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MULTI-DOMAIN MOTION ESTIMATION
AND PLETHYSMOGRAPHIC RECOGNITION
USING FUZZY NEURAL-NETS

RELATED APPLICAITON INFORMAITION

This application claims priority from U.S. Provisional
Application Ser. No. 60/498,032 entitled “MULTI-

DOMAIN MOTION ESTIMAITION AND PLETHYSMO-
GRAPHIC RECOGNITION USING FUZZY NEURAL-

NETS” filed on Aug. 27, 2003, the entire disclosure of which
1s 1incorporated herein.

FIELD OF THE INVENTION

The present i1nvention relates generally to plethysmo-
oraphic signal processing, and more particularly to the
application of neural net processes to the classification of
plethysmographic signals and the estimation of motion
therein.

BACKGROUND OF THE INVENTION

Signal attenuation measurements generally involve trans-
mitting a signal towards or through a tissue medium under
analysis, detecting the signal transmitted through or
reflected by the medium and computing a parameter value
for the medium based on attenuation of the signal by the
medium. In simultaneous signal attenuation measurement
systems, multiple signals are simultaneously transmitted
(i.e., two or more signals are transmitted during at least one
measurement interval) to the medium and detected in order
to obtain information regarding the medium.

Such attenuation measurement systems are used 1n vari-
ous applications 1n various industries. For example, 1n the
medical or health care field, optical (1.e., visible spectrum or
other wavelength) signals are utilized to monitor the com-
position of respiratory and anesthetic gases, and to analyze
fissue or a blood sample with regard to oxygen saturation
(SpO2 level), analyte values (e.g., related to certain
hemoglobins) or other composition related values.

The case of pulse oximetry 1s illustrative. Some pulse
oximeters extract information regarding patient physiologi-
cal conditions such as the patient’s pulse rate and an oxygen
saturation level of the patient’s blood, or related analyte
values, via analysis of plethysmographic signals or wave-
forms corresponding to different wavelengths of light trans-
mitted through or reflected from the patient’s tissue. In
particular, pulse oximeters generally include a probe for
attaching to a patient’s tissue site such as a finger, earlobe,
nasal septum, or foot. The probe 1s used to transmit pulsed
optical signals of at least two wavelengths, typically red and
infrared, to the patient’s tissue site. The different wave-
lengths of light used are often referred to as the channels of
the pulse oximeter (e.g., the red and infrared channels). The
optical signals are attenuated by the patient tissue site and
subsequently are received by a detector that provides an
analog electrical output signal representative of the received
optical signals. The attenuated optical signals as received by
the detector are often referred to as the transmitted signals.
The electrical signal can be processed to obtain plethysmo-
graphic signals for each channel and the plethysmographic
signals may be analyzed to obtain information regarding
patient physiological conditions.

Extraction of patient physiological conditions from the
plethysmographic signals can be quite effective using a well
positioned sensor and when the patient or subject is resting.
However motion artifacts can easily swamp the desired
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information included in the plethysmographic signals when
the patient 1s moving around and/or performing muscular
confractions. Some motion artifacts can severely impair the
signals, whereas other types can be filtered out or do not
significantly effect the desired information mncluded in the
plethysmographic signals. Furthermore, depending upon the
severity and type of motion artifacts present in the plethys-
mographic signals, some techniques for extracting the
desired patient physiological conditions may not be appro-
priate and alternative techniques may need to be employed.
Another potential problem that can occur when attempting
to make a pulse oximetry system robust to motion artifacts
1s that heart arrhythmia or rapid pulse variations might
possibly be sensed as motion effects and cause motion
rejection steps to be applied which may be mappropnate 1n
these cases and could cause false pulse-rate and SpO2
readings.

SUMMARY OF THE INVENTION

Accordingly, the present invention is directed to the use of
multiple signal domains i1n conjunction with neural net
processing to achieve pattern classification of different types
of motion artifacts and also to classily different patterns of
pulse and plethysmographic waveforms that can occur under
different physiological conditions. The implementation of a
neural-net pattern recognition stage within a pulse oximeter
addresses a number of the aforementioned problems thereby
achieving an improved instrument.

In accordance with the present invention, motion classi-
fication 1s performed using features extracted from the time,
spectral (e.g. power spectral), bispectral and cepstral
domains. These features and the spectral (e.g. power
spectral), bispectral, and cepstral coefficients are input to a
neural network (also referred to herein as a neural-net) to
perform recognition of plethysmographic waveforms, and
the type of motion or combination of pulsatile waveform and
motion artifacts. Another form of information that can be
used 1s coellicients derived from a Wavelet filter bank.

The information from the different sources described
above 1s weilghted and processed via a neural-net and the
output classification of the neural-net i1s then used to help
with filtering out of motion artifacts and 1n the decision to
use selective portions of high-pass frequency information
(AC) in SpO2 calculations. The classification from the
neural-net 1s used to determine the existence and severity
and type of motion artifact. The motion classification can be
used to 1mprove the signal extraction in noisy conditions,
and to aid i1n selection of the most appropriate signal
extraction method. Further the neural-net classifier can be
used to determine the type of plethysmographic signal, such
as normal adult, infant, or that produced from different types
of heart conditions. Identification of the signal type will aid
in measurement and 1n extraction of the signal from noise.

One aspect of the invention 1s 1n describing the different
types of physiological and noise conditions for which
plethysmographic waveforms are collected for training the
neural-net classifier. In order to 1improve the robustness of
the classifier the 1inputs to the neural-net during training are
subjected to ‘fuzzification’ wherein input values are slightly
perturbed and reordered. This process increases the size of
the tramning set and also has the effect of making the
neural-net less rigid 1n its ability to classify patterns. The
training of the neural-net can also be enhanced by use of a
fuzzy logic controller which 1s used to adjust learning
parameters and to speed up convergence during back-
propagation learning.
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Another aspect of the invention 1s that the neural-net 1s
tramned to respond to different respiration activities—both
rate and depth. Pertinent information from spectral
coellicients, and Wavelet transforms on the different input
wavelengths (typically red and infrared, but also additional
wavelengths which may be used) are presented to the
neural-net. Optionally derived SpO2 estimates can also be
presented. All this information can be used to obtain further
more robust SpO2 estimates. Thus the neural-net provides a
variety of information which can be used to classily respi-
ration conditions.

