US006901572B1
a2 United States Patent (10) Patent No.: US 6,901,572 Bl
Dougherty et al. 45) Date of Patent: May 31, 2005
(54) POWER SEQUENCE CONTROLLER 6,735,706 B2 * 5/2004 Tomlinson et al. 713/300
PROGRAMMING TECHNIQUE OTHER PURI ICATIONS
(75) Inventors: Paul R. Dougherty, Hillsboro, OR Summit Microelectronics, Inc. SMT4004, Quad Tracking
(US); Srirama Chandra, Beaverton, Power Supply Manager, Summit Microelectronics, Inc.
OR (US); Hans W. Klein, Danville, CA 2001, pp. 1-35.
(US) Summit Microelectronics, Inc. SMT4214, Expandable Four-
Rail Tracking Manager, Summit Microelectronics, Inc.
(73) Assignee: Lattice Semiconductor Corporation, 2001, pp. 1-17.
Hillsboro, OR (US) Analog Devices, Communications System Supervisory/Se-
_ _ o _ quencing Circuit, Analog Devices, Inc., 2002, pp. 1-45.
(*) Notice: Subject to any disclaimer, the term of this _ _
patent 15 extended or adjusted under 35 * cited by examiner
U.S.C. 154(b) by 194 days. Primary Examiner—_eigh M. Garbowski
(74) Attorney, Agent, or Firm—MacPherson Kwok Chen &
(21) Appl. No.: 10/272,582 Heid LLP
(22) Filed: Oct. 15, 2002 (57) ABSTRACT
(51) Imt.CL’ ..o HO3K 19/00; GO6F 17/50; A programming technique for a programmable logic device
GO6F 1/26 (PLD) is disclosed wherein the programmed PLD controls a
(52) US.CL ..., 716/17; 716/18; 713/300; circuit’s behavior according to a desired circuit behavior
713/330 implementation. A user constructs a program, wherein the
(58) Field of Search 716/1-3, 17-18; program comprises instructions defining inputs, outputs, and

713/300, 310, 320-321, 330, 340 conditional branching for an abstract state sequencer that

implements the desired circuit behavior. The programming

(56) References Cited technique then translates the states and resources for the
abstract state sequencer into HDL source code, which 1n turn
may be translated into a programming bit pattern for the

U.S. PATENT DOCUMENTS

5,603,043 A * 2/1997 Taylor et al. ...ccocv........ 712/1 PLD.
6,438,738 Bl * 8/2002 Elaydacccoveeuen..... 716/16
6,490,714 B1 * 12/2002 Kurniawan et al. 716/17 20 Claims, 2 Drawing Sheets
10
PSP
Abstract 20
Stote
Sequencer
20
4()

Programming
Bit
Sequence

U.S. Patent May 31, 2005 Sheet 1 of 2 US 6,901,572 B1

10
PSP

Abstract 20

State
Se-uencer

. HOL 30

Source
Code

Programming 40

Bit
Sequence

FlG. 1

45

[: 50

Program ——— ————

US 6,901,572 Bl

Sheet 2 of 2

May 31, 2005

U.S. Patent

o Il

S5 TIgVNT
. - 134 AT
-)_ P00Y ~1aMod .
GOl
| STYNIIS
P 4OLINOW
06
m 001
a¥v08 LiNJ¥D = i _
iHL NI oug — AG7 S *
SIDAI0 . Aiddng|induj|Ace Moy
J9VLIOALLINN — T <
001 - ARl |~|
(3 - T
SNg AC'C paduanbag _ f
GL
08

G

US 6,901,572 Bl

1

POWER SEQUENCE CONTROLLER
PROGRAMMING TECHNIQUE

TECHNICAL FIELD

This invention relates to power sequence control, and
more particularly to a method of programming sequence
controllers.

BACKGROUND

Modern electronics such as high-performance micropro-
cessor and digital signal processor systems increasingly
require a plurality of voltage levels. Care must be taken to
power up and down the corresponding voltage rails. Internal
circuits suffer stress if certain power rails are active while
others are inactive. In addition, microprocessors may suifer
latch-up, which damages or destroys affected transistors. As
a result, power up and power down sequencing must be
practiced to prevent these problems.

