US006909436B1
a2 United States Patent (10) Patent No.: US 6,909,436 Bl
Pianykh et al. 45) Date of Patent: Jun. 21, 2005
(54) RADIOLOGIST WORKSTATION 5,546,103 A * §8/1996 Rhodes et al. 345/781
5,740,801 A * 4/1998 Branson 600/407
(75) Inventors: Oleg N, Pianykh? Baton Rouge? 1A 6,266,054 B1 * 7/2001 Law'ton et al. 345/581
(US); David Troendle, New Orleans, 6,407,747 B1 * 6/2002 Chui et al. 345/660
LA (US); John M. Tyler, Baton Rouge, . s -
LA (US), Wilfrido Castaneda-Zuniga, cited by examiner
New Orleans, LA (US) Primary Fxaminer—Kimbinh T. Nguyen
(73) Assignee: The Board of Supervisors of %74) Attorney, Agent, or Firm—Jones, Walker, Waechte,
.) : oitevent, Carrere & Denegre, L.L.P.
Louisiana State University and
Agrigultural & Mechanical College, (57) ABSTRACT
Baton Rouge, LA (US) o _ _
A radiologist workstation program capable of performing
(*) Notice: Subject to any disclaimer, the term of this the methods of: (a) losslessly compressing an 1mage by
patent is extended or adjusted under 35 using a sample of pixel neighborhoods to determine a series
U.S.C. 154(b) by 351 days. of predictive coelflicients values related to the pixel neigh-
borhoods; (b) lossy compressing an image to a predeter-
(21) Appl. No.: 09/697,992 mined ratio by adjusting the quality parameter 1n a quality
’ controlled compression routine; (¢) adjusting the compres-
(22) Filed: Oct. 27, 2000 sion ratio of image data based upon the available bandwidth
of a network link across which the image is transmitted; (d)
Related U.S. Application Data encapsulating audio data in a DICOM object and selectively
(60) Provisional application No. 60/161?770? filed on Oct. 27? re‘[rieving ‘[he da‘[a; (e) performing an improved in‘[eger
1995. based ray tracing method by establishing a ray angle from an
(51) Int. CL7 oo, G09G 5/00 observer position and adjusting the ray angle such that the
(52) US.CL ..o 345/619; 345/581; 345/660; directional components of.the ray angle are rational aum-
345/671; 345/781; 345/797 bers; and (f) reducing flicker caused by a magnifying
(58) Field of Search 345/660, 600 window moving across an image on the display screen by
345/581. 619. 620. 781. 797 67f 617? determining what portion of a first window position 1s not
COvere a new window position and restoring from
? ? ? ? ? 2 d by . d p ., 0. d . g f
(56) References Cited memory that portion of the image which corresponds to the
portion of the first window not covered by the second
U.S. PATENT DOCUMENTS window.
5,321,807 A * 6/1994 Mumford 345/543
5,465,362 A * 11/1995 Orton et al. 709/107 8 Claims, 15 Drawing Sheets

- i ¢ far § W Y W F WF O B - i a EROe]

10

U.S. Patent Jun. 21, 2005 Sheet 1 of 15 US 6,909,436 Bl

// for each pixel in the NxM z'm{ge |
for(x=1; x<N; x+=]) |

{
. for(y=1; y<M; y+=1) |
| {

// Consider I(x,y), I(x-1,y), I(x,y-1), ... neighborhood of (x,y)
| /1 If some if I(x-1y-j) fall out of image boundaries, replace them by 0
// Do not consider reference pixels (I(x-i,y-j) where i j=0)
// Apply (6) to compute e(x,y)
sum_kI=0;
for(i=0; i<a; i+=1)
{
Jor (=0; j<a; j+=I)
/

if(I(x-1,y-j)==out of bounds pixel) I(x-i,y-j)=0;
if(i==0 &d j==0) continue;,
sum_kI=sum_ki+kj*I(x-i,y-j),

}
/
sum_ki=sum kI>>10;
e(x, y) =](x, y)-sum__k[

FIGURE 2

U.S. Patent Jun. 21, 2005 Sheet 2 of 15 US 6,909,436 Bl

int RTJPEG::CompressRT(BYTE™ input, BYTE* output, double ratio, double maxtime,
int bpp=1, bool rgb=false)
{
int size_orig = Size(input); // original image size in bytes
// Set max and min quality values
int q0=3; // 5% quality
| int ql =95; /1 95% quality t
// Find respective compression ratios. Higher ratio corresponds to lower quality
double r0 = size_orig/Compress(input,output,q0, int bpp=1, bool rgb=false);
// lghest ratio
double rl = size_orig/Compress(input,output,ql, int bpp=1, bool rgb=false);
// lowest ratio
// Return 1f proposed ratio is smaller than the smallest possible l

if(ratio<rl) return JPEG::Compress(input, output, ql),
// Return if proposed ratio is larger than the largest possible
if(ratio>r0) return Compress(input, output, q0);
// Start timer
clock t start, finish;
start = clock(),
| // Start iterative process to estimate the quality value

double duration=0; double r = ratio,
while (duration<maxtime)
| {
// Use linear quality estimate
int q = q0+(r-r0)*(q1-q0)/(r1-r0);
// Alternatively, a bi-section estimate can be used in the previous line: |
/l int q = (q0+ql)/2;
// Update estimated corresponding compression ratio value | |

r = size_orig/Compress(input,output,q);

// Update compression and quality boundaries

if(ratio>r)

{
rl =r; iflq]==q) break; // convergence
g/ =g,

/

else

{
rO=r, if(q0== break; // convergence
q0=q;

/

// Update timer

finish = clock(); duration = (double)(finish - start) / CLOCKS PER_SEC;

). // end of iterative process

' // Compress
return Compress(input, output, q);

/

FIGURE 3

U.S. Patent Jun. 21, 2005 Sheet 3 of 15 US 6,909,436 Bl

/ It is assumed that ApplicationEntityList ael and DICOMObject d variables i
// have been already initialized based on the present network
// configuration and the data to be sent.

// Find current remote application entity, to which data must be sent
ApplicationEntity ae = ael. GetCurrentEntity();

// Create PDU connection
PDU pdu;

// Start network performance timer
NetworkTimer nt;

// Find data size to be sent

nt.GetDataSize(d);
nt.StartTimer()

// Send data to current application entity

pdu.Send(d ae);

// Stop the timer, evaluate observed network bandwidth, and store it into ae
nt. EstimateCurrentBandwidth(ae);

FIGURE 4

U.S. Patent Jun. 21, 2005 Sheet 4 of 15 US 6,909,436 Bl

/ It is assumed that ApplicationEntityList ael and DICOMObject d variables
/] have been already 1initialized based on the present network
f// configuration and the data to be sent.

// Compress DICOM object to accommodate current network bandwidth

int dsize = d.GetSize();

int ntime = ae.GetDownloadTime(); // maximum allowable download time

int ctime = dsize /ae.GetCurrentBandwidth(); //time we’ll spend with current bandwidth
if(ctime > ntime) // low bandwidth, we need compression

{
if(ae.CanAcceptLossy()) // we can use lossy compression
{
// Compress with maximum ratio allowed
double ratio = min(ctime/ntime, ae. GetMaximumCompressionRatio());
d.Compress(false,ratio);
/
else if(ae.CanAcceptCompressed()) // only lossless, try our best
! |
d.Compress(true, /*ignored*/1.0);
/
else // no JPEG compression allowed, do nothing
{
/
/
else // network 1s fast enough, do not have to compress
{/
// Create PDU connection
PDU pdu,

// Send compressed data to current application entity
pdu.Send(d,ae);

FIGURE 5

U.S. Patent Jun. 21, 2005 Sheet 5 of 15 US 6,909,436 Bl

class AccurateTimer
{
private ;
int Initialized:
__int64 Frequency;
. int64 BeginTime;
public : AccurateTimer() // constructor
{
// get the frequency of the counter
Initialized = QueryPerformanceFrequency((LARGE INTEGER
*)&Frequency);
/
void StartTimer() // start timing
{
if(! Initialized) return 0; // error - couldn't get frequency
// get the starting counter value
QueryPerformanceCounter((LARGE INTEGER *)&BeginTime);
return
}
double EndTimer() /I stop timing and get elapsed time in seconds
{
if(| Initialized) return 0.0, // error - couldn't get frequency
/I get the ending counter value '
__Int64 endtime;
QueryPerformanceCounter((LARGE _INTEGER *)&endtime);
// determine the elapsed counts
| __int64 elapsed = endtime - BeginTime; |
// convert counts to time in seconds and return it
return (double)elapsed / (double)Frequency; J
/

FIGURE 6

U.S. Patent Jun. 21, 2005 Sheet 6 of 15 US 6,909,436 Bl

bool SoundRecorder::Record(int sf, bool stereo, int max_time=300, int

| max_size=1000000, int format=WAYV)

{ |
DWORD dwReturn,

// Open a waveform-audio device with a new file for recording.

1f(!OpenMCI()) return;

MCI RECORD _PARMS mciRecordParms;
// Set recording parameters here as fields in mciRecordParms

mciRecordParms.dwFrom = 0; |
mciRecordParms.dwTo = max time;

mciRecordParms.dwCallback = (DWORD)(this->GetSafeHwnd()),

/{ Record
if (dwReturn = mciSendCommand(m_Device.wDeviceID, MCI RECORD,
MCI_FROM | MCI_NOTIFY, (DWORD)(LPVOID) &mciRecordParms))

{

AfxMessageBox(ErrorMCI(dwReturn, "Recording error: ")); _ |
mciSendCommand(m_Device.wDeviceID, MCI CLOSE, 0, NULL);

return false,

/

return true;

FIGURE 7

void SoundRecorder.:Insert(DICOMObject& dob)
{

BYTE* sound;
if(GetFormat() /= MP3) // we have to encode the sound

{

SoundEncoder se;
if(se.Encode(GetSound(), GetFFormat(), sound)

{
/

return false; // we failed to encode

/

// Store sound bytes into odb object

return true,

FIGURE 8

U.S. Patent Jun. 21, 2005 Sheet 7 of 15 US 6,909,436 Bl

F(x,y,2)

FIG. 10

U.S. Patent Jun. 21, 2005 Sheet 8 of 15 US 6,909,436 Bl

’

FIG. 11

BI

b

B
Cl
t C
.. C

A , T
"\.‘-Dl;;‘
d
D

FIG. 12

U.S. Patent Jun. 21, 2005 Sheet 9 of 15 US 6,909,436 Bl

10

ray

FIG. 13 (a)

18

FIG. 13 (b)

U.S. Patent Jun. 21, 2005 Sheet 10 of 15 US 6,909,436 Bl

FIG. 14

U.S. Patent Jun. 21, 2005 Sheet 11 of 15 US 6,909,436 Bl

10

ray

FIG. 15 (a)

24

26

FIG. 15 (b)

U.S. Patent Jun. 21, 2005 Sheet 12 of 15 US 6,909,436 Bl

t (depth) 1-linear root interpolation
I 2-parabolic root interpolation

* 4am & mk o oy 3 2 E 5 P s BF F B F Y A OF & ER 1 B W

F 1.3)
F(A) F(M) FEy | o

p3
pd
pb p3
FIG. 17
Tracing time for different d
100% t (for each object, in % of the case d=2)
80%
60%
40%
200 |~

U.S. Paten

Jun. 21, 2005

Y. :
> R -8 3

~ 1

32

FIG. 20 (a)

Sheet 13 of 15

.ﬁ....