According to another aspect of the invention, a pulse
oximeter mncludes a first optical signal source that 1s oper-
able to emit an optical signal characterized by a first wave-
length (e.g., red) and a second optical signal source that is
operable to emit an optical signal characterized by a second
wavelength (e.g., infrared) different than the first wave-
length. A detector operable to receive the first and second
optical signals after they are attenuated by a patient tissue
site provides a detector output signal representative of the
attenuated first and second optical signals. A processor 1s
enabled to obtain first and second time domain plethysmo-
graphic signals from the detector output signal. The proces-
sor also classifies one or more of the first and second time
domain plethysmographic signals using a neural network.
The neural network receives mput coeflicients derived from
one or more ftransforms of the first and/or second time
domain plethysmographic signals. The transforms may, for
example, include spectral (e.g., power spectral), bispectral,
cepstral, and Wavelet filter bank transforms.

According to a further aspect of the present invention, a
method of processing a plethysmographic signal obtained
from a patient in a first signal domain (e.g., time) includes
transforming the plethysmographic signal from the first
domain to a plurality of signal domains different from the
first domain. The different signal domains may, for example,
include spectral (e.g., power spectral), bispectral, cepstral,
and Wavelet filtered domains. Transformation of the first
domain plethysmographic signal results 1n a plurality of
transformed plethysmographic signals with each trans-
formed plethysmographic signal being 1n one of the different
signal domains. A plurality of sets of coeflicients are
selected, with each set of coeflicients being dertved from a
corresponding one of the transtormed plethysmographic
signals. The sets of coellicients are input to a neural network,
and the plethysmographic signal 1s classified based on an
output from the neural network.

According to yet another aspect of the present invention,
a method of training a neural network to classify a plethys-
mographic signal obtained from a patient includes selecting
a plurality of first domain plethysmographic signal data sets
assoclated with a plurality of different types of predeter-
mined signal conditions from a database of plethysmo-
ographic signal data sets. The first domain plethysmographic
signal data sets are transtormed to other signal domains
different than the first domain to obtain a corresponding
plurality of transformed plethysmographic signal data sets.
In this regard, the first domain may, for example, be the time
domain and the other signal domains include, for example,
spectral (e.g., power spectral), bispectral, cepstral, and
Wavelet filtered domains. A plurality of sets of coefficients
are extracted from the transformed plethysmographic signal
data sets, with each set of coeflicients being extracted from
a corresponding one of the transformed plethysmographic
signal data sets. The sets of extracted coetlicients are used as
inputs to the neural network, and weighting values associ-
ated with connections between neurons 1n the neural net-
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work are adjusted 1n accordance with a learning procedure.
The learning procedure may, for example, be a backpropa-
gation learning procedure or a simulated annealing learning
procedure. Where desired, the backpropagation learning
procedure may be implemented with fuzzy logic control.

According to one more aspect of the present invention, a
method of providing information relating to a physiological
condition of a patient based on at least one plethysmo-
ographic signal obtained from the patient 1n a first signal
domain (e.g., time) includes transforming the plethysmo-
graphic signal from the first domain to a plurality of signal
domains different from the first domain. The different signal
domains may, for example, include spectral (e.g., power
spectral), bispectral, cepstral, and Wavelet filtered domains.
Transformation of the first domain plethysmographic signal
results 1n a plurality of transformed plethysmographic sig-
nals with each transtormed plethysmographic signal being in
one of the different signal domains. The plethysmographic
signal 1s classified based on an output from a neural network.
The output of the neural network 1s based on mput coefli-
cients derived from one or more of the transformed plethys-
mographic signals. Based on the classification, a technique
for determining the physiological condition of the patient 1s
selected. The physiological condition of the patient may, for
example, comprise a pulse rate. Where at least two plethys-
mographic signals corresponding to different optical wave-
lengths are transformed and classified, the physiological
condition of the patient may, for example, comprise an SpO2
value or a respiration index. Where the physiological con-
dition of the patient comprises a respiration index, the
plethysmographic signals are preferably transformed using
at least a Wavelet filter bank transform.

These and other aspects and advantages of the present
invention will be apparent upon review of the following
Detailed Description when taken in conjunction with the
accompanying figures.

DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the present mnven-
tion and further advantages thereof, reference 1s now made
to the following Detalled Description, taken in conjunction
with the drawings, in which:

FIG. 1 1s a block diagram of one embodiment of a pulse
oximeter employing multi-domain motion estimation and
plethysmographic signal recognition using fuzzy neural-nets
in accordance with the present invention;

FIG. 2 1s a block diagram showing one embodiment of a
method of implementing multi-domain motion estimation
and plethysmographic signal recognition using fuzzy neural-
nets 1n accordance with the present mvention;

FIG. 3 1s a schematic diagram 1llustrating one embodi-
ment of a neural network architecture that may be employed
in accordance with the present invention;

FIG. 4 1s a plot of exemplary red and infrared plethys-
mographic signals that include motion artifacts;

FIG. § 1s a block diagram showing one embodiment of a
neural network training method in accordance with the
present 1nvention; and

FIGS. 6A—6D are plots showing exemplary plethysmo-
ographic signal conditions that may be included within a
database of plethysmographic training sets.

DETAILED DESCRIPTION

Referring now to FIG. 1, there 1s shown a block diagram
of one embodiment of a pulse oximeter 10 in which multi-
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domain motion estimation and plethysmographic signal rec-
ognition using fuzzy neural-nets may be implemented. The
pulse oximeter 10 1s configured for use in determining the
pulse rate of a patient as well as one or more blood analyte
levels 1n the patient, such as an SPO2 level. It should be
appreciated that multi-domain motion estimation and
plethysmographic signal recognition using fuzzy neural-nets
in accordance with the present invention may be imple-
mented 1n pulse oximeters that are configured differently
from the pulse oximeter depicted in FIG. 1 as well as in other
environments wherein plethysmographic signals are pro-
cessed 1n order to obtain desired mmformation relating to
patient physiological conditions from the plethysmographic

signals.

The pulse oximeter 10 includes a pair of optical signal
sources 20a, 20b for emitting a corresponding pair of light
signals 30a, 30b centered at different predetermined center
wavelengths A, A, through a suitable tissue site of a patient
and on to a detector 40 (e.g., a photo-sensitive diode). The
optical signal sources 20a, 206 and detector 40 may be
included 1n a positioning device 50, or probe, to facilitate
alignment of the light signals 30a, 305 with the detector 40.
For example, the positioning device 50 may be of clip-type
or flexible strip configuration adapted for selective attach-
ment to a suitable patient tissue site (e.g., a finger, an ear
lobe, a foot, or the nose of the patient). The center wave-
lengths A, A, required depend upon the blood analyte level
to be determined. For example, 1n order to determine an
SPO?2 level, A, may be 1n the Red wavelength range and A,
may be 1n the infrared wavelength range. It should be
appreciated that the pulse oximeter 10 may be readily
implemented with more optical signal sources (e.g., four)
depending upon the number of different blood analyte levels
to be measured.

