWindows
(i.c., a special kind of control that a user uses when he/she
wants a window to display one of the DataWindows a user
has designed for his/her application); and (6) initiating
actions (e.g., CommandButton and PictureButton controls).

In addition to the preceding kinds of controls, a user can
also use user-defined controls. A user can define his/her own
controls based on one or more of the standard PowerBuilder
controls and store them as application components called
user objects. Then a user can include these custom-made
controls 1n any windows a user wants. Additionally, a user
can use third-party controls, such as VBX (Visual Basic
extension) controls or controls in DLLs (dynamic link
libraries), by defining them as user objects. These external
controls can be 1ncluded 1in any windows desired.

Another way to let the user 1nitiate actions 1n a window 1s
to use menus. A menu lists commands (menu items) that are
currently available so that the user can select one. The
development environment provides different methods for
presenting menus 1n a window. In many of the windows a
user designs, a user will want to display a menu of one or
more 1tems across the top 1n the menu bar, such as 1llustrated

10

15

20

25

30

35

40

45

50

55

60

65

12

in FIG. 9A. This enables end users to move through those
items and pull down submenus (dropdown menus) that a
user has defined for each one. If the window 1s an MDI
frame, a user can optionally define a toolbar, shown in FIG.
9B, to accompany the menu. The toolbar displays buttons
corresponding to one or more menu items, giving the user an
alternative way to select those items. Sometimes a user may
want to let users initiate certain actions by popping up a
menu within the window. A popup menu lists 1ts items
vertically, shown 1n FIG. 9C, enabling users to move up or
down to select the item they want. Popup menus are handy
for g1ving users quick access to a subset of the most common
actions they perform 1n the window or to adjust those actions
that apply to the current control.

5. Controlling the Application’s Processing: Events and
Scripts

After the user has sketched out the windows he/she needs,
the user then specifies the flow of processing i1n his/her
application, both within a window and from one window to
another; and supply the specific processing logic that is to be
performed for each activity of the application during the
course of this flow. Applications created 1n the development
environment are event-driven: an application waits to see
what actions a user takes in a window to determine what
processing to perform.

Whenever the user does something 1involving one of the
application’s user-interface components (such as a window,
control, or menu item), that action triggers a particular event.
As shown 1n FIG. 10A, for example, each of the following
actions triggers a different event.

Doing this Triggers

The Clicked event of that
CommandButton control
The Clicked event of that
menu item

The Modified event of that
SinglelineEdit control
The Close event of that

window

Clicking on a particular CommandButton
control in a window

Clicking on a particular menu item 1n a
window’s menu

Modifying the value in a particular
SinglelineEdit control of a window
Closing a particular window

When an event 1s triggered, a user’s application executes
a corresponding script (e.g., PowerBuilder PowerScript™),
which contains any processing logic a user has written for
that event. This 1s 1llustrated 1n FIG. 10B. A user’s job as a
designer, therefore, 1s to figure out all of the events of
interest that might occur 1n his/her application and to pro-
vide appropriate processing logic for each event (in its
script).

Each kind of user-interface component has its own set of
several different events that can happen to it, including, for
instance, the following.

This component Has

A CommandButton control About a dozen different events, including:
Clicked, GetFocus, and LoseFocus

Just a couple of events: Clicked and Selected
About a dozen different events, including:
Modified, GetFocus, and LoseFocus

More than 25 different events, including:

Open, Close, Resize, Timer, and Clicked

A menu item
A SingleLineEdit control

A window

Some events apply to a user’s application as a whole,
including (1) one that is triggered when the application starts
(the Open event), and (2) one that’s triggered when the

US 6,933,041 Bl

13

application ends (the Close event). In many cases, a user
need only write scripts for just one or two of the events of
a particular component (and sometimes a user won’t need
any for that component).

Letting end users drive the flow of processing 1s appro-
priate most of the time, but on occasion a user will want the
application to temporarily take control. In such situations,
the user can write code 1n the script of one event that
manually causes another event to occur. When doing this, a
user can either trigger the event so that its script executes
right away, or post the event to a queue so that its script
execution 1s deferred (until after the scripts of any earlier
events have executed). A user can also define his/her own
events for any particular component and then manually
trigger or post them to execute their scripts. These “user
events” are useful for extending the processing of other
event scripts by serving as subroutines; and responding to
certain lower-level messages (from a user’s operating
environment) that the development environment does not
provide as standard events.

Once a user knows which events he/she needs to handle
in his/her application, a user provides an appropriate script
for each one. As 1illustrated in FIG. 11A, a script 1s a body
of procedural code that a user writes 1n the PowerScript™
language to express the processing logic to perform, typi-
cally 1n response to particular events. Most scripts are
relatively short (tens of lines long, not hundreds), since they
just need to express the processing for particular events and
not for the whole application.

PowerScript 1s a high-level language that provides several
different syntactic constructs a user can use to write the code
he/she needs. As shown 1in FIGS. 11B-C, these include
variable declarations, PowerScript statements, function calls
(built-in and user-defined), embedded SQL statements, and
comments. PowerScript supports many data types, as well as
arrays and structures of variables. It also provides several
levels of scoping that a user can choose from for each
variable he/she declares. PowerScript statements provide
flow-of-control mechanisms (such as branching and
looping) that a user can use to steer the processing in a
particular script. When a user creates a user-defined
function, he/she specifies the arguments required (if any), a
script of the code that 1s to execute, and the value 1t 1s to
return (if any). A user can then call that user-defined function
from event scripts or from other user-defined functions.

6. Mapping the Requirements of the Application

In the example of the hypothetical company, Anchor Bay
Nut Company, the user would map processing requirements
to development environment features as follows. The Order
Entry application needs to handle a number of different
events for its various windows, controls, and menus. For
instance, consider the application’s Customer window. To
provide all of the processing for the window of FIG. 8A, for

instance, scripts are required for each of the following
events.