&‘ s i ,!‘. T

Ay m

L

] -'-.}. "I

L

Y L PR
R R RN L L

e
or s

i ;":' : rl-'-..'..,'—u'il.

-,

FIG. 20 (b)

US 6,909,436 Bl

30

L]

31

% T

L
b

L AT e
- "l.:. i-_? -

%

-4

_r... 'y

o ;

R R S P L

‘an;:‘_' f‘::nen T '?T !
ok S :,4::"_

FIG. 20 (¢)

U.S. Patent Jun. 21, 2005 Sheet 14 of 15 US 6,909,436 Bl

o 35 » 44
siore present image in memory find hiStﬁgI' am for image rcgion R1
. : : remove outlying pixels until
receive image region RO to be magnified predetermined number of pixels are
removed
37
I
display magnified R¢ in window Po
redistribute removed pixels over
intensity spectrum
» 38

receive new window position Pt

filter image with appropriate noise

removal of f{ilter.

calculate new image region R to be
magnified

calculate corner of P1 found in PO

] o 31

calculate portion of window P0 not found
1 window P

restore region of Po not found in P1 with
original image

- optimize
contrast

display magnified region Rt in window
Pi

F1G. 22

U.S. Patent Jun. 21, 2005 Sheet 15 of 15 US 6,909,436 Bl

500
30
- 100,250 250,250
200,200
P PI
Py
. 250,100
34 50,50 200,50
0 500
FIG. 21
Find R, histogram: Remove outliers

AN 255 235

FIG. 23(a) FIG. 23(b) FIG. 23(c)

US 6,909,436 B1

1
RADIOLOGIST WORKSTATION

This utility patent application claims benefit of provi-
sional patent application No. 60/161,770, filed on Oct. 27,
1999.

Appendix 1 1s a computer program listing appendix
consisting of two compact discs, each having a complete
copy of the source code executing the functions described 1n
the accompanying specification. The contents of the com-
pact discs are incorporated by reference heremn. High level
folders on the compact discs are:

Name Size Date Last Modified
Dicom__h 37.4 kB Oct. 27, 2000
DICOMLib 2.05 MB Oct. 27, 2000
GUIL1b 58.3 kB Oct. 27, 2000
hlp 188 kB Oct. 27, 2000
[mage 81.6 kB Oct. 27, 2000
Query 139 kB Oct. 27, 2000
RayTraceDialog 381 kB Oct. 27, 2000
res 222 kB Oct. 27, 2000
Tools 6.65 kB Oct. 27, 2000
WinMetheusLib 199 kB Oct. 27, 2000
Z11b113 135 kB Oct. 27, 2000

BACKGROUND OF INVENTION

The present invention relates to improvements in a Picture
Archiving and Communications System (PACS). In
particular, the invention relates to a set of software tools,
which will create a client-server PACS significantly enhanc-
ing the use, transfer, and analysis of medical images stored
in a medical image database.

PACS operating upon medical image databases almost
universally comply with the Digital Imaging in Communi-
cation and Medicine (DICOM) standard. DICOM is the
widely accepted standard for digital medical data
representation, encoding, storage and networking. The
DICOM standard 1s specified in 14 volumes (traditionally
numbered as PS3.1-PS3.14), available from National Elec-
trical Manufacturers Association (NEMA) and is well
known to those working 1n the digital medical imaging area.
The standard provides strict guidelines for medical digital
imaging, and 1s supported by virtually all present medical
system manufacturers. The DICOM standard 1s object-
oriented and represents each information enfity as a set of
Data Elements (such as Patient Name, Image Width) with
their respective values encoded with DICOM Dictionary
(PS3.5-PS3.6). While there are numerous existing PACS
with many specialized features, these PACS could be
enhanced with new forms of data compression and other
features rendering the PACS more efficient to the user.

Existing PACS have included methods of lossless
compression, such as the well-known Joint Photographer
Experts Group (JPEG) algorithm. Lossless compression is
naturally a more limited form of compression since it 1s
necessary to preserve all information in the image. Because
the degree of compression 1s more limited, there 1s always
a neced 1 the art to provide more efficient methods of
losslessly compressing image data. Therefore, the present
invention provides an improved method of lossless com-
pression.

In addition to JPEG lossless compression, DICOM pro-
vides a method of JPEG lossy compression. DICOM support

10

15

20

25

30

35

40

45

50

55

60

65

2

for the standard lossy JPEG compression can be imple-
mented with an object-oriented JPEG class having the
following Compress method:

int JPEG::Compress(BYTE* input, BYTE* output, int quality, int
bpp=1, bool rgb=false)

wherein the parameters of this method are:
BYTE* input—a pointer to the original image pixel array,

BYTE* output—a pointer to the compressed image pixel

array

int quality—compression quality

int bpp—>bytes per pixel 1n the original 1image

int rgb—color flag of the original image (true if a color

image is given, and false for grayscale).

The function “Compress” returns an int or integer value
which 1s the size of the compressed image (i.e. the size
(number of bytes) of the output array). Naturally, in lossy
compression, the amount of compression will correspond to
a certain amount of information loss in the original 1mage.
In standard JPEG, the amount of information loss in the
Compress function 1s specified with JPEG quality parameter,
which ranges from 0-100%. A quality=100% corresponds to
minimal loss and low compression ratios, while a smaller
quality percentage value corresponds to a higher loss and a
higher compression ratio. The choice of the quality value
permits the user to compromise between the perceptional
image quality and the compressed 1image size. However, the
main disadvantage of the quality parameter 1s that it 1s not
directly related to the corresponding compression ratio: 1.e.,
setting quality to 50% will produce different compression
ratios for different images. For example, at 50% quality, a
low entropy (low information content) image would be
compressed much more than a high entropy (high informa-
tion content) image. Therefore, if one is attempting to
compress 1mages with varying information content to the
same predefined compression ratio, the quality parameter
becomes practically useless. Thus, what 1s needed 1n the art
and what 1s provided in one embodiment of the invention
described below, 1s a new JPEG compression method based
on a predefined compression ratio, rather than compression
quality.

PACS are often implemented on network systems such as
Local Area Networks (LANSs) and include a server system
controlling the transfer of medical image data from storage
devices to multiple client systems. Since medical image files
are typically large data files, 1t 1s not uncommon for simul-
taneous data requests from multiple client systems to heavily
burden the existing bandwidth of the network’s data link.
Insutficient network bandwidth to accommodate the demand
of client systems results 1n undesirably slow download of
data to the client systems. Network bandwidth on any given
network can also vary significantly depending on the num-
ber of clients currently using the network or other factors
placing computational load on the system.

Compressing an 1image prior to 1t being transferred across
the network 1s one manner of compensating for insufficient
bandwidth. Compressing data on a local computer 1s typi-
cally done much faster than downloading an image from a
remote system. Therefore, compressing data by n times
before transmission will reduce the download time of that
data by nearly n times. As mentioned, the DICOM standard
already includes JPEG lossless and lossy compression for
local 1mage storage. It may often be possible to alleviate
most bandwidth problems by compressing data to a large
degree (typically through lossy compression). However,
lossy compression results 1n the loss of some information in

US 6,909,436 B1

3

the compressed data and this loss may be unacceptable 1n
medical images which are used 1n certain applications. Even
where lossy compression 1s acceptable, 1t 1s desirable to
minimize the mformation loss.

What 1s needed in the art 1s a method of maintaining an
acceptable download time across a network while compress-
ing 1image data only to the degree necessary to maintain that
download time. In other words, a method of adjustably

compressing data 1n response to the available network
bandwidth.

Another shortcoming of existing PACS 1s their failure to
encapsulate audio information in DICOM objects. Audio
information 1s often used in medical practices to record
reports, clinical sounds, and the like. However, unlike image

data, the DICOM standard provides no support for sound
data encapsulation 1n DICOM objects. Typically, DICOM

compliant systems store and interpret audio data separately,
with the respective DICOM 1image object containing a
pointer to the present audio data location. The main defi-
ciency of this approach 1s that the audio data is separated

from the rest of the DICOM information. Thus, the audio
data can be lost, 1t 1s not available at the same time as the
image, and its retrieval involves additional processing steps.
However, the generality of the DICOM standard allows
representation of any information as a part of a DICOM
object. Theretore, 1t would be a significant advancement 1n
the art to provide a method for encapsulating audio infor-
mation 1n a DICOM object.

Ray Tracing 1s another software tool commonly used in
medical 1maging. Ray tracing 1s a method of analyzing
three-dimensional data in order to produce a properly shaded
three dimension appearing 1mage on a monitor. As described
in more detail below, ray tracing performs two basic steps,
ray generation and data volume traversal, for all of (or at
least a large number of) the pixels on the monitor displaying
the 1mage. This repetitive computational processing thus
requires unusually high computing power and consumes an
undesirable amount of processing time. Improving the speed
at which ray generation and data volume traversal are
performed would significantly speed up ray tracing image
production because of the repetitive nature of these two
operations.

SUMMARY OF THE INVENTION

The present invention provides a method of lossless
image compression comprising the steps of (a) taking a
sample of pixel neighborhoods from an image file, (b) using
the sample of pixel neighborhoods to determine a series of
predictive coelficients values related to the pixel
neighborhoods, (c) determining prediction residual values
based on the coefficients values, and (d) losslessly com-
pressing the prediction residual values.

The 1nvention also provides a method of adjusting the
quality parameter 1n a quality controlled compression rou-
fine 1n order to compress 1mage data a predetermined
compression ratio. The method comprises the steps of: (a)
receiving a desired compression ratio, (b) selecting an
estimated quality value, (c) compressing the image data
based on the quality value and calculating an intermediate
compression ratio from the compressed image data, (d)
adjusting the quality value 1n 1iterative steps and recalculat-
ing the intermediate compression ratio, (€) returning a final
quality value after a predetermined time period or when the
predefined ratio is achieved, and (f) compressing the image
data to the final quality value using the quality controlled
compression routine.

The 1nvention also includes a method of adjusting the
compression ratio of image data based upon the available

10

15

20

25

30

35

40

45

50

55

60

65

4

bandwidth of a network link across which the 1mage 1s
transmitted. The method comprises the steps of: (a) deter-
mining the size of an image to be transmitted, (b) selecting
a desired download time for downing loading the image
from a network link, (c) determining a current download
time based upon current network conditions, and (d) com-
pressing the image 1f the current download time 1s greater
than the desired download time.

