(12) United States Patent

Ohsawa et al.

US006907517B2

US 6,907,517 B2
Jun. 14, 2005

(10) Patent No.:
45) Date of Patent:

(54) INTERPROCESSOR REGISTER JP 10-187464 7/1998
SUCCESSION METHOD AND DEVICE IP 2002-163105 6/2002
THEREFOR OTHER PUBLICATIONS
(75) Inventors: Taku Ohsawa, Tokyo (JP); Satoshi Sohi et al.,, “Multiscalar Processors,” The 22"¢ Annual
Matsushita, Tokyo (JP) International Symposium on Computer Architecture, Con-
ference Proceedings, IEEE Computer Society Press, Jun.
(73) Assignee: NEC Corporation, Tokyo (JP) 22-24, 1995, pp. 414-426.
. _ _ o _ Kobayashi et al., “SKY: A Processor Architecture That
(*) Notice: Subject to any disclaimer, the term of this Exploits Instruction—-Level Parallelism in Non—-Numerical
patent 1s extended or adjusted under 35 Applications,” Joint Symposium on Parallel Processing
U.S.C. 154(b) by 406 days. 1998, IPSJ Symposium Series, vol. 98, No. 7, Jun. 3,
1998pp. 87-94.
(21) Appl. No.: 10/163,505 Torri et al., “Control Parallel On—Chip Multi—Processor:
_ MUSCAT,” Joint Symposium on Parallel Processing 1997,
(22) Filed: Jun. 7, 2002 May 28, 1997, pp. 229-236.
(65) Prior Publication Data Tor11, Sunao et al., Proposal for a MUSCAT on—chip control
parallel processor. Joho Shori Gakkai Ronbunshi |Papers of
US 2003/0028755 Al Feb. 6, 2003 the Information Processing Society], Japan, Information
(30) Foreign Application Priority Data Processing Society, Jun. 1998, vol. 39, No. 6, pp.
1622-1631.
Tul. 12, 2001 (IP) oo 2001-212248
- (Continued)
(51) Imt. CL7 e, GO6F 9/40
(52) US. Cli oo 712/216 Primary Examiner—Eric Coleman
(58) Field of Searchcoccoocovvovevreeereinnnn. 7127216 (74) Attorney, Agent, or Firm—Foley & Lardner LLP
57 ABSTRACT
(56) References Cited 57)
US. PATENT DOCUMENTS In a parallc—;l processor system fﬁorﬁ executing a plurality (?f
threads which are obtained by dividing a single program in
5,430,850 A * 7/1995 Papadopoulos et al. 719/314 parallel each other by a plurality of processors, when a
5,560,029 A * 9/1996 Papadopoulos et al. 712/25 processor executing a master thread conducts forking of a
5,717,926 A 2/1998 Browning et al. slave thread in other processor, at every write to a general
0,713,059 A . 6/1995 Toril # register in the master thread after forking, the fork source
6,330,661 B:h 12/2001 TOI’H 7:52/228 processor transmits an updated register value to the fork
6,389,446 B1 * 5/2002 Torlic.cocvvvvvnvvnnnnnn. 718/100 destinat; h h ot b Th
6,766,517 B1 * 7/2004 Bernardo 719/313 CSUHALON PTOCESSOT TIIOUSIL 4 COTITTURIEALON BUS. L 1e
fork destination processor executes the slave thread for
FOREIGN PATENT DOCUMENTS speculation and upon detecting an offense against Read
P 0795334 211996 iftetrhWrgeb(RAW) relztte;dd tt':) the dgelieral reglsttt—"::r, Calflctehls
- 0725 334 Al 8/1996 ¢ thread being executed to conduct re-execution of the
P 10-027108 1/1998 thread.
IP 10-78880 3/1998
IP 10-078880 3/1998 28 Claims, 14 Drawing Sheets
3
~
THREAD CONTROLLER II
E¥-Hr-_IT-_-'_"]r"'“']r‘P'--Ir--—-fIf- —_
?EM\{__ >_\ ~ q- a
"k 0 2-1 2. 2-3
il
7e -
Yy * o Yy * 1-2 YyY| vy 1-3
| PROCESSOR PROCESSOR rj

#0 e

1-1

r

6-1

YV v
PROCESSOR PROCESSOR
12 $3

6-2

o~

4-2
/__/

5
Y Yy ~

MEMORY

US 6,907,517 B2
Page 2

OTHER PUBLICATIONS Sakai, Junj1 et al., Automatic parallelized compiling tech-

Osawa, Taku et al., Investigation of the mixed thread execu- niques for control parallel architecture. 1998 Parallel Pro-

tion scheme under MUSCAT. Joho Shori Gakki Kenkya cessing Symposium, Information Processing Society, Jun. 3,
Hokoku [Information Processing Society Research Reports|, 1998, vol. 98, No. 7, pp. 383-390.
Japan, Information Processing Society, Aug. 4, 1999, vol.

99, No. 67, pp. 169-174. * cited by examiner

U.S. Patent Jun. 14, 2005 Sheet 1 of 14 US 6,907,517 B2

FIG. 1

#0 #1

FORK

(a) WRITE r10 OF BLOCK a

READ r10
#0 #1
FORK
READ r10
WRITE r10 OF BLOCK a RAW DETECTION, RESTART
READ r10
(b)
#0 #1
FORK
WRITE r10 OF BLOCK a2 @ — — — — —
READ 110
(¢)
WRITE r10 OF BLOCK ¢ & — — — — — RAW DETECTION, RESTART

READ r10

U.S. Patent Jun. 14, 2005 Sheet 2 of 14 US 6,907,517 B2

FIG. 2

THREAD CONTROLLER

PROCESSOR

|||‘| #0

PROCESSOR
¥3

4-3

434408 AYVH0dNIL

8¢

US 6,907,517 B2

43151934
SALYLS

4
y—
-
-—
o
g
7 51
Ve et
—
> 2
S \ / -
= /1
e
12 9l

U.S. Patent

LINIY1d NOILO3130 WMWY

lC

43151934

1Y43IND

w-2l

Cl

43151034

L\2-ELER

4318193
JA2-ELER

43LS 193y -2 1
I LELNER A

0-¢l
— S¢

9¢

.

b ve

3d SNOTAJYd
N0y

¢ "9DId

U.S. Patent Jun. 14, 2005 Sheet 4 of 14 US 6,907,517 B2

FI1G.

4

THREAD START

WRITE READ
READ

WRIT%::i\}.

READ

LOCAL STORED

US 6,907,517 B2

Sheet 5 of 14

Jun. 14, 2005

U.S. Patent

id LX3N
0l

£c

e

LS

G

OIdA

d344N9 A4VY04W3L

81

4315193y
SIILYLS

8¢

LINJ¥13 NOILI313a mvy

LG

9¢

£«

1d
SNOTAIY
HOY

U.S. Patent

(a)

(b)

Jun. 14, 2005

thi:

_func;

thl:

_func:

fork
add
jal
add
Jal

add

subu
SW

move

|w
addu

fork
add
prop
jal

prop
add

prop
jal
add
subu
SW
move

addu
)

Sheet 6 of 14 US 6,907,517 B2

FIG. 6

~thi

r20, r20, 1
_func
r2z0, r20,1
_func

rid, r20, 1

sp, 24
r20,20(sp)

rz0, ro

r20, 20 (sp)
sp, 24
rJl

~thi

r20, r20, 1
'r20
_func

rz0

rZQd, r20,
1r20
_func

r13, r20, 1

sp, 24
r20, 20 (sp)

r24, r@
r2@d, 20 (sp)

sp, 24
rat

' TO0 SAVE r2(0

; OWITCH OF r20 CONTENTS

;TO RETURN r20

;10 HALT TRANSFER OF r20
TO RESUME TRANSFER OF r20

; TO HALT TRANSFER OF r20

4344N8 AYVY0diIL LINJY1 NOIL2313a mvy

8¢
81

US 6,907,517 B2

LS

4
Yo

-

-

E

=

7 9

a7

v ec

& N -
H.., Id 1YX3N .

R 0. VA

u \/
p—

L s
PN o i -vN

_ ‘l.ll

= dS MOAVYHS

5 X

o
-l ® L v

—..u

/ L DI g e L
-

1d SN0IA3Yd
HoY

o
~ X
P ¥344N9 AYVY04WIL LINJ¥13
.m., NO 193130 MvY
@,, . 8C
1
e ks
-

4315193y
553400V 3¥0.18

d315 1334

9¢

Sheet 8 of 14

Jun. 14, 2005

A ey

0l Mw_ -2

LE

U.S. Patent

1d
SN01A3Yd
{INE

4344N8 AdVY0dW3l

8¢

8l

US 6,907,517 B2

dd1$ 1934

€9
™ ' " -
. _
M 4315197y
S IVLELNER,
o
7 b9 o - 431S 193
TY4INTD o2

. - 441513934
L €2 IRELER A
&
T Do Il— \J
= 01 _“
.m -

1IN

6 "DId e 1

U.S. Patent

L - _
2¢) 61 o _
L&

Lindd1d NOIL1J33130 MvH

LC

43151934
1Vd3N3D

S¢
St

bi

dd SN0 TAJYd
JIILE,

US 6,907,517 B2

Sheet 10 of 14

Jun. 14, 2005

U.S. Patent

id 1X3N
0l

&c

GG

X
LAY 1D
¥344N9 AYVYHO4WAL 101113130 BV
3¢
8l /2
4318 (03 e 43181934
SNLVLS INLELER
- _————————z—A— N
4318193} l— 4318 193Y
———————— SNLVLS WEELER
EIRYRER ' 4315 193y
€L SNLYLS TY43INID
1-02 _-_

mmhm_umm d315 193

SNLVIS AELEN,
43ININO3S
A -lll
-----u--------g----------
\/ L1
e

LINA X

3d
SVETE
5~ Wo:
b2
OT°*DId

@\
o
r X
\f)
- 434408 AY L0819
W vi0dil NOI 193130 MVY
Vo 3
/5. 1241
- /Z
119 SNLVILS -~ Ez_omm 4315193y
NI{SNYYL SNLVLS I LELER
Ww-18 W-0¢ | w-g|
T
. |
= 439NIND3S 118 SNIVIS [ETRE] EINBED
3 4I4SNVYL l 4I4SNYYL - . SNLYLS TYYINTY
= 4315193y 119 SNLVLS 'l— EIRIEL
o l NI4SNYYL l - TVHINTD 9¢
m 119 SNLVLS — -0¢ y315193y - 4315193y
R »- 43JSNYY L SNLVLS LEEER A
m _ 0l ‘ _ 0-0¢
A) -
y— .
= G m . r — G2 %
E 12 28 Gl
61 . v Ve
=
= LIN ¥
=
== .
o LT "DId e H
-

1d
SN01A3Yd
JILE

US 6,907,517 B2

Sheet 12 of 14

Jun. 14, 2005

U.S. Patent

tdd

Wiadl

\ NO 1 1VddNd
OVddH.1

R PR = i+

¢dd

NOILyyaNIy L—

JV4aH!

nd04

I dd £dd

v Hodd) €T "D I A

|

23d
(9)

(LB

Ad0d

NOI|LVdIND
QvddHl

—___—

L 3d

M40

v

=ls

43040
NO I 194X
T¥11N3INB3S

\Y

U.S. Patent Jun. 14, 2005 Sheet 13 of 14 US 6,907,517 B2

FIG. 13 (PRIOR ART)

add r20, r20, 1 * - = INSTRUCTION 1

jal _func * = = INSTRUCTION 2

(a) add r20, r2o, » + ~ INSTRUCTION 3

jal _func -+ - INSTRUCTION 4

add ri3, r20,1 * + =+ INSTRUCTION 5

add r20, r20, 1 ~ = =+ INSTRUCTION 1

jal _func = » + INSTRUCTION 2

(b) add r20, r20, 1 * + + INSTRUCTION 3
fork thi

jal _func -+ < INSTRUCTION 4

_thl: add r13,r20, 1 * » - INSTRUCTION 5
fork th]

add re0, r20, 1 - = + INSTRUCTION 1

(c) jal _func -+ = [NSTRUCTION 2

add r20, r20, 1 - = = [NSTRUCTION 3

jal _func -+ « INSTRUCTION 4

th1: add r13, r20, | = = = INSTRUCTION 5

US 6,907,517 B2

Sheet 14 of 14

Jun. 14, 2005

U.S. Patent

ON

L + 014 — [/

014 434SNYdL 0L NOIL1INYLISN!

| + 014 — Q14

G3Z1Tv34d HONYHE

| + 014 — QI

(4)

(v woidd) T °OIA

ON

L + 0ld — [

I + 014 — (14

G3Z171vAY HONVYE

I + 014 — 014

(B)

US 6,907,517 B2

1

INTERPROCESSOR REGISTER
SUCCESSION METHOD AND DEVICE
THEREFOR

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to a parallel processor
system for executing a plurality of threads which are
obtained by dividing a single program 1n parallel to each
other by a plurality of processors, and more particularly, to
a method of taking a register updated 1n a master thread after
forking over to a slave thread and a device therefor.