Type of component Name Events that need scripts
Window w__customer Open,
RButtonDown

CommandButton control cb_ close Clicked

cb__delete Clicked

cb_new Clicked

cb__orders Clicked

cb__retrieve Clicked

cb__save Clicked

10

15

20

25

30

35

40

45

50

55

60

65

14

-continued
Type of component Name Events that need scripts
DataWindow control dw__detail Clicked,
RowFocusChanged,
Uevent__keypressed
(a user event)
dw__list EditChanged,
[temChanged,
[temError
SingleLineEdit control sle__Iname Modified
Menu item listed m__New Clicked
under File m__retrieve Clicked
m__save Clicked
m__delete Clicked
m__printersetup Clicked
m__reviewdata Clicked
m__exit Clicked
Menu item listed under m__goto Clicked
Orders
Menu item listed under m__phoneprocedures Clicked
Guides m__companypolicies Clicked
m__salescompetition Clicked
Inquiry
m__employee Clicked
motivationa
m__employee Clicked
motivationb
m__employeetun Clicked
Menu item listed under m__contents Clicked
Help m__about Clicked

The Order Entry application may include user-defined
functions to provide additional processing services that can
be called from the event scripts. For example, the applica-

fion’s Customer window can includes the three following
user-defined functions.

User-defined function Purpose

To be called whenever the user asks to
delete a customer to make sure the
customer does not have any outstanding
orders 1n the database

To be called whenever the user asks to
add a customer to compute the next
available ID number for a new customer
in the database

To be called at the beginning of various
operations to check whether any unsaved
data might be lost and to warn the user

wi delcustorders

wl newcustnum

wi warndataloss

The wi_ delcustorders function may be constructed, for
examle, as shown 1 FIG. 11D.

C. Java Language Implementation

Also before describing the Java access object of the
present invention in detail, 1t 1s helpful to review the Java™
programming language. In the early 1990s, a team at Sun
Microsystems developed a new language, “Java,” to address
the 1ssues of software distribution on the Internet. Java 1s a
simple, object-oriented language which supports multi
thread processing and garbage collection. Although the
language 1s based on C++, a superset of C, 1t 1s much
simpler. More importantly, Java programs are “compiled”
into a binary format that can be executed on many different
platforms without recompilation. The language includes
built-in mechanisms for verifying and executing Java “bina-
ries” 1n a controlled environment, protecting the user’s
computer from potential viruses and security violations.
References herein to Java and Java™ refer to the Java
programming language. References to JavaBeans™, Swing,

and other components of the Java programming language

US 6,933,041 Bl

15

refer to versions of the Java programming language sup-
porting JavaBeans, Swing and other such components (¢.g.,
JDK versions 1.1 and subsequent).

A typical Java system comprises the following set of
interrelated technologies: a language specification; a com-
piler for the Java language that produces bytecodes from an
abstract, stack-oriented machine; a virtual machine (VM)
program that interprets the bytecodes at runtime; a set of
class libraries; a runtime environment that includes bytecode
verification, multi-threading, and garbage collection; sup-
porting development tools, such as a bytecode disassembler;
and a browser (e.g., Sun’s “Hot Java” browser).

Java 1s designed for creating applications that will be
deployed 1nto heterogeneous networked environments. Such
environments are characterized by a variety of hardware
architectures. Further, applications in such environments
execute atop a variety of different operating systems and
interoperate with a multitude of different programming
language 1nterfaces. To accommodate such diversity, the
Java compiler generates platform-neutral “bytecodes”™ —an
architecturally neutral, intermediate format designed for
deploying application code efficiently to multiple platforms.

Java bytecodes are designed to be easy to interpret on any
machine. Bytecodes are essentially high-level, machine-
independent instructions for a hypothetical or “virtual”
machine that 1s 1mplemented by the Java iterpreter and
runtime system. The virtual machine, which 1s actually a
specification of an abstract machine for which a Java lan-
guage compiler generates bytecode, must be available for
the various hardware/software platforms which an applica-
tion 1s to run. The Java interpreter executes Java bytecode
directly on any machine for which the interpreter and
runtime system of Java have been ported. In this manner, the
same Java language bytecode runs on any platform sup-
ported by Java.

Compiling Java into platform-neutral bytecodes 1s advan-
tageous. Once the Java language interpreter and runtime
support are available on a given hardware and operating
system platform, any Java language application can be
executed. The bytecodes are portable since they do not
require a particular processor, architecture, or other propri-
ctary hardware support. Further, the bytecodes are byte-
order independent, so that programs can be executed on both
big-endian machines (e.g., Intel architecture) and Iittle-
endian machines (e.g., Motorola architecture). Since Java
bytecodes are typed, each specifies the exact type of its
operands, thereby allowing verification that the bytecodes
obey language constraints. All told, the interpreted bytecode
approach of compiled Java language programs provides
portability of programs to any system on which the Java
interpreter and runtime system have been implemented.

The bytecodes are actually stored 1n “class” files. Each
class file stores all the information for a particular Java class.
A “class” m Java 1s a software construct which defines
instance variables and methods, in effect, serving as a
template for creating objects of a particular type (i.e., having
data and behavior associated with instances of that class).
The Java language does not support global functions or
variables. Thus, each method (function) and variable exists
within a class or an object (an instance of a class). In the Java
language, the simplest form of a class definition 1s as
follows.
class name/

-

The keyword class begins the class definition for a class
named name. The variables and methods of the class are

10

15

20

25

30

35

40

45

50

55

60

65

16

embraced by the curly brackets that begin and end the class
definition block. A very simple “Pomnt” class, for instance,
may be declared as follows.

class Point {
public double x;
public double y;

/* instance variable */
/* instance variable */

h

This declaration serves as a template from which “Point”
objects can be 1nstantiated.

Actual 1nstantiation of an object occurs 1n a manner
similar to that found in the C++ programming language. The
data associated with a class or object 1s stored 1n variables;
the behavior associated with a class or object 1s implemented
with methods. Methods are similar to the functions or
procedures 1n procedural languages such as C. For example,
a variable which refers to a “Point” object can be declared
as follows.

Point myPoint;

An 1nstance of a point object 1s allocated as follows.
myPoint=new Point(),
Here, one can now access variables of the “Point” object,

using familiar “dot” notation for referring to the names of
the variables.

myPoint.x=10;

mypoint.y=20;

Objects communicate by sending messages to each other.
A recipient object responds to a message by selecting a
particular method to execute. If one object wants another
object to do some work on 1ts behalf, for instance, the first
object sends a message to the second object. The second
object, 1n response, 1nvokes the method which 1s appropriate
for processing the message. The methods themselves,
therefore, define the behavior of objects instantiated from a
class. In particular, 1t 1s an object’s methods which manipu-
late the object’s data—its mstance variables.