The 1nvention also includes a method of encapsulating
audio data 1n a DICOM object and selectively retrieving the

data. The method comprises the steps of: (a) providing a
DICOM compliant recording function having parameters

representing a recording time and a record size of the audio
data, and (b) providing a DICOM compliant playback func-
tion having a parameter representing a playback start posi-
tion.

The 1nvention also includes an improved integer based ray
tracing method for constructing two-dimensional 1mages
from three-dimensional data. The ray tracing method com-
prises the steps of: (a) receiving a set of three-dimensional
image data containing an object of interest, (b) receiving an
observer position, (c¢) establishing a ray angle from the
observer position, through the three-dimensional data, to a
two-dimensional 1image plane, (d) adjusting the ray angle
such that the directional components of the ray angle are
rational numbers, (¢) back projecting from a selected num-
ber of picture elements on the two dimensional image plane
a series of rays parallel to the ray angle, the rays passing
though the three-dimensional image data to origin points, (1)
for each ray intersecting the object of interest, determining
a relative distance between the origin point and a point of
contact where a ray intersects the object of interest, (g)
determining a surface angle relative to the origin point for
cach of the points of contact, and (h) adjusting the intensity
of the picture elements on the two dimensional image plane
relative to the surface angle of the points of contact.

The mvention also includes a method of reducing flicker
caused by a magnifying window moving across an 1mage on
the display screen. The method comprises the steps of: (a)
storing the image in the memory, (b) storing a first window
position in the memory, (¢) reading a second window
position, which overlaps the first window position, (d)
determining what portion of the first window position 1s not
covered by the new window position, and (¢) restoring from
memory that portion of the image which corresponds to the
portion of the first window not covered by the second
window.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s an 1llustration of a pixel neighborhood.

FIG. 2 1s a pseudocode segment illustrating the predictive
lossless compression method of the present 1nvention.

FIG. 3 1s a pseudocode segment illustrating the ratio based
lossy compression method of the present invention.

FIG. 4 1s a pseudocode segment illustrating the method
for determining current network bandwidth for application
entities.

FIG. § 15 a pseudocode segment illustrating the method
for determining if compression 1s necessary and to what
degree compression should be carried out.

FIG. 6 1s a pseudocode segment illustrating a timing,
method employed in the present mnvention.

FIG. 7 1s a pseudocode segment illustrating a sound
recording function employed in the present invention.

FIG. 8 1s a pseudocode segment illustrating the method
for implementing the SoundRecoder object of the present
invention.

US 6,909,436 B1

S

FIG. 9 1s a conceptual representation of a three-
dimensional data set.

FIG. 10 1s a schematic representation of prior art ray
tracing methods.

FIG. 11 1s a detail of multiple rays striking the surface of
an object of interest.

FIG. 12 1s an graphical illustration of a prior art method
used to determine the surface angle orientation of the object
of interest at the point of ray impact.

FIG. 13(a) is a graphical representation of a three-
dimensional data set being traversed by a ray.

FIG. 13(b) 1s a graphical representation of an individual
cell within a three-dimensional data set being traversed by a
ray.

FIG. 14 1s a graphical illustration of the ray tracing
method of the present mnvention.

FIG. 15(a) is a graphical representation of a three-
dimensional data set being traversed by a ray in the method
of the present invention.

FIG. 15(b) 1s a graphical representation of an individual
cell within a three-dimensional data set being traversed by a
ray in the method of the present invention.

FIG. 16 1s a graphical illustration of the parabolic inter-
polation method of the present invention.

FIG. 17 1s a graphical illustration of the known pixel
values used to mterpolate the unknown pixel values 1n the
present invention.

FIG. 18 1s a graph illustrating an optimum step size d
when using the race tracing method of the present invention.

FIG. 19 1s an illustration of an 1mage on a view screen
with a magnified window appearing on the screen.

FIGS. 20(a)-20(c) illustrates how a prior art magnifying
window proceeds through successive steps to update the
window position.

FIG. 21 illustrates the improved method of updating the
magnifying window 1n accordance with the present inven-
tion.

FIG. 22 1s a flow chart of the improved method of
updating the magnifying window in accordance with the
present mvention.

FIGS. 23(a)-23(c) illustrate methods of optimizing con-
trast in the magnified 1mage of the present invention.

DETAILED DESCRIPTION

Where appropriate, the terminology used 1n the following
description 1s a part of the DICOM standard and 1s well
known to persons of ordinary skill in the medical imaging
art. For the embodiments described herein, the definitions of
various DICOM classes and functions are presented in C++
object-oriented syntax and the functional interface of these
classes 1s 1llustrated i1n the function definitions and
pseudocode appearing herein.

Enhanced (Predictive) Lossless Compression.

One aspect of the present 1nvention 1s to provide an
improved lossless compression method. Lossless compres-
sion 1s the compression of data without any informational
loss—i.e., the original data (for example an image) can be
completely recovered from its compressed version. One
advantageous method of implementing a lossless compres-
sion method for images 1s to use natural inter-pixel
correlation, 1.e. the tendency for neighboring pixels in an
image to have close numerical values. If an NxM digitized
image 1s represented as an NxM matrix I(x,y), where the

10

15

20

25

30

35

40

45

50

55

60

65

6

value of I(x,y) represents pixel’s intensity at the point (x,y),
a predictive model for each pixel’s mtensity can be written
as:

f(x, y) = Z cijiix—1i,y—Jj) +elx, y), (1)

O=1i,j=a

where ¢;; are coefficients, and e(x,y) is the prediction
residual.

FIG. 1 1llustrates a set of pixels, which may be referred to
as a pixel neighborhood. The left-bottom neighborhood
adjacent to the reference pixel (x,y) will be considered the
I(x-1,y—7) neighborhood where 1 and j are equal to the
neighborhood size a. In FIG. 1, a 1s equal to 3.

If ¢;; are known, equation (1) illustrates how I(x,y) can be
losslessly recovered from 1its left-bottom pixel neighborhood
I(x-1,y-7), and a small error e(x,y). Thus, the only informa-
tion needed to represent the compressed 1mage 1s the values

e(x,y) and the coefficients ¢;;. Since the values of e(x,y) can
usually be efficiently and losslessly encoded with entropy-
based compression (such as Huffman compression), a sig-
nificant degree of compression of the original image may be
realized using the method of the present mnvention.

Modern lossless compression techniques such as JPEG
and JPEG-LS use predefined coeflicient values and rela-
fively small neighborhoods of a=1 or a=2 pixels. However,
it has been discovered that extending the neighborhood size
(increasing the a value) to a=3 and a=4, and choosing ¢;
based on the given image produces substantially better
compression ratios. These superior compression ratios are
on the order of a 20%—30% increase over JPEG techniques.
This 1s a significant improvement when dealing with lossless
compression.

The compression technique of the present mvention gen-
erally comprises four steps. First, the image will be sampled
for a series of pixel neighborhoods from which the predic-
tion coefficients ¢; will be calculated. Second, the coethi-
cients ¢;; will be determined by linear regression. Third,
equation (1) will be used to compute e(x,y) for each pixel.
Lastly, the values for e(x,y) will be losslessly compressed.

Sampling the Image for Pixel Neighborhoods.

In order to compute ¢;; in equation (1), a population of
pixel neighborhoods must be chosen. Naturally, the mini-
mum number of independent samples required must be at
least the number of coeflicients sought to be calculated.
While the maximum number of samples could equal the
number of pixels 1n the entire 1mage, this sampling strategy
would become excessively time-consuming. A preferred
alternative 1s to choose a set of sampling neighborhoods
(x.,y.), where S is the total number of samples and s
represents a particular sampling index ranging from 1 to S.
The set of S samples may be obtained by sampling the image
in a uniform manner using a predetermined sampling step d.
Thus, it will be readily apparent how the following
pseudocode would operate to select a set of samples:

s=1;

for(x=1; x<N; x+=d)

1
for(y=1; y<M; y+=d)
1

Consider the current point (%,y) as the right-top point of
the next neighborhood sample #s;
Increment s=s+1;

h
h

This routine will produce S=NM/d* samples with each
sample being an [(a+1)x(a+1)]-1 set of adjacent pixels from

US 6,909,436 B1

7

the original 1 image. As suggested above, the value of d must
be chosen to msure a sufficient number of samples to solve
for the number of coefficients ¢; to be computed from
equation (1). This requires that S obey the inequality

S=NM|d*>(a+1)", (2)

which 1n turn leads to the constraint

d<dy=VNM [(a+1). (3)

For practical purposes, and with large 1mages, one may
choose smaller values of d (i.e. more neighborhood samples)
to msure a more accurate approximation of ¢; from the
samples applied to equation (1). One preferred embodiment
of the mvention uses a sampling step d governed by the
relationship d=max(1, d,/10).

Finding C;; with Linear Regression

Equation (1), taken over all samples s, results in a typical
linear regression problem that can be resolved with the
well-known least-squares approach. The coeflicient values
Co.1» €1.00 €115 - - - €0 0 MAY be chosen to minimize the sum
of squared errors e(x,,y. in equation (1) over all the neigh-
borhood samples. The steps of solving for the coetlicients ¢,
may be best visualized using matrices with the following
notations:
Vector C=[¢g 4, €105 €115 - -

coellicients
Vector V=[I(x,,y4), I(X,,¥5), - .

of (1) for each sample s.
Vector W;}'=[I(X1_i:Y1_j)? I(Xz_i:YQ_j)? v I(XS_i?YS_j)]T_

right-hand parts of (1) for each samples s and each (1)

pair.

Equation (4) illustrates how equation (1) may be rewritten
as the matrices V=C[W,,, W, o, W, 1, ..., W,]=CW, and,
after multiplication by W*, may be wrltten as

. » €goJ—unknown prediction

I(x,,y.)]'—left-hand parts

VW =C(WWT)=CF (4)
after which C may be solve for as
C=(VWI)(WW') " =(VW)(F)™ (5)

Matrix F has fxf coefficients F, , where f=(a+1)”-1. Corm-
puting C has two basic steps. First, the inversion of this
matrix F is determined. Once F" is found, coefficients C may
be determined from equation (5). Typ1eally, the calculations
may be simplified by quantizing the coetlicients C;; into an
integer form represented by k.. This may be aeeomphshed
by multiplying c by 2% or 1024. Thus,

k;=[1024*c =K. /1024 or 1n matrix notation, C= K/

1024.