The optical signal sources 20a, 20b are activated by a
corresponding plurality of drive signals 60a, 60b to emit the
light signals 30a, 30b. The drive signals 60a, 60b arc
supplied to the optical signal sources 20a, 20b by a corre-
sponding plurality of drive signal sources 70a, 70b. The
drive signal sources 70a, 70b may be connected with a
digital processor 80, which 1s driven with a clock signal 90
from a master clock 100. The digital processor 80 may be
programmed to define modulation waveforms, or drive
patterns, for each of the optical signal sources 20a, 205. In
this regard, there may be a separate memory device 82
interfaced with the digital processor 80 (or the memory
device 82 may be incorporated in the processor 80) on which
various software instructions executable by the processor 8(
are stored. More particularly, the digital processor 80 may
provide separate digital trigger signals 110a, 1105 to the
drive signal sources 70a—d, which 1n turn generate the drive
signals 60a, 60b. In this regard, the digital trigger signals
110a, 1056 may be configured to provide for multiplexing of
the drive signals 60a, 60b, and 1n turn the light signals 304,
30b, in accordance with a multiplexing scheme (e.g., time
division, frequency division, or code division multiplexing).

The drive signal sources 70a, 705, processor 80, memory
device 82 and clock 100 may all be housed 1n a monitor unit
120. While the illustrated embodiment shows the optical
signal sources 20a, 206 physically interconnected with the
positioning device 50 (e.g., mounted within the positioning
device 50 or mounted within a connector end of a cable that
is selectively connectable with the positioning device 50), it
should be appreciated that the optical signal sources 20a,
20b may also be disposed within the monitor unit 120. In the
latter case, the light signals 30a, 305 emitted from the optical
signal sources 20a, 20b may be directed from the monitor
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unit 120 via one or more optical fibers to the positioning
device 50 for transmission through the tissue site.
Furthermore, the drive signal sources 70a, 70b may com-
prise a single drive signal generator unit that supplies each
of the drive signals 60a, 60b to the optical signal sources

20a, 20b.

Transmitted light signals 130a, 1305 (i.c., the portions of
light signals 30a, 30b exiting the tissue) are detected by the
detector 40. The detector 40 detects the intensities of the

transmitted signals 130a, 1305 and outputs a current signal
140 wherein the current level 1s indicative of the intensities
of the transmitted signals 130a, 130b. As may be
appreciated, the current signal 140 output by the detector 4{
comprises a multiplexed signal 1n the sense that it 1s a
composite signal including information about the intensity
of each of the transmitted signals 130a, 130b5. Depending
upon the nature of the drive signals 60a, 60b, the current
signal 140 may, for example, be time division multiplexed,
wavelength division multiplexed, or code division multi-
plexed.

The current signal 140 1s directed to an amplifier 150,
which may be housed 1n the monitor unit 120 as 1s shown.
As an alternative, the amplifier 150 may instead be 1ncluded
in a probe/cable unit that 1s selectively connectable with the
monitor unit 120. The amplifier 150 converts the current
signal 140 to a voltage signal 160 wherein a voltage level 1s
indicative of the intensities of the transmitted signals 130a,
130b6. The amplifier 150 may also be configured to filter the
current signal 140 from the detector 40 to reduce noise and
aliasing. By way of example, the amplifier 150 may include
a bandpass filter to attenuate signal components outside of a
predetermined frequency range encompassing modulation
frequencies of the drive signals 60a, 60b.

Since the current signal 140 output by the detector 40 1s
a multiplexed signal, the voltage signal 160 1s also a
multiplexed signal, and thus, the voltage signal 160 must be
demultiplexed 1n order to obtain signal portions correspond-
ing with the 1ntensities of the transmitted light signals 1304,
1305. In this regard, the digital processor 80 may be pro-
vided with demodulation software for demultiplexing the
voltage signal 160. In order for the digital processor 80 to
demodulate the voltage signal 160, 1t must first be converted
from analog to digital. Conversion of the analog voltage
signal 160 1s accomplished with an analog-to-digital (A/D)
converter 170, which may also be mcluded in the monitor
unit 120. The A/D converter 170 receives the analog voltage
signal 160 from the amplifier 150, samples the voltage signal
160, and converts the samples into a series of digital words
180 (e.g., eight, sixteen or thirty-two bit words), wherein
cach digital word 1s representative of the level of the voltage
signal 160 (and hence the intensities of the transmitted light
signals 130a, 130b) at a particular sample instance. In this
regard, the A/D converter 170 should provide for sampling
of the voltage signal 160 at a rate suflicient to provide for
accurate tracking of the shape of the various signal portions
comprising the analog voltage signal 160 being converted.
For example, the A/D converter 170 may provide for a
sampling frequency at least twice the frequency of the
highest frequency drive signal 60a, 60b, and typically at an
even greater sampling rate 1n order to more accurately
represent the analog voltage signal.

The series of digital words 180 1s provided by the A/D
converter 170 to the processor 80 to be demultiplexed. More
particularly, the processor 80 may periodically send an
interrupt signal 190 (e.g., once per every eight, sixteen or
thirty-two clock cycles) to the A/D converter 170 that causes
the A/D converter 170 to transmit one digital word 180 to the
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processor 80. The demodulation software may then demul-
tiplex the series of digital words 180 1n accordance with an
appropriate method (e.g., time, wavelength, or code) to
obtain digital signal portions indicative of the intensities of
cach of the transmitted light signals 130a, 130b. In this
regard, the demultiplexed digital signal portions comprise
time domain plethysmographic signals corresponding to the
center wavelengths A, A, (e.g., red and infrared) of the
optical signal sources 20a, 20b. The red and infrared time
domain plethysmographic signals may then be processed by
the processor 80 to obtain desired patient physiological
condition related information therefrom such as the patient’s
pulse rate and SPO2 level.

Referring now to FIG. 2, there 1s shown one embodiment
of a fuzzy neural-net multi-domain motion estimation and
plethysmographic recognition signal processing method
(200) that may be implemented on a pulse oximeter 10 such
as 1llustrated in FIG. 1. In this regard, where the processor
80 comprises a general purpose microprocessor or the like,
the signal processing method (200) may, for example, be
implemented 1n computer software instructions executable
by the processor 80. In other embodiments, the signal
processing method (200) may be implemented in hardware,
such as where the processor 80 comprises a field program-

mable gate array (FPGA) or an application specific inte-
grated circuit (ASIC) or the like.