The entry point of every Java application 1s 1ts main
method. When the user runs an application with the Java
interpreter, he or she specifies the name of the class which
1s desired to be run. In response, the Java interpreter invokes
the main method defined within that class. The main method
controls the flow of the program, including allocating what-
ever resources are needed and invoking any other methods
that provide the functionality for the application.

Every Java application must contain a main method with
the following prototype or signature (i.e., modifiers, name,
and parameters).
public static void main(String| | args)

The method signature for the main method contains three
modifiers: public, static, and void. The public modifier
indicates that the main method can be called by any object.
The static modifier indicates that the main method 1s a class
method. The void modifier indicates that the main method
returns no value. The main method 1n the Java language 1s
similar to the main function in C and C++. When the Java
interpreter executes an application (by being invoked upon
the application’s controlling class), it starts by calling the
class’s main method. The main method then calls all the
other methods required to run your application.

The Java Language 1s well documented 1n the technical,
trade, and patent literature; see e.g., Gosling, J. et al., The
Java Language Environment: A White Paper, Sun Micro-
systems Computer Company, October 1995. For a descrip-
tion of runtime execution of Java modules (including

US 6,933,041 Bl

17

dynamic linking), see €.g., James Gosling, Bill Joy, and Guy
Steel, The Java Language Spectfication, Chapter 12 Execu-
tion (particularly 12.2 Loading of

Classes and Interfaces, and Linking of Classes and
Interfaces), Addison Wesley, 1996. The disclosures of each
of the foregoing are hereby incorporated by reference.

With an understanding of how an application i1s designed
in the integrated development environment of the system of
the present invention and with an understanding of the Java
programming language, the methods of the present inven-
tion for implementing a Java-based data access object—a
“Java DataWindow”—can now be better understood.
Java-based Data Access Object

A. Introduction

As described above (and in above-mentioned commonly-
owned U.S. Pat. No. 5,566,330), the DataWindow is a
unique type of component or object used to retrieve, display,
and manipulate data from a relational database or other data
source. DataWindow objects have knowledge about the data
they are retrieving, and present information according to
user-specified display formats, presentation styles, valida-
tion rules, expressions and other data properties, so dynamic
data 1s used 1n the most meaningful way. In accordance with
the present invention, the following describes modification
made to the DataWindow component for providing a Java-
based DataWindow. The Java-based DataWindow allows
code-less creation and layout of forms, database queries, and
result sets, automatic run-time generation of HI'ML and
script for full range of DataWindow functionality.

B. DataWindow Architecture and Usage Relevant to Java
DataWindow

1. Objects, Controls, and Components

DataWindow technology 1s implemented in two parts: a
DataWindow object and a DataWindow control or compo-
nent. The DataWindow object defines the data source and
presentation style for the data. The control or component 1s
a container for the DataWindow object 1n the application.
The user (developer) writes code that calls methods of the
container to manipulate the DataWindow object. The
DataWindow was originally invented for use in Power-
Builder to provide powerful data retrieval, manipulation,
and update capabilities for client/server applications. In
accordance with the present invention, the DataWindow 1s
extended for use m a Java environment as a JavaBeans
component for use 1n Java applications, including client-side
Java applets.

A DataWindow object 1s an object that the user uses to
retrieve, present, and manipulate data from a relational
database or other data source (such as an Excel worksheet or
dBASE file). The user can specify whether the DataWindow
object supports updating of data. DataWindow objects have
knowledge about the data they are retrieving. The user can
specily display formats, presentation styles, and other data
properties to make the data meaningtul to end users. In the
DataWindow painter, the user can also make Powersoft
report (PSR) files, which can be used in DataWindow
controls or components. A PSR file contains a report
definition—essentially a nonupdatable DataWindow
object—as well as the data contained 1n the report when the
PSR file was created. It does not retrieve data.

The user defines DataWindow objects 1n the DataWindow
painter 1n PowerBuilder or DataWindow Builder. DataWin-
dow Builder has all the painters necessary for working with
databases and defining DataWindows without the overhead
of a Tull PowerBuilder installation. When the user defines a
DataWindow object, he or she chooses a presentation style
and a data source. A presentation style defines a typical style

10

15

20

25

30

35

40

45

50

55

60

65

138

of report and handles how rows are grouped on the page. The
user can customize the way the data i1s displayed in each
presentation style. The presentation styles available for the
Java DataWindow are listed below (with exceptions shown):

Presentation

style Description

Tabular Data columns across the page and headers above each
column. Several rows are viewable at once

Freeform Data columns going down the page with labels next to each
column. One row displayed at a time

Grid Row-and-column format like a spreadsheet with grid lines.
Users can move borders and columns

Label Several labels per page with one row for each label. Used
for mailing and other labels

N-Up Two or more rows of data next to each other across the
page. Useful for periodic data, such as data for each day
or the week or each month 1n the quarter

Group A tabular style with rows grouped under headings. Each
group can have summary fields with computed statistics

Composite Several DataWindow objects grouped 1nto a single
presentation Not supported by Web DataWindow

Graph Graphical presentation of data
Not supported in DataWindow, Java Edition or Web
DataWindow

Crosstab Data summary in a row-and-column format

RichText Paragraphs of text with embedded data columns
Not supported 1n DataWindow, Java Edition, Web control
for ActiveX, or Web DataWindow

OLE An OLE object linked or embedded in the DataWindow and

assoclated with the retrieved data

Not supported 1n DataWindow, Java Edition or Web
DataWindow

2. Data Sources

The data source specifies where the data in the Java
DataWindow comes from and what data items will be
displayed. Data can come from tables in a database, or one
can 1import data from a file or specily the data in code. For
databases, the data specification 1s saved 1n a SQL statement.
In all cases, the Java DataWindow object saves the names of
the data i1tems to be displayed and their data types.
The data sources mclude:

Data source Description

Quick Select The data 1s coming from one or more tables 1n a SQL
database. The tables must be related through a foreign key.
You only need to choose columns, selection criteria, and

sorting

SQL Select You want more control over the select statement that 1s
generated for the data source. You can specily grouping,
computed columns, and so on

Query The data has already been selected and the SQL statement
is saved 1n a query object that you’ve defined 1n the Query
painter. When you define the DataWindow object, the
query object 1s incorporated into the DataWindow and
doesn’t need to be present when you run the application