2. Description of the Related Art

Among methods of processing a single program in par-
allel by a parallel processor system 1s a multi-thread execu-
tion method of executing instruction streams called threads
obtained by dividing a program 1n parallel to each other by
a plurality of processors. Literatures reciting this method
are, for example, Japanese Patent Laying-Open (Kokai) No.
Heisei 10-27108 (hereinafter referred to as Literature 1),
“Control Parallel On Chip Multiprocessor: MUSCAT”
(Parallel Processing Symposium JSPP97 Articles, Japanese
Society of Information Processing Engineers of Japan, pp.
229-236, May 1997) (heremafter referred to as Literature 2),
Japanese Patent Laying-Open (Kokai) No. Heiser 10-78880
(hereinafter referred to as Literature 3), “SKY: A Processor
Architecture that Exploits Instruction-level Parallelism in
Non-numeric Applications” (Parallel Processing Sympo-
stum JSPPO98 Articles, Japanese Society of Information
Processing Engineers of Japan, pp. 87-94, June 1998)
(hereinafter referred to as Literature 4), and “Multiscalar
Processor” (G. S. Sohi, S. E. Breach and T. N. Vijaykumar,
the 22nd International Symposium on Computer
Architecture, IEEE Computer Society Press, 1995, pp.
414-425) (hereinafter referred to as Literature 5). In the
following, the conventional multi-thread execution methods
recited 1n the Literatures will be described.

In general, generating a new thread on other processor in
a multi-thread execution method 1s called “forking a thread”
and a thread on the side which conducts forking operation 1s
called a master thread, a newly generated thread 1s called a
slave thread, a point where a thread 1s forked 1s called a fork
point and a head portion of a slave thread 1s called a fork
destination address or a start point of the slave thread. In the
Literatures 1 to 4, a fork instruction 1s 1nserted at a fork point
in order to give an 1nstruction to conduct thread forking. The
fork instruction has designation of a fork destination
address, so that execution of the fork instruction generates a
slave thread starting at the fork destination address on other
processor to start execution of the slave thread. In addition,
an 1nstruction called a term instruction which terminates
processing of a thread 1s prepared, so that each processor
ends processing of a thread by the execution of the term
instruction.

FIG. 12 shows outlines of processing of a multi-thread
execution method. FIG. 12(a) shows a single program
divided into three threads A, B and C. In a case of processing
of the program by a single processor, one processor PE
sequentially processes the threads A, B and C as shown 1n
FIG. 12(b). On the other hand, as shown in FIG. 12(¢), in the
multi-thread execution methods recited i the Literatures 1
to 5, one processor PE1 executes the thread A and while the
processor PE1 executes the thread A, the thread B 1s
generated 1n other processor PE2 by a fork instruction buried
in the thread A and the processor PE2 executes the thread B.

10

15

20

25

30

35

40

45

50

55

60

65

2

The processor PE2 also generates the thread C 1n a processor
PEJ3 according to a fork instruction buried in the thread B.
The processors PE1 and PE2 end processing of the threads
according to term instructions buried 1immediately before
start points of the threads B and C, respectively, and when
executing the last mstruction of the thread C, the processor
PE3 executes the subsequent instruction (system call
instruction in general). By thus simultaneously executing the
threads 1n parallel to each other by a plurality of processors,
higher performance can be obtained than that of sequential

processing.

As another conventional multi-thread execution method,
there exists a multi-thread execution method of generating
the thread B 1n the processor PE2 and the thread C in the
processor PE3, respectively, by conducting a plurality of
times of forking from the processor PE1 which executes the
thread A as shown in FIG. 12(d). In contrast to the model
shown in FIG. 12(d), the multi-thread execution method on
which such a constraint is imposed as shown in FIG. 12(¢)
that a thread 1s allowed to generate a valid slave thread only
once during its existence 1s referred to as one fork model.
The one fork model enables thread management to be
drastically simplified and realizes a thread controller as
hardware on a practical hardware scale. Moreover, since an
individual processor exclusively has one other processor that
ogenerates a slave thread, multi-thread execution 1s enabled
by a parallel processor system 1in which adjacent processors
are connected 1 a ring 1n a single direction. The present
invention 1s premised on such one fork model.

When slave thread forking 1s made, register takeover from
a master thread to a slave thread is necessary. The register
takeover 1s conducted in two manners 1n general. One, as
adopted 1n the parallel processor systems recited in the
Literatures 1 to 3, i1s taking over only the contents of a
register flle of a master thread at the forking and not a
register updated after forking, which will be referred to as
register at forking transfer system hereinafter. The other, as
adopted 1n the parallel processor systems recited in the
Literatures 4 and 5, 1s taking over registers updated after
forking as well. This will be referred to as post-forking
register transfer system.

As shown 1 FIG. 13(a), for example, in a sequential
execution program in which an instruction 1 to increment
the value of a register r20 by one, an instruction 2 to call a
function func, an 1nstruction 3 to increment the value of the
register 120 by one, an instruction 4 to call a function func
and an 1nstruction 3 to place the value obtained by incre-
menting the value of the register r20 by one at a register r13
are described 1n this order, when executing an instruction
stream after the instruction 5 as a slave thread, a fork
instruction 1s 1nserted at a time point where the value of the
register r20 to which the slave thread refers is settled 1n the
register at forking transfer system as shown in FIG. 13(b).

On the other hand, in the post-forking register transfer
system, because a settled value of the register r20 1s trans-
ferred to a slave thread after forking, slave thread forking
can be conducted ahead without waiting for the value of the
register 120 to be settled. It 1s accordingly possible, for
example, to msert a fork instruction immediately ahead of
the instruction 1 as shown in FIG. 13(c). This, however,
inevitably invites a RAW (Read After Write) offense on a
slave thread side, so that 1in the Literatures 4 and 5, a time
point where a register necessary for a slave thread and its
register value are settled 1s detected by static dependence
analysis conducted by a compiler and a register transfer
instruction 1s 1nserted 1immediately after a register to be
transferred 1s defined or determined (Literature 4) or a

US 6,907,517 B2

3

register transfer bit is set in an instruction code (Literature
5), while a reception side waits for execution of an instruc-
tion until receiving the settled register value.

Although a multi-thread execution method 1s premised on
that preceding threads whose execution 1s settled are basi-
cally executed 1n parallel, actual programs 1n many cases fail
to obtain sufficient threads whose execution 1s settled. In
addition, there 1s a possibility that desired performance
could not be obtained because a parallelization rate is

suppressed to be low due to limitations of dynamically
determined dependence, compiler analysis capacity and the
like. Literature 1 and the like therefore introduce control
speculation to support speculative execution of a thread by
hardware. In control speculation, a thread whose execution
1s highly probable i1s executed on speculation before the
execution 1s settled. A thread at a speculation state 1is
temporarily executed within a range where cancellation of
the execution 1s possible 1n terms of hardware. A state where
a slave thread 1s temporarily executed 1s referred to as a
temporary execution state, and when a slave thread is at the
temporary execution state, a master thread 1s regarded as
being at a thread temporary generation state. In a slave
thread at a temporary execution state, write to a shared
memory 15 suppressed, while write 1s made to a temporary
buffer provided separately. When speculation 1s determined
to be right, a speculation success notification 1s 1ssued from
the master thread to the slave thread, whereby the slave
thread reflects the contents of the temporary buifer 1n the
shared memory to enter a normal state where no temporary
buffer 1s used. In addition, the master thread enters a thread
generation state out of the thread temporary generation state.
On the other hand, when the speculation 1s determined to
fail, a thread abort instruction 1s executed by the master
thread and execution of the slave thread and the following
threads 1s cancelled. In addition, the master thread enters a
thread yet-to-be generated state out of the thread temporary
generation state to again allow generation of a slave thread.
In other words, 1n one fork mode, although thread generation
1s limited to one at most, when control speculation 1is
conducted and fails, forking 1s again allowed. Also m this
case, valid slave thread that can be generated 1s one at most.

In addition to those mentioned above, in the MUSCAT
recited 1n the Literature 2, numerous dedicated instructions
are prepared for flexibly controlling parallel operation of
threads such as inter-thread synchronization instructions.

As described above, the post-forking register transter
system enables forking of a slave thread prior to the settle-
ment of the value of a register necessary for the slave thread
without waiting for the settlement and so much 1improves the
degree of parallelization of instruction execution as com-
pared to that of the register at forking transfer system.
However, since a register updated in a master thread after
forking 1s taken over to a slave thread, control should be
made to prevent a RAW offense from occurring at the slave
thread side. When realizing the control by the above-
described methods which are recited 1n the Literatures 4 and
5, unnecessary synchronization occurs to degrade perfor-
mance 1n some cases. The reason 1s that the methods intend
to statically eliminate a RAW olifense by dependence analy-
sis at the time of compiling and to synchronize a master
thread and a slave thread related to a register to be taken over
to the slave thread. In the following, the problem will be
described using a specific example.

Now, as shown in FIG. 14(a), assuming a sequential
processing program having a block a including an update
instruction of a register r10, a branch instruction b, a block
¢ 1including the update instruction of the register r10, and a

10

15

20

25

30

35

40

45

50

55

60

65

4

block d mcluding an instruction to refer to the register rl10,
consideration will be given to a case of forking of the block
d as a slave thread immediately before the block a. In this
case, since the register r10 1s referred to at the block d, the
value of the register r10 should be taken over from the
master thread to the slave thread. Although after a fork point,
the register r10 1s updated at the block a and the block c,
since the block ¢ 1s executed only when branch 1n response
to the branch instruction b 1s realized, when the branch i1s
realized, the value of the register r10 updated at the block c,
and when the branch is not realized, the value of the register
r10 updated at the block a, should be taken over to the slave
thread, respectively. In such a case, according to the con-
ventional methods recited 1n the Literature 5 and the like, an
instruction to transfer a settled value of the register r10 to a
slave thread should be inserted at a part where realization/
non-realization of branch is settled as shown in FIG. 14(b).
As a result, 1 actual program execution, an instruction to
refer to the register r10 of the slave thread will be kept
waiting for long 1rrespective of success/failure of branch in
response to the branch instruction b. When branch i1s
realized, since the value of the register r10 updated at the
block c 1s referred to, such waiting 1s inevitably necessary,
while when branch 1s not realized, since the value of the
register r10 updated at the block a can be used without
modification, such waiting would be unnecessary waiting
for synchronization.