The signal processing method (200) starts with obtaining
(210) two continuous time domain plethysmographic signals
such as red and infrared plethysmographic signals. The red
and infrared plethysmographic signals are digitized (220) by
sampling the signals at a suitable frequency (e.g., at least
about 50 Hz). Typical red and infrared time domain plethys-
mographic signals that have been sampled at 50 Hz are
shown in FIG. 4. The signals depicted in FIG. 4 include
motion artifacts. While the method (200) 1s illustrated with
two 1nput plethysmographic signals, 1n other embodiments,
the signal processing method (200) may be configured for
processing only one plethysmographic signal or processing,
more than two plethysmographic signals.

The digitized time domain red and infrared plethysmo-
graphic signals are directed to a smoothing module (230)
wherein they are smoothed via a suitable smoothing window
(e.g. Hanning, Hamming, or Kaiser). Smoothing the digi-
tized plethysmographic signals achieves improved fre-
quency estimation and prevents frequency spreading from
disconfinuities that would be seen with a rectangular time
window. However, smoothing may not be advantageous in

all mstances and thus may not be incorporated in other
embodiments of the method (200).

Thereafter, the red and i1nfrared plethysmographic signals
are transformed (240) from the time domain to other suitable
signal domains. Such signal domains include the cepstral
domain, a Wavelet {filtered domain, and various spectral
domains. In this regard, nth order cumulant spectral domains
such as, for example, the power spectrum (n=2), the bispec-
trum (n=3), and the trispectrum (n=4) are generally of
interest, with the power spectrum and the bispectrum being
particularly useful. In this regard, the bispectrum can be
used to obtain a coherence mdex that 1s useful to charac-
terize non-linearities 1n time series via phase relations of
harmonic components. In practical terms, this means that the
bispectrum has advantages for use 1n recognition of the
pulse signature among various noise components that may
be present 1n the time domain plethysmographic signals.

Transformation (240) of the time domain red and infrared
plethysmographic signals may be accomplished 1n a number
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of manners. As illustrated in FIG. 2, the digitized and
smoothed time domain plethysmographic signals may first

be processed 1n parallel via a complex FFT processing
module (241). The complex FFT processing module (241)

outputs spectral domain red and infrared plethysmographic
signals. If desired, the results of the FFT calculation may be
scaled to help prevent floating point errors in subsequent
computations. The output from the complex FFT processing
module (241) is then directed to a cepstrum processing
module (243), and various nth-order cumulant spectral
domain processing modules, including, in this embodiment,
a power spectrum processing module (244) and a bispectrum
processing module (246).

As part of the transformation (240), the digitized time
domain red and infrared plethysmographic signals are also
directed to a Wavelet filter bank processing module (242).
The Wavelet filter bank processing module (242) applies a
Wavelet transform to the time domain plethysmographic
signals. The Wavelet filter bank processing module (242)
outputs sets of coeflicients corresponding to each of the
input plethysmographic signals (the red and infrared Wave-
let filtered domain coefficient sets). Each of Wavelet filtered
domain coeflicient sets are directed from the Wavelet filter
bank processing module (242) to an input layer (251) of a

neural network processing module (250).

The cepstrum processing module (243) transforms the
spectral domain plethysmographic signals output by the
complex FFT processing module (241) to cepstral domain
plethysmographic signals. One manner of obtaining the
cepstral domain plethysmographic signals 1s to first compute
logarithmic scaled power spectra from the spectral domain
plethysmographic signals and then apply a second stage
complex FFT. In this regard, more detail concerning cepstral
domain processing of plethysmographic signals 1s provided

in U.S. Pat. No. 6,650,918 entitled “CEPSTRAL DOMAIN
PULSE OXIMETRY”, the entire disclosure of which i1s
hereby incorporated by reference heremn. If desired, the
results of the FFT calculation may be scaled to help prevent
floating point errors 1n subsequent computations. The cep-
strum processing module (243) outputs sets of coefficients
corresponding to each of the mput plethysmographic signals
(the red and infrared cepstral domain coefficient sets). Each
of the cepstral domain coetficient sets are directed from the
cepstrum processing module (243) to the input layer (251) of
the neural network processing module (250).

The power spectrum processing module (244) computes
red and infrared power spectrums from the spectral domain
plethysmographic signals output by the complex FFT pro-
cessing module (241). In this regard, the red and infrared
power spectrums may be computed by squaring and sum-
ming the appropriate real and 1maginary frequency compo-
nents obtained by the FFT. The power spectrum processing
module (243) outputs sets of coefficients corresponding to
cach of the input plethysmographic signals (the red and
infrared power spectral domain coefficient sets). Each of
power spectral domain coelflicient sets are directed from the
power spectrum processing module (243) to the input layer
(251) of the neural network processing module (250).

The bispectrum processing module (244) computes red
and 1nfrared bispectrums from the spectral domain plethys-
mographic signals output by the complex FFT processing
module (241). In this regard, for a Fourier transform F(w),
the red and infrared bispectrums are defined 1n accordance
with the following expression:

B(w,0,)=E[F(w)F(w,)F(w+0,)]

where m, and m, are the frequencies present in the spec-
trums. The bispectrum processing module (244) outputs sets
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of coellicients corresponding to each of the input plethys-
mographic signals (the red and infrared bispectral domain
coefficient sets). Each of bispectral domain coefficient sets
are directed from the bispectrum processing module (244) to
the input layer (251) of the neural network processing

module (250).

It should be noted that in other embodiments, transfor-
mation (240) of the digitized time domain plethysmographic
signals may not involve all of the domains shown in FIG. 2.
For example, only one of the cepstral, power spectral,
bispectral, or Wavelet filtered domains may be employed.
Or, a different combination of such domains (e.g., cepstral
and power spectral, cepstral and bispectral, etc.) may be
employed. Furthermore, 1n other embodiments transforma-
tion (240) may only involve application of a Wavelet filter
to the digitized time domain plethysmographic signals with-
out employing the complex FFT processing module (241) to
derive only Wavelet filtered time domain coeflicients.

The various sets of red and infrared Wavelet filtered
domain, cepstral domain, power spectral domain, and
bispectral domain coeflicients may be concatenated 1n vector
form for presentation to the neural network 1nput stage. The
assembled vector basically represents the information
present to the time epoch of the smoothing window. Each
successive assembled vector or frame represents different
successive time samples of the input signal, in sync with the
smoothing window time shift increment (typically half the
duration of the smoothing window). Each red and infrared
vector 1s associated with a single frame of sample 1nstances
in the digitized time domain plethysmographic signals. In
this regard, processing of the red and infrared plethysmo-
graphic signals in accordance with the method (200)
depicted in FIG. 2 1s preferably undertaken each time a
number m of new sample instances is/are received upon
digitizing (220) the input plethysmographic signals. In this
regard, m may be one, two, or more sample instances, and
m may be predetermined or may vary depending upon
factors such as classification of the signal 1n accordance with
the method (200). Thus, each time m sample instances 1s/are
received, a new frame 1s established.