Power supply sequence controllers enable circuit design-
ers to meet the need for power sequencing in their designs.
A programmable sequence controller comprises a program-
mable logic device (PLD) that a user programs according to
the particular power sequence control desired. An example
programmable sequence controller 1s disclosed m U.S.
patent application Ser. No. 09/732,216 entitled “Program-
mable Power Management System and Method,” filed Dec.
6, 2000, which 1s hereby incorporated by reference in 1its
entirety. Generally, programming a PLD involves writing a
hardware-description-language-(HDL)-based source code.
Although the use of HDL 1s widespread, writing HDL code
1s complicated and involves a substantial amount of
overhead, even for the relatively simple designs involved in
power sequence control. In addition, the configurability of
the programmable logic 1n power sequence controllers sub-
stantially adds to the burden of writing the necessary HDL
source code.

Accordingly, there 1s a need in the art for improved
techniques to program power sequence controllers.

SUMMARY

In accordance with one aspect of the invention, a method
of programming a programmable logic device (PLD) is
provided, wherein the programmed PLD controls a circuit’s
behavior according to a desired circuit behavior implemen-
tation. The method includes an act of reading a program,
wherein the program comprises instructions defining inputs,
outputs, and conditional branching that implements the
desired circuit behavior. The program is translated into an
abstract state sequencer. The abstract state sequencer may
then be translated into a hardware description language
(HDL) source code as governed by the programmable
architecture of the PLD. Finally, the HDL source code may
be translated into a programming bit pattern that may be
used to program the PLD.

The mvention will be more fully understood upon con-
sideration of the following detailed description, taken
together with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a high level flow chart for a PLD programming,
technique according to one embodiment of the 1nvention.

FIG. 2 1s a high level illustration of the data flow for a
PLD programming technique according to one embodiment
of the invention.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 3 1s a block diagram of a multi-voltage device
coupled to a plurality of power converters and a FET-
controlled sequenced voltage rail, wherein the plurality of
power converters and the FET-controlled sequenced voltage
raill are conftrolled by a programmable power sequence
controller.

DETAILED DESCRIPTION

The present mvention provides a programmable power
sequence controller programming technique. Any program-
mable power sequence controller may benefit from the
programming technique disclosed herein. For example, a
programmable power sequence controller that may be pro-
crammed according to the present mvention 1s set forth in
U.S. patent application Ser. No. 09732,216 entitled “Pro-
crammable Power Management System and Method,” filed
Dec. 6, 2000. This power sequence controller includes a
configurable AND array that supplies product terms to a
plurality of configurable macrocells. By programming the
AND array and the macrocells, a user can program this
power sequence controller to control power supplies as
desired.

Although described herein with respect to a power
sequence controller, 1t will be appreciated that the present
invention may be broadly applied to the programming of
PLDs to control any desired circuit behavior. FIG. 1 1s a high
level flow chart of the PLLD programming method disclosed
herein that may be practiced, for example, by a computer
program known as a software development tool. At step 10,
the development tool reads a program provided by a user
which describes a desired circuit behavior. This program 1s
preferably like assembly language for a small microcontrol-
ler 1n that there 1s a one-to-one correspondence between
program statements and circuit 1nstruction operations.

The user-provided program 1s first translated into an
abstract state sequencer program at step 20. Whereas the
program constructed 1n step 10 1s independent of the pro-
grammable architecture of the PLD being programmed, the
abstract state sequencer program developed in state 20
should account for certain details of this architecture.
Specifically, the translation of the program from step 10
depends upon the number of clocks per instruction and any
pipelining necessary to meet program semantics (which in
turn 1s affected by the number of clocks per instruction, the
number of state variable flip-flops needed to meet program
size, and resource allocation of I/O cells, which are either
left fixed or left “unallocated” for downstream processing to
place into hardware).

At step 30, the abstract state sequencer program devel-
oped 1n step 20 1s translated into a hardware-description
language (HDL) source code for the programmable archi-
tecture 1mplemented i the particular PLD being pro-
grammed.

At step 40, the HDL source code i1s translated into the
appropriate bit pattern to be programmed 1nto the PLD. This
bit pattern may then be downloaded into the PLD so as to
complete the desired programming.