SUMMARY OF THE INVENTION

An object of the present mnvention 1s to provide a novel
method of taking a register updated in a master thread after
forking over to a slave thread and a device therefor.

Another object of the present 1nvention 1s to enable, 1n a
parallel processor system adopting a post-forking register
transfer method, a RAW oflfense to be dynamically elimi-
nated not at the time of compiling but at the time of program
execution.

A further object of the present 1invention 1s to 1mprove
performance of a parallel processor system adopting a
post-forking register transfer method by preventing unnec-
essary waiting for the purpose of eliminating a RAW oflfense
from occurring.

According to one aspect of the ivention, 1n a parallel
processor system for executing a plurality of threads which
are obtained by dividing a single program 1n parallel to each
other by a plurality of processors, an interprocessor register
succession method of taking a register updated 1n a master
thread after forking over to a slave thread, comprising the
steps of

after forking, at every write to a general register in the
master thread, transmitting an updated register value from a
processor on the master thread side to a processor on the
slave thread side, and

executing the slave thread for speculation 1n the processor
on the slave thread side to conduct re-execution when an

offense against Read After Write (RAW) 1s detected.

In the preferred construction, the inter-processor register
succession method comprises a status register provided
one-to-one corresponding to a general register of each
processor for holding a first state at the time of thread start,
holding a second state when first access to the corresponding
ogeneral register after the thread start 1s to read, and holding
a third state when first access to the corresponding general
register after the thread start 1s to write, wherein

when the status register corresponding to the general
register whose register value 1s transmitted from the pro-

US 6,907,517 B2

S

cessor on the master thread side holds the second state,
occurrence ol an offense against RAW 1s detected.

In another preferred construction, the mterprocessor reg-
ister succession method comprises a mask bit which is
operable by a special instruction to control halt and resump-

tion of transfer to the slave thread and provided one-to-one
corresponding to the general register, wherein

at every write to the general register 1n the master thread
after forking, only when the mask bit corresponding to the
general register to which the write 1s made 1s at a transfer
allowed state, an updated register value 1s transmitted from
the processor on the master thread side to the processor on
the slave thread side.

In another preferred construction, the mterprocessor reg-
ister succession method comprises a status register provided
one-to-one corresponding to a general register of each
processor for holding a first state at the time of thread start,
holding a second state when first access to the corresponding
ogeneral register after the thread start 1s to read, and holding
a third state when first access to the corresponding general
register after the thread start 1s to write, wherein when the
status register corresponding to the general register whose
register value 1s transmitted from the processor on the
master thread side holds the second state, occurrence of an
offense against RAW 1s detected, and

a mask bit which 1s operable by a special instruction to
control halt and resumption of transfer to the slave thread
and provided one-to-one corresponding to the general
register, wherein at every write to the general register 1n the
master thread after forking, only when the mask bit corre-
sponding to the general register to which the write 1s made
1s at a transfer allowed state, an updated register value 1s
transmitted from the processor on the master thread side to
the processor on the slave thread side.

In another preferred construction, the mterprocessor reg-
ister succession method comprises

stack pointer preserving step of preserving a value of a
stack pointer at the time of forking, and

detection step of detecting coincidence between a current
stack pointer value and a stack pointer value preserved in the
stack pointer preserving step, wherein

at every write to the general register of the master thread
after forking, only when the general register to which the
write 1s made 1s a function return value register and only
when the general register to which the write 1s made 1s other
register than the function return value register and coinci-
dence 1s detected by the detection step, an updated register
value 1s transmitted from the processor on the master thread
side to the processor on the slave thread side.

In another preferred construction, the mterprocessor reg-
ister succession method comprises a status register provided
one-to-one corresponding to a general register of each
processor for holding a first state at the time of thread start,
holding a second state when first access to the corresponding
ogeneral register after the thread start 1s to read, and holding
a third state when first access to the corresponding general
register after the thread start 1s to write, wherein

when the status register corresponding to the general
register whose register value 1s transmitted from the pro-
cessor on the master thread side holds the second state,
occurrence of an offense against RAW 1s detected,

stack pointer preserving step of preserving a value of a
stack pointer at the time of forking, and

detection step of detecting coincidence between a current
stack pointer value and a stack pointer value preserved in the
stack pointer preserving step, wherein

10

15

20

25

30

35

40

45

50

55

60

65

6

at every write to the general register of the master thread
after forking, only when the general register to which the
write 1s made 1s a function return value register and only
when the general register to which the write 1s made 1s other
register than the function return value register and coinci-
dence 1s detected by the detection step, an updated register
value 1s transmitted from the processor on the master thread
side to the processor on the slave thread side.

In another preferred construction, the interprocessor reg-
Ister succession method comprises

a store address register one-to-one corresponding to each
general register, wherein at the time of execution of a store
instruction, a store address for each general register 1s stored
in the store address register, at the detection of general
register contents switch, transier of the general register in
question to the slave thread 1s inhibited and write to the store
address register 1s halted, and an address at the time of
loading 1s compared with the store address stored in the store
address register to detect the contents of the general register

being restored, thereby releasing the general register in
question from the state where transfer to the slave thread is
inhibited.

In another preferred construction, the interprocessor reg-
ister succession method comprises a status register provided
one-to-one corresponding to a general register of each
processor for holding a first state at the time of thread start,
holding a second state when first access to the corresponding
ogeneral register after the thread start 1s to read, and holding
a third state when first access to the corresponding general
register after the thread start 1s to write, wherein

when the status register corresponding to the general
register whose register value 1s transmitted from the pro-
cessor on the master thread side holds the second state,
occurrence of an offense against RAW 1s detected,

a store address register one-to-one corresponding to each
ogeneral register, wherein at the time of execution of a store
instruction, a store address for each general register 1s stored
in the store address register, at the detection of general
register contents switch, transfer of the general register in
question to the slave thread 1s inhibited and write to the store
address register 1s halted, and an address at the time of
loading 1s compared with the store address stored in the store
address register to detect the contents of the general register
being restored, thereby releasing the general register in
question from the state where transfer to the slave thread is
inhibited.

In another preferred construction, only when an updated
ogeneral register value differs from a value yet to be updated,
the updated register value 1s transmitted from the processor
on the master thread side to the processor on the slave thread
side.

In another preferred construction, the interprocessor reg-
ister succession method comprises a status register provided
one-to-one corresponding to a general register of each
processor for holding a first state at the time of thread start,
holding a second state when first access to the corresponding
ogeneral register after the thread start 1s to read, and holding
a third state when first access to the corresponding general
register after the thread start 1s to write, wherein

when the status register corresponding to the general
register whose register value 1s transmitted from the pro-
cessor on the master thread side holds the second state,
occurrence of an offense against RAW 1s detected, and

only when an updated general register value differs from
a value yet to be updated, the updated register value 1s
transmitted from the processor on the master thread side to
the processor on the slave thread side.

US 6,907,517 B2

7

According to another aspect of the invention, 1n a parallel
processor system for executing a plurality of threads which
are obtained by dividing a single program 1n parallel to each
other by a plurality of processors, an mterprocessor register
succession device for taking a register updated 1n a master
thread after forking over to a slave thread, comprises

means for transmitting an updated register value from a
processor on the master thread side to a processor on the
slave thread side at every write to a general register 1n the
master thread after forking, and

means for executing the slave thread for speculation 1n the
processor on the slave thread side to conduct re-execution
when an offense against RAW 1s detected.

In the preferred construction, each processor comprises a
status register provided one-to-one corresponding to a gen-
eral register for holding a first state at the time of thread start,
holding a second state when first access to the corresponding
general register after the thread start 1s to read, and holding
a third state when first access to the corresponding general
register after the thread start 1s to write, and means for
detecting, when the status register corresponding to the
ogeneral register whose register value 1s transmitted from the
processor on the master thread side holds the second state,
occurrence of an offense against RAW.

In another preferred construction, each processor com-
prises a mask bit which 1s operable by a special instruction
to control halt and resumption of transfer to the slave thread
and provided one-to-one corresponding to the general
register, and means for transmitting an updated register
value from the processor on the master thread side to the
processor on the slave thread side at every write to the
general register 1n the master thread after forking only when
the mask bit corresponding to the general register to which
the write 1s made 1s at a transfer allowed state.

In another preferred construction, each processor com-
prises a status register provided one-to-one corresponding to
a general register for holding a first state at the time of thread
start, holding a second state when first access to the corre-
sponding general register after the thread start 1s to read, and
holding a third state when first access to the corresponding
ogeneral register after the thread start 1s to write, detection
means for detecting occurrence of an offense against RAW
when the status register corresponding to the general register
whose register value 1s transmitted from the processor on the
master thread side holds the second state, a mask bit which
1s operable by a special instruction to control halt and
resumption of transfer to the slave thread and provided
one-to-one corresponding to the general register, and means
for transmitting an updated register value from the processor
on the master thread side to the processor on the slave thread
side at every write to the general register 1n the master thread
after forking, only when the mask bit corresponding to the
ogeneral register to which the write 1s made 1s at a transfer
allowed state.

In another preferred construction, each processor com-
prises stack pointer preserving means for preserving a value
of a stack pointer at the time of forking, detection means for
detecting coincidence between a current stack pointer value
and a stack pointer value preserved in the stack pointer
preserving means, and means for transmitting an updated
register value from the processor on the master thread side
to the processor on the slave thread side at every write to the
general register of the master thread after forking, only when
the general register to which the write 1s made 1s a function
return value register and only when the general register to
which the write 1s made 1s other register than the function

10

15

20

25

30

35

40

45

50

55

60

65

3

return value register and coincidence 1s detected by the
detection means.

In another preferred construction, each processor com-
prises a status register provided one-to-one corresponding to
a general register for holding a first state at the time of thread
start, holding a second state when {first access to the corre-
sponding general register after the thread start 1s to read, and
holding a third state when first access to the corresponding
ogeneral register after the thread start 1s to write, detection

means for detecting occurrence of an offense against RAW
when the status register corresponding to the general register
whose register value 1s transmitted from the processor on the
master thread side holds the second state, stack pointer
preserving means for preserving a value of a stack pointer at
the time of forking, detection means for detecting coinci-
dence between a current stack pointer value and a stack
pointer value preserved in the stack pointer preserving
means, and means for transmitting an updated register value
from the processor on the master thread side to the processor
on the slave thread side at every write to the general register
of the master thread after forking, only when the general
register to which the write 1s made 1s a function return value
register and only when the general register to which the
write 1s made 1s other register than the function return value
register and coincidence 1s detected by the detection means.

In another preferred construction, each processor com-
prises a store address register one-to-one corresponding to
cach general register, means for storing a store address for
cach general register 1n the store address register at the time
of execution of a store instruction, means for inhibiting
transier of the general register 1in question to the slave thread
and halting write to the store address register at the detection
of general register contents switch, and means for comparing
an address at the time of loading with the store address
stored 1n the store address register to detect the contents of
the general register being restored, thereby releasing the
general register in question from the state where transter to
the slave thread 1s inhibited.