Stored The data 1s defined 1n a database stored procedure

procedure

FExternal The data 1s not stored 1n a database, but will be imported

from a file (such as a tab-separated or dBASE file) or
populated from code

3. Basic Usage

Using a DataWindow involves two main steps. First, one
uses the DataWindow painter 1n either DataWindow Builder
or PowerBuilder to create or edit a DataWindow object. In

the painter, the user defines the data source, presentation
style, and all other properties of the object, such as display
formats, validation rules, sorting and filtering criteria, and
oraphs. In the development environment, the user puts a

US 6,933,041 Bl

19

DataWindow control or component in a window, form, or
web page and associate a DataWindow object with 1t. It 1s
through this control that one’s application communicates
with the DataWindow object created in the DataWindow
painter. The user writes code to manipulate the DataWindow
control and the DataWindow object it contains. Typically,
one’s code retrieves and updates data, changes the appear-
ance of the data, handles errors, and shares data between
DataWindow controls. Thus, the DataWindow control 1s a
container for DataWindow objects 1n an application. It
provides properties, methods, and events for manipulating,
the data and appearance of the DataWindow object, with the
DataWindow control part supporting the user interface of
one’s application.

To use the DataWindow object 1 an application, one adds
a DataWindow control to a window or form, then associate
that control with the DataWindow object. When one places
a DataWindow control 1n a window or form, it gets a default
name. Typically, one changes the name to be something
meaningiul for the application under development. In
PowerBuilder, the name of the control has traditionally had
a prefix of dw__. This 1s a useful convention to observe 1n
any development environment. For example, if the DataW-
indow control lists customers, 1t could be named
dw__customer. In code, one always reference a DataWindow
by the name of the control (such as dw_ customer). One
does not refer to the DataWindow object that 1s 1n the
control. To avoid confusion, one typically would use ditfer-
ent prefixes for DataWindow objects and DataWindow
controls. The prefix d_ 1s commonly used for DataWindow
objects. For example, 1f the name of the DataWindow
control 1s dw__customer, one might want to name the
corresponding DataWindow object d__customer.

To place a DataWindow control in a window, one per-
ceived as follows. First, the user opens the window that will
contain the DataWindow control. Now, selecting
Insert>Control>DataWindow from the menu bar places at
the control within the window. Here, the user clicks where
he or she wants the control to display. PowerBuilder places
an empty DataWindow control 1n the window. Optionally,
the developer user may resize the DataWindow control by
selecting i1t and dragging one of the handles.

After placing the DataWindow control, the user can
associate a DataWindow object with the control. To associ-
ate a DataWindow object with the control, one proceeds as
follows. In the DataWindow Properties view, the user clicks
the Browse button for the DataObject property. Now, the
user selects the DataWindow object that here she wants to
place 1n the control and then clicks OK. The name of the
DataWindow object displays in the DataObject box 1n the
DataWindow Properties view. Option line, the user can
change the properties of the DataWindow control as needed.
Once the user has associated a DataWindow object with a
DataWindow control in a window, he or she can go directly
to the DataWindow painter to edit the associated DataWin-
dow object. To edit an associated DataWindow object, the
user selects Modity DataWindow from the DataWindow
control’s popup menu. In response, PowerBuilder opens the
assoclated DataWindow object 1n the DataWindow painter.

C. Java DataWindow (DataWindow, Java Edition)

1. Introduction

In accordance with the present invention, a Java-based
data access object 1s provided 1n the form of a Java DataW-
indow (DataWindow, Java Edition). It comprises a set of
JavaBeans components and associated classes for use in
Java applications. It implements all the features of the
PowerBuilder DataWindow except rich text, graphs, and

10

15

20

25

30

35

40

45

50

55

60

65

20

OLE. Nearly all PowerBuilder events and methods are also
supported 1n the JavaBeans components. It supports data
retrieval with retrieval arcuments and data update. The user
can use edit styles, display formats, and validation rules.
Most of the PowerBuilder methods for manipulating the
DataWindow are available, including Modity for changing
DataWindow object properties.

The DataWindow includes these components: DataWin-
dow JavaBeans component and DataStore JavaBeans com-
ponent. The former comprises the complete DataWindow,
which supports data retrieval and management, layout and
display of data, and user interaction and data update capa-
bilities. The latter comprises a DataWindow with data
retrieval and update but no onscreen data display and user
interaction. It can be used to manage data and share data
with other components without displaying the data, for
example, 1n a server application or as a data source for other
DataWindow components. It can also provide an alternative
data layout for printing data. There are two versions of the
DataWindow JavaBeans component: a native component
(DataWindowControl) and a lightweight Swing component
(JDataWindowControl). Both are available from the DataW-
indow component palette. Both have the same methods and
events. If the application under development uses Java
Swing components, one should use the JDataWindowCon-
trol 1nstead of DataWindowControl.

The DataWindow and DataStore JavaBeans components
use a DataWindow object, which determines what data 1s
retrieved and how 1t 1s displayed. The DataWindow com-
ponent can also display Powersoft reports (PSRs), which do
not need need to retrieve data. A DataWindow object for the
JavaBeans components can have any presentation style
except RichText, Graph, or OLE. If the DataWindow object
includes graph or OLE controls, they are ignored.

2. Coding for the DataWindow JavaBeans Component

(a) General

In general, the user employs the same methods as in a
PowerBuilder application. However, there are a few ditfer-
ences. Some methods are not supported, including methods
that use the system clipboard and methods for manipulating
oraphs, rich text, and OLE. PowerBuilder has several date
and time data types; but in Java, these all map to a Date
object. PowerBuilder enumerated data type values are
implemented as fields. One can specily the field name or the
assoclated numeric value.

