US006907494B2
a2 United States Patent (10) Patent No.: US 6,907,494 B2
Arimilli et al. 45) Date of Patent: *Jun. 14, 2005
(54) METHOD AND SYSTEM OF MANAGING 6,269,431 B1 * 7/2001 Dunham 711/162
VIRTUALIZED PHYSICAL MEMORY IN A 6,282,610 B1 * 82001 Bergstenc........ 711/114
MEMORY CONTROLLER AND PROCESSOR 6,341,341 B * 1/2002 Grummon et al. 71}/162
SYSTEM 6,356,991 B1 * 3/2002 Bauman et al. 711/209
6,434,681 B1 * &/2002 Armangau 711/162
(75) Inventors: Ravi Kumar Arimilli, Austin, TX g’jj%ggg E : zgggg gﬁjﬁ;ﬁ;ﬁ et“::li """""""" ;i ?ﬂj
(US); John Steven Dodson, | 6.457.139 B1 * 9/2002 D’Errico et al. oovvvvn... 714/5
Pllugerville, TX (US); Sanjeev Ghai, 6,473,847 Bl * 10/2002 Kamiyaccoeeeveee... 711/171
Round Rock, TX (US); Kenneth Lee 6,662,289 Bl * 12/2003 ANE «eeveereeeereereeeennan. 711/202
Wright, Austin, TX (US) 6,665,787 B2 * 12/2003 Franaszek et al. 711/206
(73) Assignee: International Business Machines * cited by examiner
Corporation, Armonk, NY (US) Primary Examiner—Matthew Anderson
. | o | Assistant Examiner—/huo H. L1
(*) Notice: Subject to any disclaimer, the term of this (74) Attorney, Agent, or Firm—Casimer K. Salys; Dillon &
patent 1s extended or adjusted under 35 Yudell LIP
U.S.C. 154(b) by 239 days.
(57) ABSTRACT
This patent 1s subject to a terminal dis- A processor contains a move engine and a memory control-
claimer. ler contains a mapping engine that, together, transparently
reconfigure physical memory to accomplish addition,
(21) Appl. No.: 10/268,728 subtraction, or replacement of a memory module. A mapping
‘ engine register stores current and new real addresses that
(22) Filed: Oct. 10, 2002 enable the engines to virtualize the physical address of the
(65) Prior Publication Data memory mf;)dule bc—:-:ing reconflgured and provide the recon-
figuration 1n real-time through the use of hardware func-
US 2004/0073765 Al Apr. 15, 2004 tionality and not software. Using the current and new real
(51) Int. CL7 ..o, GO6F 12/00 addresstis 10 s;—::lect:t afst(l)lurce and a targe{, thebmove en%ine
(52) US.CL .o 711/5; 711/4; 711/100; fjf;isﬁguiggﬁg . refﬂﬁﬁ‘;%fﬁsgrfeg meezgg";mzf
A 71172005 71172025 7117209; 771111//116612; ules. Then, the real address associated with the reconfigured
_ memory module 1s re-assigned to the memory module
(58) Field of Search 711114161162 2733/ 42_05?;" 120009" receiving the copied contents, thereby creating a virtualized
/114, T ’ ’ physical mapping from the addressable real address space
(56) References Cited being utilized by the operating system 1nto a virtual physical

U.S. PATENT DOCUMENTS

5404478 A * 4/1995 Araietal. 711/206
5,615,352 A * 3/1997 Jacobson et al. 711/114
5,819,310 A * 10/1998 Vishlitzky et al. 711/114
5,926,836 A * 7/1999 Blumenau 711/162
6,044445 A * 3/2000 Tsuda et al. 711/163
6,141,729 A * 10/2000 Ishida et al. 711/114
6,223,269 B1 * 4/2001 Blumenau 711/202
6,243,790 B1 * 6/2001 Yorimitsu 711/112

address space. During the process of moving the memory
contents, the mapping engine responds to Write memory
requests addressed to either the current or new real address
space. As will be appreciated, a memory module can be
inserted, removed or replaced 1n physical memory without
the operating system having to direct and control the recon-
figuration of physical memory to accomplish the physical
memory change.

19 Claims, 4 Drawing Sheets

INTERCONNECT 12 Write a.nzl— oy

|

PROCESSOR UNIT 10

Move Engine _?_3_\

o~

Read RA2

mr—
425
Cooy RA2-RA4

Memory Controller 24 Memnry Cnn‘lrnliar 34 Memury Controller

44

Mapping Engine 26 | { Mapping Engine 36 | Mapping Engine 46
301 Current New ‘ 305 Current New 309 Current New
\—{RAREZ —{RA3IRAS.

La 08 31 uJ La 12

; Memory Module M1 Memury Mndule M2 Memur'f Mul:lule M3]
P) thsrcal Memory 22 22 ~ |

Ingert M2

US 6,907,494 B2

Sheet 1 of 4

Jun. 14, 2005

U.S. Patent

G

’
Yy ¥ % 31 F F R_F ' X R ' B R B K 7 B 7R B _®' ® % P B OE _ B _T® F OB _BYXY 2 R T T X B B B ' B B ¥ T WK R B Y ' RBR_FR F O2_JXBE B R F 1T 0 ¢ R B R’ _F ®' R 2T F Y N ¥ B 1 FE B BT I TTE I XET'Y E I

m. z ¢z Mowsy |eaIsAyd
Cvoel N N W
=% abpug : 9|NPoN AJIOWBN 9|NPO AJOWBIN a|Npo AJOWBN

_ [T} e v
10128UU0) 13]]0J1U07) AIOWIN 13][0J1U07) AJOWIN 19]|013U0") AJOWI
indinQ/indy| |