In another preferred construction, each processor com-
prises a status register provided one-to-one corresponding to
a general register for holding a first state at the time of thread
start, holding a second state when first access to the corre-
sponding general register after the thread start 1s to read, and
holding a third state when first access to the corresponding
ogeneral register after the thread start 1s to write, detection
means for detecting occurrence of an offense against RAW
when the status register corresponding to the general register
whose register value 1s transmitted from the processor on the
master thread side holds the second state, a store address
register one-to-one corresponding to each general register,
means for storing a store address for each general register in
the store address register at the time of execution of a store
mstruction, means for, at the detection of contents switch of
the general register, inhibiting transfer of the general register
in question to the slave thread and halting write to the store
address register, and means for comparing an address at the
time of loading with the store address stored in the store
address register to detect the contents of the general register
being restored, thereby releasing the general register in
question from the state where transfer to the slave thread is
inhibited.

In another preferred construction, the interprocessor reg-
ister succession device comprises means for detecting
whether an updated value of the general register 1s different
from a value yet to be updated, and means for transmitting
an updated register value from the processor on the master
thread side to the processor on the slave thread side only

US 6,907,517 B2

9

when the updated general register value differs from the
value yet to be updated.

According to a further aspect of the invention, 1n a parallel
processor system for executing a plurality of threads which
are obtained by dividing a single program 1n parallel to each
other by a plurality of processors, an mterprocessor register
succession device for taking a register updated 1n a master
thread after forking over to a slave thread, comprises

unit which transmits an updated register value from a
processor on the master thread side to a processor on the
slave thread side at every write to a general register 1 the
master thread after forking, and

unit which executes the slave thread for speculation 1n the
processor on the slave thread side to conduct re-execution
when an offense against RAW 1s detected.

Other objects, features and advantages of the present
ivention will become clear from the detailed description
ogrven herebelow.

BRIEF DESCRIPTION OF THE DRAWINGS

The present mnvention will be understood more fully from
the detailed description given herebelow and from the
accompanying drawings of the preferred embodiment of the
mvention, which, however, should not be taken to be limi-
tative to the invention, but are for explanation and under-
standing only.

In the drawings:

FIGS. 1(a), 1(b) and 1(c) are diagrams for use in explain-
ing functions of the present invention;

FIG. 2 1s a block diagram showing one example of a
parallel processor system to which the present invention 1s
applied;

FIG. 3 1s a block diagram showing a main part of a
processor according to a first embodiment of the present
mvention;

FIG. 4 1s a diagram showing state transition of a status
register;
FIG. § 1s a block diagram showing a main part of a

processor according to a second embodiment of the present
mvention;

FIGS. 6(a) and 6(b) are diagrams showing examples of
parallelization programs obtained before and after insertion
of a prop nstruction;

FIG. 7 1s a block diagram showing a main part of a
processor according to a third embodiment of the present
mvention;

FIG. 8 1s a block diagram showing a main part of a
processor according to a fourth embodiment of the present
mvention;

FIG. 9 1s a block diagram showing a main part of a
processor according to a fifth embodiment of the present
mvention;

FIG. 10 1s a block diagram showing a main part of a
processor according to a sixth embodiment of the present
mvention;

FIG. 11 1s a block diagram showing a main part of a
processor according to a seventh embodiment of the present
mvention;

FIGS. 12(a), 12(b), 12(c) and 12(d) are diagrams showing

outlines of processing of a conventional multi-thread execu-
tion method;

FIGS. 13(a), 13(b) and 13(c) are diagrams showing a
program example for use in explaining two methods

10

15

20

25

30

35

40

45

50

55

60

65

10

(register at forking transfer system and post-forking register
transfer system) related to register succession;

FIGS. 14(a) and 14(b) are diagrams for use in explaining
conventional problems.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

The preferred embodiment of the present invention will
be discussed hereinafter in detail with reference to the
accompanying drawings. In the following description,
numerous specific details are set forth 1n order to provide a
thorough understanding of the present mnvention. It will be
obvious, however, to those skilled 1n the art that the present
invention may be practiced without these specific details. In
other 1nstance, well-known structures are not shown 1n detail
in order to unnecessary obscure the present invention.

According to a first mnvention, after forking, every time
write 1s made to a general register of a master thread, the
updated register value 1s transmitted from a processor on the
master thread side to a processor on a slave thread side, and
the processor on the slave thread side executes the slave
thread for speculation and upon detecting a RAW olfense,
re-executes the same, thereby dynamically eliminating the
RAW offense not at the time of compiling but at the time of
program execution, as well as preventing unnecessary wait-
ing for the purpose of eliminating a RAW offense from
occurring.

The function of the first invention will be described in the
following taking the sequential processing program of FIG.
14(a@) used 1n the section of the Description of the Related
Art as an example. For the forking of the block d as a slave
thread immediately before the block a, the processor on the
slave thread side executes the slave thread from the block d
for speculation in the first invention. On the other hand,
when the register r10 1s updated at the block a after forking,
the processor on the master thread side transfers the updated
value to the slave thread side, and when the block ¢ 1s
executed after branch is realized in response to the branch
instruction b, transfers the value of the register r10 updated
at the block c¢ to the slave thread side again. Whether the
slave thread having started execution for speculation 1s to
conduct re-execution or not due to a RAW offense 1is
determined by success/failure of branch in the master thread
in response to the branch mstruction b, and timing of update
and transfer of the register r10 1n the master thread and
timing of reference to the register r10 in the slave thread.
FIG. 1 illustrates a few examples of execution sequences.

FIG. 1(a) shows a sequence used in a case where branch
in response to the branch instruction b fails to be realized
and a processor #1 on the slave thread side executes the
mstruction 1n the block d to refer to a register r10 after
receiving the value of the register r10 updated at the block
a from a processor #0) on the master thread side. In this case,
no RAW olffense occurs and no re-execution of the slave
threads is accordingly made. FIG. 1(b) is the same as FIG.
1(@) in that branch in response to the branch instruction b is
not realized and 1s different in that before receiving the value
of the register r10 updated in the block a from the processor
#0 on the master thread side, the processor #1 on the slave
thread side executes the 1nstruction 1n the block d to refer to
the register r10 and 1n this case, a RAW offense occurs and
re-execution of the slave thread 1s made. On the other hand,
FIG. 1(c) illustrates an example of an execution sequence in
a case where branch 1n response to the branch instruction b
1s realized, 1n which at the time point of receiving the value
of the register r10 updated at the block ¢ of the master
thread, RAW 1s detected to re-execute the slave thread.

US 6,907,517 B2

11

Comparing these execution sequences with the conven-
tional method shown in FIG. 14(b), since an instruction to
transfer the register rl10 to the slave thread 1s inserted
immediately after the block c¢ in FIG. 14(b), the transfer
fiming 1s approximate to the transfer timing of the register
r10 updated at the block ¢ in FIG. 1(c¢). In the conventional
method, at this timing, execution of the instruction to refer
to the register r10 at the block d 1s first started. According to
the present invention, therefore, even under the conditions
that branch i1n response to the branch instruction b 1is
realized, 1t 1s possible to ensure performance approximate to
that 1n the conventional method and when branch 1s not
realized, 1t 1s possible to drastically speed up processing of
a slave thread as compared with the conventional method

shown in FIGS. 1(a) and 1(b).

Also according to the first mnvention, when a register 1s
updated at a master thread after forking, the value of the
register 1s transferred to a processor on a slave thread side
without fail, insertion of additional information such as a
register transfer instruction which 1s required 1n conven-
tional methods into a parallelization program 1s not neces-
sary and a static dependence analysis by a compiler 1s not
always necessary ecither.

On the other hand, always transferring an updated register
results 1n degrading performance i1n some cases. For
example, since the number of general registers 1s limited,
when no free general register remains, operation 1S con-
ducted to save a value of a general register 1n use 1 a
memory and use the general register for other purpose and
when finishing the use, return the register value saved 1n the
memory to the general register 1n question. When this
operation, which 1s called general register contents
switching, 1s executed 1n a master thread, a register value
which needs not to be transferred will be transferred 1n the
first Invention to occur useless re-execution on the slave
thread side due to a RAW offense. In addition, when the
register 1s updated to have the same value as the last one,
although transfer to the slave thread 1s originally
unnecessary, register transter will be executed in the first
invention to cause useless re-execution on the slave thread
side due to a RAW olfense. The second to fourth inventions
avold useless register transfer following the general register
contents switching, while the fifth invention avoids useless
register transifer when the register 1s updated to have the
same value as the last one.

First Embodiment

With reference to FIG. 2, one example of a parallel
processor system to which the present invention is applied 1s
a 4-thread parallel execution type processor in which four
processors 1-i (1=0~3) are connected to a thread controller 3
through a signal line 2-7 and to a shared memory 5 through
a signal line 4-7 as well. In addition, adjacent processors are
connected 1n a ring through communication buses 6-0 to 6-3
in a single direction. Although 1n this example, a 4-thread
parallel execution type processor 1s taken as an example, the
present invention i1s applicable to n (£2) thread parallel
execution type processor in general such as 8-thread and
16-thread parallel execution type processors.

Each processor 1-i independently has a program counter
(hereinafter referred to as PC) and a register file and has a
function of simultaneously fetching, interrupting and
executing instructions of a thread in the memory 5 according
to the PC. Each processor 1-i also has a temporary buifer to
enable cancel of thread execution. Each processor 1-7, upon
transmission of a thread start request 7¢ having a target PC

10

15

20

25

30

35

40

45

50

55

60

65

12

value from the thread controller 3 through the signal line 2-i,
starts thread execution at the temporary execution state by
using the temporary bufler. At this stage, the processor 1-7 1in
question 1s managed 1n the thread controller 3 as being at a
busy state. The processor 1-i which will end execution of a
thread transmits a thread stop notice 7d to the thread
controller 3 through the signal line 2-i. The thread stop
notice 7d 1s accepted by the thread controller 3 on condition
that the processor 1-7 which has given the notice executes the
oldest master thread and the processor 1-i 1n question 1is
managed as being at a free state, so that a thread stop
permission 7e 1s returned to the processor 1-i. The processor
1-i releases 1ts temporary execution state upon reception of
the thread stop permission 7¢ to reflect the contents of the
temporary buifer on the shared memory 5 and ends execu-
tion of the thread.

By a fork instruction existing in a master thread being
executed, each processor 1-1 1s allowed to conduct forking of
a slave thread in one processor 1-j(i=j) of adjacent proces-
sors (processor 1-1 for processor 1-0, processor 1-2 for
processor 1-1, processor 1-3 for processor 1-2 and processor
1-0 for processor 1-3). At the forking of a slave thread, each
processor 1-7 transmits a fork request 7a accompanied by a
fork destination address (start PC value) of the slave thread
to the thread controller 3 through the signal line 2-i. Upon
receiving the fork request 7a, the thread controller 3 deter-
mines whether forking into other adjacent processor 1-j 1s
possible or not based on the state of the adjacent processor
and when 1t 1s possible, transmits the thread start request 7c
accompanied by a fork destination address to the processor
1-7 1n question, as well as returning a fork response 7b to the
processor 1- as a fork requesting source. The processor 1-1
having received the fork response 7b conducts register
succession of transferring the value of the register of the
master thread to the fork destination processor 1-j through
the communication bus 6-i and the processor 1-j having
received the thread start request 7c starts execution of the
slave thread for speculation starting at the fork destination
address.