The software required to perform the PLD programming
technique of the present invention may be programmed into
a Windows®-based PC such as PC 45 of FIG. 2 using a
suitable programming language such as C. As shown graphi-
cally in FIG. 2, a user enters a program that describes a
desired circuit behavior (corresponding to step 10 of FIG. 1)
into the programmed PC 45. Following the steps described
in FIG. 1, PC 45 generates the appropriate bit sequence to
program a PLD 50. After receiving this bit sequence, PLD

US 6,901,572 Bl

3

50 1s programmed and ready to control the desired circuit
behavior as desired by a user.

Keeping in mind these general features, a specilic
embodiment of the PLD programming technique specialized
to program a power sequence controller will now be
described. Turning now to FIG. 3, a power sequence con-
troller 85 controls a 1.8V DC-DC power converter 60
powering a 1.8V rail 62 and a 2.5v DC—DC power con-
verter 65 powering a 2.5v rail 70. In addition to these rails,
a 3.3v sequenced rail 75 couples to a 3.3v supply voltage
through FET 80. Each power converter receives the 3.3v
supply voltage. A multivoltage device 85 receives the rails
75, 62, and 70. Power sequence controller 55 controls these
rails through binary enable signals 3.3v Fet Enable, 1.8V
LDO En, and 2.5V Brick En, respectively (these enable
signals may also be denoted as “turn on” signals). Power
sequence controller 535 monitors the analog voltage on rails
75, 62, and 70 via monitor signals 90, 95, and 100, respec-
fively. Internally, power sequence controller 55 may com-
pare the monitor signals to thresholds and generate binary
variables (that may be denoted as VMONX, where X
indicates the index of the monitored rail) indicating whether
a given monitor signal 1s within an operating tolerance. In
addition, power sequence controller 55 outputs binary con-
trol signals to multivoltage device 85, e.g., a CPU-reset
signal 105 and a power-good signal 110.

Power sequence controller 55 contains programmable
logic 1n the form of a configurable AND array providing
product terms to a plurality of configurable macrocells that
a user must configure or program to effect a desired power
control sequence using one or more of a plurality of internal
timers. To begin programming according to the present
invention, a user writes a power supply program having a
plurality of steps by choosing instructions from a sequence
controller instruction set. The goal of the power supply
program 1s to define the necessary sequences for the turning,
on of power supplies, the maintenance of normal operation
until the power switch 1s turned off, and the necessary
sequences for the turnming off of the power supplies. In
certain embodiments of the programming method, only one
operation type per step 1n the power supply program may be
permitted so as to simplify the translation of the program.
Similarly, with the exception of outputs, only one operation
per step 1n the program may be implemented in other
embodiments.

To satisty the goals of the power supply program, the
sequence controller 1nstruction set may includes statements
that: 1) wait for a Boolean condition, 2) wait for an elapsed
time using a specified timer, 3)turn on/turn off one or more
outputs, 4) reset the power sequence controller, and 5)
branch to another step in the sequence. The following
statements form a suitable example mstruction set.

WaitFor a <Boolean-Expression>

This instruction will command the power sequence con-
troller to wait for the Boolean expression to be true and then
implicitly transition to the next step in the power supply
program. The Boolean expression 1s typically an AND of a
few mput signals.

Output Instructions (denoted by keywords Turn on <out-
put signal>, Turn off <output signal>, Assert <output
signal>, Release <output signal>, StartTimer, and

ResetTimer):

These 1nstructions turn on or off power sequence control-
ler outputs. For example, to turn on a 1.5 voltage rail, the
power supply program includes an instruction “Turn on
1.5v.” Note that the different keywords accommodate power

10

15

20

25

30

35

40

45

50

55

60

65

4

supplies vs. resets. The “assert” instruction will make the
corresponding output signal be “true” (whether this is posi-
tive high or positive low). The “release” instruction will
make the corresponding output signal “false” (again,
whether this i1s positive high or positive low).

IF <Boolean Expression> THEN <ThenStep> ELSE
<ElseStep>

This instruction allows two-way branches 1n the power
supply program. The Boolean expression 1s typically an
AND of a few input signals. When this Boolean expression
1s true, the program will branch to the program step number
specified by the variable “ThenStep.” If the Boolean expres-
sion 1s false, the program will branch to the program step
number specified by the wvariable “ElseStep.” In other
embodiments of the program instruction set, more elaborate
multi-way branching may be supported, at the cost of
additional user-interface complexity.