Each frame may correspond with a window of sample
instances. In this regard, the window length may be fixed.
For example, the current sample 1nstance and n past sample
instances (n being a predetermined number) may be used in
performing the various calculations involved 1n the trans-
formation (240) of the plethysmographic signals into the
various signal domains. The predetermined number n may,
for example, be determined empirically based on tests
conducted using known plethysmographic data sets or it
may be established during training of the neural network
processing module (250). The window length may also vary.
For example, the current sample instance and a varying
number of past sample mstances may be used in performing
the various calculations involved 1n the transformation (240)
of the plethysmographic signals into the various signal
domains. The number of past sample 1nstances 1ncluded 1n
the varying length window may, for example, be varied
depending upon factors such as classification of the signal 1n
accordance with the method (200). As may be appreciated,
current calculations will not be influenced by older sample
instances that are discarded once outside the window length.

Alternatively, each frame may be recursive. In this regard,
the current sample 1nstance and all past sample instances are
included 1n each successive frame. As may be appreciated,
current calculations will be influenced by older sample
instances simce no sample instances are discarded when the
frames are of the recursive type. However, the influence of
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older sample 1nstances on current calculations can be
reduced, 1f desired, by weighting older sample 1nstances less
than current sample instances.

Each time a frame 1s established, the wvarious sets or
vectors of red and infrared Wavelet filtered domain, cepstral
domain, power spectral domain, and bispectral domain
coellicients associated with each respective frame are
directed to the input layer (251) of the neural network
processing module (250). In addition to the various sets of
coefficients, the input layer (251) may also receive addi-
tional inputs from an additional signal characteristics pro-
cessing module (260). The additional signal characteristics
may be derived by the additional signal characteristics
processing module (260) from one or more of the red and
infrared digitized signals, spectral domain signals, cepstral
domain signals, power spectral signals, and bispectral sig-
nals. Such additional signal characteristics include: (1) an
RMS energy measure; (2) a spikiness measure; (3) a spectral
jitter measure; (4) a spectral shimmer measure; (5) a spectral
smear measure; (6) cepstral peak jitter measure; and (7) a
cepstral peak position measure.

The input layer (251) assembles the various coefficients
and additional signal characteristics, if any, received thereby
and directs such inputs (as appropriately weighted) to one or
more hidden layers (252) of the neural network (250). The
hidden layer(s) (252) receive the appropriately weighted
input coetficients and additional signal characteristics, it
any, and direct such values (as appropriately weighted)
therefrom to an output layer (253) of the neural network
(250). Preferably, inputs from at least three data frames are
processed simultaneously by the neural network (250) to
classify the red and infrared plethysmographic signals by
plethysmographic signal type (271) and motion artifact type
(272), as well as to generate a respiration index (273) (e.g.,
depth and rate).

Once the plethysmographic signals (or frames thereof) are
classified, the processor 80 of the pulse oximeter 10 may
utilize the information in various manners. For example,
based on the plethysmographic signal type and motion type,
the processor 80 may undertake different filtering of the
plethysmographic signals before deriving physiological con-
ditions from the signals. For example, for a tapping motion
the processor 80 may choose to examine the cepstral trans-
form to extract the signal pulse component. For a severe
clenching motion the processor 80 may decide to use DC
tracking to determine SpO2 and choose not to attempt to
extract the pulse frequency. If the net output classification
indicated a highly wrregular plethysmographic signal type
but little motion artifact then the processor 80 might extract
pulse rate frequency and SpO2 values from the time domain.
By way of further example, based on the plethysmographic
type and motion type, the processor 80 may choose to adjust
how patient physiological conditions are derived from the
plethysmographic signals. In this regard, the neural network
classifier can be trained on abnormal signals (e.g., extreme
arrhythmia’s and different heart conditions) so that it will be
able to alert medical personnel to occurrence of unusual
waveforms possibly due to the onset of a critical physiologi-
cal condition.

Referring now to FIG. 3, there 1s shown a schematic
representation of one embodiment of a neural network 300
architecture that may be employed for plethysmographic
recognition, respiration activity and motion estimation in
accordance with the method (200) illustrated in FIG. 2. The
neural network 300 includes an 1input layer 302, one or more
hidden layers 304, and an output classification layer 306.
The 1nput layer 302 receives mput values in the form one or
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more frames 308 of input values produced at different times
from the current frame t0 backwards to frame t—-n, where n
1s an 1nteger. As depicted, in one embodiment there are three
frames (10, t-1, t-2). The time interval between frames 308
may be linear, as depicted, or 1t may be non-linear. Each
frame 308 may be made up of input values from a variety of
signal transforms (e.g., cepstral, bispectral, Wavelet, power
spectral) as well as additional signal characteristics, if any.

Each value 1n the frames 308 activates a separate node
(also referred to herein as neuron) in the neural network 300
mput layer 302. Each node in the mnput layer 302 activates
cach node 1n the first hidden layer 304 interconnected
thereto. There may be one or more hidden layers 304. Each
node 1n the last hidden layer 304 activates each node 1n the
output classification layer 306 interconnected thereto. The
output classification layer 306 includes a number of output
nodes. The total number of output nodes typically corre-
sponds to the number of different types of classification
required. In this regard, the output nodes may generally be
classified as being plethysmographic type output nodes 310
or motion type output nodes 312.

The output nodes provide indications as to the presence of
the particular type of plethysmographic signal or motion in
the red and infrared plethysmographic signals by firing at
various levels. A level approaching a specified high value
(e.g., 1) indicates a strong presence of the particular type of
plethysmographic signal or motion with which the node 1s
associated and a level approaching a specified low value
(c.g., 0) indicates a weak presence of the particular type of
plethysmographic signal or motion with which the node 1s
associated. Thus, the red and infrared plethysmographic
signals are classified by the various levels of the plethys-
mographic type and motion type output nodes 310, 312.

In addition to the plethysmographic signal type and
motion type output nodes 310, 312, there may also be one or
more respiration index output nodes 314. For example, there
may be a respiration rate output node and a respiration depth
output node. The values (e.g., from O to 1) of the respiration
rate and depth nodes comprise the respiration index of the
patient. In order to obtain a respiration index, comparing the
Wavelet filter bank coefficients from both the red and
infrared 1nput signals over time may offer the neural network
300 the required information necessary to determine respi-
ration activity, since the comparison (which the neural
network 300 may do in a number of ways) can provide SpO2
estimates. It 1s the pattern of such SpO2 estimates over time
that provides information to build a respiration index. Simi-
larly allowing the neural network 300 to compare the other
spectral transforms from both the red and infrared input
signals assists 1n extracting information that provides SpO2
estimates.