(b) Setup/Initialization

The following shows setup for using a Java DataWindow
control.

private powersoft.datawindow.DataWindowControl dw__1;
private powersoft.powerj.db. Transaction transaction_ 1;

transaction__1.registerDriver{ “sun.jdbc.odbc.JdbcOdbeDriver”);

transaction__1.setDriverName(“sun.jdbc.odbe.JdbcOdbeDriver”);
transaction__1.setDataSource{ “jdbc:odbc:EAS Demo DB V37),
transaction__1.setUserID{(“dba”);

transaction__1.setPassword{(“sql”);

transaction__1.setAutoCommit(true);

transaction__lIsetLoginTimeout(O);

transaction__1.connect();

dw__1.setSourceFileName(“datawindow.pbl”);
dw__1.setDataWindowObjectName(“d__crosstab™);
dw__1.setTransaction(transaction_ 1);
dw__1.retrieve();

As shown, set up basically consists of connecting to the
database (e.g., through an JDBC-ODBC bridge) and filling

the DataWindow with data.

US 6,933,041 Bl

21

(c) Examples

Suppose that once having established a Java DataWindow
and gotten it to fill itself with values from the database (e.g.,
with simple setTransaction() and retrieve() method calls),
the user would like to see only those rows in which the
customer quantity exceeds 100 and the customer code
exceeds 30. With conventional grid controls, the user would
have to rebuild the SQL select statement and refill the
contents. With the Java DataWindow, however, the user
need only do the following;:

dw__ 1.setFilter(“cust__qty>100 and cust_ code>30"),

dw__1 filter();

Now even the end user may specify his or her own filter by
calling setFilter(null), which brings up a dialog box which
allows the user to build his or her own filter.

Now suppose that the user would like to change the color
of the salary field text to red if the value i1s more than
$90,000 and the department code is 100, blue if the value is
more than $90,000 and the department code is not 100, and
oreen otherwise. In a standard grid control, if 1t was even
possible, one would have to take over the responsibility of
doing some of the painting code. With the Java
DataWindow, the user need only do the following:
dw__1.modify(“salary.Color="0\tIf(salary>90000,If(dept__
1d=100,255,16711680), 65280)’”);

Now, the user would like to make sure that only uppercase
letters are allowed 1n the emp_ state column. In the Java
DataWindow, this 1s easily accomplished by the following:

dw__1.setValidate(“emp__state”, “Match(GetText(),
VTA-Z]+V7)7);

When the end user enters data that contains a non-uppercase
letter (or a non-letter), an ItemError event will occur, at
which point one can choose to reject the data, accept the
data, reject the data but allow the user to tab out of the field
or reject the data, and show a message box informing the end
user of the error.

D. Java DataWindow Architecture

1. Architectural Changes Made to Support Java

The following architectural changes are made to the
DataWindow for implementing the Java DataWindow.
Unlike PowerBuilder, the Java version of the DataWindow
follows the Java naming convention for methods. The result-
ing difference 1s that the first letter of every method 1s upper
case 1n PowerBuilder and lower case 1n Java. For example,
in PowerBuilder:

dw__ 1.Modify(“DataWindow.Table.Select="");
and 1 Java:

dw__1.modify(“DataWindow.Table.Select=""");

The event mechanism for events 1s different in Power-
Builder and Java, although for user familiarity/compatibility
reasons, 1t 1S desirable to make them as similar to use as
possible. In a rapid application development (RAD)
environment, like Sybase Powerl, handling an event 1s as
easy as clicking a button. Should the (developer) user wish
to add support for handling an event at run-time rather than
design-time, 1t 1s slightly more ditficult, although 1ts still
quite reasonable. Here, the user finds the event listener
interface for the event of mterest. It will have a formatted
name, such as:

powersoft.datawindow.event.<EventName>Listener
Now, the user chooses a class to 1implement this interface,
typically the form the user originally placed the DataWin-
dowControl (or DataStore) on. Then, the user writescode in
the method that corresponds to the specific event to code
against. After that, all that 1s required 1s to cause that event
to be enabled is call add<EventName>Listener(<object that

10

15

20

25

30

35

40

45

50

55

60

65

22

implements listener interface>) on the DataWindowControl
(or DataStore).

In Java, passing a primitive data type (short,int,char, . . .)
by reference 1s not supported. Whereas PowerBuilder passes
primitive data types by reference, in Java, they are passed as
a one-clement array of that type. Example:

In PowerBuilder:

long row=1;
integer colnbr=0;
string colname;
dw__1.FindRequired(Primary!, row, colnbr, colname,
FALSE);
In Java:
int row[|={1};
short colnbr|]={1};

String colname[|={null};

dw_ 1.findRequired(dw__1.Primary, row, colnbr,
colname, false);

2. Dot Notation-like Support

Dot notation 1s a popular coding technique available 1n
several environments.

This 1s emulated in Java DataWindow using getproperty()
and getObject() methods. The getObject() method returns
an intermediary object, while getProperty() returns final
objects. The following 1s an example of how to retrieve the
original values from the filtered buffer of the emp_ Iname
column:

String| | data=

(String[])dw_ 1.getObject(“emp_ Iname™).getObject

(“Filter”).getProperty(“Original”); The return type of
getObject() 1s DataWindowObject, which 1s the same
type passed to the user 1n events such as
ButtonClickEvent, ItemEvent, MouseEvent and Edait-
ChangedEvent. The objectString member of DataWin-
dowObject denotes the name of the object, the various
is*() functions denote what type of object it is, and the
other members denote other information such as col-
umn number.

3. Client Structure

The basic client structure 1s illustrated in FIG. 12A. There
1s a strict separation between the client and server pieces of
the Java DataWindow. The client talks to the server using a
single Java interface, the DataWindowServerlnterface. The
user deals exclusively with the DataWindowControl or
DataStore objects, which implement a common 1nterface
with the expected methods (e.g., setSourceFileName,
retrieve, and so forth.).

4. Server Structure

FIG. 12B 1llustrates the corresponding server-side struc-
ture. Note that table data 1s stored separately from the Query
object, which 1s being used mostly to fetch it, so that the
Query object may be the data cache. It already knows how
to talk to JDBC and do all the appropriate data conversions,
plus 1t has the filter, delete and primary buifers, and other
DataWindow capabilities like sorting and filtering.

5. Methodology for run-time operation of Java DataWin-
dow

In typical usage, the user would have implemented, on the
client side, a Web-based application including, for 1nstance,
an HTML page having an embedded Java applet. Within
that, the application would include an embedded Java
DataWindow. On the middle tier, at the level of the appli-
cation server, a corresponding DataWindow server compo-
nent (either, Java or C) would be running. The application
server would also include a definition for the DataWindow,
stored in binary format (.pdb format). The DataWindow

US 6,933,041 Bl

23

definition 1ncludes the properties for the DataWindow. This
includes, for 1nstance, an SQL statement specifying data to
retrieve, typically from a back end database (¢.g., relational
database) and a format specification describing how the
information 1s to be formatted and/or manipulated for dis-
play. The format specification mcludes, for example, vali-
dation rules that are applied during end-user manipulation of
the displayed data.