Most practically, the step of actually determining F* will
not be carried out, but instead equation (4) will be solved
using Integer Gaussian elimination. As above, C 1s first
quantized by multiplying both sides in equation (4) by 1024:

if| or cij

(1024*VW")=1024*CF=KF
and solving
(1024*VW")=KF

for K with traditional Gaussian elimination techniques well
known 1n the art. One suitable software routine for Gaussian
climination 1s found in “Numerical Recipes mn C”, 2nd Ed.,
Press, Teukolosky, Vetterling, and Flannery, Cambridge
University Press, 1992, the relevant portions of which are
incorporated herein by reference. All vectors 1n the equation
(1024*VW")=KF have integer components, which ensures

10

15

20

25

30

35

40

45

50

55

60

65

3

very fast convergence. A good 1nitial approximation of K
may be K=[512,512,0,0, . .. 0], (corresponding to C=0.5,
0.5,0,0...0]. It is noted that these values for C are the
fixed values used 1n JPEG compression. Therefore, all
iterations of Gaussian elimination beyond this initial esti-
mate of C insure that the resultmg coellicients will produce
compression ratios superior to JPEG.

Those skilled in the art will recognize 1t may also be
practical to find the F' coefficients from direct inversion of
the F matrix is small (i.e. f<4). For example, if f=2, F* would
be found as:

(fu fi2]l _(
o 2!

While this approach can be used efficiently for f<4. Once f
exceeds 3, 1t 1s more practical to use the Gaussian elimina-
tion method described above.

Applying Equation (1) to Compute e(x,y).

Once coethicients ¢;=K,; /1024 are determined, the most
ctficient manner of determmmg e(X,y) is to utlhze the
quantized equivalent of equation (1):

faa /¥
—falr

—fi12/r

fulr] r= firfa2 = fizfar-

4 R

Z ki il(x =10, y—j)

\O=i=a,0=j=a }

(6)

[(x, y) = »10 + e(x, y),

where >> stands for a 10-bit right shift operation, which 1s
equivalent to division by 1024, but computationally faster in
binary systems than Standard division operations. The
pseudocode seen 1n FIG. 2 implements the predictive loss-
less 1mage compression 1n a manner readily followed by a
person of ordinary skill in the programming arts. Note
comments 1ndicated by “//”.

Losslessly Compressing and Decompressing e(X,y)

Once the integer sequence for e(x,y) has been calculated
as above, the e(x,y) sequence will be encoded with any
entropy-based coding scheme, such as Huffman compres-
sion. The encoded e(x,y) sequence will form the basis of the
compressed 1mage file. Additionally, the sequence of k;; 1s
stored as a header of the compressed 1mage.

It will be obvious that decompressing the 1mage file 1s
substantially the reverse of the above described steps. To
decompress the image file, one first reads the sequence of k;;
coellicients from the compressed image file header. Then the
remaining sequence of e(x,y) is then decoded with the
entropy based scheme (e.g. Huffman decoding). Finally, the
original image I(x,y) may be recovered from e(x,y) and k;;
using equation (6) and a procedure substantially the reverse
of that seen 1n the pseudocode.

Real-Time JPEG. Another aspect of the present invention
1s providing an improved JPEG Compress function. The
Compress function should be capable of compressing an
image to a predefined compression ratio. This compression
ratio-based JPEG 1s implemented similarly to traditional
JPEG, but takes a compression ratio parameter (ratio)
instead of the quality parameter. The parameters other than
ratio are the same as described above for traditional JPEG
Compress function. In the description below, the new func-
tfion 1s denominated CompressR:

int RJIPEG::CompressR(BYTE* input, BYTE* output,

double ratio, int bpp=1, bool rgb=false).
Thus, when a compression ratio 1s provided, the function
will return an integer value that i1s the original 1mage size
compressed by the given ratio. For example, ratio=2.0
means that the original 1mage must be reduced 1n size by at

least one half of its original size.

US 6,909,436 B1

9

The present imnvention also includes a further improve-
ment upon the standard JPEG Compress function. This
second modification 1ncludes also a time constraint limiting
the time during which the function may operate to achieve
the desired compression ratio.

int RTJPEG::CompressRT(BYTE* input, BYTE* output,

double ratio, double maxtime, int bpp=1, bool rgb=
false),

where maxtime gives the maximum time i1n seconds in
which the routine 1s allowed to perform he compression. Of
course, given CompressR1 function, the previous, Com-
pressR function an be always expressed as

CompressR(BYTE* input, BYTE* output, double ratio,
int bpp=1, bool rgb=false¢)

{

return CompressRT(input, output, ratio, 1000000, bpp,
rgb):
;

where some very large maxtime value (e.g. 1,000,000) i1s
used to indicate that the time constraint 1s not required.

One manner in which the CompressRT function may be
implemented 1s by using the standard JPEG Compress with
an appropriate quality value estimated iteratively to ensure
the proposed compression ratio. One example of implement-
ing the CompressRT function 1n a software routine may be
illustrated with the pseudo code seen 1n FIG. 3.

It will be understood that 1n the pseudo code of FIG. 3,
comment lines are preceded by the “//” symbol. Those
skilled 1in the art will recognize many standard functions
presented 1n C++-type pseudocode; for example the
clock() function discussed below. The other functions like
Size() can be easily implemented by those skilled in the art.
These standard functions are well known 1n the software
programming art and need not be elaborated upon further.

As 1ndicated above, the CompressRT function will take
the parameters ratio and maxtime and return an integer value
equal to the size of the compressed image. Viewing FIG. 3,
the first step 1n the CompressRT routine 1s to determine the
size of the original image with a Size() function. Next,
minimum and maximum quality values (qO and q1) are set.
For 1llustration purposes only, these values have been set to
5 and 95 respectively. While (q0 and q1) could be initially
set to any percentages, 5 and 95 are good 1nitial values and
selecting a narrower range should not materially enhance
computational speed. Using the standard JPEG Compress
function with g0 and ql, respective compression ratios (r0
and r1) corresponding to the minimum and maximum qual-
ity values may be determined. This 1s accomplished by
dividing the size of the original image by the size of the
image compressed to the qualities q0 and gl. It will be
understood that the lowest quality value results in the
highest compression ratio r0. Similarly, the highest quality
value results 1 the lowest compression ration rl.

The routine determines whether the desired or predeter-
mined ratio 1s either lower than the lowest compression ratio
(r1) or higher than the highest compression ration (r0). If the
first condition of ratio<rl 1s satisfied, then even the most
quality-preserving compression at q=ql=9% already
achieves ratios higher than the desired ratio, therefore the
image 15 compressed to this level, and the CompressRT
function exits. If ratio>r0 i1s true, then lossy JPEG can
provide at most a r0 compression ratio. Since the compres-
sion ratio ratio 1s impossible to achieve, the 1mage 1is
compressed to the highest possible r0 level, and the Com-
pressRT function exits.

However, assuming the parameter ratio 1s within rO and
rl, the routine will begin the steps required to estimate a

10

15

20

25

30

35

40

45

50

55

60

65

10

quality g which corresponds with the desired compression
ratio, ratio. Two variables, start and finish of the type
clock_t will be declared. Start will be initialized to the
present clock value by a standard function such as clocks. A
variable duration will be 1nitialized to zero and a variable r
will be 1nitialized to the value of ratio. r will serve as an
intermediate value of the compression ratio while the routine
performs the 1iterative steps governed by the condition
while(duration<maxtime). The first step in the while loop 1s
the estimate of the quality value . This estimate may be
made by any number of methods, with two preferred meth-
ods being shown 1n the pseudo code. The linear estimate
uses the parameters g, q0, gl, r, 10, and rl1 1n the equation
q=q0+(r-r0)*(q1-q0)*(r1-r0). Alternatively, a simpler
bi-section estimate may be obtain by the equation q=(ql+
q0)/2. Obtaining an estimate of q allows an updated inter-
mediate compression ratio r to be found by dividing the size
of the original 1image by the size of the 1mage compressed to
the intermediate quality q.

The intermediate compression r 1s then compared to the
desired compression, ratio. If r 1s less than ratio, the lowest
ratio rl 1s set equal to r. If gl 1s equal to g, then the routine
will exit the 1f loop, otherwise gl will be set equal to g
before another iteration 1s performed within the if loop.
Alternatively, 1f r 1s greater than ratio, the highest ratio r0 1s
set equal to r. If g0 1s equal to g, then the routine will exit
the 1f loop, otherwise g0 will be set equal to g before another
iteration 1s performed within the if loop. It will be under-
stood that this loop provides an iterative process where the
changing integer values of g1 and g0 will converge upon the
intermediate value of g. In fact, 1t can be derived math-
ematically that the bisection 1iterative process will take at
most [log,(95-5)]=7 iterative steps to converge.

The point of convergence will provide a quality value
integer g which produces the compression value r closest to
the desired compression value, ratio. It should be noted that
after each iteration, the variable duration 1s recalculated by
subtracting the start variable from the finish variable and
dividing by the clock frequency (1.e. CLOCKS_ PER
SEC). If the duration of the iterative process exceeds
maxtime, the iterative loop will be exited with the best
compression ratio r and quality g estimates found up to this
point 1n the program’s execution.

Once the iterative loop 1s exited, the last intermediate
quality value g will be passed to the standard JPEG Com-
press function. This value of g will be used to compress the
input 1mage and the size of the input 1mage will be returned
to the main function RTCompess. In this manner, the func-
tion RTCompress determines the size of an input image
compressed to a desired compression value, ratio.

This version of CompressRT just described uses the entire
image to estimate a compression quality sufficient to achieve
the desired compression ratio. This 1s practical when the
estimation process on local computer (1.e. server) can be run
fast enough not to interfere with other operations (such as
transferring images across a network). If greater computa-
tional speed 1s required, then a smaller sub-sample of the
original 1mage may be used to estimate the ratio and quality
with CompressRT, and then the estimated quality value may
be used to compress the original, full-sized 1mage.

The following example illustrates how this sub-sample
method reduces computational time. In the above code, each
step requires one Compress() call to update the current
estimated compression ratio r, and two more calls are made
with q0=5 and q1=95 quality values before the iterations
start. That means that with the worst case scenario (using the
bisection estimate method), CompressRT() will take

US 6,909,436 B1

11

approximately 7+1+1=9 times longer to execute compared
to standard JPEG Compress(). When network bandwidth is
low, this computational time overhead will have negligible

cifect on the total image download time. However, where
bandwidth 1s high and download time comparatively fast,
the computational overhead may be reduced by using a
smaller 1mage sub-sample to estimate the ratio 1in
CompressRT(). One suitable technique 1s to use the central
part of the original image, with %7 of the original 1mage size
in each dimension. In this case, the number of pixels 1n this
sample will be 7% 14=140 of that of the original 1mage size.
Since JPEG compression complexity i1s proportional to the
number of pixels operated upon, 9 iterations for 4o of the
original data will take 9*(¥40)=0.18—reducing time over-
head to at most only 18% of the full image JPEG compres-
sion time.