Wait for <timeout value> usingTimer <number:

This instruction commands the power sequence controller
to wait for a time to elapse that 1s specified 1n real time using
the specified timer. After the specified time elapses, the
power supply program will implicitly go to the next step. For
increased simplicity in certain embodiments, only one timer
(out of the plurality available to a given power sequence
controller) may be used with any given power supply
program instruction.

Golo <Gotostep>

This instruction commands the power sequence controller
to branch to the program step specified by the value of the
variable “Gotostep.”

Halt

This instruction commands the power sequence controller
to stop the execution of the power supply program. Unlike
some microprocessor “halt” commands, the power sequence
controller will not power down 1n any way in response to the
halt instruction. However, as will be explained further
herein, the power supply program may include an “excep-
tion” table that enables the power supply controller to
immediately go to a specified state 1f a Boolean expression
1s true. An exception would free the power sequence con-
troller from an executed halt instruction because the power
sequence controller would transition to the state specified in
the exception.

Nop

This instruction commands the power sequence controller
to perform no other operation other than jumping to the next
step 1n the program. Accordingly, 1t amounts to a one clock
delay (assuming that the programmable architecture in the
power sequence controller corresponds to one clock per
instruction).

In addition to performing according to the instruction set,
a power sequence controller should be able to accommodate
emergencies such as an overvoltage condition. If the power
supply program were running on a mMmICIOProcessor, an
interrupt could be generated 1n response to the emergency.
However, the PLD “brain” of a power sequence controller
has no return stack and thus interrupts are not applicable.
Instead, the power sequence controller may have “excep-
fions” from which 1t cannot return. These exceptions allow
a vectoring capability. For example, if a Boolean expression
1s satisfied, one or more asynchronous resets of the state
machine resulting from the power supply program may be
made (depending upon hardware limitations), unlimited
numbers of synchronous jumps to specified states may be
accomplished, and asynchronous outputs may be included.

US 6,901,572 Bl

S

The Boolean expressions can include power sequence con-
troller inputs, outputs, and state variables expressed as a
state (note that individual state registers flip-flops should not
be assigned because the translator (to HDL) must be free to
reassign them at any time).

To implement these exceptions, a user would include an
“exception table” with the power supply program. An
example exception table would be:

Output (2
forms)

If TRUE, Goto

Condition Destination Comment

State number
Oor state name

PLD Output (pin
name) =
<constant>

PLD Output (pin
name) =
<boolean
expressions

Boolean expression of
inputs to PLD array

In the latter form of the asynchronous outputs, combina-
torial outputs will follow mputs after a propagation delay.
The jump to the state specified by the variable “destination”
may be asynchronous (if performing a reset) or synchronous
(if jumping to any numbered or named state besides reset).
Note that the Boolean expression i1s a property of the
instruction, not a run-time property of the state machine
itself (as it would be for a typical interrupt-enable flag).
Thus, a user benefits from the affect of interrupts in the
system without the overhead of a flip-flop to record the
enabled state of interrupts at run-time.

Keeping 1n mind the above-described features of the
power supply instruction set and the exception table, an
example power supply program may be shown. In this
sample, a user desires to wait until the 5 volt rail and the 2.5
volt rail are above the undervoltage threshold. When these
rails are above the undervoltage threshold, the 1.5v, 1.8v,
and 2.5v rails are brought up 1n sequence, with a 1 milli-
second delay between turn on. After an additional 1 malli-
second delay, both 3.3v rails are turned on. A suitable power
supply program would be:

Step 1 WaitFor 5 v Under & 2.5 v Under
Step 2 Turn on 1.5 v

Step 3 Wait 1 ms

Step 4 Tum on 1.8 v

Step 5 Wait 1 ms

Step 6 Turn on 2.5 v

Step 7 Wait 1 ms

Step 8 Tum on 3.3 v 1, Turn on 3.3 v 2

Once a user has written a power supply program, a
platform such as CPU 45 programmed to implement the
method of the present invention may translate the power
supply program into HDL source code. Any suitable HDL
may be used, e.g., ABEL or VHDL. The following example
will use ABEL although the details would be analogous if
another HDL were used. The translation into ABEL occurs
in two steps. In a first step, an ABEL state 1s created for
every power supply program step (assuming that the pro-
crammable architecture 1n the power sequence controller
uses 1 clock cycle per instruction, otherwise create multiple
ABEL states per instruction, one per clock). In a second step,
every power supply program step 1s examined and each
affected ABEL state has an item compiled. For example,
consider a 14 step power supply program (PSP) correspond-

10

15

20

25

30

35

40

45

50

55

60

65

6

ing to a 14 state ABEL program. The following nested loop
will execute a possible 14*14 or 196 compilation operations.