Given this context, a method 1300 of the present inven-
fion for run-time execution of the Java DataWindow 1is
llustrated 1n FIG. 13. At the outset, the client-side Java
DataWindow 1s invoked at the client side application (e.g.,
Java applet), as shown at step 1301. This may occur, for
example, upon an end user displaying an HIML page having
a Java applet mn which the Java DataWindow 1s embedded.
The client-side Java DataWindow begins operation by
invoking the corresponding server-side DataWindow com-
ponent via a GetFullState API call, as shown at step 1302.
In response to this call, the DataWindow definition 1is
converted 1into a binary stream by the server-side DataWin-
dow component at the application server and 1s then sent to
(i.., streamed to) the client, at step 1303.

Upon receiving the DataWindow definition, the client-
side Java DataWindow invokes a SetFullState API call (on
itself), at step 1304, for applying the DataWindow definition
to 1tself. This includes invocation of the SQL statement and
format specification, whereupon the database information of
interest 1s display at the Java DataWindow 1in the desired
format (e.g., tabular grid). After these properties are applied
at the client, the Java DataWindow is ready to (optionally)
receive end user mput. This step 1s indicated at step 1305.
Typical end user input includes inserting, deleting, and/or
modifying information that 1s displayed at the DataWindow.
In the event that the end user has provided input, the end user
signals completion of input (or otherwise terminates display
of the client-side DataWindow component), such as by

/=+=

10

15

20

25

30

35

dwdemo.java

*/

24

selecting an “Okay” screen button, as indicated at step 1306.
This action triggers another API call, GetChanges, at step
1307. The purpose of the GetChanges API call 1s to submit
to those user-provided changes to the application server
which, in turn, will “commit” those changes (to the back end
database). In operation, the GetChanges API call determines
internally what has been changed by the end user, since the
data was last retrieved. To facilitate this process, the Java
DataWindow keeps 1ts own state. Therefore, when

GetChanges 1s 1nvoked, the Java DataWindow generates a
stream describing what has changed, 1in a format suitable for
transmission to the application server. Now, the client-side
Java DataWindow may invoke SetChanges on the server
DataWindow component at the application server. This
action leads to application of those changes to the server-
side DataWindow component. Finally, the server-side
DataWindow component may, in a corresponding manner,
proceed to apply those changes to the back end database
and/or optionally execute other middle-tier business logic,
as 1ndicated at step 1308.

Appended herewith as Appendix A are source code list-
ings providing further description of the present invention.
In particular, the source code listings demonstrate invocation
of the above-mentioned API, for achieving run-time opera-
tion of the Java DataWindow. In order to clarity the source
code listings, housekeeping code has been replaced with
comments.

While the invention 1s described in some detail with
specific reference to a single-preferred embodiment and
certain alternatives, there 1s no intent to limit the invention
to that particular embodiment or those specific alternatives.
For instance, those skilled in the art will appreciate that
modifications may be made to the preferred embodiment
without departing from the teachings of the present imven-
fion.

SOURCE CODE APPENDIX A

public class dwdemo extends Forml

public static void main(String args| |)

/* Removed for stmplification: Code to create the applet */

public dwdemo()

super();

1
1
h
1
| h

/=+=

__dwdemo__frame.java

*/

public class __dwdemo__frame extends java.awt.Frame implements
java.awt.event.WindowListener

{

public _ dwdemo__frame()

{

super();
addWindowListener(this);

h

public void windowClosed(java.awt.event. WindowEvent event)

1
h

public void windowOpened(java.awt.event. WindowEvent event)

i
h

US 6,933,041 Bl
25

-continued

SOURCE CODE APPENDIX A

public void windowClosing(java.awt.event. WindowEvent event)

{
/* Removed for simplification: Code to dispose of the window and
terminate */

h

public void windowlconified(java.awt.event.WindowEvent event)

1

y

public void windowActivated(java.awt.event.WindowEvent event)

1

;

public void windowDeiconified(java.awt.event. WindowEvent event)
1

h

public void windowDeactivated(java.awt.event. WindowEvent event)
1

y
;
/=+=
Form1.java
*/
class Forml extends javax.swing.JApplet implements
java.awt.event.ActionListener

1
private boolean Form1_ objectCreated{powersoft.powerj.event.EventData
event)
{
byte| | full State;
// Load the DataWindow on the server-side, returns back the
// full DataWindow definition + data
fullState = javadatawindowbean_ 1.loadDataWindow{ “dwl”);
// Setup the client-side DataWindow with that returned information

jdw__1.setFullState(fullState);
return false;

h

private void jcb__1_ actionPerformed(java.awt.event.ActionEvent event)
1
byte| | changes = new byte[1] |];
// Get the changes the user made to the client-side DataWindow
jdw__1.getChanges(changes);
// Send the message to get those changes applied to the server-side
javadatawindow__1.update(changes|0]);

)

public boolean create() throws java.lang.Exception
1

boolean retval = true;

retval = retval && createTheForm();

Form1_objectCreated(new powersoft.powerj.event.EventData(this)

return retval;

h

private boolean createTheForm() throws java.lang.Exception

1

/* Removed for simplification: Code to setup the form’s properties */

/* Removed for simplification: Code to create the JDataWindowControl
*/

/* Removed for simplification: Code to create the Update button */

// Setup the 1nitial context
jetx__1.create(“Forml.jetx_ 1);
jetx__1.setUseJavaxNaming(true);
jetx_1.setlnitial CtxName(“com.sybase.ejb.Initial ContextFactory™);
jetx__1.setUser(“jagadmin”);
jetx__1.setPassword(“”);

jetx_ 1.setURL({ “iiop://localhost:9000”);
// Connect the 1nitial context
jetx__1.connect(); // ignore error
// Instantiate the JavaDataWindowBean
powersolt.powerj.jaguar.Initial Context jctxt_ javadatawindowbean__1 =
powersoft.power].jaguar.Initial Context.findByName({ “Form1.jctx_ 17);
if (jetxt_ javadatawindowbean_ 1 != null) {
if (jetxt_javadatawindowbean 1.getUseJavaxNaming() != true) {
throw new
powersoft.power].jaguar.Initial ContextException(“EJBs require javax.naming

to be specified.”);

h
try {

if (! jetxt javadatawindowbean_ 1.connect()) {

26

US 6,933,041 Bl
27

-continued

SOURCE CODE APPENDIX A

throw new
powersoft.powerj.jaguar.Initial ContextException(“ORB not connected™);

h

mydomain.mypackage.JavaDataWindowBeanHome _ EIBHOME_TMP =

(mydomain.mypackage.JavaDataWindowBeanHome)jctxt__javadatawindowbean__1.lookup
(“JavaDataWindowBean™);
javadatawindowbean_ 1 = _ EJBHOME__TMP.create();