FIG. 3 shows a block diagram of a main part of each
processor 1-i. In FIG. 3, a control unit 11 includes a PC, an
mnstruction fetch unit for fetching an instruction of a thread
from the memory 5 according to the PC and an execution
unit for decoding a fetched instruction and executing the
same. A register file 13 1s a set of general registers 12-0 to
12-m, which can be read through a register read bus 14 and
a register read signal 16 and can be written through a register
write bus 15 and a register write signal 17 by the unit 11. The
register read bus 14 1s a bus for transferring a read value, the
register write bus 15 1s a bus for transferring a write value,
and the register read signal 16 and the register write signal
17 indicate a register number of a general register as a target
of read and a register number of a general register as a target
of write, respectively. In other words, at the time of access
to the general register 12-k (k=0~m), the unit 11 outputs the
register number of the general register 12-k as the register
read signal 16 when 1n reading and outputs the register
number of the general register 12-k as the register write
signal 17 when 1n writing. A temporary bufifer 18 1s con-
nected to the unit 11 through a bus 19, so that the unit 11
conducts temporary execution (execution for speculation) of
the thread using the temporary buifer 18.

A status register 20-k corresponds one-to-one to the
ogeneral register 12-k, to which the register read signal 16 and
the register write signal 17 are applied. An 1mitial state of
cach status register 20-k 1s a clean state, and when the
register number of the register read signal 16 indicates the

US 6,907,517 B2

13

general register 12-k corresponding to its own register, the
current state being the clean state transits to a read state and
otherwise maintains the current state, and when the register
number of the register write signal 17 indicates the general
register 12-k corresponding to its own register, the current
state being the clean state transits to a local store state and
otherwise maintains the current state. State transition of each
status register 20-k 1s shown 1n FIG. 4. Each status register
20-k 1s at the clean state at the start of a thread in the
processor 1n question and after the thread execution starts,
when first access from the unit 11 to the corresponding
ogeneral register 12-k 1s for reading, the state transits to the
read state and when the first access 1s for writing, it transits
to the local store state indicative of a start with variable
definition. In both cases, even when read and write are
conducted thereafter, the read state and the local store state
are maintained.

The communication bus 21 1s a bus for taking a register
over to a fork destination processor, which bus transfers a
write value 22 output by the unit 11 onto the register write
bus 15 and a register number 23 output onto the register
write signal 17. A communication bus 24 1s a bus for
receiving register succession from a fork source processor,
which bus transfers a write value 25 to a register and a
register number 26. Among the general registers 12-0 to
12-m, a general register having the same register number as
the register number 26 1s rewritten with the write value 25.
The communication bus 24 1s equivalent to the communi-
cation bus 21 1n a fork source processor. The communication

buses 21 and 24 correspond to the communication buses 6-0
to 6-3 mn FIG. 2.

A RAW detection circuit 27 1s a detection circuit for
detecting a RAW oflense based on the state of the status
registers 20-0 to 20- and the register number 26 output
from a fork source processor to the communication bus 24.
Among the status registers 20-0 to 20-m, when the state of
a status register indicated by the register number 26 1s the
read state, the circuit detects a RAW offense being occur-
ring. Upon detecting a RAW offense, the RAW detection
circuit 27 outputs a cancel signal 28 to the temporary buifer
18 to cancel all the contents of the temporary butfer 18. The
cancel signal 28 1s also notified to the unit 11, which unit
cancels a thread being executed to re-start at 1ts start point.
At this time of restart, the status registers 20-k are all
returned to the clean state. As well as conventional control
speculation and the like, when a cancelled thread forks into
a slave thread, threads following the slave thread will be
cancelled.

Next, description will be made of operation of taking a
register updated 1in a master thread after forking over to a
slave thread with respect to a processor on the master thread

side and a processor on the slave thread side with reference
to FIG. 3.

(1) Processor on the Master Thread Side

When conducting forking of a slave thread, the unit 11, at
the time of updating any of the general registers 12-k
through the register write bus 15 after the forking, outputs
the register number 23 as the register write signal 17. The
communication bus 21 transmits the write value 22 output
onto the register write bus 15 and the register number 23
output onto the register write signal 17 toward a processor
in which forking of the slave thread 1s made.

(2) Processor on the Slave Thread Side

Upon recerving the thread start request 7c¢ from the thread
controller 3 through the signal line 2-7, the unit 11 initializes
all the status registers 20-k to the clean state and starting at

10

15

20

25

30

35

40

45

50

55

60

65

14

a start point of a thread designated by the thread start request
7c, executes a thread for speculation related to a general
register using the temporary buifer 18. When the need of
access to any of the general registers 12-k arises 1n the
course of execution, 1n a case of read, the unit accesses the
register through the register read bus 14 and outputs the
number of the read general register to the register read signal
16. In a case of write, the unit accesses the register through
the register write bus 15 to output the number of the written
ogeneral register to the register write signal 17.

Each status register 20-k, when {first access to its corre-
sponding general register 12-k 1s to read, transits to the read
state and when the first access 1s to write, transits to the local
store state. In addition, when the write value 25 and the
register number 26 are transmitted from the processor on the
master thread side via the communication bus 24, out of the
ogeneral registers 12-0 to 12-m, the general register corre-
sponding to the register number 26 1s rewritten with the
write value 25. When the status register 20-k corresponding
to the lately updated general register 12-£ 1s at the read state,
the RAW detection circuit 27 detects a RAW offense to
output the cancel signal 28. As a result, the temporary buifer
18 1s cleared and the umit 11 cancels the thread being
executed to execute the thread in question again for specu-
lation starting at a start point of the thread. At this time, all
the status registers 20-k are initialized to the clean state.

When executing the thread up to the last instruction for
speculation, the unit 11 transmits the thread stop notice 7d
to the thread controller 3 through the signal line 2-7 and upon
receiving the thread stop permission 7¢ from the thread
controller 3, reflects the contents of the temporary buifer 18
on the memory 5 to end the execution of the thread.

Second Embodiment

The present embodiment differs from the first embodi-
ment 1n that with a special instruction prepared for control-
ling halt and resumption of register transfer to a slave thread,
at the write to a general register of a master thread after
forking, only a general register at a transfer allowed state 1s
fransmitted to a processor on the slave thread side. In the
following, the present embodiment will be described mainly
with respect to the difference from the first embodiment.

With reference to FIG. 5, each processor 1-i of the parallel
processor system according to the present embodiment
includes, 1n addition to the components shown 1n FIG. 3, a
mask bit 31-k corresponding one-to-one to the general
register 12-k and a gate circuit 32 for outputting the register
number 23 of a general register which 1s lately written onto
the communication bus 21 only when the mask bit 31-k
corresponding to the general register 12-k of the register
number 23 indicated by the register write signal 17 1s at the
transfer allowed state. The mask bit 31-k 1s at the transfer
allowed state (e.g. “17) at the time of start of a thread, which
mask bit is updated to a transfer inhibited state (e.g. “0”) by
a control signal output onto an update bus 33 in response to
a special mstruction executed 1n the unit 11 or returned to the
transfer allowed state again.

The above-described special instruction will be referred to
as a propagate instruction (prop instruction as abbreviation)
in the present embodiment. The prop instruction has two
kinds, one for transfer halt and the other for transfer
resumption, which are inserted into the parallelization pro-
ogram 1n the following manner.

(2)
(b)

prop 1120
prop 120

US 6,907,517 B2

15

The prop 1nstruction a 1s an nstruction to halt transfer of
the register r20 to a slave thread after the instruction. The
prop 1nstruction b 1s an instruction to resume transfer of the
register r20 to a slave thread after the instruction.

FIG. 6(a) shows an example of a parallelization program
as of before the insertion of a prop instruction. In this
program, contents switch 1s made of the register r20 within
a Tunction func. Although write to the register r20 within the
function func i1s not true dependence, since in the first
embodiment, the value of the register r20 1s transferred to
the slave thread side at the time of update of the register r20
following the contents switching, detection of a RAW
offense causes re-execution.

FIG. 6(b) shows an example of a parallelization program
into which a prop instruction 1s mserted. Halting and resum-
ing transfer of the register r20 by a prop instruction before
and after call of the function func prevents useless transfer
and re-execution upon detection of a RAW offense.

Next, operation of the present embodiment will be
described taking the program shown in FIG. 6(b) as an
example. Since operation of a processor on the slave thread
side 1s the same as that of the first embodiment, description
will be made only of operation of a processor on the master
thread side.

The unit 11 conducts forking of a slave thread in response
to a fork instruction “fork th1”. When the unit 11 executes
the subsequent 1nstruction “add r20, r20, 1” mncluding update
of the register r20, since the mask bit 31-k corresponding to
the register r20 1s at the initial state of the transfer allowed
state, the updated value of the register r20 will be transmut-
ted to the processor on the slave thread side through the
communication bus 21 together with the register number.
Because the subsequent instruction 1s the prop instruction a,
the mask bit 31-k corresponding to the register r20 1s set at
the transfer inhibited state. Accordingly, even through the
function func 1s called to execute, within the function,
instructions “move 120, r0”, “Iw r20, 20(sp)” and the like
including update of the register r20 at the unit 11, no transfer
of the register r20 1s conducted. Since the 1nstruction imme-
diately after the instruction to call function func 1s the prop
instruction b, the mask bit 31-k corresponding to the register
r20 1s returned to the transfer allowed state. Accordingly,
when the unit 11 subsequently executes the mstruction “add
r20, r20, 1” including update of the register r20, the updated
value of the register r20 1s transferred to the processor on the
slave thread side. In the program of FIG. 6(b) hereafter, the
prop 1nstruction a again inhibits transfer of the register r2()
before calling the subsequent function func.

Third Embodiment

The present embodiment 1s different from the first
embodiment 1n that noticing a point that almost all the
general register contents switches are derived from function
call, a processor on a master thread side preserves a value of
a stack pointer (SP) at forking and when the general register
1s updated after forking, excepting a case where the updated
general register 1s a function return value register, transfers
the updated general register value to a processor on a slave
thread side only when the current stack pointer value 1s equal
to the preserved stack pointer value. In the following, the
present embodiment will be described mainly with respect to
the difference from the first embodiment.

With reference to FIG. 7, each processor 1- of the parallel
processor system according to the present embodiment
includes, 1n addition to the components shown in FIG. 3, a
shadow stack pointer 41 for preserving a value of the stack
pointer (SP) at the forking, a comparison circuit 42 for

10

15

20

25

30

35

40

45

50

55

60

65

16

detecting coincidence between the current value of the stack
pointer (SP) and the value of the shadow stack pointer 41,
a gate circuit 43 for outputting the register number 23
indicated by the register write signal 17 onto the commu-
nication bus 21 only when the comparison circuit 42 detects
the coincidence, and a write signal 44 for return value
register for outputting, when a general register to which
write 1S made 1s a function return value register, the register
number 23 of the return value register in question onto the
communication bus 21 1rrespective of coincidence or non-

coincidence detected by the comparison circuit 42.

Next, operation of the present embodiment will be
described. Since operation of a slave thread side processor
1s the same as that in the first embodiment, description will
be made only of operation of a master thread side processor.

When conducting forking of a slave thread, the unit 11
outputs a fork signal 45 to the shadow stack pointer 41 to
preserve the value of the stack pointer (SP), which pointer
1s one of the general registers 1n the register file 13, 1n the
shadow stack pointer 41 via a signal line 46. Thereafter, the
value of the stack pointer preserved in the shadow stack
pointer 41 1s compared at the comparison circuit 42 with the
value of the stack pointer (SP) read through the signal line
46 and a signal indicative of coincidence/non-coincidence 1s
output to the gate circuit 43.