The neural network 300 architecture as described 1s a
feed-forward network, and when there i1s only a single
hidden layer 304, 1t 1s a three-layer feed-forward network.
Another form of the neural network 300 can be configured
by adding unit delay operators 316 at the hidden layer 304.
The schematic connections of the unit delay operators 316
are depicted 1in dashed lines to indicate that they may be
optionally included 1n order to achieve a recursive necural
network 300 architecture.

Regardless of the neural network 300 architecture, the
neural network 300 should be trained prior to use 1n order to
establish the appropriate weights applied to the various
interconnections between the various nodes. One method of
training the neural network 1s the backpropagation algo-
rithm. The backpropagation algorithm may be supervised by
a fuzzy logic controller processing module. The fuzzy logic
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controller 1s referenced m FIG. 2 as 280 and 1s depicted 1n
dashed lines to indicate that it may optionally be included
when training the neural network 300. The fuzzy logic
controller (280) helps speed up the convergence of the
backpropagation learning, and 1n some cases enables con-
vergence to take place, by controlling the learning param-
cters with a fuzzy rule set. Essentially some heuristics are
applied dependent on the change of error (CE—related to
error gradient) and the change of CE (CCE—related to
second-order error gradient). This has been shown to accel-

erate learning. The input to the neural network 300 may also
be “tuzzified” by slight perturbing and reordering input
values. Such a technique can increase the robustness of the
neural network 300 to recognize patterns 1n noise.

Referring now to FIG. §, there 1s shown one embodiment
of a method (500) for training the neural network. The neural
network training method (S00) establishes the appropriate
welghting values for the interconnections between the neu-
rons 1n the neural network architecture. In one embodiment,
the neural network training method (500) is implemented on
a computer system (e.g., a desktop or laptop computer).
After a trained neural network 1s generated on the computer,
the trained neural network can then be 1nstalled on a number
of pulse oximeters. Although not required, such centralized
training of the neural network and installation of the same
neural network on multiple pulse oximeters provides for
enhanced consistency among the recognition and classifica-
tion of various plethysmographic signals by different pulse
oximeters.

The neural network training method (500) begins with
selecting (510) a number of plethysmographic signal data
sets that are associated with a number of different types of
predetermined signal conditions. The plethysmographic sig-
nal data sets may be stored in a database of exemplary
plethysmographic signal data sets that 1s stored on a hard
drive of the computer or other storage media accessible by
the computer. By way of example, different types of prede-
termined signal conditions include: (1) normal adult plethys-
mographic signal; (2) normal baby plethysmographic signal;
(3) fixed frequency tapping motion without plethysmo-
graphic signal; (4) fixed frequency tapping motion with
plethysmographic signal; (5) moving frequency tapping
motion without plethysmographic signal; (6) moving fre-
quency tapping motion with plethysmographic signal; (7)
clenching motion without plethysmographic signal; (8)
clenching motion with plethysmographic signal; (9) baby-
kicking motion without plethysmographic signal; (10) baby-
kicking motion with plethysmographic signal; (11) irregular
plethysmographic signal associated with patient arrhythmaia;
(12) low perfusion condition plethysmographic signal; (13)
plethysmographic signal with fast breathing; (14) plethys-
mographic signal with shallow breathing; (15) plethysmo-
graphic signal with extended breath holding; and (16) no
plethysmographic signal. Examples of a number of different
red and infrared plethysmographic signal conditions are
depicted 1n FIGS. 6A-D.

Typically, the plethysmographic signal data sets are stored
in the form of time domain signals. Thus, the selected
plethysmographic signal data sets are transformed (520)
from the time domain to the other signal domains (e.g.,
cepstral, power spectral, bispectral, Wavelet filtered
domains) to be utilized as inputs to the neural network
processing module (250). Transformation (520) results in a
corresponding number of transformed plethysmographic
signal data sets. Thereafter, sets or vectors of coeflicients are
extracted (530) from the transformed plethysmographic sig-
nal data sets. As may be appreciated, the steps of transform-
ing (520) and extracting (530) may, for example, be accom-
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plished as described in connection with the transforming
step (240) of the method (200) of FIG. 2. In addition to the

extracted coetlicients, additional signal characteristics may
be derived (540) from the plethysmographic signal data sets
and the various transformed signal domains. The additional
signal characteristics that are derived should be the same
ones as are 1ntended to be employed by the neural network

processing module (250) in addition to the various signal
domain coethcients.
The sets or vectors of extracted coethicients and the

additional signal characteristics are then used (550) as inputs
to train the neural network. A learning procedure 1s used to
adjust (560) the weighting values associated with the various
interconnections between neurons in the neural network
until the weighting values are optimized. In this regard,
learning procedures such as the backpropagation and simu-
lated annealing may be employed.

In some instances, the trained neural network may have
difficultly recognizing and classitying a particular plethys-
mographic signal encountered 1n the field. In such 1nstances,
it may be desirable to add such plethysmographic signals
(e.g., new plethysmographic signals of interest) to the set of
training signals used to train a neural network for a new set
of pulse oximeters or to retrain the neural network 1nstalled
In existing pulse oximeters. When encountered in the field,
new plethysmographic signals of mterest may be stored in
the memory device(s) 82 of the pulse oximeter(s) 10.
Thereafter, new plethysmographic signals of interest may be
retrieved (570) from the memory device(s) 82 of the pulse
oximeter(s) and added (580) to the database of plethysmo-
graphic signal data sets.

While various embodiments of the present invention have
been described 1n detail, further modifications and adapta-
tions of the mvention may occur to those skilled in the art.
However, it 1s to be expressly understood that such modi-
fications and adaptations are within the spirit and scope of

the present invention.
What 1s claimed 1s:

1. A pulse oximeter comprising:

a lirst optical signal source operable to emit an optical
signal characterized by a first wavelength;

a second optical signal source operable to emit an optical
signal characterized by a second wavelength different
than said first wavelength;

a detector operable to receive said first and second optical
signals after said first and second optical signals are
attenuated by a patient tissue site of a patient, said
detector being further operable to provide a detector
output signal representative of said attenuated first and
second optical signals; and

a processor enabled to obtain first and second time
domain plethysmographic signals from the detector
output signal and classify at least one of the first and
second time domain plethysmographic signals using a
neural network, said neural network receiving input
coellicients derived from at least one transform of said
at least one of said first and second time domain
plethysmographic signals.