} catch (Throwable e) {
e.printStackTrace();
h
h

return retval;

h

public void start()

1

h
public void stop()

1
h

public synchronized void destroy()

1
h

public void actionPerformed(java.awt.event.ActionEvent event)

{

/* Removed for simplification: Code to destroy the form */

java.lang.Object eventTarget = event.getSource();
if(eventTarget == jcb_ 1) {
jecb__1_ actionPerformed(event);
;
;

public Form1()

{
h

protected powersoft.datawindow.JDataWindowControl jdw__1 = null;
protected javax.swing.JButton jcb__1 = new javax.swing.JButton();
protected mydomain.mypackage.JavaDataWindowBean javadatawindowbean_ 1 =

null;
protected powersoft.powerj.jaguar.InitialContext jetx_ 1 = new

powersoft.powerj.jaguar.Initial Context();

;
/=+=

super();

mydomain-mypackage-JavaDataWindowBean.java
*/
package mydomain.mypackage;
public interface JavaDataWindowBean extends javax.e;b.EJBObject

1

/=’r==+=

* loadDataWindow Method

*/

public byte| | loadDataWindow(String dataWindowName) throws
java.rmi.RemoteException;

/=+==+=

* update Method

*/

public void update(byte |] changes) throws java.rmi.RemoteException;

;
/=+=
mydomain-mypackage-JavaDataWindowBeanBean.java
*/
package mydomain.mypackage;
public class JavaDataWindowBeanBean extends java.lang.Object implements
javax.ejb.SessionBean

1

/=+==+=

* loadDataWindow Method

*/

public byte| | loadDataWindow(String dataWindowName) throws
java.rmi.RemoteException

{
byte[][] fullState = new byte[1][];

// Load the DataWindow definition into the server-side DataWindow
ds__1.setSourceFileName(“alldatawindowdefns.pbd™);
ds__1.setDataWindowObjectName(dataWindowName);

// Retrieve the data from the database

ds_ 1.retrieve();
/f Get the DataWindow definition and data and send it back to the

23

US 6,933,041 Bl
29

-continued

SOURCE CODE APPENDIX A

client

ds__1.getFullState(fullState);
return fullState[O;

y

/=+==+=

* update Method
*/

public void update(byte |] changes) throws java.rmi.RemoteException

1
// Apply the changes made on the client-side DataWindow to the
server-side DataWindow
ds__1.setChanges(changes);
// Apply the changes made to the data to the database
try {
ds_ 1.update(true);
} catch(Exception _¢e) {
System.err.println{ “ERROR! Exception occured calling update: ™ +
__e.getMessage());
;
h
protected java.lang.Object instantiateBean(java.lang.String beanName)

{

java.lang.Object beanOb; = null;
try {
beanObj =
java.beans.Beans.instantiate(getClass().getClassLoader(), beanName);
} catch(java.lang.ClassNotFoundException e) {
System.err.println(“Unable to find class ” + beanName);
} catch(java.io.IOException e) {
System.err.println{ “I/O exception while instantiating class ” +
beanName);
} catch(java.lang.SecurityException e) {
// System.err.println{ “Security exception while instantiating
class ” + beanName);
} catch(java.lang.Throwable ¢) {
// System.err.println{ “Exception while instantiating class ™ +
beanName);

h

return beanOby;

h

protected boolean create() throws java.lang.Exception
{
// Connection source: JDBC Driver (direct)
transaction__1.setTraceTolog(true);
transaction__1.setRegisterName(true);
transaction__1.setName(“JavaDataWindowBeanBean.transaction_ 1");
transaction__1.registerDriver(“com.sybase.jdbc.SybDriver”);
transaction__1.setDriverName(“com.sybase.jdbc.SybDriver”);
transaction__1.setConnectionSource(
transaction__1.createJDBCConnectionSource(“com.sybase.jdbc.SybDriver”));
transaction__1.setUserID{ “7);
transaction__1.setPassword(“);
transaction__1.setUselnitialSettings(true);
transaction__1.setLoginTimeout{ O);
transaction__1.setOwner(this);
transaction__1.setRestorelnitialSettings(false);
ds_ 1 = (powersoft.datawindow.DataStore)instantiateBean(
“powersoft.datawindow.DataStore™);

try {
ds__1.setDataWindowObjectName(“”);
ds_ 1.setTraceTolog(false);
ds_ 1.setUserID(“”);
ds__1.setHorizontalPrinterMargin{ 36);
ds__1.setVerticalPrinterMargin{ 36);
ds_ 1.setPassword(“);
ds__1.setConnectionSource(1);
ds_ 1.setDriverName(“”);
ds__1.setTransactionName(“JavaDataWindowBeanBean.transaction_ 1"

ds_ 1.setSourceFileName(“);

h

catch(java.lang.Exception e _ds 1) {
e_ds_ 1.printStackTrace();
h

if(!transaction 1.connect()){
transaction__1.log(“autoconnect failed”);
h

30

US 6,933,041 Bl

31

-continued

SOURCE CODE APPENDIX A

refurn true;
y
public JavaDataWindowBeanBean()
{ // EIB constructors don’t have a server context.
h
private void unhandledEvent(String listenerName, String methodName,
java.lang.Object event)

1
h

// method for interface javax.eib.SessionBean
public void setSessionContext(javax.ejb.SessionContext parmQ) throws
java.rmi.RemoteException

1
;

// method for interface javax.eib.SessionBean
public void ejbRemove() throws java.rmi.RemoteException

1
y

// method for interface javax.eib.SessionBean
public void ejbActivate() throws java.rmi.RemoteException

1
h

// method for interface javax.eib.SessionBean
public void ejbPassivate() throws java.rmi.RemoteException

1
)

/=+==+=

* Session Context of this EIB.