After the forking of a slave thread, every time update 1s
made of any of the general registers 12-k through the register
write bus 15, the unmit 11 outputs the register number in
question as the register write signal 17. When the general
register to which the write 1s made 1s a function return value
register, the unit outputs the number of the return value
register onto the write signal line 44 for return value register.
The function return value register 1s determined 1n advance
by architecture, compiler and the like of the computer. Also
when the general register to which write 1s made 1s a
function return value register, the register number 23 on the
write signal line 44 for return value register and the write
value 22 on the register write bus 15 are transferred to the
slave thread side processor through the communication bus
22. On the other hand, when the general register to which the
write 1s made 1s other register than a function return value
register, as long as the current stack pointer (SP) value and
the stack pointer value preserved in the shadow stack pointer
41 coincide with each other 1n the comparison circuit 42, the
register number 23 of the register write signal 17 1s passed
through the gate circuit 43 and together with the write value
22, transterred to the slave thread side processor through the
communication bus 22.

In a case, for example, of the program shown in FIG. 6(a),
the value of the stack pointer (SP) obtained at the forking of
a slave thread 1n response to a fork instruction “fork thl” 1s
preserved 1n the shadow stack pointer 41 through the signal
line 46 and at the time of the subsequent instruction “add
r20, r20, 1” including update of the register r20, since the
current value of the stack pointer (SP) is coincident with the
value preserved in the shadow stack pointer 41, the updated
value of the register r20 1s transmitted to the slave thread
side processor through the communication bus 21 together
with the register number. When the function func is called by
the subsequent function call mstruction to update the stack
pointer (SP), the updated value will differ from the value
preserved 1n the shadow stack pointer 41, so that even when
instructions “move 120, r0”, “Iw r20, 20(sp)” and the like
including update of the register r20 are executed at the unit
11, no transfer of the register r20 will be conducted.
Thereafter, when the stack pointer (SP) is returned to have
the original value to end the processing of the function func,

US 6,907,517 B2

17

the value of the stack pointer (SP) goes equal to the value of
the shadow stack pointer 41, so that when the unit 11
subsequently executes the instruction “add r20, r20, 1~
including update of the register r20, the updated value of the
register r20 will be transterred to the slave thread side
ProCeSSor.

Fourth Embodiment

™

The present embodiment differs from the first embodi-
ment 1n that noticing the facts that general register contents
switches are 1n many cases accompanied by store and load
in a memory (stack region in particular) and that occurrence
of contents switch can be determined without additional
information by detecting “an instruction to write data to a
register 1n question without referring to the register in
question”, with a store address register provided one-to-one
corresponding to each general register, storing a store
address for each general register 1n the corresponding store
address register at the time of execution of a store 1nstruction
to inhibit transfer of the general register 1n question to a
slave thread upon detection of contents switch of the general
register, as well as halting write to the store address register
and on the other hand, comparing an address at the time of
loading with a store address stored in the store address
register to determine whether the contents of the general
register are restored and release the state where transfer to
the slave thread 1s inhibited. In the following, the present

embodiment will be described mainly with respect to the
difference from the first embodiment.

With reference to FIG. 8, each processor 1-7 of the parallel
processor system according to the present embodiment
includes, 1in addition to the components shown 1n FIG. 3, a
store address register 51-k and a mask bit 52-k one-to-one
corresponding to the general register 12-k, a gate circuit 53
for outputting, only when the mask bit 52-k corresponding
to the general register 12-k having the register number 23
indicated by the register write signal 17 1s at the transfer
allowed state (e.g. “17), the lately updated register number
23 onto the communication bus 21, and a comparison circuit
55 for detecting whether a store address coincident with a
load address output from the unit 11 through a signal linc 54
and a delay 59 for timing adjustment 1s recorded 1n the store
address register 51-k or not.

To each store address register 51-k, the register number 23
indicated by the register write signal 17 and the store address
output from the unit 11 through a signal line 56 are applied
and 1n the store address register 51-k corresponding to the
register number 23, the store address on the signal line 56 1s
recorded. Exceptionally, when the corresponding mask bit
52-k 1s set at the transfer inhibited state (e.g. “0”), no
recording of a store address will be newly conducted. The
store address recorded 1n each store address register 51-k can
be referred to by the comparison circuit 35 through a
reference bus 38.

Each mask bit 52-k can be set at the transter allowed state
and the transfer inhibited state through an update bus 57 by
the unit 11 and can be set at the transter allowed state by the
output of the comparison circuit 55. The output of each mask
bit 52-k 1s output to the gate circuit 533 and to the corre-
sponding store address register 51-£.

Next, operation of the present embodiment will be
described. Since operation of the slave thread side processor
1s the same as that of the first embodiment, description will
be made only of operation of the master thread side proces-
SOT.

At the time of forking of a slave thread, the unit 11
mitially sets all the mask bits 52-k at the transfer allowed

10

15

20

25

30

35

40

45

50

55

60

65

138

state through the update bus 57. Thereafter, at the execution
of a store instruction including read of the general register
12-k, the unit outputs the register number of the general
register 12-k to the register read signal 16, as well as
outputting its store address onto the signal line 56 to record
the store address 1n the store address register 51-k corre-
sponding to the general register 12-k. In addition, at the
execution of such an mstruction as a move 1nstruction to
write data to the general register 12-k without referring to a
value of the register, determining that contents switch of the
general register 12-k occurs, the unit sets the mask bit 52-%
corresponding to the general register 12-k at the transfer
inhibited state through the update bus 57. Accordingly, even
when the general register 12-£ 1s updated, the updated value
will not be transferred to the slave thread.

Thereafter, when a load 1nstruction 1s executed at the unit
11 1n order to return the contents of the general register 12-&
to the original value, its load address 1s output from the unit
11 by the delay 59 to the comparison circuit 55 with a delay
of, for example, one 1nstruction cycle. The comparison
circuit 535 determines whether a store address coincident
with the output load address 1s recorded 1n the store address
register 51-k or not and when 1t 1s recorded, changes the
mask bit 52-%k from the transfer inhibited state to the transfer
allowed state. As a result, the general register 12-k 1s updated
and the updated value will be transferred to the slave thread
again.

In a case of the program shown in FIG. 6(a), for example,
at the time of fork of a slave thread in response to the fork
request “fork thl”, all the mask bits 52-k are set at the
transfer allowed state. Accordingly, at the time of the sub-
sequent instruction “add r20, r20, 1” including update of the
register r20, the updated value of the register r20 1s trans-
mitted to the slave thread side processor through the com-
munication bus 21 together with the register number. When
the function func 1s called by the subsequent function call
instruction to execute a store instruction “Sw r20, 20(sp)”,
the store address 1s recorded 1n the store address register
51-k corresponding to the register r20. Then, at the execution
of the move 1nstruction “r20, r0”, the unit 11 detects the
contents switch of the register r20 occurring to change the
mask bit 52-k corresponding to the register r20 to the
transfer mhibited state. Therefore, the updated value of the
register r20) will not be transferred to the slave thread. This
1s also the case with the subsequent load instruction “Iw r20,
20(sp)”. Then, coincidence of the load address output from
the unit 11 to the signal line 54 at the execution of the load
instruction with the store address recorded in the store
address register 51-k corresponding to the register r20 1s
detected by the comparison circuit 55, so that the mask bat
52-k corresponding to the register r20 1s returned to the
transfer allowed state. Accordingly, when the processing of
the function func 1s completed and the unit 11 subsequently
executes the instruction “add r20, r20, 1” including update
of the register r20, the updated value of the register r20 will
be transferred to the slave thread side processor.

Fifth Embodiment

In the first to fourth embodiments, irrespective of whether
an updated value of a general register differs from that yet
to be updated or not, the updated register value 1s transmitted
from the master thread side processor to the slave thread side
processor. A write value to the general register which 1s the
same as a preceding value, however, needs not to be
transmitted. In the present embodiment, at the time of write
to the general register, by comparing the write value with a
value as of before the writing, the volume of useless register

US 6,907,517 B2

19

transmission 1s reduced to prevent useless re-execution on
the slave thread side due to detection of a RAW offense. In
the following, the present embodiment will be described
mainly with respect to the difference from the first embodi-
ment.

With reference to FIG. 9, each processor 1-7 of the parallel
processor system according to the present embodiment
includes, 1in addition to the components shown 1n FIG. 3, a
comparison circuit 62 for referring, through a register read
bus 61, to the contents as of before write of the general
register 12-k having the register number 23 output by the
unit 11 onto the register write signal 17 among the general
registers 120 to 12-m and detecting coincidence between the
register value as of before the write and the write value 22
output to the register write bus 15, an i1nverter 63 for
inverting the output of the comparison circuit 62, and a gate
circuit 64 for receiving 1nput of the output of the inverter 63
and the register number 23 output onto the register write
signal 17 and only when coincidence between register
values as of before and after write 1s detected by the
comparison circuit 62, outputting the register number 23 to
the communication bus 21.

Next, operation of the present embodiment will be
described. Since operation of the slave thread side processor
1s the same as that of the first embodiment, description will
be made only of operation of the master thread side proces-
SOT.

After conducting forking of a slave thread, at the time of
updating any of the general registers 12-k through the
register write bus 15 after the forking, the unit 11 outputs the
relevant register number 23 as the register write signal 17.
The comparison circuit 62 reads, according to the register
number 23 of the register write signal 17, a register value as
of before the write of the general register 12-k having the
same register number, compares the value with the write
value 22 output by the unit 11 onto the register write bus 15
and when they are coincident, sets its output at “0” to open
the gate circuit 64 through the inverter 63. When they fail to
coincide with each other, the output of the comparison
circuit 62 remains “1” and the gate circuit 64 1s closed.
Accordingly, exclusively when the write value 22 of the
ogeneral register 12-k 1s the same as that obtained before
update, the communication bus 21 transmits the write value
22 and the register number 23 toward a fork destination
ProCessor.

Although the foregoing has been applied to the first
embodiment, the second to fourth embodiments can be also
structured such that only when register values as of before
and after update are coincident with each other, the register
value 1s transferred to a fork destination processor.

In each of the foregoing embodiments, no recitation 1s
made of a method of succession of a register which 1s not
updated 1n a master thread after forking but necessary on a
slave thread side. As to succession of such registers, the
present invention may employ a method of transferring all
the contents of the register file of the master register at the
time of forking to the slave thread in the lump as recited 1n
the Literatures 1 to 3 or a method of transferring a value of
at least a register necessary for the slave thread in the
register file of the master register at a fork point if the
register necessary for the slave thread 1s already found by
static analysis by a compiler. Moreover, an arbitrary method
can be adopted such as a method of sequentially transterring
the contents of the register file of the master thread at a fork
point on a register basis, while re-transferring a register once
transterred when 1t 1s updated in the master thread. The

10

15

20

25

30

35

40

45

50

55

60

65

20

present invention 1s allowed to adopt arbitrary methods as a
method of taking over a register which 1s not updated 1n a
master thread after forking but is necessary on a slave thread
side, some embodiments of which will be described 1n the
following.