71 LOINNODYILNI

7z auibug ano ¢ auibug buiddey g7 auibu3z anon

0Z 394oe) 21

7z 9uwbu3 buidde

g 9yoed-a L1l | 9} @auoed- 17 a1 suoed-a 11| | g1 audoed-| 11

b | 8100 10SS8230.d 4| 810) J0SS300.d

01 LlINN HOSS3O0Hd 0+ LINN HOSS3D0Hd

US 6,907,494 B2

Sheet 2 of 4

Jun. 14, 2005

U.S. Patent

z ‘hup
clée 8 0¢
2 "D ez o
: _ | | v _ _
I D _
|) _ |
_ _
o Ndd A 01T _ _ _ “
_ ! _ _ _
N\ A " e 1)
(EW) € dINpo Aiowapy\) | . | |
| _ _ _
| ! _ _
Vi
0 Nded A ! “ _ “ “
N NI G
794777 _ v
(ZW) Z 3INPON Alowa _ _ "
| ! _
_ 0 v4d-¢d _ | VA-Cd " "
| | siig +9 _ _ _ _
| | | _ _
“ _ aoedg ssalppy “ “ “ "
L jeay L___1a0 L
(L) L a|npoy Alowsy DBuidden uollejsuei| s)g 08 uole|suel |
|2a1sAyd 9|qel 20edg SSRIPPY 3|qe]

aoedg ssalppy

B2ISAUY Juswbag

abed BNUIA

VARV

(€d) £ $S930.d

—
VARV

(zd) Z $59901¢

SHg $9
(Ld) L SS830id

a0edg $SaIppy
9103443

US 6,907,494 B2

7\l 8AOWaY

[m======" B 1

m z z Aowdy |edisAyd m

m CIN 9INpoN Alowsiy ZIN SInpoN Alowa TIN dINpoy Alowa N m
-
S
- M3N Juaung 60€ MaN Jualn) MAN JuaiINn? LO€
= 9p auibuz buiddepy 9 ¢ aulbug buiddew auibuj buiddey
=
p

£VH-ZVvY Ado)
4, GZ¢
— ,
a |1 |}
- L 1 1wy peay 1 1OINNODY3ILNI
m _ C
6¢C¢
VY UM LC¢

¢ Bup

a7 subul anow
: .\).\ 4

| LINN HOSS3004Hd

U.S. Patent

US 6,907,494 B2

Sheet 4 of 4

Jun. 14, 2005

U.S. Patent

ZIN 119su

9y aubuj buiddepy g¢ aubu3

by p 19]j0JU0D AJOWIN

LCV
cVH PEdY

0+ LINN HOSSI00Hd

M3N Juaun)

b e J8jjosuo) Alowsn

_ YVH-ZvY Adod
SZ¥

buidde

|
.ﬁ ZYH 91IM

L_--“_----_-—-J

. 4
EE.'_

9z 9uibuj buiddey

pz J19)|0J3u0) AJOWBIN

Z 1 1D3INNOJYILNI

y bup

US 6,907,494 B2

1

METHOD AND SYSTEM OF MANAGING
VIRTUALIZED PHYSICAL MEMORY IN A
MEMORY CONTROLLER AND PROCESSOR
SYSTEM

RELATED APPLICATTONS

The present invention 1s related to the subject matter of
the following commonly assigned, copending U.S. patent
applications: Ser. No. 10/268,743 entitled “Method and
System of Managing Virtualized Physical Memory 1n a
Multi-Processor System”™ and filed Oct. 10, 2002; Ser. No.
10/268,741 entitled “Method and System of Managing Vir-
tualized Physical Memory 1n a Data Processing System”™ and
filed Oct. 10, 2002. The content of the above-referenced

applications 1s mcorporated herein by reference.

BACKGROUND OF THE INVENTION

1. Technical Field

The present invention relates 1n general to data processing
and 1n particular to managing physical memory in a data
processing system. Still more particularly, the present inven-
tion relates to a method and system for managing physical
memory 1n a data processing system autonomously from
operating system control.

2. Description of the Related Art

In computer systems it 1s customary that there be one-to-
one correspondence between the memory address produced
by the processor and a specific area 1n the physical memory
of the system. This limits the operating system and appli-
cations to an address space determined by the actual physi-
cal memory 1nstalled 1n the system. Moreover, many modern
computer systems run multiple concurrent tasks or
processes, cach with 1ts own address space. It would be
expensive to dedicate a full complement of memory to each
task and the operating system, especially since many pro-
cesses use only a small part of their address spaces at any
ogrven time. Modem computer systems have overcome this
limitation through the use of virtual memory, which imple-
ments a translation table to map program addresses (or
effective addresses) to real memory addresses. Virtual
memory allows a program to run on what appears to be a
large, contiguous, physical-memory address space, dedi-
cated entirely to the program. In reality, however, the
available physical memory 1n a virtual memory system 1s
shared between multiple programs or processes. Effective
addresses used 1n a process are translated by a combination
of computer hardware and software to real addresses of
physical memory. This process 1s called memory mapping or
address translation.

In a virtual memory system, the allocation of memory 1s
most commonly performed by the operating system software
(OS). It 1s a function of the operating system to ensure that
the data and code a program is currently using is 1n main
memory and that the translation table can map the effective
addresses to the real addresses correctly. This requires an
mterrupt of the instruction sequence so that the privileged
kernel code can allocate physical memory to the areca being
accessed so that normal program flow can continue without
error. This interrupt and the kernel processing to allocate
physical memory requires a significant amount of processing,
time and upsets the normal pipelining of instructions

through the CPU.

The burden on the operating system of managing physical
memory 1ncreases when the physical memory 1s reconfig-
ured while the computer system 1s 1n operation. In cases

10

15

20

25

30

35

40

45

50

55

60

65

2

where the physical memory size 1s increased or decreased or
when a memory module 1s replaced during system operation
(for example, when a failure occurs in a memory module
requiring replacement), the OS is required to temporarily
interrupt the task being processed, modily the system
memory confliguration information in the translation table,
and use the changed physical addresses to store data from
the bad memory device out to disk and then reconfigure the
remaining memory devices. If a memory device has been
removed, the OS must invalidate the physical address space
of the removed device and maintain the invalidated address
space so that 1t can not be used, essentially leaving an
unavailable block of space within the addressable space of
the memory system. The operating system must map logical
addresses to physical addresses to avoid pages with bad
memory locations. These problems increase the overhead of
the OS and complicate the control of memory. What 1is
needed 1s a method and system for physical memory control
capable of solving the above-described problems of the prior
art and quickly and efficiently implementing dynamic recon-
figuration of physical memory as required.