* Set in ‘setSessionContext()” before any ‘ejbCreate()’ is executed.

*/

private javax.ejb.SessionContext _ sessionContext;

/=+==+=

* ¢1bCreate Method

*/

public void ejbCreate() throws java.rmi.RemoteException,
javax.ejb.Create Exception

this.__sessionContext = parm0;

1
try {
create(); // This ‘create()” is used for internal
initialization.
h
catch(java.lang.Exception _e) {
System.err.println{ __e.toString() + “” + _e.getMessage()):
h
h

protected powersoft.datawindow.DataStore ds__1 = null;
protected powersoft.power].db.java__sql.Transaction transaction__1 = new
powersoft.powerj.db.java__sql.Transaction();

;
/=+=
mydomain.mypackage.JavaDataWindowBeanHome.java
*/
package mydomain.mypackage;
public interface JavaDataWindowBeanHome extends javax.ejb.EJBHome

1

/=+==+=

* create Method

*/

public JavaDataWindowBean create() throws java.rmi.RemoteException,
javax.ejb.Create Exception;

h

What 1s claimed 1s:

1. A method for providing object-based data access 1n a
Web environment supporting Java, the method comprising:

receiving at a Web browser an end user request for oY
displaying a Web page, thereby invoking a client-side
Java-based data access component that 1s embedded
therein;

in response to imvocation of the client-side component,
invoking a corresponding server-side data access com- 65
ponent for retrieving definition information for run-
time operation of the client-side component, said defi-

32

nition 1nformation including a database query

specitying retrieval of information from a database and
including a format specification specifying presentation
of the information retrieved from the database to the
end user; and

applying the definition information, upon receipt, to the
client-side component, whereupon information of inter-
est 1s retrieved from the database and 1s presented to the
end user by the client-side component in accordance
with the format specification.

US 6,933,041 Bl

33

2. The method of claim 1, wherein said definition infor-
mation 1s converted 1nto a binary stream by the server-side
component for transmission to the client-side component.

3. The method of claim 1, wherein said server-side
component resides on an application server.

4. The method of claim 1, wherein said database query
comprises an SQL statement specifying retrieval of infor-
mation of interest from the database.

5. The method of claim 1, wherein said format specifi-
cation defines a presentation format for displaying informa-
tion at the client-side component.

6. The method of claim 1, wherein said Web page com-
prises a hypertext markup language (HTML) page.

7. The method of claim 1, wherein said client-side com-
ponent 1s embedded m a Java applet.

8. The method of claim 1, further comprising:

receiving user input for interacting with said client-side

component.

9. The method of claim 8, wherein said user mnput includes
user mput for manipulating database information presented
by the client-side component.

10. The method of claim 9, wherein said manipulating
step includes inserting, deleting, and updating database
information presented by the client-side component.

11. The method of claim 8, wherein said client-side
component applies validation rules defined by said defini-
tion information for validating said user input.

12. The method of claim 1, wherein said information of
interest comprises database rows retrieved from one or more
database tables residing on a server.

13. The method of claim 1, wherein client-side compo-
nent displays a graphical user interface, 1n accordance with
said format specification.

14. The method of claim 1, further comprising:

receiving user mnput for changing database information
presented by the client-side component;

generating a stream describing what has changed and
transmitting 1t to the server-side components;

at the server-side component, applyimng any described

changes to the database.

15. The method of claim 14, wherein said server side
component first applies business rules to any described
changes before applying said changes to the database.

16. The method of claim 1, wherein said format specifi-
cation specifies whether information retrieved from a data-
base 1s modifiable.

17. The method of claim 1, wherein said format specifi-
cation may be customized to display information to the user
in different presentation styles.

18. The method of claim 1, wherein said server-side data
access component retrieves information from more than one
database.

19. The method of claim 1, wherein said server-side data
access component retrieves information from multiple data
sources, which may include database and nondatabase
SOUrces.

20. The method of claim 1, wherein said Java-based data
access component comprises a Java programming language
JavaBeans-based component.

10

15

20

25

30

35

40

45

50

55

34
21. The method of claim 20, wherein said Java-based data

access component comprises a native component.

22. The method of claim 21, wherein said Java-based data
access component comprises as a Java programming lan-
cuage lightweight Swing-based component.

23. The method of claim 1, wherein said format specifi-
cation can be modified by a user.

24. A system providing on-line interaction with databases,
the system comprising:

a client-side Java based data access component that
receives at a browser an end user request for
information, wherein said component invokes a server-
side data access component and, upon receipt of infor-
mation from the server-side component, presents the
information received for display in the browser 1n a
format specified by the server-side component;

a server-side data access component for retrieving defl-
nition information for run-time operation of the client-
side component, said definition information including a
database query specitying retrieval of information from
a database and a format speciiication specifying pre-
sentation of the information received from the database
to the end user; and

at least one database 1n which information 1s stored.

25. The system of claim 24, wheremn said server-side
component converts the definition information into a binary
stream for transmission to the client-side component.

26. The system of claim 24, wheremn said server-side
component resides on an application server.

27. The system of claim 24, wherein said database query
comprises an SQL statement specifying retrieval of infor-
mation from a database.

28. The system of claim 24, wherein said client-side
component presents information comprising a hypertext
markup language (HTML) page.

29. The system of claim 24, wherein said client-side
component 1s embedded 1n a Java applet.

30. The system of claim 24, wherein a user may manipu-
late 1nformation presented by the client-side component.

31. The system of claim 24, wherein a user may perform
insert, delete, and update operations on database information
presented by the client-side component.

32. The system of claim 24, wherein said client-side
component applies validation rules defined by said defini-
fion information for validating user mput.

33. The system of claim 24, wherein said client-side
component receives user input for changing database
information, said client-side component generates a stream
describing what has changed and transmitting it to the
server-side component; and said server-side component
applies any described changes to one or more databases.

34. The system of claim 33, wherein said server-side
component applies business rules before applying said
described changes to said databases.

	Front Page
	Drawings
	Specification
	Claims