Dynamic DICOM Image Compression. Another embodi-
ment of the present invention provides a method of adjust-
ably compressing data 1n response to the available network
bandwidth. This method will be referred to herein as
“dynamic compression”. Dynamic image compression can
be 1mplemented on top of the DICOM standard as a set of
classes/services fully compliant with DICOM object-
oriented design. Where appropriate, the terminology used 1n
the following description 1s a part of the DICOM standard.
The definitions of dynamic DICOM compression classes are
presented in C++ object-oriented syntax and the functional
interface of these classes is 1llustrated in the pseudocode

reference 1n connection therewith.
1) DICOMOBbject Class

The DICOMODbject class represents a DICOM Data Set
defined 1n the part PS3.5, Section 7 of the DICOM standard.
The DICOMODbject class will support the following func-
tions which are ufilized in the dynamic compression pro-
ogram of the present invention:

int—GetSize()»—This function returns the size of a
DICOM object 1n bytes. The returned size 1s defined as
the total size of all DICOM data element values and
data element tags, as specified in part PS3.5 of the

DICOM standard.

int Compress(bool lossless, double ratio, double
maxtime=1000000)—JPEG-compresses the image
data 1nside the DICOM object. If the lossless parameter
1s set to true, then either the improved losseless com-
pression described above may be used or_standard
lossless JPEG compression may be used (DICOM
PS3.5, Section 8.2.1), and the ratio parameter is
ignored. If the lossless parameter 1s set to false, then
lossy JPEG compression is used (also DICOM PS3.5,
Section 8.2.1) as described above with the novel
CompressRT() method. The ratio parameter will define
the required compression ratio, which should be greater
than 1.0. Moreover, the third parameter, maxtime, can
also be used from the described CompressRT() imple-
mentation 1f limiting compression time of a specific
duration 1s desired. In such a case, the compression
ratio would be the ratio achieved at the expiration of
maxtime. The Compress(bool lossless, double ratio,
double maxtime) function returns a positive integer
number, which 1s the new size of the DICOM Object
after its 1mage part 1s compressed as specified. This
new size 1s approximately equal to the original data size
divided by ratio. The method returns -1 if JPEG
compression fails for any reason.
2) ApplicationEntity Class
This class implements a DICOM “application entity”, as
described 1n DICOM PS3.7. An application entity 1s any

10

15

20

25

30

35

40

45

50

55

60

65

12

device within the network (e.g. PC, printer, disk storage etc.)
which can be 1nvolved in a DICOM 1mage exchange. An
instance of the ApplicationEntity class 1s primarily defined
by its internet protocol (IP) address and port (socket)
number, at which the DICOM networking occurs; this data
1s stored 1n the class’ private variables. The ApplicationEn-
fity class must also implement the following functions:

bool CanAcceptCompressed()—This function returns
true 1f this application enfity can accept JPEG-
compressed 1mages. This 1s equivalent to supporting

the
“1.2.840.10008.1.2.4.507—1.2.840.10008.1.2.4.66”
and “1.2.840.10008.1.2.4.70” DICOM unique 1dentifi-

ers as set out in part PS3.6, Annex A of the DICOM

standard. If CanAcceptCompressed() returns false,
only uncompressed data can be sent to this application
entity.

bool CanAcceptlLossy()—Provided that JPEG compres-
sion 1s permitted (i.e. CanAcceptCompressed() returns
true), this function verifies whether lossy JPEG com-
pression 1s permitted at this application entity. The
return value of true means that images with lossy JPEG

compression may be accepted, which 1s equivalent to
supporting the “1.2.840.10008.1.2.4.50”7—

“1.2.840.10008.1.2.4.56” and “1.2.840.10008.
1.2.4.597—1.2.840.10008.1.2.4.64” DICOM unique
identifiers (part PS3.6, Annex A of the DICOM
standard). The return value of false indicates that that
only the 1mages with lossless JPEG compression are

accepted, which 1s equivalent to supporting the unique
identifiers “1.2.840.10008.1.2.4.577,

“1.2.840.10008.1.2.4.587, “1.2.840.10008.1.2.4.65,
“1.2.840.10008.1.2.4.66” and *“1.2.840.10008.1
2.4.707.

void SetCurrentBandwidth(double bwidth)—This func-
tion writes the bandwidth value, bwidth, to the corre-
sponding private member of the ApplicationEntity
class (with units of bytes/second). This function has no
influence on the actual network bandwidth; rather, 1t
simply records that the bandwidth was found to be
equal to bwidth, and stores this value i1nto a private
variable of the ApplicationEntity class.

double GetCurrentBandwidth()—This function returns
the network bandwidth bwidth, associated with the
application entity, and which was previously recorded
with the SetCurrentBandwidth() function. If no band-
width value was previously recorded, the function
returns —1.

void SetMaximumCompressionRatio(bool lossless,
double ratio)—This function records the compression
type and maximum compression ratio that 1s acceptable
at the application entity. The lossless=true type indi-
cates that only 1mages compressed with a lossless
algorithm can be sent to this application entity, and 1n
this case the ratio parameter 1s 1gnored. The lossless=
false type indicates that the application enfity can
accept lossy 1mage compression, with the maximum
compression ratio being equal to ratio. Whether the
application entity accepts compression and to what
ratio compression 1s accepted, may depend on the use
of the application enfity. For example, if the application
entity 1s a computer and monitor from which physicians
will view the 1image for diagnosis purposes, it will not
be acceptable to lose significant amounts of informa-
tion 1n the transmitted 1mage. Therefore, no compres-

US 6,909,436 B1

13

sion may be allowed or only a limited degree of
compression allowed.

double GetMaximumCompressionRatio()—This func-
fion returns the maximum i1mage compression ratio,
ratio, accepted at the application entity and which was
previously recorded with the
SetMaximumCompressionRatio() function.

void SetDownloadTime(int time)—This function sets the
maximum download time (in seconds) in which the
application enfity 1s required to receive any DICOM
object over the network. This 1s a download time
constraint which will be set for each application entity
by an operator (e.g. the network administrator) and will
act as a “real-time” network requirement imposed on
these particular application entities.

int GetDownloadTime()—This function returns the
maximum object download time previously set
SetRequired Time().

An alternative way to control real-time networking would
be specifying download time per information unit size (i.c.,
sec/Kbytes), which is equivalent to specifying desired net-
work bandwidth. The choice between time and time per size
will depend on specific application needs.

3) ApplicationEntityArray Class

This class may be defined as an array of ApplicationEntity
instances: ApplicationEntity| MAX__AENUM]|, where
MAX AENUM 1s a constant specifying the maximum
number of application entities possible on the given DICOM
network (i.e., the total number of PCs, printers etc. at the
current installation site). It also may implement the follow-
ing methods:

void SetCurrentEntity(int index)—This function sets the
current remote network application enfity to enfity
number index. From the moment this function 1s called,
all images and data will be sent from the local archive
to the particular entity identified by index. This will
continue to be the case until SetCurrentEntity 1s called
again for a different application enfity.

Application Entity GetCurrentEntity(}—returns the cur-
rent remote application entity to which data 1s presently
sent over the DICOM network.

4) PDU Class

This class implements the DICOM Protocol Data Unit

(PDU), as described in the PS3.8 part of the DICOM
standard. The PDU class establishes the network connection
parameters (e.g. packet headers, portion of network band
over which image 1s sent, and data modality—e.g. CT, MRI,
Ultra Sound) between the server and the application entity
receiving the object or image being transmitted. As a part of
this standard DICOM implementation, the class must
include the following function:

bool Send(DICOMObject& d, ApplicationEntity& ae)—
sends DICOM object d to application entity ae over
DICOM network, as specified in DICOM
PS3.5-PS3.8. This function returns true if the object
successfully sent and false otherwise.
5) NetworkTimer Class
The Network'Timer class 1s responsible for timing current
network performance. It implements the following func-
tions:

void Startimer()—starts network timer for the current
DICOM network connection.

double EndTimer()—stops network timer for the current
DICOM network connection.

These two functions, as well as the timer 1itself, can be

implemented based on C time-processing functions such as

10

15

20

25

30

35

40

45

50

55

60

65

14

localtime() and ctime(), which are well known 1n the art.
Because network bandwidths will vary over time due to use
conditions and other factors, it 1s necessary to periodically
update the current bandwidth measurement. To compute the
current network bandwidth, the following functions are
used:

int GetDataSize(DICOMObject& d)—This function
takes a reference to any DICOM object d (i.e. an image)
to be sent over the network, and computes the object’s

size in bytes. This size is computed with d. GetSize()
function previously defined as part of the DICOMODb-
ject class.

void EstimateCurrentBandwidth(ApplicationEntity&
ac)—This function updates the current bandwidth
value for the application entity ae based on observed
network performance. The current bandwidth bwidth 1s
computed by dividing the size, provided by the last call
of GetDataSize() function, by time elapsed from the
last call of the StartTimer() function (the time elapsed
can be found inside the EstimateCurrentBandwidth()
function by calling the EndTimer() function). Once
bwidth 1s computed, this value i1s passed to the appli-
cation enftity variable ae with a call to the function
ae.SetCurrentBandwidth(bwidth).

Once the above classes and functions are established, it 1s
possible to 1mplement a program which will accept and
maintain a maximum allowable time for downloading an
image over a network. The program will monitor the band-
width or all application entities 1n that network; and then
when an application enfity requests an 1mage, to compress
the 1mage to the degree necessary for the application entity
to download the 1mage 1n less than the maximum allowable
fime. Such a program may be 1llustrated with the following
segment of pseudo code seen 1 FIGS. 4—6 and written in
C++ syntax. It will be understood that language following,
the “//” notation are comments. The current network band-
width for all application entities may be monitored with the
pseudo code seen 1n FIG. 4.

It can be seen 1n this code how ApplicationEntity
ac=ael.GetCurrentEntity() identifies to which application
enfity an 1mage 1s to be transmitted over the network. APDU
connection 1s then created between the server and the
application entity. Next, from the NetworkTimer, the func-
tion GetDataSize(d) instructs the timer to prepare timing the
network transmission of d.GetSize() bytes. Then the
StartTimer() function will initiate the clock sequence. The
PDU class function Send(d,ae) will transmit object d to the
application enftity ac. When the object has been downloaded
by the application entity, the EstimateCurrentBandwidth()
function will stop the clock sequence (with EndTimer()
call). It will be readily apparent that the function
EstimateCurrentBand(ae) may calculate the current band-
width 1n bytes/sec. by dividing the size of the 1mage by the
time elapsed during transmission of the 1mage. This measure
of bandwidth will be made each time an object 1s transmitted
to an application entity, thereby allowing a recent bandwidth
measurement to be used when determining the compression
ratio of the next object to be transmitted to that application
entity. The pseudo code segment of FIG. § illustrates this
procedure.