SUMMARY OF THE INVENTION

In accordance with a preferred embodiment, a method and
system of managing virtualized physical memory 1n a
memory controller and processor system 1s provided. The
computing system has multiple processing devices for gen-
erating memory accesses containing real addresses associ-
ated with memory locations of a physical memory system
for reading and writing of data thereto, and a plurality of
memory modules 1n the physical memory system for storing
the data as a plurality of memory blocks, each memory block
comprising contiguous bytes of physical memory. The sys-
tem 1ncludes a plurality of memory controllers, wherein
cach memory controller of the plurality of memory control-
lers has one or more memory modules of the plurality of
memory modules coupled thereto, and wherein each
memory controller of the plurality of memory controllers
responds to memory accesses by writing and reading
memory blocks stored within the one or more of the memory
modules coupled thereto. A first and second registers within
a first and second memory controller of the plurality of
memory controllers, respectively, has a first field storing a
current real address corresponding to a first and second
memory module, respectively of the plurality of memory
modules coupled thereto and a second field storing a new
real address corresponding to the first and second memory
modules, respectively. The system includes a move engine
that, 1n response to a notification that a configuration of the
first and second memory modules 1s being modified, copies
the plurality of memory blocks from the first memory
module to the second memory module based on the current
real addresses of the first and second memory modules. A
first mapping engine within the first memory controller 1s
provided that enables the first memory controller to respond
to memory accesses addressed to the current real address
stored 1n the first register during a time period that the move
engine 1S copying the plurality of memory blocks from the
first memory module to the second memory module and that
enables the first memory controller to only respond to
memory accesses addressed to the new real address stored 1n
the first register after the time period that the move engine
1s copying the plurality of memory blocks from the first
memory module to the second memory module. A second
mapping engine within the second memory controller is
provided that enables the second memory controller to
respond to memory accesses addressed to the current real

US 6,907,494 B2

3

address stored 1n the second register during a time period
that the move engine 1s copying the plurality of memory
blocks from the first memory module to the second memory
module and that enables the second memory controller to
only respond to memory accesses addressed to the new real
address stored 1n the second register after the time period
that the move engine 1s copying the plurality of memory
blocks from the first memory module to the second memory
module.

In an alternative preferred embodiment, the first and
seccond mapping engines enable their respective memory
controllers to respond to write memory accesses addressed
to either the current real address or the new real address
stored 1n their respective registers during a time period that
the move engine 1s copying the plurality of memory blocks
from the first memory module to the second memory mod-
ule.

In another alternative preferred embodiment, the first
memory module 1s removed from the physical memory
system after the second mapping engine enables the second
memory controller to only respond to memory accesses
addressed to the new real address stored in the second
register alter the time period that the move engine 1s copying
the plurality of memory blocks from the first memory
module to the second memory module.

In still another alternative preferred embodiment, the new
real address stored 1n the second register 1s equivalent to the
current real address stored in the first register and the new
real address stored in the first register 1s outside the current
addressable space of the physical memory system.

In yet another alternative preferred embodiment, the sec-
ond memory module 1s inserted into the physical memory
system before the move engine copies the plurality of
memory blocks from the first memory module to the second
memory module.

In another alternative preferred embodiment, the new real
address stored 1n the second register 1s equivalent to the
current real address stored in the first register and the new
real address stored 1n the first register 1s within the current
addressable space of the physical memory system.

In still another alternative preferred embodiment, the first
and second mapping engines enable their respective memory
controllers to respond to read memory accesses addressed to
only the current real address stored in their respective
registers during a time period that the move engine 1is
copying the plurality of memory blocks from the first
memory module to the second memory module.

BRIEF DESCRIPTION OF THE DRAWINGS

The novel features believed characteristic of the invention
are set forth 1n the appended claims. The mvention itself
however, as well as a preferred mode of use, further objects
and advantages thereof, will best be understood by reference
to the following detailed description of an 1illustrative
embodiment when read 1n conjunction with the accompa-
nying drawings, wherein:

FIG. 1 depicts a data processing system 1mplemented in
accordance with a preferred embodiment of the present
mvention;

FIG. 2 shows a block diagram representation of the
memory address translation process for the memory system
of the data processing system shown in FIG. 1, in accor-
dance with a preferred embodiment of the present invention;

FIG. 3 shows a simplified diagram of the data processing,
system shown 1n FIG. 1 for an embodiment where a memory

10

15

20

25

30

35

40

45

50

55

60

65

4

module 1s being removed from physical memory system, 1n
accordance with the preferred embodiment of the present
imvention; and

FIG. 4 shows a simplified diagram of the data processing,
system shown m FIG. 1 for an embodiment where a memory
module 1s being removed from physical memory system, 1n
accordance with the preferred embodiment of the present
invention.

DETAILED DESCRIPTION OF ILLUSTRATIVE
EMBODIMENT(S)

With reference now to the figures and 1n particular with
reference to FIG. 1, there 1s illustrated a high-level block
diagram of a multiprocessor (MP) data processing system
that supports memory management ol virtualized physical
memory, in accordance with one embodiment of the present
invention. As depicted, data processing system 8 includes a
number (e.g., 64) of processing units 10 coupled for com-
munication by a system interconnect 12. Each processing
unit 10 1s an integrated circuit including one or more
processor cores 14. In addition to the registers, instruction
flow logic and execution units utilized to execute program
instructions, each of processor cores 14 includes associated
level one (LL1) instruction and data caches 16 and 18, which
temporarily buffer instructions and operand data,
respectively, that are likely to be accessed by the associated
processor core 14.

As further illustrated 1in FIG. 1, the memory hierarchy of
data processing system 8 also includes the physical memory
22, comprising one or more memory modules (shown as
memory modules M1, M2 and M3), which form the lowest
level of volatile data storage in the memory hierarchy, and
one or more lower levels of cache memory, such as on-chip
level two (L.2) caches 20, which are utilized to stage
instructions and operand data from physical memory 22 to
processor cores 14. As understood by those skilled in the art,
cach succeeding lower level of the memory hierarchy is
typically capable of storing a larger amount of data than
higcher levels, but at higher access latency. As shown,
physical memory 22, which 1s interfaced to interconnect 12
by memory controllers 24, 34 and 44, may store operand
data and portions of or more operating systems and one or
more application programs. Memory controllers 24, 34 and
44 are coupled to corresponding memory modules M1, M2
and M3, respectively (although shown only coupled to a
single memory module each, it should be understood that
cach memory controller can control a plurality of memory
modules of memory system 22). A set comprising all or part
of the memory modules M1, M2 and M3 constitutes a set of
physical memory resources for the operating system and
applications of the machine.