Sixth Embodiment

With reference to FIG. 10, each processor 1-i of the
parallel processor system according to the present embodi-
ment 1ncludes, 1n addition to the components shown 1n FIG.
3, a sequencer 73 for receving a notice that forking of a
slave thread 1s made from the unit 11 through a signal line
71 to sequentially read the contents of the general registers
12-0 to 12-m through a reference bus 72, outputting a write
value and a register number of the read register onto the
communication bus 21 and notifying the unit 11 to that effect
through the signal line 71 when transfer of all the general
registers 12-0 to 12-m 1s completed. When notified of
transier end by the sequencer 73, the unit 11 starts execution
of an instruction subsequent to the fork instruction. When a
register to be taken over to a slave thread is already found
by static analysis by a compiler, by notifying the sequencer
73 of the information through the signal line 71, only the
contents of a register to be taken over to the slave thread can
be transferred.

While 1n the present embodiment, the sequencer 73 trans-
fers register contents through the communication bus 21 for
taking a register updated 1n the master thread after forking
to the slave thread, the sequencer may be structured to
transfer the contents of all the general registers 12-0 to 12-m
in the lump using another communication bus having a large
capacity. In addition, although the present embodiment is
applied to the first embodiment, it 1s applicable also to the
second to fifth embodiments in the same manner.

Seventh Embodiment

With reference to FIG. 11, each processor 1-i of the
parallel processor system according to the present embodi-
ment 1ncludes, 1n addition to the components shown 1 FIG.
3, a transfer status bit 81-% one-to-one corresponding to each
ogeneral register 12-k and a register transfer sequencer 82.

All the transfer status bits 81-k are 1nitially set at a
yet-to-be transferred state (e.g. “1”’) at a time point where a
notice that forking of a slave thread 1s made 1s output from
the unit 11 onto a signal line 83 and set at a transferred state
(e.g. “0”) at a time point where transfer to a fork destination
processor 1s conducted by the register transfer sequencer 82.
After the transfer, however, when the unit 11 updates the
ogeneral register 12-%, the transfer status bit 81-k correspond-
ing to the updated general register 12-k 1s again set at the
yet-to-be transferred state based on the register number on
the register write signal 17.

Upon receiving a notice that forking of a slave thread 1s
conducted from the unit 11 through the signal line 83, the
register transfer sequencer 82 sequentially reads the contents
of the general registers 12-0 to 12-m through a reference bus
84 and outputs the write value 22 and the register number 23
of the register onto the communication bus 21 to change the
transfer status bit 81-k corresponding to the output general
register 12-k to the transferred state. When completing all
the transter of the general registers 12-0 to 12-m, the register
transfer sequencer 82 monitors all the time whether any of
the transfer status bits 81-0 to 81-m 1s at the yet-to-be
transferred state or not and every time 1t detects the transfer
status bit 81-% at the yet-to-be transferred state, reads the
contents of the relevant general register 12-k through the

US 6,907,517 B2

21

reference bus 84 and outputs the write value 22 and the
register number 23 of the register onto the communication
bus 21 to change the transfer status bit 81-k corresponding,
to the output general register 12-k to the transferred state. In
the present embodiment, immediately after forking, the unit
11 starts execution of an instruction following the fork
mnstruction.

Although the present invention has been described with
respect to several embodiments 1n the foregoing, 1t 1s not
limited to the foregoing embodiments and various kinds of
addition and modification are possible. For example, while
in each of the above-described embodiments, the present
invention 1s applied to a centralized thread control type
parallel processor system 1n which the thread controller 3 1s
provided commonly for a plurality of processors, it 1s also
applicable to a distributed thread control type parallel pro-
cessor system 1n which a thread controller 1s provided for
cach processor as recited in the Literature 1 and the like. In
addition, although in the above-described embodiments,
register transfer 1s conducted using a communication bus
which connects adjacent processors 1n a ring in a single
direction, 1n a parallel processor system 1n which all the
processors are connected to a common communication bus,
register transier 1s conducted using the common communi-
cation bus.

As described 1n the foregoing, according to the present
invention, by transmitting an updated register value at every
write of a general register after forking from a master thread
side processor to a slave thread side processor, executing the
slave thread for speculation by the slave thread side proces-
sor and conducting re-execution upon detection of a RAW
offense, the RAW offense can be dynamically eliminated not
at the time of compiling but at the program execution and
unnecessary waiting for the purpose of eliminating a RAW
offense can be avoided.

Moreover, the second to fourth embodiments avoids use-
less register transfer following general register contents
switch and the fifth embodiment avoids useless register
transfer when a register 1s updated to have the same value as
the last one, thereby both reducing the volume of register
transfer, as well as preventing useless re-execution on the
slave thread side due to detection of a RAW oflense.

Although the invention has been 1llustrated and described
with respect to exemplary embodiment thereof, it should be
understood by those skilled 1n the art that the foregoing and
various other changes, omissions and additions may be
made therein and thereto, without departing from the spirit
and scope of the present invention. Therefore, the present
invention should not be understood as limited to the speciiic
embodiment set out above but to include all possible
embodiments which can be embodies within a scope encom-
passed and equivalents thereof with respect to the feature set
out in the appended claims.

What 1s claimed 1s:

1. In a parallel processor system for executing a plurality
of threads which are obtained by dividing a single program
in parallel to each other by a plurality of processors, an
interprocessor register succession method of taking a regis-
ter updated 1n a master thread after forking over to a slave
thread, comprising the steps of:

after forking, at every write to a general register 1n the
master thread, transmitting an updated register value
from a processor on the master thread side to a pro-
cessor on the slave thread side, and

executing the slave thread for speculation 1n the processor
on the slave thread side to conduct re-execution when

an offense against Read After Write (RAW) is detected.

10

15

20

25

30

35

40

45

50

55

60

65

22

2. The interprocessor register succession method as set

forth 1n claim 1, comprising:

a status register provided one-to-one corresponding to a
general register of each processor for holding a first
state at the time of thread start, holding a second state
when {first access to the corresponding general register
after the thread start 1s to read, and holding a third state
when {first access to the corresponding general register
after the thread start 1s to write, wherein

when the status register corresponding to the general
register whose register value 1s transmitted from the
processor on the master thread side holds the second
state, occurrence ol an oflense against RAW 1s
detected.

3. The interprocessor register succession method as set

forth 1n claim 1, comprising;:

a mask bit which 1s operable by a special mstruction to
control halt and resumption of transfer to the slave
thread and provided one-to-one corresponding to the

general register, wherein

at every write to the general register in the master thread

after forking, only when the mask bit corresponding to

the general register to which the write 1s made 1s at a

transfer allowed state, an updated register value 1s

transmitted from the processor on the master thread
side to the processor on the slave thread side.

4. The 1nterprocessor register succession method as set

forth 1n claim 1, comprising;:

a status register provided one-to-one corresponding to a
general register of each processor for holding a first
state at the time of thread start, holding a second state
when first access to the corresponding general register
alter the thread start 1s to read, and holding a third state
when {first access to the corresponding general register
after the thread start 1s to write, wherein when the status
register corresponding to the general register whose
register value 1s transmitted from the processor on the
master thread side holds the second state, occurrence of
an offense against RAW 1s detected, and

a mask bit which 1s operable by a special instruction to
control halt and resumption of transfer to the slave
thread and provided one-to-one corresponding to the
general register, wherein at every write to the general
register 1n the master thread after forking, only when
the mask bit corresponding to the general register to
which the write 1s made 1s at a transfer allowed state,
an updated register value 1s transmitted from the pro-
cessor on the master thread side to the processor on the
slave thread side.

5. The interprocessor register succession method as set

forth 1n claim 1, comprising;:

stack pointer preserving step of preserving a value of a
stack pointer at the time of forking, and

detection step of detecting coincidence between a current
stack pointer value and a stack pointer value preserved
in said stack pointer preserving step, wherein

at every write to the general register of the master thread
alter forking, only when the general register to which
the write 1s made 1s a function return value register and
only when the general register to which the write 1s
made 1s other register than the function return value
register and coincidence 1s detected by said detection
step, an updated register value 1s transmitted from the
processor on the master thread side to the processor on
the slave thread side.

6. The interprocessor register succession method as set

forth 1n claim 1, comprising;:

US 6,907,517 B2

23

a status register provided one-to-one corresponding to a
general register of each processor for holding a first
state at the time of thread start, holding a second state
when first access to the corresponding general register
after the thread start 1s to read, and holding a third state
when {first access to the corresponding general register
after the thread start 1s to write, wherein

when the status register corresponding to the general
register whose register value 1s transmitted from the
processor on the master thread side holds the second

state, occurrence ol an offense against RAW 1is
detected,

stack pointer preserving step of preserving a value of a
stack pointer at the time of forking, and

detection step of detecting coincidence between a current
stack pointer value and a stack pointer value preserved
in said stack pointer preserving step, wherein

at every write to the general register of the master thread
after forking, only when the general register to which
the write 1s made 1s a function return value register and
only when the general register to which the write 1s
made 1s other register than the function return value
register and coincidence 1s detected by said detection
step, an updated register value 1s transmitted from the
processor on the master thread side to the processor on
the slave thread side.

7. The interprocessor register succession method as set

forth 1n claim 1, comprising:

a store address register one-to-one corresponding to each
general register, wherein at the time of execution of a
store 1nstruction, a store address for each general reg-
ister 1s stored 1n said store address register, at the
detection of general register contents switch, transfer of
the general register in question to the slave thread is
inhibited and write to the store address register 1is
halted, and an address at the time of loading 1s com-
pared with the store address stored in the store address
register to detect the contents of the general register
being restored, thereby releasing the general register 1n
question from the state where transter to the slave
thread 1s 1nhibited.

8. The interprocessor register succession method as set

forth 1n claim 1, comprising:

a status register provided one-to-one corresponding to a
general register of each processor for holding a first
state at the time of thread start, holding a second state
when first access to the corresponding general register
after the thread start 1s to read, and holding a third state
when first access to the corresponding general register
after the thread start 1s to write, wherein

when the status register corresponding to the general
register whose register value 1s transmitted from the
processor on the master thread side holds the second

state, occurrence ol an offense against RAW 1is
detected,

a store address register one-to-one corresponding to each
general register, wherein at the time of execution of a
store 1nstruction, a store address for each general reg-
ister 1s stored 1n said store address register, at the
detection of general register contents switch, transfer of
the general register in question to the slave thread is
inhibited and write to the store address register 1is
halted, and an address at the time of loading 1s com-
pared with the store address stored in the store address
register to detect the contents of the general register
being restored, thereby releasing the general register in

5

10

15

20

25

30

35

40

45

50

55

60

65

24

question from the state where transter to the slave
thread 1s 1nhibited.

9. The interprocessor register succession method as set
forth 1n claim 1, wherein

™

only when an updated general register value differs from
a value yet to be updated, the updated register value 1s
transmitted from the processor on the master thread
side to the processor on the slave thread side.
10. The mterprocessor register succession method as set
forth 1n claim 1, comprising:

a status register provided one-to-one corresponding to a
general register of each processor for holding a first
state at the time of thread start, holding a second state
when first access to the corresponding general register
alter the thread start 1s to read, and holding a third state
when {first access to the corresponding general register
after the thread start 1s to write, wherein

when the status register corresponding to the general
register whose register value 1s transmitted from the
processor on the master thread side holds the second
state, occurrence ol an offense against RAW 1s
detected, and

only when an updated general register value differs from
a value yet to be updated, the updated register value 1s
transmitted from the processor on the master thread
side to the processor on the slave thread side.