The code seen 1n FIG. 5 will determine 1f compression 1s
necessary and allowable and if so, to what degree compres-
sion should be carried out. The function GetSize() deter-
mines the size of the object d and assigns the size value to
the variable dsize. The maximum allowable download time
for the application entity ae 1s retrieved with
GetDownloadTime() and assigned to the variable ntime. A

US 6,909,436 B1

15

variable representing the time needed to download the object
d with the current bandwidth, ctime, 1s assigned the value
obtained by dividing the object size dsize by the current
bandwidth for application ae (returned by
ac.GetCurrentBandwidth). If the condition if(ctime>ntime)
1s false, then the objected 1s transmitted with no compres-
sion. If the condition 1s true, the program first determines
whether the application entity ae accepts lossy compression
(ac.CanAcceptlLossy()). If this condition is true, the lossy
compression ratio will be determined by selecting the lesser
(using the standard C function min()) of ctime divided by
ntime or the maximum allowable compression ration for that
application entity (ac.GetMaximumCompressionRatio()).
The object will be compressed to the degree of ratio. If the
application entity does not accept lossy compression but
does accept lossless compression, lossless compression will
be applied to the object. If the application entity does not
accept any type of compression, the object will be transmit-
ted over the network 1n an uncompressed format, even 1if the
object may not be downloaded within the desired time
constraints.

From the above disclosure, 1t will be readily apparent that
this embodiment of the present invention provides a method
of adjusting the compression ratio of image data based upon
the available bandwidth of a network across which the
image 1s transmitted.

The mvention also encompasses an alternative method for
implementing the time functions StartTimer() and
EndTimer(). Above, the standard C localtime() and
ctime() functions were utilized, but these functions only
measure time as an integer (i.e. as a whole second). An
alternative 1mplementation, which would measure time
within fractions of a second, 1s possible with Windows API.
The class 1s designated Accurate Timer and 1s 1llustrated with
the pseudo code seen 1n FIG. 6. However, 1t 1s noted that the
AccurateTimer class 1s known 1n the prior art and 1s shown
here as an example, and not as part of the present invention.

Sound Encoding. The present invention further includes a
method of encapsulating audio data 1n a DICOM object such
as an 1mage. This 1s accomplished by creating a SoundRe-
corder object which performs sound recording and playback.
The sound i1s captured and played by the sound recording
hardware, including PC sound card, microphone and speak-
ers. When the sound 1s recorded, it 1s sampled to the optimal
digital frequency chosen by the recording clinician. The
following methods must be 1implemented:

bool Record(int sf, bool stereo, int max_ time=300, int
max_ size=1000000, int format=WAYV).

This function records sound mput with the following speci-
fied digital sampling parameters:

st—Sampling Frequency, KHz

stereo—Stereo (yes or no)

max_ time—Maximum recording time in seconds
max_ size—Maximum record size 1n bytes

format—Digital sound format.
This sound-recording function may be implemented based
on many conventional operating system sound interface
supports well known 1n the art. For instance, Windows
implementation for basic sound recording would appear as
scen 1 FIG. 7. Playing back the recorded sounds may
readily be accomplished by a function such as:

bool Playback(int from, int to)—play back recorded
sound, from a first time from to second time to. In other
words, the function parameters are:

from—Playback start position
to—Playback end position.

10

15

20

25

30

35

40

45

50

55

60

65

16

For instance, on a Windows platform, a simple playback
implementation may be accomplished using the standard
Windows PlaySound() function.

SoundRecoder Object.

After the sound has been recorded, it may be advanta-
geous to convert the sound into a different format (for
instance, from WAV to MP3 format). For example, conver-
sion from WAYV to MP3 format may reduce the size of sound
data by a factor of approximately 10 without any perceivable
loss of quality. This conversion may be made (after the
sound 1s recorded) with an appropriate codec (e.g., an MP3
encoder), incorporated into the below described Soun-
dRecoder object.

This object encodes/decodes digitized sound 1n the well-
known MP3 format. For encoding process, the original
digitized sound 1s received as SoundRecorder object output
after recording. For decoding process, the sound 1s con-
verted back from MP3 to the digital format accepted by
SoundRecorder (for instance, WAV format on Windows
platform), and is played back. Therefore, the following
functionality must be 1mplemented:

BYTE* GetSound()—returns the pointer to the current
sound (stored as a BYTE bulffer).

int GetFormat()}—returns the current sound format (WAYV,
MP3, etc.)

bool Insert(DICOMODbject& dob)—insert this sound into
DICOM Data Set. The return value of true confirms
successful 1nsertion, and false corresponds to failed
insertion. The implementer will have to specily a 4 byte
group/element tag number (PS3.5 part of DICOM
standard) to identify the sound entry in his DICOM
dictionary—since there 1s no sound entry in the stan-

dard DICOM dictionary.

bool Encode(BYTE* input, int inputFormat, BYTE?*
output)—this function takes a byte stream input, which
represents a digitized sound in inputFormat format
(such as WAV), and encodes it into MP3 stream output.
The function returns true if encoding process was
successiul, and false otherwise.

bool Decode(BYTE* 1nput, int outputFormat, BYTE*
output)—opposite to Encode, decodes MP3 stream
input 1nto output stream output with outputFormat
format. The SoundRecoder::Insert() function is imple-
mented as seen 1 FIG. 8.
It may also be desirable at some point in time to remove
a previously inserted sound from an object. This removal
may be accomplished with the following function:

bool Extract(DICOMODbject& dob, bool remove)—
extract digitized sound buffer from DICOM Data Set
dob. If the remove parameter 1s set to true, the sound 1s
removed from dob after 1t 1s extracted; otherwise, an
original copy of the sound buffer will remain 1n dob.
Thus, with the above described code, audio data may be
encapsulated 1into a DICOM object such as a patient study,
the data converted to more compact formats, and if desired,
the audio data may also be removed.
Integer-Based Ray Tracing
Ray tracing or ray casting 1s a well known technique for
using three-dimensional (3-D) image data to draw a 3-D
appearing object on a two dimensional (2-D) imaging device
(e.g. the screen of a computer monitor). To give the object
displayed on the 2-D screen the appearance of depth, dif-
ferent areas of the object must be shaded. Ray tracing uses
information from the 3-D data to determine what areas of the
object on a 2-D screen should be shaded and to what degree
the areas should be shaded. Such prior art methods of Ray

US 6,909,436 B1

17

Tracing are set out 1n Radiosity and Realistic Image
Synthesis, Cohen and Wallis, Academic Press, Inc., 1993,
which 1s 1ncorporated by reference herein.

One typical example of a 3-D data set could be a series of
CT scan 1mages as suggested in FIG. 9. Each of the three
images 1n FIG. 9 represents a “slice” taken at a certain level
of a human head. A complete series of CT scan images for
a human head may comprise 100 to 200 such slices. It will
be understood that each slice provides information 1n two
dimensions, for example the x-y plane. By supplying mul-
tiple slices, the series of CT scans in effect provide infor-
mation 1n the third dimension or the z direction. Different
tissues on the CT 1mage are represented by different color
and/or intensity (i.e. brightness). For every position (X, y, Z)
in the 3-D 1mage data, there 1s a corresponding intensity
value (L). Thus, the 3-D 1image data may be represented by
the equation F(Xx, y, z)=L(X, y, z). When it is desired to view
a certain tissue type or object of interest (e.g. a suspected
tumor) corresponding to a constant intensity of L in the CT
image, this may be accomplished by identifying all (x, y, z)
points in the 3-D data where F(x, y, z)=L.

FIG. 10 schematically 1llustrates a 3-D data set 10 having,
an object of interest 12 (“object 12”) located within 3-D data
set 10. A 2-D 1image plane 14 1s shown with several lines of
sight or “rays” 18 extending between 2-D 1mage plane 14
and observer position 16, while also passing through 3-D
data set 10. While not shown, 1t 1s presumed for the purposes
of this explanation that the light source 1s directly behind
observer position 16. A ray 18 will be back projected from
the picture elements or pixels on 2-D 1mage plane 14 to
observer position 16. While this process of “ray generation”
could be performed for each pixel on 2-D 1mage plane 14,
it 1s generally suflicient to generate rays from every nth pixel
(c.g. every third or fourth pixel) in order to save computa-
tional time. Where a ray 18 (viewed from observer position
16) intersects object 12, it is known that the corresponding
pixel on the 2-D 1mage plane 14 will have an intensity value
related to the brightness or shading of object 12 as seen from
observer position 16. Pixels associated with those rays 18
not intersecting object 12 will have predetermined back-
oround 1ntensity, such as zero representing a completely
black pixel.

To determine the proper shading of those pixels on 2-D
image plane 14 associated with object 12, 1t must be
determined what the angle of the surface of object 12 1s
relative to the ray 18 impacting object 12 at that point. As
noted above, the light source 1s presumed to be directly
behind observer position 16. Thus, 1f the surface of object 12
at the point of ray impact is normal to that ray (and thus
observer position 16), then the maximum light will be
reflected back from that point to observer position 16. The
pixel on 2-D image plane 14 corresponding to that ray 18
will consequently be assigned the highest intensity value.
On the other hand, 1f the surface at a point of 1impact of a ray
18 1s parallel to that ray, then virtually no light will be
reflected and the pixel associated with that ray 18 will have
very low intensity value.

To determine the surface angle at a point of 1mpact, it 1s
necessary to determine the distance “t” from the surface of
the object to observer position 16 (or another point along the
ray 18) and compare that to the same distance for adjacent
points of impact. FIG. 11 1illustrates an enlarged section of
object 12 with several rays 18 impacting 1ts surface. The
length t for each ray 1s shown as taken from an arbitrary
point W along the rays 18. It i1s irrelevant whether point W
1s observer position 16 or a point much closer to object 12.
It 1s only necessary that pomnt W be displaced from the

10

15

20

25

30

35

40

45

50

55

60

65

138

surface of object 12 such that it 1s possible to measure the
relative distances between point W and the point of impact
for neighboring ray 18. This method of determining where
along ray 18 object 12 is encounter (i.e. the length of t) is a
form of data volume traversal and is described further below.

Once t 1s determined for a ray 18 and several neighboring
rays, it 1s possible to determine the surface angle at ray 18’s
point of impact. FIG. 12 1s a graphical representation
illustrating how the surface angle of a point of impact T will
be calculated using the relative distance between observer
position and points of impact T, A, B, C, and D. Points A,
B, C, and D are points of impact neighboring point T. Points
A, B, C, and D have relative distances to the observer
position of a, b, ¢, and d respectively. T1, Al, B1, C1, and
D1 are points at distances t, a, b, ¢, and d respectively above
the surface of object 12. It can be seen that points T1, Al,
and D1 form a triangular plane (shown in dashed lines) and
this triangular plane has a vector 20 which 1s normal to the
surface of the triangular plane. While not shown in FIG. 12
in order to maintain simplicity, it will be understood that
similar triangular planes and normal vectors 20 will be
computed for triangles T1 A1 B1,T1 B1 C1, and T1 C1 D1.
The normal at point T 1s then approximated as the average
normal of the four normal vectors 20. The estimated normal
vector at T will be the vector {(a-c)/2, (d-b)/2, t}. It is this
normal vector at point T, which 1s considered the normal to
the surface angle at the point of impact.