Outer loop: PSP instructions (14)
Reserve resources used by this instruction (timers)
[nner loop: ABEL states (14)
Build “state” based on position relative to currentState and
type of instruction being compiled.
End-inner-loop
End Outer loop (PSP instructions)

During this nested loop, there 1s a “current instruction™ and
a “current state” defined by the loop variables. Most com-
pilation actions occur from the “current instruction” to the
“current state.” However, the translation 1s from logical to
physical, so the other states may be useful.

When compiling a single instruction that has several
actions (which implies multiple clock cycles) into a target
state machine that allows only one instruction per clock
cycle, pipelining 1s required. Typically, one to two states
(corresponding to one to two clock cycles) before or after the
current state can be affected. This may be demonstrated
using the WaitFor Timer instruction as follows: Suppose a
user wants to clear a Start__timer signal, set the Start_timer
signal, wait for another (output) signal to become true and
then end the instruction with a “goto next state” operation
into a one-clock-per-state state machine. Because ABEL
supports the WHILE clause, the Start_ timer signal can be
reset upon exiting the current state(corresponding to the nth
state) as follows:

State Action
State N-1 Clear Start__timer signal
State N Set Start__timer signal, wait for timer to complete,

clear Start_ timer signal, goto next state

If, however, a user had to clear the timer 1n the state
following the “current state,” another state would be neces-
sary as follows:

State Action

State N-1 Clear Start_timer signal

State N Set Start__timer signal, wait for timer to complete,
goto next state.

State N+1 clear Start__timer signal.

It will be appreciated that the above examples may be
extended to state machines having multiple clock cycles per
instruction.

The exception table 1s compiled 1n parallel during the
second stage of the power supply program compilation or 1t
may be compiled separately. During compilation of the
power supply program mto HDL source code, the instruc-
tions subject to the exceptions should be 1dentified.
Although “exception test code” could be 1nserted for each
instruction individually to identify whether a given instruc-
tion 1s subject to an exception, compile-time {flags
(“pragmas” may also be used. The pragma is effective for the
duration of the compilation, which means that all states after

US 6,901,572 Bl

7

the current state (1dentified by the pragma) can be affected.
As an example of pragmas, “no-operation” instructions may
be 1mserted 1nto the power supply program to 1dentify which
instructions are subject to exceptions. For example, mstruc-
tions arbitrarily denoted as “BeginStartup” and “BeginShut-
down” could divide a power supply program into two
phases: a “startup” phase that can be interrupted by
exceptions, and a “shutdown” phase that cannot be inter-
rupted by exceptions. As such, the BeginStartup and Begin-
Shutdown 1nstructions do nothing but act as placeholders to
turn the “compile exception test code” compile-time flag
(pragma) on and off.

It will be appreciated that implementation issues should
be considered when deciding whether to use such compile-
time flags. For example, 1in the programmable power con-
troller §5 of FIG. 3, the number of macrocells available for
programming may be quite small (e.g., 8). However, the
“BeginStartup” and “BeginShutdown” compile to “code”
that takes up to a state each. As such, if programming
capability 1s limited, true pragmas should be used instead
because they would have no run-time effect.

The following example indicates how an ABEL state
would be altered 1n light of a user-specified exception. Note
that a Boolean test can be attached to any power supply
program 1nstruction, and if the test succeeds, a branch 1s
taken to the selected state. For example, standard OUTPUT
instruction may be coded as follows (an ABEL state number
7 was chosen arbitrarily):

State 7:
HVOUT3.J = 0: #reset HVOUT3
HVOUT3.K = 1;
Goto §;

Attaching an “If VMONI1 Then Goto 12”7 exception
condition to this OUTPUT instruction 1s coded like this in

ABEL (where VMONTI is an arbitrary binary variable rep-
resenting a true/false condition such as whether a monitored
output voltage is within a specified range):

State 7:
HVOUT3.J =0 ; * reset HVOUTS3
HVOUT3.K =1 ;
[f VMONT1 Then 12 * Exception IfThen
Else
Goto §;

In general form, the following was added to the instruction:

[f <boolean__expression> Then <«state> * Exception handler
Else

It will be appreciated that multiple exceptions just add more
conditions as follows:

[f <boolean__expressionl> Then «statel> * Exception handlerl
Else
[f <boolean__expression2> Then «state2> * Exception handler?
Else

Note that a Goto <state> (“Goto 8” in the sample) instruction
1s pasted at the end, after all the exceptions are taken care of.