11. In a parallel processor system for executing a plurality
of threads which are obtained by dividing a single program
in parallel to each other by a plurality of processors, an
Interprocessor register succession device for taking a regis-
ter updated 1n a master thread after forking over to a slave
thread, comprising;:

™

means for transmitting an updated register value from a
processor on the master thread side to a processor on
the slave thread side at every write to a general register
in the master thread after forking, and

means for executing the slave thread for speculation 1n the

processor on the slave thread side to conduct

re-execution when an offense against RAW 1s detected.

12. The mnterprocessor register succession device as set
forth 1n claim 11, wherein

cach processor comprising

a status register provided one-to-one corresponding to a
general register for holding a first state at the time of
thread start, holding a second state when {first access to
the corresponding general register after the thread start
1s to read, and holding a third state when first access to
the corresponding general register after the thread start
1s to write, and

means for detecting, when the status register correspond-
ing to the general register whose register value 1s
transmitted from the processor on the master thread
side holds the second state, occurrence of an offense
against RAW.
13. The mterprocessor register succession device as set
forth 1n claim 11, wherein

cach processor comprising

a mask bit which 1s operable by a special mstruction to
control halt and resumption of transfer to the slave
thread and provided one-to-one corresponding to the
general register, and

means for transmitting an updated register value from the
processor on the master thread side to the processor on
the slave thread side at every write to the general
register in the master thread after forking only when the

US 6,907,517 B2

25

mask bit corresponding to the general register to which
the write 1s made 1s at a transfer allowed state.
14. The interprocessor register succession device as sect
forth 1n claim 11, wherein

cach processor comprising,

a status register provided one-to-one corresponding to a
general register for holding a first state at the time of
thread start, holding a second state when {first access to
the corresponding general register after the thread start
1s to read, and holding a third state when {first access to
the corresponding general register after the thread start

1S to write,

detection means for detecting occurrence of an offense
against RAW when the status register corresponding to
the general register whose register value 1s transmitted
from the processor on the master thread side holds the
second state,

a mask bit which 1s operable by a special instruction to
control halt and resumption of transfer to the slave
thread and provided one-to-one corresponding to the
general register, and

means for transmitting an updated register value from the
processor on the master thread side to the processor on
the slave thread side at every write to the general
register 1n the master thread after forking, only when
the mask bit corresponding to the general register to
which the write 1s made 1s at a transfer allowed state.
15. The interprocessor register succession device as set
forth 1n claim 11, wherein

cach processor comprising,

stack pointer preserving means for preserving a value of
a stack pointer at the time of forking,

detection means for detecting coincidence between a
current stack pointer value and a stack pointer value
preserved 1n said stack pointer preserving means, and

means for transmitting an updated register value from the
processor on the master thread side to the processor on
the slave thread side at every write to the general
register of the master thread after forking, only when
the general register to which the write 1s made 1s a
function return value register and only when the gen-
cral register to which the write 1s made 1s other register
than the function return value register and coincidence
1s detected by said detection means.

16. The interprocessor register succession device as set

forth 1n claim 11, wherein

cach processor comprising,

a status register provided one-to-one corresponding to a
ogeneral register for holding a first state at the time of
thread start, holding a second state when {first access to
the corresponding general register after the thread start
1s to read, and holding a third state when {first access to
the corresponding general register after the thread start
1S to write,

detection means for detecting occurrence of an offense
against RAW when the status register corresponding to
the general register whose register value 1s transmitted
from the processor on the master thread side holds the
second state,

stack pointer preserving means for preserving a value of
a stack pointer at the time of forking,

detection means for detecting coincidence between a
current stack pointer value and a stack pointer value
preserved 1n said stack pointer preserving means, and

means for transmitting an updated register value from the
processor on the master thread side to the processor on

™

™

10

15

20

25

30

35

40

45

50

55

60

65

26

the slave thread side at every write to the general
register of the master thread after forking, only when
the general register to which the write 1s made 1s a
function return value register and only when the gen-
eral register to which the write 1s made 1s other register
than the function return value register and coimncidence
1s detected by said detection means.

17. The interprocessor register succession device as set

forth 1n claim 11, wherein

cach processor comprising

a store address register one-to-one corresponding to each
general register,

means for storing a store address for each general register
1n said store address register at the time of execution of
a store 1nstruction,

means for inhibiting transfer of the general register in
question to the slave thread and halting write to the
store address register at the detection of general register
contents switch, and

means for comparing an address at the time of loading
with the store address stored i the store address
register to detect the contents of the general register
being restored, thereby releasing the general register in
question from the state where transfer to the slave
thread 1s inhibited.

18. The mnterprocessor register succession device as set

forth 1n claim 11, wherein

cach processor comprising

a status register provided one-to-one corresponding to a
general register for holding a first state at the time of
thread start, holding a second state when first access to
the corresponding general register after the thread start
1s to read, and holding a third state when {first access to
the corresponding general register after the thread start
1S to write,

detection means for detecting occurrence of an oifense
against RAW when the status register corresponding to
the general register whose register value 1s transmitted
from the processor on the master thread side holds the
second state,

a store address register one-to-one corresponding to each
general register,

means for storing a store address for each general register
in said store address register at the time of execution of
a store 1nstruction,

means for, at the detection of contents switch of the
general register, inhibiting transfer of the general reg-
ister 1n question to the slave thread and halting write to
the store address register, and

means for comparing an address at the time of loading
with the store address stored in the store address
register to detect the contents of the general register
being restored, thereby releasing the general register in
question from the state where transter to the slave
thread 1s 1nhibited.

19. The interprocessor register succession device as set

forth 1n claim 11, comprising

means for detecting whether an updated value of the
general register 1s different from a value yet to be
updated, and

means for transmitting an updated register value from the
processor on the master thread side to the processor on
the slave thread side only when the updated general
register value differs from the value yet to be updated.

US 6,907,517 B2

27

20. In a parallel processor system for executing a plurality
of threads which are obtained by dividing a single program
in parallel to each other by a plurality of processors, an
Interprocessor register succession device for taking a regis-
ter updated 1n a master thread after forking over to a slave
thread, comprising;:

unit which transmits an updated register value from a

processor on the master thread side to a processor on

the slave thread side at every write to a general register
in the master thread after forking, and

unit which executes the slave thread for speculation 1n the

processor on the slave thread side to conduct

re-execution when an offense against RAW 1s detected.

21. The interprocessor register succession device as set
forth 1n claim 20, wherein

cach processor comprising,

a status register provided one-to-one corresponding to a
ogeneral register which holds a first state at the time of
thread start, holds a second state when first access to the
corresponding general register after the thread start 1s to
read, and holds a third state when first access to the
corresponding general register after the thread start 1s to
write, and

unit which detects, when the status register corresponding
to the general register whose register value 1s transmit-
ted from the processor on the master thread side holds
the second state, occurrence of an offense against RAW.

22. The interprocessor register succession device as set
forth 1n claim 20, wherein

cach processor comprising,

a mask bit which 1s operable by a special instruction to
control halt and resumption of transfer to the slave
thread and provided one-to-one corresponding to the
ogeneral register, and

unit which transmits an updated register value from the
processor on the master thread side to the processor on
the slave thread side at every write to the general
register 1in the master thread atter forking only when the
mask bit corresponding to the general register to which
the write 1s made 1s at a transfer allowed state.

23. The interprocessor register succession device as set

forth 1n claim 20, wherein

cach processor comprising,

a status register provided one-to-one corresponding to a
ogeneral register which holds a first state at the time of
thread start, holds a second state when first access to the
corresponding general register after the thread start is to
read, and holds a third state when first access to the
corresponding general register after the thread start is to
write,

™

detection unit which detects occurrence of an offense
against RAW when the status register corresponding to
the general register whose register value 1s transmitted
from the processor on the master thread side holds the
second state,

a mask bit which 1s operable by a special instruction to
control halt and resumption of transfer to the slave
thread and provided one-to-one corresponding to the
ogeneral register, and

unit which transmits an updated register value from the
processor on the master thread side to the processor on
the slave thread side at every write to the general
register 1n the master thread after forking, only when
the mask bit corresponding to the general register to
which the write 1s made 1s at a transter allowed state.

10

15

20

25

30

35

40

45

50

55

60

65

23

24. The nterprocessor register succession device as set
forth 1n claim 20, wherein

cach processor comprising

stack pointer preserving unit which preserves a value of a
stack pointer at the time of forking,

detection unit which detects coincidence between a cur-
rent stack pointer value and a stack pointer value
preserved 1n said stack pointer preserving unit, and

unit which transmits an updated register value from the
processor on the master thread side to the processor on
the slave thread side at every write to the general
register of the master thread after forking, only when
the general register to which the write 1s made 1s a
function return value register and only when the gen-
eral register to which the write 1s made 1s other register
than the function return value register and coincidence
1s detected by said detection unit.

25. The interprocessor register succession device as sect

forth 1n claim 20, wherein

cach processor comprising

a status register provided one-to-one corresponding to a
general register which holds a first state at the time of
thread start, holds a second state when first access to the
corresponding general register after the thread start 1s to
read, and holds a third state when first access to the
corresponding general register after the thread start 1s to
write,

detection unit which detects occurrence of an oifense
against RAW when the status register corresponding to
the general register whose register value 1s transmitted
from the processor on the master thread side holds the
second state,

stack pointer preserving unit which preserves a value of a
stack pointer at the time of forking,

detection unit which detects coincidence between a cur-
rent stack pointer value and a stack pointer value
preserved 1n said stack pointer preserving unit, and

unit which transmits an updated register value from the
processor on the master thread side to the processor on
the slave thread side at every write to the general
register of the master thread after forking, only when
the general register to which the write 1s made 1s a
function return value register and only when the gen-
eral register to which the write 1s made 1s other register
than the function return value register and coincidence
1s detected by said detection unit.

26. The interprocessor register succession device as set

forth 1n claim 20, wherein

cach processor comprising

a store address register one-to-one corresponding to each
general register,

unit which stores a store address for each general register
in said store address register at the time of execution of
a store 1nstruction,

unit which inhibits transfer of the general register in
question to the slave thread and halting write to the
store address register at the detection of general register
contents switch, and

unit which compares an address at the time of loading
with the store address stored in the store address
register to detect the contents of the general register
being restored, thereby releases the general register in
question from the state where transfer to the slave
thread 1s 1nhibited.

US 6,907,517 B2
29 30

27. The iterprocessor register succession device as set at the detection of contents switch of the general register,
forth 1n claim 20, wherein unit which inhibits transfer of the general register in
question to the slave thread and halting write to the
store address register, and

unit which compares an address at the time of loading
with the store address stored i the store address
register to detect the contents of the general register
being restored, thereby releasing the general register in
question from the state where transter to the slave

cach processor comprising,

a status register provided one-to-one corresponding to a
ogeneral register which holds a first state at the time of .
thread start, holds a second state when first access to the
corresponding general register after the thread start is to
read, and holds a third state when first access to the
corresponding general register after the thread start is to

. 10 thread 1s 1nhibited.
WI‘I’[‘G, | | - 28. The interprocessor register succession device as set
detection unit which detects occurrence of an offense forth in claim 20, comprising

against RAW when the status register corresponding to

_ _ _ _ unit which detects whether an updated value of the
the general register whose register value 1s transmitted

general register 1s different from a value yet to be

from the processor on the master thread side holds the > updated, and

second state, unit which transmits an updated register value from the
a store address register one-to-one corresponding to each processor on the master thread side to the processor on

general register, the slave thread side only when the updated general
unit which stores a store address for each general register register value differs from the value yet to be updated.

1n said store address register at the time of execution of 20
a store 1nstruction, £ % % k%

	Front Page
	Drawings
	Specification
	Claims