As alluded to above, the intensity of a pixel on the 2-D
image plane 1s determined by that pixel’s associate ray 18
and the surface angle on the object relative to that ray 18. In
other words, the intensity of a pixel will be related to the
angle between the associated ray 18 and the normal vector
at the point of impact. If the ray 18 and normal vector are
parallel, the surface directly faces the observer point (and
light source) and the point of impact reflects maximum light
(i.e. the pixel is assigned a high intensity value). If the ray
18 and normal vector or perpendicular, the point of impact
reflects very little or no light and the associated pixel is
assigned a low intensity value. When the angle (o) between
ray 18 and the normal vector is between 0° and 90°, the
intensity 1s determined as the maximum intensity multiplied
by cosine .

The two main components of the above described prior art
method of ray tracing (ray generation and volume traversal)
arc computationally very demanding and often require
excessive amounts of computer processing time. With ray
generation, each ray must be defined by a set of equations
such as:

xray=a+t*[1
yray=b+t*[2
zray=c+t*[3

where xray, yray, zray are the components of a ray 18 (such
as to the point of impact), a, b, ¢ are the coordinates of the
observer position, t is the relative distance (i.e. Xray, yray
zray to the point of impact), and 11, 12, 13 are values
representing the direction of ray 18. Generally, these num-
bers will be large floating point values and considering a ray
1s generated for large number of pixels, the size of the
numbers will greatly add to the processing time required to
ray trace an i1mage.

When finding the distance “t” from the surface of object
12 to observer position 16 as described above, prior art ray
tracing techniques typically use a form of volume traversal.

As illustrated conceptually in FIG. 13(a), a 3-D data set 10

US 6,909,436 B1

19

is provided with a ray 18 beginning at observer point (plane)
16 and extending through data set 10. Data set 10 may be
viewed as being sub-divided into a series of cells 26. FIG.
13(b) illustrates how each cell 26 will be formed from a 8
points T1-T8. It will be understood that each point T1-T8
1s a known data point. For example, referring back to FIG.
9, T1-1T4 would be adjacent pixels on one CT image or slice
and TS—T8 would be the same pixels on an adjacent slice. In
the volume traversal method, each cell 26 which 1s inter-
sected by ray 18 must be analyzed. It must first be deter-
mined whether a cell 26 contains any portion of the object
of interest. If so, and 1if further the ray 18 actually intersects
the object within the cell, then 1t must be determined exactly
where along the length of ray 18 (within cell 26) that the
object 1s 1ntersected. This point of intersection provides the
length “t”. Of course, 1if the cell 26 does not contain part of
object 12, then the next cell along ray 18 1s analyzed and this
process i1s continued for all cells 26 (along ray 18) until
object 12 1s encountered or ray 18 exits 3-D data set 10. It
will be apparent that carrying out this data volume traversal
for many thousands of rays 1s a computationally expensive
procedure, particularly when carried out with floating point
values as practiced 1n the prior art.

The prior art has made attempts to reduce the processing,
time expended on ray generation and data volume traversal.
One alternative developed 1s to project rays from every nth
pixel (say every 3rd, 4th or 5th pixel) rather than every pixel.
Once a determination of the intensity of every nth pixel 1s
made, an interpolation may be made for the values between
every nth pixel. Naturally, the larger the value of n 1s, the
more error possibly introduced into the final 1mage.
Additionally, the various methods of interpolation have their
own disadvantages. Two manners of 1nterpolation known 1n
the art are Gouraud’s linear interpolation and complex Fong
interpolation. However, Gouraud interpolation produces
artifacts on the square boundaries. While complex Fong
interpolation provides more accurate results, its complexity
expends much of the computation savings gained by choos-
ing every nth pixel. Moreover, even when generating rays
only for every nth pixel, 1t 1s still necessary to generate many
thousands of rays to accurately portray an 1mage.

The present invention provides a much more computa-
tionally efficient method of ray tracing than hereto known 1n
the art. This method effectively replaces the large floating
point numbers with integers, allowing all calculations to be
integer based and therefore much faster. FIG. 14 illustrates
another example of a 3-D data set 10 having an object of
interest 12 and a 2-D image plane 14 conceptually posi-
tioned behind 3-D data set 10. However, FIG. 13 differs
from the previous example illustrated by FIG. 10 1n that
there are not multiple rays from observer position 16 to each
pixel on 2-D 1mage plane 14. Rather, there 1s a single
observer ray 23 which extends from image plane 14 to
observer position 16. As 1n the example above, observer ray
23 may be defined by the equations:

xray=a+t*[1
yray=b+t*[2
zray=c+t*[3.

Now however, for purposes explained below, xray will be
set equal to 1, resulting 1n the set of equations:
Xray=1
yray=b+{(i-a)*12/1 Equation (4)

zray=c+{(i-a)*13/11

10

15

20

25

30

35

40

45

50

55

60

65

20

Next, the values a, b, ¢, together with the ratios 12/11 and
13/11 will be converted to rational numbers (i.e. numbers
which are a ratio of two integers) which closely approximate
the original floating point values. By changing the values a,
b, ¢, together with the ratios 12/11 and 13/11 to rational
numbers, the computational expense of operating upon
floating point numbers may be eliminated. While this will
slightly change the observer position and ray angle repre-
sented by the values 11, 12, 13, the changes are far too small
to adversely affect the final results of the ray tracing. For
example, a floating point value of a=2.3759507 . . . could be
represented by the rational number 2.37 (i.e. the ratio of the
integers 237 and 100). Because the substituted rational
numbers are such close approximations to the original
floating point values, the change 1n observer position cannot
be noticed by a user and the ray angle still allows the rays
to 1mpact the same pixel on the 2-D 1mage plane.

As additional rays are back projected from 1mage plane
14, the method of the present invention does not converge
these rays on observer point 16. Rather these rays 24 travel
parallel to observer ray 23 (i.e., have the same values for 11,
12, and 13). These parallel rays 24 will extend to origin points
22 1n the same plane 1 which observer poimnt 16 lies and
which 1s perpendicular to rays 24. Like observer point 16,
cach origin point 22 will have it’s a, b, ¢ coordinates
adjusted to 1nteger values. This process 1s repeated for all
other pixels on 1mage plane 14 from which rays 24 will be
back propagated.

The main practical outcome of this method of substituting,
rational values for floating point values 1s that it allows using
only integer additions for ray generation and data volume
traversal. This process 1s described by equation (4), where
fractions like 12/11, 13/11 or 12/13 were assumed to be rational.
This 1s 1dentical to considering 11, 12 and 13 as integers, since
in the case of using rational numbers, both sides of the
equation (4) can be multiplied by the least common denomi-
nator of 11, 12 and 13, which will eliminate any fractional
parts. Note that numbers 11, 12 and 13 are constants, and so
1s their common denominator, therefore the conversion from
rational to 1integer 1s carried out only once, and does not need

to be recalculated for each particular ray.
FIG. 15(a) shows with a 3-D data set 10 and an individual

cell 26 within data set 10. As with FIG. 14(b), FIG. 15(b)
shows an enlarged view of cell 26 with corners T1-T8
representing known data points. It will be understood that
the component of a ray 24 along the x-axis (i.e. the xray
value from Equantion (4)) will be set equal to xray=i.
Equation (4) is written for the case where xray=i results in
the ray intersecting the side of cell 26 closest to origin 22.
In FIG. 15(b), point A illustrates the point where ray 24
intersects this side of cell 26 upon entry of cell 26 and point
B 1illustrates the cell side where ray 24 exits cell 26. It will
be understood that because equation (4) i1s composed of
rational numbers, the position of points A and B must also
be rational numbers with the same denominator, which also
permits consideration of all these numbers as integers.
The fact that rays produced by equation (4) are traced
through to a point located on a ell side has 1ts own benefit
of minimizing the complexity of linear interpolation. If, for
instance, the point A was not located on a cell side, one
would have to use all 8 cube vertices T1-T8 for linear
volume interpolation of F(A). But when A is a side point we
use only two-dimensional linear interpolation of F(A)
involving 4 points T1-T4 that cuts calculation cost and time
by more than twice. Because the function F(x,y,z) was
chosen as integer on the integer grid points (X,y,2), its value
1s rational at a rational point A and has therefore the form of

US 6,909,436 B1

21
F(A)=F1(A)/F2(A), where integer numbers F1(A) and

F2(A) can be found with integer arithmetic directly from the
linear interpolation formula.

The location of each point A on a cell 1s defined by three
distances AA1l, AA2 and AA3, measured from A to the
closest cell side 1n the y, z and x dimension respectively.
Because A resides on a cell side, at least one of these
coordinates (e.g., AA3 on the opposite cell wall) is equal to
the cell size 1n this dimension. The size of the cell 1 all
dimensions 1s an integer value. The remaining coordinates
(AA1 and AA2) are integers as well. When the ray point A
needs to be traced to the next position B, it’s equivalent to
solving Equation (4) for another integer point (B1,B2,B3)=
(xray,yray,zray), which also implies that (B1,B2,B3) is
obtained as an integer offset of (Al,A2,A3). Thus, ray
fracing becomes a purely integer based calculation, and
volume traversal 1s reduced to simple and time-efficient
integer subtraction.

The next step 1s the computation of ray intersections with
the surface F(x,y,z)=L (the intensity value of the object of
interest). For this equation and linear interpolation
properties, a cell 26 will contain an 1ntersection point if and
only if some of F(T1), . . ., F(T8) have different values
greater than or less than L. In other words, if F(T1), . . .,
F(T8) are all values either greater than L or less than L, it
will be presumed that the cell does not contain a point
having a value of L. This simple criterion 1s used to
ciiiciently reject the cells with no intersections. Once some

of F(T1), . . ., F(T8) have different values greater and less

than L, an intersection point has to be inside the cell, and
may be on the | AB] segment. In this case, the values of F(A)
and F(B) are also computed, and compared to L. If F(A) and

F(B are both smaller or both larger than L, the segment [AB]
contains no intersection point, and the tracing continues to
the next cell. Otherwise an intersection point belongs to
| AB], and its distance from the ray origin must be computed
with a proper interpolation. It will be understood that a
3-dimensional linear interpolation, used to compute F(X,y,z)
at any volumetric point, taken along a ray, becomes one-
dimensional cubic interpolation. Thus, the prior art method
of solving for the root of F(x,y,z)=L requires the solution of
a third-order equation. A typical approach taken in the prior
art to reduce the complexity of this solution was to replace
the cubic equation by its linecar approximation. However,
this approach creates visible surface distortions. The present
invention utilizes a stmple second-order approximation, and
not to the original third-order equation, but to the formula
for its root (inverse interpolation) as suggested in FIG. 16.
To perform this approximation, the method must:

Compute F(M), where M 1is the midpoint of the segment
[AB];

Consider three points (tA, F(A)), (tM, F(M)) and (tB,
F(B)) and pass a parabola through them. Since all
values are integers, the parabola will have rational
coeflicients (where tA, tM, and tB are distances to
points A, M, and B respectively); and

Take the lower-order (constant) term of this parabola, as
the approximation to the root t0.

where 10 1s the value which will represent the distance to the
object surface (i.e. distance “t” discussed above. This yields
the following rational root approximation formula:

10

15

20

25

30

35

40

45

50

55

60

65

22

 F(M)(tA - tB) + F(A)(tB — tM) + F(B)(tA — tM)
— F(M)F(B)YF(M)-F(B) + F(A)F(B)(F(B) -
FA)+ FIM)FA)F(A)—-F(M))

This mterpolation proved to be more accurate than the linear
one, but still requires only 1nteger computations. The para-
bolic mterpolation was found to take only 7—10% more time
compared to the linear interpolation, but produces much less
distortion.