System interconnect 12, which can comprise one or more
buses, a switch fabric, or other interconnect architecture,
serves as a conduit for communication among the devices
(e.g., processing units 10, memory controllers 24, 34 and 44,
etc.) coupled to system interconnect 12. A typical transaction
on system 1nterconnect 12 begins with a request, which may
include a transaction field indicating the type of transaction,
onc or more tags indicating the source and/or intended
recipient(s) of the transaction, and an address and/or data.
Each device connected to system interconnect 12 preferably
snoops all transactions on system interconnect 12 and, 1if
appropriate, responds to the request with a snoop response.
These actions may include sourcing data on system inter-
connect 12, storing data provided by the requesting snooper,
invalidating cached data, etc. Input/output connector 52 is

US 6,907,494 B2

S

also coupled to interconnect 12 and provides a conduit for
communications among the other devices coupled to inter-
connect 12 and the external devices coupled to PCI bus 56

through bridge 54.

Data processing system 8 utilizes a virtual memory
system, which implements a translation table to map pro-
gram addresses (or effective addresses) to real memory
addresses. The virtual memory system allows the available
physical memory to be shared between multiple programs or
processes. Processing units 10 allow the address space of the
processing units (“logical address space”) to have a different
size than the available physical memory 22 by providing an
address translation mechanism that translates the effective
addresses (EA) to physical addresses (PA) that refer to
locations 1n actual physical memory. This virtual memory
system also allow multiple programs to reside simulta-
neously 1n system memory without each needing to know
the location of its physical base address. Rather, such
multiple programs need only know their logical base
address. Morecover, rather than attempting to maintain a
translation or mapping for each possible effective address,
the virtual memory system divides effective and physical
memory 1nto blocks. In many systems, these blocks are fixed
in size and referred to as sections or pages. The addresses
within an mdividual page all have identical upper-most bits.
Thus, a memory address 1s the concatenation of a page
number, correspondmg to the upper bits of the address, and
a page olfset, corresponding to the lower bits of the address.

Data structures are typlcally maintained 1n physical
memory to translate from effective page numbers to real
page addresses. These data structures often take the form of
conversion tables, normally referred to as segment tables
and page tables. A segment table 1s indexed by an effective
page address or number, and generally has a number of
entries corresponding to pages in the effective address space.
Each entry 1s a mapping of a specific page number or
cliective page address to a virtual page address. A page table
1s 1ndexed by a virtual page address or number, and gener-
ally has a number of entries corresponding to pages in the
virtual address space. Each entry 1s a mapping of a specific
page number or virtual page address to a real page address.

Effective-to-real address translation 1s performed 1 pro-
cessor units 10 using a specialized hardware cache (not
shown), referred to as an address translation cache or as a
translation lookaside buffer (TLB), dedicated to translations.
ATLB 1s a fast and small static memory for storing the most
frequently referenced entries from the page table. It typically
has a fixed number of entries. When processing a memory
request, a computer first attempts to find an appropriate
address translation 1n the TLB. If such an address translation
1s not found, a page table i1s automatically accessed to
retrieve the proper translation.

Those skilled 1n the art will appreciate that data process-
ing system 8 can include many additional unillustrated
components, such as I/O adapters, interconnect bridges,
non-volatile storage, ports for connection to networks or
attached devices, etc. Because such additional components
are not necessary for an understanding of the present
invention, they are not illustrated 1 FIG. 1 or discussed
further herein. It should also be understood, however, that
the enhancements provided by the present invention are
applicable to data processing systems of any architecture

and are 1n no way limited to the generalized MP architecture
illustrated in FIG. 1.

With reference now to FIG. 2, shown 1s a depiction of the
memory mapping function performed by the memory man-

10

15

20

25

30

35

40

45

50

55

60

65

6

agement system for the virtual memory system of data
processing system 8, 1n accordance with a preferred embodi-
ment of the present invention. The Effective Address Space
represents the address space in which the plurality of pro-
cesses operating on processor units 10 operate 1ndepen-
dently of each other. Shown are three processes P1, P2, and
P3, each with their own logical address spaces. For each
process, a page or block 1n 1ts addressable space 1s addressed
by an effective address. As shown 1n FIG. 2, effective
addresses within the Elffective Address Space of the cur-
rently loaded pages 1n the Physical Address Space are shown
as P1-EA, P2-EA, and P3-EA for the three executing pro-
cesses. Each effective address 1s a 64-bit address that 1s
translated by the Segment Table Translation 204. The Seg-
ment Table Translation 204 1s performed by a segment look
aside buffer (SLB) or segment look aside registers (SLR)
within processor core 14. Each addressable space within the
effective address spaces P1, P2, and P3 1s translated by the
SLB or SLR 1nto 80-bit virtual addresses within Virtual
Address Space 206. Thus, P1-EA, P2-EA, and P3-EA are
translated by the Segment Table Translation into P2-VA,
P1-VA, and P3-VA, respectively. Using the translation look-
aside buffer (TLB) within processor core 14, each virtual
address space P1-VA, P2-VA, and P3-VA 1s then translated
by Page Table Translation 208 into Real Address Space 210
such that each of the 80-bit virtual addresses P1-VA, P2-VA,
and P3-VA are translated into their 64-bit real addresses
P1-RA, P2-RA, and P3-RA, representing the real addresses
within the system memory. A real address RA 1s normally
constituted by two fields, a field that codes a physical page
number 1nto a number 1 of bits, for example high-order bats,
and a field that codes a shift from the start of a physical page
into a number | of bits, for example low-order bits. The
power of two of the number j indicates the size of a page, for
example a number 1 equal to twelve indicates a page size of
four kilobytes. The power of two of the number 1 indicates
the physical memory size 1n numbers of pages, for example
a number 1 equal to twenty indicates a number of one
physical megapage, or four gigabytes of physical memory.

As shown 1 FIG. 3, memory controllers 24, 34, and 44
perform a physical mapping of the real address to access the
requested pages in memory modules M1, M2 and M3. If the
addressed pages 1n the Real Address Space 210 are not found
in the L1 caches 16, 18, and 1.2 cache 20, a memory access
1s requested over interconnect 12. Upon detecting a memory
access request 1n the mterconnect 12, each memory control-
ler 24, 34, 44 checks the real address space addressed by the
memory access. The high-order bits of the real address from
the processor unit 10 are decoded by memory controllers 24,
34 and 44, which 1dentifies the addressable real space of
cach memory controller’s corresponding memory module
M1, M2, M3. Each memory controller 24, 34 and 44
contains a mapping engine 26, 36, 46, respectively, that
enables 1t’s associated memory controller to respond to
memory accesses addressed to its corresponding memory
module. Each mapping engine 26, 36, 46 provides a con-
figurable assignment of the real address space (specifically
the high-order real address bits) that select the coupled
memory module, which effectively changes the base address
of each memory device. I the real address of the memory
access 15 that of a resource resident 1n 1its corresponding,
memory module (as determined by a number of higher-order
bits of the real address), and this resource is up-to-date, the
particular memory controller responds to the request via
interconnect 12.