10

15

20

25

30

35

40

45

50

55

60

65

3

After the first step of the two-step compilation, the
sources and states of an abstract state sequencer are defined.
However, a user may have mserted a power supply program
instruction that introduces a logical error. For example, a
“Goto step 257 1nstruction 1n a program having no such step
25. The abstract state sequencer may be analyzed before
compilation 1n the second step to 1dentily any logical errors.
This analysis would shield a user from having to read
through a relatively complicated HDL compilation error log.

As a result of the two-step compilation, the translation of
the power supply program instruction set and exceptions
into ABEL source code for a one-clock-per-instruction state
machine 1s as follows:

ABEL source code generated for mstruction WaitFor:

ABEL code section Generated ABEL code

Declaration block:
Clock definitions
Previous state
Current state

nothing generated
nothing generated
nothing generated
[f <BooleanExpressionlnABELFormat> Then
<nextStateNumber:
Else <currentStateNumbers;
State <currentStateNumber::

[f <BooleanExpressionlnABELFormat> Then
<nextStateNumber>

Else <currentStateNumbers;

Typical Result:

ABEL source code generated for IF/THEN/ELSE instruc-
fion:

ABEL code section ABEL code generated by PAC-Designer

Declaration block:
Clock definitions
Previous state
Current state

nothing generated
nothing generated
nothing generated
[f <BooleanExpressionlnABELFormat> Then
<ThenStateNumber:>
Else <ElseStateNumbers;
State 1:

[f <BooleanExpressionlnABELFormat> Then
<nextStateNumber>

Else <currentStateNumbers;

Typical Result:

ABEL source code generated for Output instructions:

ABEL code section Generated ABEL code

Declaration block: Outputs are marked as “registered”, like this

OUTS5 pin 28 istype ‘reg_ JK’;

Outputs are marked as “clocked”, like this
OUT1.clk = PLD_CLK;

nothing generated

<output__name_ N.J =
<BooleanExpressionln ABELFormat:;
<output__name_ N.K =

! <BooleanExpressionInABELFormat:>;

as many as 16 lines, two lines per output.
State <currentStateNumber::

OUT5.J = 1; OUT5.K = 0;

OUT7 = VMONI1;

Clock definitions

Previous state
Current state

Typical Result:

ABEL source code generated for Wait for <timeout
value> mstruction:

ABEL code section

Declaratlon block:
Clock definitions

Previous state
Current state

Typical Result:

US 6,901,572 Bl

Generated ABEL code

Outputs are listed like this:

TIMER1_TC pin 27 ;

Outputs are marked as “clocked”, like this
TIMER1_TC.clk = PLD_ CLK;
TIMER1_GATE = 0 ; (clear/reset timer)
TIMER<n>_ GATE = 1 ; “ enable timer <n>

If TIMER<n>TC Then <nextStateNumber> With
TIMER <n>_ GATE=0

Else <currentStateNumber> With

TIMER <n>_ GATE=1;

State 3:

TIMER1 GATE =1 ; “ enable timer 1

If TIMER1__TC Then 4 With TIMER1_ GATE=0
Else 3 With TIMER1_ GATE=1;

ABEL source code generated for the Goto instruction

ABEL code section Generated ABEL code
Declaration block: nothing generated
Clock definitions nothing generated
Previous state nothing generated
Current state State N:

Goto <N+15=;
Typical Result: State 1:

Goto 2;

ABEL source code generated for the Halt instruction

ABEL code section Generated ABEL code
Declaration block: nothing generated
Clock definitions nothing generated
Previous state nothing generated
Current state State N:

Goto <N»;
Typical Result: State 1:

Goto 1;

ABEL source code generated for the Nop 1nstruction

ABEL code section

Declaration block:
Clock definitions
Previous state
Current state

Typical Result:

ABEL code generated by PAC-Designer

nothing generated
nothing generated
nothing generated
State N:

Goto <N+1>;
State 1:

Goto 2;

ABEL source code generated for an exception:

ABEL code section

Declaration block:
Clock definitions

Equations block
Disabled states

Generated ABEL code

nothing generated

Outputs not used by an instruction are marked as
“clocked”, like this

OUT1.clk = PLD_CLK;

Fach equation 1s placed here

nothlng generated

10

15

20

25

30

35

40

45

50

55

60

65

10

-continued

ABEL code section Generated ABEL code

Enabled states <output__name_ N.J =
<BooleanExpressionlnABELFormat:;
<output__name_ N.K =
l<BooleanExpressionInABELFormat:;
as many as 16 lines, two lines per output.

Typical Result: State <currentStateNumber::
OUT5.J =1; OUT5.K = 0;
OUT7 = VMONT;

Note that exceptions are a combination of “interrupt logic”
and combinatorial glue logic” that a user may control. In
contrast to those resulting from power supply program
instructions, non-registered outputs are available.

Referring back to FIG. 3, the following example power
supply program for power sequence controller 535 demon-
strates the advantages the present mvention provides with
respect to traditional HDL programming techniques. Sup-
pose a user wants to wait until the 3.3v supply voltage 1s
above 1ts undervoltage threshold and then enable the 1.8V
DC-DC power converter 60 to power up the 1.8v rail 62.
After a wait of 16.384 ms, the user wants to wait for the
voltage on 1.8v rail 62 to be above its undervoltage thresh-
old and then enable the 2.5v DC—DC power converter 63
to power up the 2.5v rail 70. After the voltage on the 2.5v
rail 70 1s above 1ts undervoltage threshold, FET 80 should be
switched on and the power__good signal 10 asserted. Then,
after a wait of 4.096 ms, CPU__reset signal 105 should be
asserted. During shutdown, all enable signals should be
released simultaneously. The following power supply pro-
ogram accomplishes these objectives:

Step 0 Begin Startup Sequence {(ispPACS0 reset)

Step 1 Raw3V3_FET En =0, Brick2V5_En = 0, LDO1V8_En = 0,
Power Good = 0, CPU_ Reset = 0,

Step 2 Wait For Raw3V3__Under

Step 3 LDO1VSE_En=1

Step 4 Wait for 16.384 ms using timer 1

Step 5 Wait for LDO1VSE__Under

Step 6 Brick2V5_En =1

Step 7 Wait for Brick2V5__Under

Step 8 Raw3V3_Fet En =1, Power Good =1,

Step 9 Wait for 4.096 ms using timer 2

Step 10 CPU_Reset = 1

Step 11 Halt

Step 12 Begin Shutdown Sequence

Step 13 Raw3V3_FET En =0, Brick2V5__En = 0, LDO1VS8__En = 0,

Power_ Good = 0, CPU_ Reset = 0
<end of program:>

After processing by the programming technique discussed
above, the equivalent ABEL source code 1s as follows:

Module PSCProgram

“ Target__system: 1spPACS0

library ‘lattice’;

“ Start of pin definitions
Raw3v3__Under pin 11 ;
Brick2V5__Under pin 12 ;
LDO1VE__Under pin 13 ;

VMON4 pin 14 ;
VMONS5 pin 15 ;
VMONSG6 pin 16 ;
VMON7 pin 17 ;
VMONS pin 18 ;

VMONS9 pin 19 ;

VMON10 pin 20 ;
VMONI11 pin 21 ;
VMON12 pin 22 ;

N3
N4 -
TIM
TIM
TIM
TIM

Raw3V3_FE
Brick2V5__En pin 2

IN1 pin 23 ;
IN2 pin 24 ;
(N3 pin 25 ;
pin 26 ;
R1_TC pmn 27 ;
HR2_TC pin 28 ;
'C pin 29 ;

HR3_TC

“R4_TC

US 6,901,572 Bl

11

-continued

pin 30 ;
T__En pin 1

istype ‘reg_ JK’ ;
istype ‘reg JK’ ;

LDO1V&8__En pin 3 1stype ‘reg JK’ ;
HVOUT4 pin 4

Power__Good pin 5

CPU__Reset pin 6

istype ‘reg JK’ ;
istype ‘reg JK’ ;
istype ‘reg JK’ ;