As discussed above, rays need not be traced for each
point, but rather may be taken at some predefined step d 1n
each dimension, where d is optimally chosen (for example,

only each d-th ray is traced in each dimension). However,
rather than employing the prior art Gouraud’s linear inter-
polation or complex Fong interpolation, the present inven-
fion uses a simple but sufficient bi-quadratic mterpolation
for shading or pixel mtensity. FIG. 17 represents a grid of
pixels where d=4 and A, B, C, D, and pl-p8 are intensity
values from rays traced at every fourth pixel. The purpose of
the pixel intensity interpolation 1s to compute the intensity
for all pixels (in this case nine) inside the dxd ABCD square,
which correspond to the “skipped” rays. As mentioned
above, Linear Gouraud’s interpolation performs this com-
putation based only on four intensities at points A, B, C and
D, thus producing well-known artifacts on the square bound-
aries. The present i1nvention uses a second order 2-D
approximation polynomial:

2 2
AroX tagyV a1 XY +d oX+lg1 V000,

where the coeflicients are chosen by a conventional least
squares regression technique which gives the exact intensi-
fies at points A—D, and still produce the closest least-squares
match to the intensity values at p1—p8. This method gives a
smoother interpolation on the square boundary with mar-
oinal processing time overhead.

As d is increased, tracing becomes faster (since only each
d-th ray must be fired in each dimension), but parabolic
intensity interpolation becomes generally slower. Experi-
mentation was carried out with different d values from 2 to
15, observing the shading times for different test objects.
The results are shown 1n FIG. 18. It can be seen that the most
substantial time reduction occurs before d=4. Increasing d
further not only starts to consume more execution time, but
also produces visible 1mage artifacts. Therefore, a step size
of d=4 1s believed to be most efficient both 1n terms of
quality and speed of ray tracing. Submitted with this appli-
cation 1s a source code listing which 1implements the novel
ray tracing method described above.

Advanced Magnifying Glass Tool

Because radiological 1images must be so carefully
scrutinized, it 1s common for prior art software used in
viewling such images to provide a magnifying window. FIG.
19 1llustrates a viewing screen 30 (such as a high resolution
computer monitor) having a medical image 31 displayed
thereon. A magnifying window 32 1s shown displaying an
enlarged portion of 1image 31. When 1n use, magnifying
window 32 1s typically moved with a “mouse” or similar
device by conventional “click and drag” techniques. When
window 32 1s moved to a new position, the center of the
window marks the center of original 1mage region to be
magnified. Based on the power of the magnification and the
widow size, the magnifying window program computes the
arca of the original 1mage to be magnified. For example, 1f
the magnitying window 1s 3"x3", and the power of magni-
fication 1s 2x, the region on the original image to be

magnified will be 1.5"x1.5".

US 6,909,436 B1

23

When the user moves the window to a new position, the
prior art magnifying software updates the window position
by performing a series of steps as 1illustrated in FIGS.
20(a)-20(c). FIG. 20(a) shows an initial position of window
32 designated as P,. When the user begins to drag the
window to a new position, the program first removes the
initial window P,. Next, the program restores to the screen
the original image region covered by window P, (dashed
area 33 in FIG. 20(b)). After calculating the next region of
the original image covered by the new window position P,
the program magnifies that region and displays 1t within the
window position P,. Although FIGS. 20(a)-20(c) can only
illustrate this updating process as two distinct window
positions, 1t will be understood that the updating process
occurs continuously as the user moves the magnifying
window 32 across the viewing screen. The actual speed at
which the individual updates occur will depend on factors
such as the processing speed of the computer and the
complexity of the image. If the updates do not occur with
suflicient rapidity, the user will be able to detect disconti-
nuities 1n successive window positions as the window moves
across the screen. This phenomenon 1s commonly referred to
as “tlicker.” Flicker 1s not only aesthetically undesirable, but
for health care providers who must view medical 1mages
during an entire work day, flicker can significantly contrib-
ute to viewer distraction and faticue. Additionally, magni-
fying an 1image may tend to blur or distort the 1mage. Prior
art magnifying programs typically fail to optimize the con-
trast of the enlarged portion of the image and fail to filter
distortions caused by the magnification. A magnifying win-
dow program which reduces flicker and reduces distortions
cause by magnification would be a significant improvement
in the art.

FIG. 21 illustrates an improved update method for a
magnifying window and FIG. 22 shows a flow chart for
carrying out this method. As a simplified example, FIG. 21
represents a 500x500 pixel screen 30 with an 1nitial window
position P, and an updated window position P, moved 50
pixels upwards and to the left. It will be understood that in
actual operation, the window P, would be updated after
moving only a small distance equal to a few pixel positions,
since mouse positions are sampled very frequently.
However, to make the illustration clearer, FIG. 21 1s shown
with an exaggerated change 1n distance between windows P,
and P,. FIG. 22 illustrates the first step 35 1n the method 1s
to store the original image 1n memory. When the magnifying
window routine 1s called, the program will first determine
the region (R,) of the original image to be magnified (step
36) and then display the region R (as magnified) in initial
window position P, (step 37). When the user next moves the
magnifying window to a new position, the program will
receive the new window position P, and then calculate new
region R; to be magnified (steps 38 and 39). Next the
program determines 1n step 40 which corner of P, 1s found
in P,. As suggested 1n FIG. 21, the corner located at the pixel
position (100,100) is the corner of P, found in P,. With this
information and the pixel positions of the P, corners, the
program 1n step 41 1s able to define two rectangular regions
A and B which are the portions of P, no longer covered by
P,. The program then retrieves from memory the original
image nformation for the regions A and B and only needs
to restore the original 1mage to these arcas rather than to the
entire area of P,. With frequent magnifying window updates,
the areas of rectangles A and B are much smaller compared
to that of P,. Therefore, this method of restoring only the
regions A and B greatly reduces the likelihood that any type
of flicker will be perceived by the magnitying window user.

5

10

15

20

25

30

35

40

45

50

55

60

65

24

Additionally, the magnitying window of the present
invention allows further processing of the 1mage as indicated
by steps 43—47 1n FIG. 22. When the user wishes to optimize
the contrast and filter the magnified image, he or she may
select this further processing option by activating the appro-
priate indicator which will appear on or next to the magni-
fying window. As indicated 1n steps 43—47, this processing
will 1include optimizing the contrast by removing outlying
pixels and redistributing the pixels over the intensity range

of the display system. FIGS. 23(a)-23(c) graphically illus-
trate this processing. In FIG. 23(a), a histogram of the image
region being magnified 1s produced by plotting pixel inten-
sity versus the frequency at which pixels of that intensity
occur. In these figures, the intensity scale ranges from O to
255. FIG. 23(b) represents how a given percentage of the
total pixels will be removed from the extreme ends of the
intensity scale. In the illustrated example, the outlying 1% of
the pixels are removed, however, a lesser or greater percent-
age of the outlying pixels could be removed depending on
the degree to which it 1s desired to enhance contrast. FIG.
23(c¢) illustrates how the image region is re-scaled to dis-
tribute the remaining pixel over the entire 0 to 255 1ntensity
range. After enhancing the contrast of the 1mage region, step
47 1n FIG. 22 shows how filtering of the 1mage region will
take place before the 1mage region 1s displayed 1n window
P,. While various forms of filtering may be implemented, 1t
has been found that a conventional median filter provides
favorable results. As those skilled 1n the art will recognize,
median filters operate by examining the neighborhood 1nten-
sity values of a pixel and replacing that pixel with the
median intensity value found in that neighborhood. The
application of different filters transforms a conventional
magnifying glass mnto a more powerful 1mage analysis
instrument. This 1s particularly beneficial when large 1images
are analyzed, and processing the entire 1mage becomes a
fime-consuming and unnecessary process.

Computer programs based on all of the methods and
pseudo code disclosed above can be run on any number of
modern computers systems having a suitable computer
processor and a sufficient quantity of computer-readable
storage medium. Although certain preferred embodiments
have been described above, 1t will be appreciated by those
skilled 1n the art to which the present invention pertains that
modifications, changes, and improvements may be made
without departing from the spirit of the invention as defined
by the claims. All such modifications, changes, and
improvements are mtended to come within the scope of the
present 1mvention.

We claim:

1. In a computer system 1ncluding a computer processor,
a memory, and a display screen, a method of reducing tlicker
caused by a magnifying window moving across an image on
said display screen, said method comprising the steps of:

a. storing said 1image 1n said memorys;
b. storing a first window position 1n said memory;

c. reading a second window position, which overlaps said
first window position,;

d. determining what portion of said first window position
1s not covered by said new window position; and

¢. restoring from memory that portion of said 1mage
which corresponds to said portion of said first window
not covered by said second window.

2. The method according to claim 1, further including the
step of filling said first and second window positions with a
magnified portion of said image.

3. The method according to claim 1, wherein said step of
determining what portion of said first window position 1s not

US 6,909,436 B1

25

covered by said new window position further includes the
step of dividing said uncovered portion into two rectangles.

4. The method according to claim 1, further including the
step of removing outlying pixel values from a region of said
image to be magnified and redistributing remaining pixel
values of said region across an intensity spectrum of said
computer system.

5. The method of claim 4, further including the step of
applying a median filter to said region of said image to be
magnified.

6. In a computer system including a computer processor,
a memory, and a display screen having an intensity range, a
method of reducing distortions caused by magnification of
an 1mage on said display screen, said method comprising the
steps of:

26

. storing said 1mage 1n said memory;
. 1dentifying a portion of said 1mage 1n a windows;

. magnifying said portion of said image; and

o PR & TR o I < L

. optimizing the contrast of said portion of said 1image by
the removal of outlying pixels and the redistribution of
remaining pixels over said intensity range of said
display screen.

7. The computer system according to claim 6 wherein a

10 filter 1s applied to said portion of said image which has been

magnified.
8. The computer system according to claim 7 wherein said
filter 1s a median filter.

	Front Page
	Drawings
	Specification
	Claims