In accordance with a preferred embodiment, physical
mapping 212 1s then performed by memory controllers 24,

US 6,907,494 B2

7

34 and 44. Physical mapping 212 translates the real
addresses for the address pages P1-RA, P2-RA, and P3-RA
and maps them 1nto the corresponding physical addresses,
P1-PA, P2-PA, and P3-PA, respectively, representing the
physical addresses of those requested pages within the
corresponding memory modules M1, M2 and MJ3. The
physical address indicates the specilic memory location
within the memory module storing the addressed informa-
tion. For example, P2-PA speciiies the specific row and
column addresses to uniquely 1dentity the addressed page in
memory module 2. This physical mapping mechanism 1is
invisible from the operating system OS, which views all of
the physical memory resources by means of their real
addresses without a prior1 distinguishing the locality of these
resources to a particular memory module M1, M2 and M3

In system memory 22.

Referring back to FIG. 3, move engines 28 and mapping
engines 26, 36 and 46 provide the virtualization function of
the physical memory to allow efficient re-configuration of
the physical memory 22, 1n accordance with the preferred
embodiment. When physical memory 22 1s re-conifigured,
such as when one of memory modules M1, M2 and M3 are
inserted, removed or replaced in the system, move engine 28
performs a data transfer between the memory modules of
physical memory 22. Mapping engines 26, 36, 46 control the
real-to-physical addressing of memory modules M1, M2,
M3 to allow the addition, subtraction or substitution of a
particular memory module. This memory management 1s
done efficiently at the hardware/firmware level, requiring
little operating system resources to accomplish the
re-confliguration of physical memory.

FIG. 3 illustrates an embodiment where a memory mod-
ule 1s being removed from physical memory in a simplified
drawing of data processing system 8. As will be explained,
the processor’s move engine works 1n conjunction with the
assoclated mapping engines to take the associated memory
module off-line prior to i1ts physical removal. Generally, the
move engine copies the contents of the memory module to
be removed 1nto the remaining memory modules of physical
memory. Then, the real address of the old memory module
1s re-assigned to the new memory module receiving the
copied contents.

In this example, memory module M2 1s being removed
from data processing system 8. As a first step, processor unit
10 reports to the operating system that its total available
physical memory has now been reduced by one memory
module. For example, 1f each memory module M1, M2, M3
is a 64 Giga-Byte (GB) memory device, the operating
system would be informed that 1ts available physical
memory 1s now 128 GB. The operating system immediately
begins to swap out pages to reduce the amount of stored data
accordingly. Processor unit 10 notifies move engine 28 and
mapping engines 26, 36, 46 that memory module M2 1is
being removed from physical memory 22. Move engine 28
immediately selects the remaining module or modules that
will be used to store the data contained 1n memory module

M2.

Each of mapping engines 26, 36, and 46 contain registers
301, 305, 309, respectively, storing a “current” real address
for 1ts associated memory module and a “new” real address
for its associated memory module (as used herein, the real
address refers to the entire real address or that portion (for
example, the higher-order bits) needed to uniquely identify
an assoclated memory module storing data addressed by the
indexed block of memory). As seen in FIG. 3, mapping
engine 26 contains a register 301 having a field 302 con-
taining the current real address of memory module M1, and

10

15

20

25

30

35

40

45

50

55

60

65

3

a field 304 containing the new real address for memory
module M1. Similarly, mapping engine 36 contains a reg-
ister 305 having field 306 containing the current real address
of memory module M2 and a field 308 containing the new
real address of memory module M2. Mapping engine 46
contains a register having field 310 containing the current
real address of memory module M3 and a field 312 con-
taining the new real address of memory module M3.

Move engine 28 loads each register 301, 305, 309 as

necessary to perform the memory re-configuration. Field

302 shows that memory module M1’s current real address 1s
RA1. Field 304 contains the new real address for memory
module M1, and shows that 1t remains the same at RAIL.
Mapping engine 36 contains ficld 306, showing the current
real address of memory module M1 as RA2. For its new real
address, memory module M2 1s given a real address that 1s
outside the total real address space currently allocated to the
physical memory system. Thus, for example, field 308
contains a new real address for memory module M2, that 1s
RA4, which is outside the current real address space (e.g.
0-128 GB) as mapped to the real addresses (1.e. RA1-RA2).
Similarly, move engine 28 has assigned memory module M3
the previous real address of memory module M2, as shown
in field 312, indicating memory module M3’s new real

address as RA2. Field 310 shows memory module M3’s
current real address of RA3, which 1s now outside the

addressable real space for the operating system.

In the example shown 1n FIG. 3, move engine 28 selects
memory module M3 to receive the data stored 1n memory
module M2. Memory module M1 remains on-line and does
not receive any data from memory module M2. Move engine

28 copies all storage 1n memory module M2 mto memory
module M3. In an alternative embodiment, move engine 28
copies a portion of memory module M2’s content into
memory module M3 and the remainder in other memory
modules of memory system 22 (for example, memory mod-
ule M1). Move engine 28 copies all storage in memory
module M2 addressed by real address RA2 into memory

module M3 addressed by real address RAJ3, as 1s shown by
path 325.

During the process of moving the memory storage,
memory controllers 24, 34, and 44 confinue to respond to
memory access requests over interconnect 12. During the
transition of data, mapping engines 26, 36, 46 enable their
respective memory controller to respond and service
requests such as “Reads” and “Writes” that are addressed to
their current real address, as indicated by the current real
address field 302, 306, 310, and provide a mapping to the
physical addresses for memory modules M1, M2, M3 to
execute such memory accesses directed to their current real
address space.