2. The pulse oximeter of claim 1 wherein said at least one

of said first and second time domain plethysmographic
signals 1s classified by said neural network as being asso-
clated with at least one of a plurality of different types of
predetermined signal conditions.

3. The pulse oximeter of claim 2 wherein the plurality of
different types of predetermined signal conditions comprise:

(1) Normal adult plethysmographic signal;
(2) Normal baby plethysmographic signal;

(3) Fixed frequency tapping motion without plethysmo-
graphic signal;
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(4) Fixed frequency tapping motion with plethysmo-
oraphic signal;

(5) Moving frequency tapping motion without plethys-
mographic signal;

(6) Moving frequency tapping motion with plethysmo-
oraphic signal;

(7) Clenching motion without plethysmographic signal;

(8) Clenching motion with plethysmographic signal;

(9) Baby-kicking motion without plethysmographic sig-
nal;

(10) Baby-kicking motion with plethysmographic signal;

(11) Irregular plethysmographic signal associated with
patient arrhythmia;

(12) Low perfusion condition plethysmographic signal;

(13) Plethysmographic signal with fast breathing;

(14) Plethysmographic signal with shallow breathing;

(15) Plethysmographic signal with extended breath hold-
ing; and

(16) No plethysmographic signal.

4. The pulse oximeter of claim 2 wherein said neural
network 1s trained prior to field use with data sets represen-
tative of each of said plurality of different types of prede-
termined signal conditions.

5. The pulse oximeter of claim 4 wherein said neural
network comprises a fuzzy neural network that has been
trained prior to field use 1n a manner achieving fuzzification
of said pre-trained neural network.

6. The pulse oximeter of claim 1 wherein said at least one
transform comprises at least one of a spectral transform, a
bispectral transform, a cepstral transform, and Wavelet filter
bank transform.

7. The pulse oximeter of claim 6 wherein, 1n addition to
sald coefficients, said neural network further receives at least
one signal characteristic derived from at least one of the first
time domain plethysmographic signal, the second time
domain plethysmographic signal, and said at least one
transform of said at least one of said first and second time
domain plethysmographic signals.

8. The pulse oximeter of claim 7 wherein said at least one
signal characteristic comprises at least one of:

(1) An RMS energy measure;
(2) A spikiness measure;

(3) A spectral jitter measure;

(4) A spectral shimmer measure;

(5) A spectral smear measure;

(6) A cepstral peak jitter measure; and

(7) A cepstral peak position measure.

9. The pulse oximeter of claim 1 wherein said neural
network comprises one of a feed-forward network and a
recursive network.

10. The pulse oximeter of claim 9 wherein 1nputs to an
intermediate layer of said neural network are used to fuzzily
the 1nput coeflicients to an initial layer of said neural
network.

11. The pulse oximeter of claim 1 wheremn said first
wavelength 1s within the range of infrared light wavelengths
and said second wavelength 1s within the range of red light

wavelengths.
12. The pulse oximeter of claim 1 wheremn said pulse

oximeter further comprises:

a drive system operable to cause operation of said first and
second optical signal sources such that each of said first
and second optical signal sources emit first and second
optical signals, respectively, in accordance with a mul-
tiplexing method;
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a sampler operable to sample the detector output signal at
a desired sampling rate and output a signal having a
seriecs of sample values representative of said attenu-
ated first and second optical signals; and

wherein said processor comprises a digital processor, said
digital processor being further operable to demultiplex
the series of sample values to obtamn said first and
second time domain plethysmographic signals.

13. The pulse oximeter of claim 12 wherein said desired
sampling rate 1s at least 50 Hz.

14. The pulse oximeter of claim 12 wherein said multi-
plexing method comprises at least one of frequency division

multiplexing, time division multiplexing, and code division
multiplexing.

15. A method of processing a plethysmographic signal
obtained from a patient, the plethysmographic signal being
obtained 1n a first signal domain, said method comprising the
steps of:

transforming the plethysmographic signal from the first

domain to a plurality of signal domains different from
the first domain to obtain a corresponding plurality of
transformed plethysmographic signals, each trans-
formed plethysmographic signal being 1n one of the

different signal domains;

selecting a plurality of sets of coellicients, each set of
coellicients being derived from a corresponding one of
the transformed plethysmographic signals;

inputting the sets of coefficients to a neural network; and

classifying the plethysmographic signal based on an out-

put from the neural network.

16. The method of claim 15 wheremn the first domain
comprises the time domain and wherein said step of trans-
forming comprises:

transforming the plethysmographic signal from the time

domain to the spectral domain to obtain a spectral
domain plethysmographic signal; and

transforming the spectral domain plethysmographic sig-

nal to the cepstral domain to obtain a cepstral domain
plethysmographic signal.

17. The method of claim 16 wherein said step of trans-
forming the plethysmographic signal from the time domain
to the spectral domain comprises:

performing a Fourier transformation on the time domain

plethysmographic signal.

18. The method of claim 16 wherein said step of trans-
forming the plethysmographic signal from the spectral
domain to the cepstral domain comprises:

performing a Fourier transformation on the spectral

domain plethysmographic signal.

19. The method of claim 16 wherein said step of trans-
forming further comprises:

transforming the plethysmographic signal from the time

domain to the bispectral domain to obtain a bispectral
domain plethysmographic signal.

20. The method of claim 19 wherein said step of trans-
forming the plethysmographic signal from the time domain
to the bispectral domain 1s performed 1 accordance with the
following expression:

Boy,0,)=E[F(w ) F(0)F{w+0,)]

where w, and w, are the frequencies present 1n spectrums
of the time domain plethysmographic signal.
21. The method of claim 16 wherein said step of trans-
forming further comprises:
applying a Wavelet filter bank transform to the time
domain plethysmographic signal to obtain a Wavelet
filtered domain plethysmographic signal.
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22. The method of claim 15 further comprising:

deriving at least one signal characteristic using informa-
tion 1ncluded 1n at least one of the first domain plethys-
mographic signal or the transformed plethysmographic
signals; and

inputting the at least one signal characteristic to the neural
network 1 addition to the sets of coeflicients.

23. The method of claim 22 wheremn, 1n said step of

deriving, the at least one signal characteristic comprises at
least one of:

(1) An RMS energy measure;
(2) A spikiness measure;

(3) A spectral jitter measure;

(4) A spectral shimmer measure;

(5) A spectral smear measure;

(6) A cepstral peak jitter measure; and

(7) A cepstral peak position measure.

24. The method of claim 15 wherein, 1n said step of
selecting, each set of coeflicients corresponds with a plural-
ity of frames of 1ts corresponding transformed plethysmo-
graphic signal.