In the example of FIG. 3, memory module M2 would
confinue to respond to Reads addressed to real address RA2,
as 1llustrated by path 327. In accordance with the preferred
embodiment, mapping engine 26, 36, 46 would enable their
assoclated memory controller to service and respond to any
Write requests to either 1ts current real address or 1ts new real
address, as indicated by their current and new real address
fields, respectively. Accordingly, as 1llustrated by path 329 1n
FIG. 3, a Write to real address RA2 would be handled by
both memory controllers 34 and 44 because memory module
M2’s current real address 1n field 306 1s RA2 and memory
module M3’s new real address 1n field 312 1s RA2. The
memory system 1s assured to have coherency throughout the
move process because memory writes to RA2 continue to be
stored 1n both memory modules M2 and M3.

Upon completion of the data transfer from memory mod-
ule M2 to memory module M3, move engine 28 updates

US 6,907,494 B2

9

registers 301, 305, 309 by copying the new real addresses
into the current real address fields 302, 306, 310, etfectively

interchanging the old address to the new address as a
concluding step. Memory module M1 1s now addressed by
real address RA1 and memory module M3 1s now addressed
by real address RA2. Mapping engine 46 now performs a
physical mapping of real addresses 1in the RA2 space 1nto
memory module M3, thereby creating a virtualized physical
mapping from the addressable real address space being
utilized by the operating system into a virtual physical

address space.

With reference now to FIG. 4, there 1s shown a simplified
block diagram of data processing system 8 and depicts a
memory module M2 being inserted into physical memory
22. Processor unit 10 notifies move engine 28 and mapping
engines 26, 36, 46 that a memory module 1s being added to
physical memory 22 and will be 1nserted into a memory slot
assoclated with and controlled by memory controller 34. The
current real address space for data processing system 8 at
this point 1s comprised of the physical memory of memory

modules M1 and M3 and 1s addressed by the real address
space RA1-RA2.

Each register 301, 305, 309 1s programmed with respec-
tive current and new real addresses 1n accordance with a
preferred embodiment. Memory module M1’s real address
1s not re-programmed and 1ts real address 1n fields 302 and
304 remains the same at real address RA1. Memory module
M2 1s programmed with a current real address of RA4 1n
field 306 and a new real address RA2 1n field 308. The
current real address assigned to memory module M2 1is
programmed with the current real address RA4 because 1t 15
outside the current real address space of physical memory
22. The physical mapping for memory module M3 1s pro-
crammed with a current real address RA2 m field 310 and
a new real address RAJ3 1n field 312. As will be appreciated,
the real address selected for each field 1s dependent on the
size of the memory module M2 being mserted and the size
of the existing memory module M3. In this example, they
are assumed to be of equal size. In the event that they are
different sizes, the real address for memory module M3
would be selected to fall on the memory boundary of
memory module M2 to provide a contiguous real memory
space.

After memory module M2 i1s physically mserted into
physical memory 22, and after loading the registers, move
engine 28 begins copying the contents of memory module
M3 into memory module M2 by making memory access
requests over interconnect 12 to memory controller 44 to
copy each memory cell of memory module M3 into the
memory address space at real address RA4. Memory con-
troller 34 1s enabled to respond to Writes addressed to its
current real memory, programmed 1n field 306 as current real
address RA4. Mapping engine 36 receives writes from each
memory cell of memory module M3 and maps them into the
physical address space of memory module M2. This 1s
depicted in FIG. 4 by path 425 showing a copy of memory

cells at real address RA2 into the memory cells at real
address RA4.

During the move process, mapping engines 36 and 46 arc
programmed to respond to memory accesses at both the
current real addresses and new real addresses programmed
into their registers 305 and 309, respectively. As shown 1n
FIG. 4, a read memory access from processor unit 10
directed to real address RA2 1s serviced by the memory
controllers 24, 34, 44 storing current real address RA2.
Here, all reads will be directed to memory controller 44,

which 1s storing RA2 1n field 310, as indicated by path 427.

10

15

20

25

30

35

40

45

50

55

60

65

10

All memory requests from processor 10 (or other device
such as a Direct Memory Access device) over interconnect
12 to real address RA2 will cause any memory controllers
24, 34, 44 storing either a current or a new real address 1n
registers 301, 305, 309 to write the received data into its
coupled memory module by physically mapping into the
corresponding row and column physical address. As shown
in FIG. 4, a write request from processor unit 10 to real
address RA2 1s show by path 429 to be received by both
memory controllers 34 and 44 causing cach of memory
modules M2 and M3 to be updated by the written data. As
will be appreciated, this mechanism allows for memory
coherency during the move process.

Once the memory module copy process has completed,
move engine 28 directs memory controllers 24, 34, 44 to
respond to memory accesses from interconnect 12 at their
new real addresses 1n ficlds 304, 308, 312, respectively. The
operating system 1s then notified that the real address space
of the system has been increased by an amount equal to the
addressable space of memory module M2. The operating,
system will then begin to store and access memory pages

across the real address space RA1-RA3 of memory modules
M1, M2, and M3.

As will be appreciated there are cases where the memory
module being inserted matches the memory boundry of the
existing memory and the real address space does not have to
be reconfigured. Thus, 1n an alternative embodiment, the
memory move process 15 not performed and the mapping
engine for the new module 1s immediately programmed with
the real address associated with the newly added real address
space. For example, if memory module M2 as shown 1n FIG.
4 1s bemg added to physical memory 22, fields 306 and 308
would each be programmed with real address RA3. Fields
310, 312 of register 309 would each be programmed with
real address RA2. In this case, the data stored in memory
module M3 1s not copied to memory module M2 and
remains 11 memory module M3. Because the mapping
engines in the preferred embodiment allow for the program-
ming of the real address for each of the memory modules,
the fact that memory module M2 i1s physically located
between memory modules M3 and M1 does not prevent
memory module M2 from being programmed to respond
within real address space RA3. Once memory module M2
has been added 1n its memory slot within physical memory
22, the operating system 1s notified that its real address space
has been increased by an amount equal to the memory
storage of memory module M2 and memory controller 34
immediately begins to respond to memory accesses mnto real

address RA3.

For the case of replacement of a memory module 1n the
physical memory 22, the memory module 1s removed from
physical memory 22 1n accordance with the process
described 1n conjunction with FIG. 3, and then a new
memory module 1s 1nserted back mto the physical memory
1in accordance with the process described 1n conjunction with
FIG. 4. Also, with reference now back to FIG. 1, mapping
engine 56 within input/output connector 52 operates 1n the
same manner as mapping engines 26, 36, 46. Input/output
connector 52 operates 1n a similar manner as processor unit
10 when performing direct memory access operations to a
memory module being reconfigured 1n accordance with the
preferred embodiment. As will be appreciated, the system
may have additional input/output connectors, equal to mnput/
output connector 52, connected to interconnect 12. As
various 1nput/output devices, such as disk drives and video
monitors, are added and removed on PCI bus 58 (or other
similar attached buses), mapping engine 56 would operate in

US 6,907,494 B2

11

conjunction with move engine 28 in the same fashion as
described above with respect to the removal and addition of
memory modules 1n physical memory 22 to allow for the
virtualization of the physical addresses to such input/output
devices.

As will be appreciated, the preferred embodiment pro-
vides for a memory module to be inserted, removed or
replaced 1 physical memory 22 without the operating
system having to direct and control the reconfiguration of
physical memory to accomplish the physical memory
change. In the preferred embodiment, move engine 28 and
mapping engines 26, 36, 46 work 1n conjunction to trans-
parently reconiigure the physical memory to accomplish the
addition, subtraction, or replacement of a particular memory
module 1 the physical memory. The mapping engine reg-
isters store current and new real addresses that allow the
move and mapping engines to virtualize the physical
addresses for each of the memory modules and provide the
reconflguration and manipulation of the stored data in real-
fime through the use of hardware functionality and not
software. As will further be appreciated, because the virtu-
alization of physical memory occurs at the memory control-
ler level of the memory hierarchy, reconfigurations of mul-
tiple memory modules can be performed simultaneously
while normal memory operations continue to operate on
interconnect without special handling by the operating sys-
tem or system processors.

While the invention has been particularly shown and
described with reference to a preferred embodiment, 1t will
be understood by those skilled 1n the art that various changes
in form and detail may be made therein without departing
from the spirit and scope of the mvention.

What 1s claimed 1s:

1. A method of data processing within a data processing
system, wherein the data processing system including a
processor device for generating memory accesses containing,
physical addresses associated with memory locations of a
physical memory system for reading and writing of data
thereto, the physical memory system including a plurality of
memory controllers, each responding to memory accesses
requested by the processor by writing and reading memory
blocks stored within one or more memory modules coupled

thereto, the method comprising:

setting a register 1in each of a first and a second memory
controller of the plurality of controllers that are to be
reconflgured, wherein a first and a second memory
module 1s coupled to the first and second memory
controller, respectively, each register being set to indi-
cate a current real address and a new real address for
the coupled memory module, and wherein the first and
second memory controllers each respond to memory
accesses addressed to the current real address stored 1n
thelr respective registers;

copying the plurality of memory blocks from the first
memory module to the second memory module based
on the current real addresses of the first and second
memory modules wherein, during the copying step,
cach memory controller of the plurality of memory
controllers responds to write memory requests
addressed to the current real address or the new real
address stored 1n the memory controller’s register such
that a write memory request addressed to either of said
current or new real addresses 1s responded to by all
memory controllers of the plurality of memory con-
trollers containing that real address 1n its set register;
and

after completing the copying step, configuring the first
and second memory controllers to respond only to

10

15

20

25

30

35

40

45

50

55

60

65

12

memory accesses addressed to the new real address
stored 1n their respective registers.

2. The method of claim 1, wherein the first memory
module 1s 1nserted mto the memory system prior to the
copying step and wherein the current real address for the first
memory module 1s within a current addressable space for the
physical memory system and the new real address for the
seccond memory module 1s outside a current addressable
space for the physical memory system.

3. The method of claim 1, the method further comprising
notifying the processor that a configuration of the plurality
of memory modules 1s being modified, and wherein the
setting step 1s performed 1n response to the notification.

4. The method of claim 1, wherein, during the copying,
step, each memory controller of the plurality of memory
controllers responds to a read memory access addressed to
only the current real address stored 1 the memory control-
ler’s register.

5. A method of data processing within a data processing,
system, wherein the data processing system including a
processor device for generating memory accesses containing
physical addresses associated with memory locations of a
physical memory system for reading and writing of data
thereto, the physical memory system including a plurality of
memory controllers, each responding to memory accesses
requested by the processor by writing and reading memory
blocks stored within one or more memory modules counted
thereto, the method comprising:

setting a register in each of a first and a second memory
controller of the plurality of controllers that are to be
reconflgured, wherein a first and a second memory
module 1s counted to the first and second memory
controller, respectively, each register being set to 1ndi-
cate a current real address and a new real address for
the coupled memory module, and wherein the first and
second memory controllers each respond to memory
accesses addressed to the current real address stored 1n
their respective registers;

copying the plurality of memory blocks from the first
memory module to the second memory module based
on the current real addresses of the first and second
memory modules; and

after completing the copying step, configuring the first
and second memory controllers to respond only to
memory accesses addressed to the new real address
stored 1n their respective registers, wherein the first
memory module 1s removed from the memory system
following the configuring step, the current real address
for the first memory module 1s within a current addres-
sable space for the physical memory system, and the
new real address for the first memory module 1s outside
a current addressable space for the physical memory
system.

6. A system having a processor device for generating
memory accesses containing real addresses associated with
memory locations of a physical memory system for reading
and writing of data thereto, and a plurality of memory
modules 1n the physical memory system for storing the data
as a plurality of memory blocks, each memory block com-
prising contiguous bytes of physical memory, the system
comprising;

a plurality of memory controllers, wherein each memory
controller of the plurality of memory controllers has
one or more memory modules of the plurality of
memory modules coupled thereto, and wherein each
memory controller of the plurality of memory control-
lers responds to memory accesses by writing and

US 6,907,494 B2

13

reading memory blocks stored within the one or more
of the memory modules coupled thereto;

a first register within a first memory controller of the
plurality of memory controllers having a first field
storing a current real address corresponding to a first
memory module of the plurality of memory modules
coupled thereto and a second field storing a new real
address corresponding to the first memory module;

a second register within a second memory controller of
the plurality of memory controllers having a first field
storing a current real address corresponding to a second
memory module of the plurality of memory modules
coupled thereto and a second field storing a new real
address corresponding to the second memory module;

a move engine that, 1n response to a notification that a
conflguration of the first and second memory modules
1s being modified, copies the plurality of memory
blocks from the first memory module to the second
memory module based on the current real addresses of
the first and second memory modules;

a first mapping engine within the first memory controller
that enables the first memory controller to respond to
memory accesses addressed to the current real address
stored 1n the first register during a time period that the
move engine 1s copying the plurality of memory blocks
from the first memory module to the second memory
module and that enables the first memory controller to
only respond to memory accesses addressed to the new
real address stored in the first register after the time
period that the move engine 1s copying the plurality of
memory blocks from the first memory module to the
second memory module; and

a second mapping engine within the second memory
controller that enables the second memory controller to
respond to memory accesses addressed to the current
real address stored 1n the second register during a time
period that the move engine 1s copying the plurality of
memory blocks from the first memory module to the
second memory module and that enables the second
memory controller to only respond to memory accesses
addressed to the new real address stored in the second
register after the time period that the move engine 1s
copying the plurality of memory blocks from the first
memory module to the second memory module.