25. The method of claim 15 wherein said step of classi-
fying comprises:

assoclating the output from the neural network with at

least one of a plurality of different types of predeter-
mined signal conditions.

26. The method of claim 25 wherein, 1n said step of

associating, the plurality of different types of predetermined
signal conditions comprise:

(1) Normal adult plethysmographic signal;

(2) Normal baby plethysmographic signal;

(3) Fixed frequency tapping motion without plethysmo-
oraphic signal;

(4) Fixed frequency tapping motion with plethysmo-
oraphic signal;

(5) Moving frequency tapping motion without plethys-
mographic signal;

(6) Moving frequency tapping motion with plethysmo-
oraphic signal;

(7) Clenching motion without plethysmographic signal;

(8) Clenching motion with plethysmographic signal;

(9) Baby-kicking motion without plethysmographic sig-
nal;

(10) Baby-kicking motion with plethysmographic signal;

(11) Irregular plethysmographic signal associated with
patient arrhythmia;

(12) Low perfusion condition plethysmographic signal;

(13) Plethysmographic signal with fast breathing;

(14) Plethysmographic signal with shallow breathing;

(15) Plethysmographic signal with extended breath hold-
ing; and

(16) No plethysmographic signal.
27. The method of claim 25 further comprising:

training the neural network prior to field use with data sets
representative of each of said plurality of different
types of predetermined signal conditions.

28. The method of claim 27 wherein, in said step of
training, the neural network 1s trained prior to field use 1n a
manner achieving fuzzification of the neural network.

29. The method of claim 27 wherein, in said step of
training, the neural network 1s trained in accordance with
one of a backpropagation learning procedure and a simu-
lated annealing learning procedure.
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30. The method of claim 29 wherein, mn said step of
training, the backpropagation learning procedure i1s 1mple-
mented with fuzzy logic control.

31. The method of claim 15 further comprising:

transmitting an optical signal through a tissue site of the
patient to obtain the first domain plethysmographic
signal.

32. A method of training a neural network to classify a
plethysmographic signal obtained from a patient, said
method comprising the steps of:

selecting a plurality of first domain plethysmographic
signal data sets associated with a plurality of different
types of predetermined signal conditions from a data-
base of plethysmographic signal data sets;

transforming the first domain plethysmographic signal
data sets to other signal domains different than the first
domain to obtain a corresponding plurality of trans-

formed plethysmographic signal data sets;

extracting a plurality of sets of coefficients from the
transformed plethysmographic signal data sets, each set
of coefficients being extracted from a corresponding
onc of the transformed plethysmographic signal data
Sels;

using the sets of extracted coeflicients as inputs to the
neural network; and

adjusting weighting values associated with connections
between neurons in the neural network 1n accordance
with a learning procedure.

33. The method of claim 32 wherein, 1in said step of

selecting, the plurality of different types of predetermined
signal conditions comprise:

(1) Normal adult plethysmographic signal;

(2) Normal baby plethysmographic signal;

(3) Fixed frequency tapping motion without plethysmo-
graphic signal;

(4) Fixed frequency tapping motion with plethysmo-
graphic signal;

(5) Moving frequency tapping motion without plethys-
mographic signal;

(6) Moving frequency tapping motion with plethysmo-
graphic signal;

(7) Clenching motion without plethysmographic signal;

(8) Clenching motion with plethysmographic signal;

(9) Baby-kicking motion without plethysmographic sig-
nal;

(10) Baby-kicking motion with plethysmographic signal;

(11) Irregular plethysmographic signal associated with
patient arrhythmia;

(12) Low perfusion condition plethysmographic signal;

(13) Plethysmographic signal with fast breathing;

(14) Plethysmographic signal with shallow breathing;

(15) Plethysmographic signal with extended breath hold-
ing; and

(16) No plethysmographic signal.

34. The method of claim 32 wherein, m said step of
transforming the first domain plethysmographic signal data
sets to other signal domains, the signal domains different
than the first domain comprise spectral, cepstral, bispectral
and Wavelet filter bank signal domains.

35. The method of claim 32 wherein, 1 said step of
adjusting, the weighting values are adjusted in accordance
with one of a backpropagation learning procedure and a
simulated annealing learning procedure.
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36. The method of claim 32 further comprising:

deriving at least one signal characteristic using 1informa-
tion 1mncluded 1n at least one of the first domain plethys-
mographic signal data sets and the transformed plethys-
mographic signal data sets; and

using the at least one signal characteristic as an input to
the neural network 1n addition to the extracted coeffi-
cients.

37. The method of claim 36 wherein, 1n said step of

deriving, the at least one signal characteristic comprises at
least one of:

(1) An RMS energy measure;
(2) A spikiness measure;

(3) A spectral jitter measure;
(4) A spectral shimmer measure;

(5) A spectral smear measure;
(6) A cepstral peak jitter measure; and

(7) A cepstral peak position measure.
38. The method of claim 32 further comprising:

storing plethysmographic signals of interest.
39. The method of claim 38 wheremn, 1n said step of

storing, the plethysmographic signal of interest 1s stored in
a memory device of a pulse oximeter.
40. The method of claim 38 further comprising:

retrieving the stored plethysmographic signal of interest;
and

adding the plethysmographic signal of interest to the
database of plethysmographic signal data sets.

41. A method of providing information relating to a

physiological condition of a patient based on at least one

plethysmographic signal obtained from the patient, the

plethysmographic signal being obtained in a first signal
domain, said method comprising the steps of:

transforming the plethysmographic signal from the first

domain to a plurality of signal domains different from
the first domain to obtain a corresponding plurality of
transformed plethysmographic signals, each trans-
formed plethysmographic signal being in one of the
different signal domains;

classitying the plethysmographic signal based on an out-
put from a neural network, wherein the output of the
neural network 1s based on input coeflicients derived
from at least one of the transformed plethysmographic
signals; and

selecting a technique for determining the physiological

condifion of the patient based on the classification.

42. The method of claim 41 wherein the physiological
condition of the patient comprises a pulse rate.

43. The method of claim 41 wherein at least two plethys-
mographic signals corresponding to different optical wave-
lengths are transformed and classified, and wherein the
physiological condition of the patient comprises an SpO2
value.

44. The method of claim 41 wherein at least two plethys-
mographic signals corresponding to different optical wave-
lengths are transtormed and classified, the plethysmographic
signals being transformed using at least a Wavelet filter bank
transform, and wherein the physiological condition of the
patient comprises a respiration index.

45. The method of claim 41 wherein the first domain
comprise the time domain and the plurality of signal
domains different than the first domain comprise spectral,
cepstral, bispectral and Wavelet filtered domains.
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