7. The system of claim 6, wherein the first and second
mapping engines enable their respective memory controllers
to respond to write memory accesses addressed to either the
current real address or the new real address stored 1n their
respective registers during a time period that the move
engine 1s copying the plurality of memory blocks from the
first memory module to the second memory module.

8. The system of claim 6, wherein the first memory
module 1s removed from the physical memory system after
the second mapping engine enables the second memory
controller to only respond to memory accesses addressed to
the new real address stored 1n the second register after the
time period that the move engine 1s copying the plurality of
memory blocks from the first memory module to the second
memory module.

9. The method system of claim 8, wherein the new real
address stored 1n the second register 1s equivalent to the
current real address stored in the first register and the new
real address stored 1n the first register 1s outside the current
addressable space of the physical memory system.

10. The system of claim 6, wherein the second memory
module 1s mserted 1nto the physical memory system before

10

15

20

25

30

35

40

45

50

55

60

65

14

the move engine copies the plurality of memory blocks from
the first memory module to the second memory module.

11. The system of claim 10, wherein the new real address
stored 1n the second register 1s equivalent to the current real
address stored 1n the first register and the new real address
stored 1n the first register 1s within the current addressable
space of the physical memory system.

12. The system of claim 6, wherein the first and second
mapping engines enable their respective memory controllers
to respond to read memory accesses addressed to only the
current real address stored in their respective registers
during a time period that the move engine i1s copying the
plurality of memory blocks from the first memory module to
the second memory module.

13. A data processing system comprising:

a physical memory system having a plurality of memory
modules for storing data as a plurality of memory
blocks, each memory block comprising contiguous
bytes of physical memory;

a plurality of processor devices for generating memory
accesses containing real addresses associated with
memory locations of the physical memory system for
reading and writing of data thereto;

a plurality of memory controllers, wherein each memory
controller of the plurality of memory controllers has
onc or more memory modules of the plurality of
memory modules coupled thereto, and wherein each
memory controller of the plurality of memory control-
lers responds to memory accesses by writing and
reading memory blocks stored within the one or more
of the memory modules coupled thereto;

a first register within a first memory controller of the
plurality of memory controllers having a first field
storing a current real address corresponding to a first
memory module of the plurality of memory modules
coupled thereto and a second field storing a new real
address corresponding to the first memory module;

a second register within a second memory controller of
the plurality of memory controllers having a first field
storing a current real address corresponding to a second
memory module of the plurality of memory modules
coupled thereto and a second field storing a new real
address corresponding to the second memory module;

a move engine that, in response to a notification that a
confliguration of the first and second memory modules
1s being modified, copies the plurality of memory
blocks from the first memory module to the second
memory module based on the current real addresses of
the first and second memory modules;

a first mapping engine within the first memory controller
that enables the first memory controller to respond to
memory accesses addressed to the current real address
stored 1n the first register during a time period that the
move engine 1s copying the plurality of memory blocks
from the first memory module to the second memory
module and that enables the first memory controller to
respond to memory accesses addressed to the new real
address stored 1n the first register after the time period
that the move engine 1s copying the plurality of
memory blocks from the first memory module to the
second memory module; and

a second mapping engine within the second memory
controller that enables the second memory controller to
respond to memory accesses addressed to the current
real address stored in the second register during a time
period that the move engine 1s copying the plurality of

US 6,907,494 B2

15

memory blocks from the first memory module to the
second memory module and that enables the second
memory controller to respond to memory accesses
addressed to the new real address stored in the second
register after the time period that the move engine 1s
copying the plurality of memory blocks from the first
memory module to the second memory module.

14. The system of claim 13, wherein the first and second
mapping engines enable their respective memory controllers
to respond to write memory accesses addressed to either the
current real address or the new real address stored 1n their
respective registers during a time period that the move
engine 1S copying the plurality of memory blocks from the
first memory module to the second memory module.

15. The system of claim 13, wherein the first memory
module 1s removed from the physical memory system after
the second mapping engine enables the second memory
controller to only respond to memory accesses addressed to
the new real address stored 1n the second register after the

10

15

16

16. The system of claim 15, wherein the new real address
stored 1n the second register 1s equivalent to the current real
address stored 1n the first register and the new real address
stored 1n the first register 1s outside the current addressable
space of the physical memory system.

17. The system of claim 13, wherein the second memory
module 1s mserted 1nto the physical memory system before
the move engine copies the plurality of memory blocks from
the first memory module to the second memory module.

18. The system of claim 17, wherein the new real address
stored 1n the second register 1s equivalent to the current real
address stored 1n the first register and the new real address
stored 1n the first register 1s within the current addressable
space of the physical memory system.

19. The system of claim 13, wherein the first and second
mapping engines enable their respective memory controllers
to respond to read memory accesses addressed to only the
current real address stored in their respective registers
during a time period that the move engine i1s copying the
plurality of memory blocks from the first memory module to

time period that the move engine 1s copying the plurality of 20 the second memory module.

memory blocks from the first memory module to the second
memory module.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. :6,907,494 B2 Page 1 of 1
DATED . June 14, 2005
INVENTORC(S) : Ravi Kumar Arimilli et al.

It is certified that error appears in the above-identified patent and that said Letters Patent Is
hereby corrected as shown below:

Column 12,
Line 27, delete “counted™ and msert -- coupled --.

Column 13,
Line 60, delete “method system™ and insert -- system --.

Signed and Sealed this

Sixteenth Day of May, 2006

JON W. DUDAS
Director of the United States Patent and Trademark Office

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