OUT7 pin 7 1stype ‘reg JK;
OUTS pin 8 1stype ‘reg JK’;
TIMER1_GATE node 1stype ‘reg’;
TIMER2__GATE node 1istype ‘reg’ ;
TIMER3_GATE node 1stype ‘reg’ ;
TIMER4__GATE node 1istype ‘reg’ ;
STATE__FF3 node istype ‘reg’ ;
STATE__FF2 node istype ‘reg’ ;
STATE__FF1 node istype ‘reg’ ;
STATE__FFO node 1stype ‘reg’ ;

“ end of pin definitions

CLK__IN pin 9;

TMR_clk node;

PLD_clk node;

RESET pin 10;
“ PRESCALER Declaration with attributes:

“ XLA]

" PRESCALER(TMR_ clk, PLD_ clk, clk_ 250K, RST,

TMR_ factor, PLD__factor)
XLAT_PRESCALER(TMR_ clk, PLD_ clk, CLK_IN, RESET, 512,

128)

!

XLAT _STIMER(TIMER1_TC, TIMER1_GATE, TMR_ clk, RESET,
16.384) ;
XLAT _STIMER(TIMER2_TC, TIMER2 GATE, TMR_ clk, RESET,
4.096) ;
equations
“ Start of clock assignments
Raw3V3 FET En.clk = PLD clk;
Brick?2V5_ En.clk = PLD_ clk;
LDO1VSE_ En.clk = PLD_ clk;
Power_ Good.clk = PLD_ clk;
CPU_ Reset.clk =

TIM]
TIM]
STA]
STA]
STA]

“R1_GAIE.c

PLD_ clk;

“R2__GATE.c
'E__FF3.clk =
'E_FF2.clk =
'E_FFl.clk =

STA]

'E__FFO.clk =

k = PLD_ clk;
k = PLD_clk
PLD_ clk;
PLD_clk;
PLD_ clk;
PLD_ cl

~h

p

SN s sINal

p

“ end of clock assignments
“ PRESCALER Instantiation:

PRE__SCALE PRESCALER(TMR _ clk, PLD__clk, CLK__IN, !RESET) ;

TIMI

IRESET)

TIMI

!

'RESET) ;
“ Start of exception table equations

“ End of exception table equations
state__diagram [STATE__FF3, STATE_ FF2, STATE_ FF1,

STATE__FFO]
State O

State 1:

HR__1 STIMER(TIMER1__TC, TIMER1__GATE, TMR_ clk,

HR__2 STIMER(TIMER2__TC, TIMER2__ GATE, TMR_ clk,

If Power Good & ! Raw3v3 Under # Power Good &
! Brick2V5_ Under # Power__Good & ! LDO1VE_ Under
Then 13 “ Exception [fThen

Else
Goto 1;

Raw3V3_ FE’

T EnJ =0; “ reset Raw3V3_FET_ En

Raw3V3_ FE'

T EnK=1;

Brick2V5 EnJ =0 ; “ reset Brick?2V5 En
Brick2V5_EnK =1 ;
LDO1VS8_EnJ =0; “reset LDO1VS__En
LDO1VS8_EnK=1;

10

15

20

25

30

35

40

45

50

55

60

65

State 2

State 3:
TIM

State 4
“ Wait for timer 1:
HR1__GATE = 1 ; “ enable timer 1

TIMI

State 5:

State 6:

State 7:

State 8:
TIM

State 9:
“ Wait for timer 2:

TIMER?__GATE = 1 ; “ enable timer 2

State 10:

12

-continued

Power Good.J =0 ; “ reset Power_ Good

Power_ Good. K =1

CPU__Reset.J =0 ; “ reset CPU__Reset

CPU__Reset. K =1 ;

If Power Good & ! Raw3v3_ Under # Power_ Good &

! Brick2V5 Under # Power__Good & ! LDO1VE__Under
“ Exception IfThen

Then 13

Else

Goto 2;

If Power Good & ! Raw3v3 Under # Power Good &
! Brick2V5 Under # Power__Good & ! LDO1VE_ _Under
Then 13 “ Exception IfThen

Else

I[f Raw3v3 Under Then 3

Else 2;

HR1_GATE = 0 ; “ stop/clear timer 1

LDO1VS8_ _EnJ=1; “ set LDO1VE&__En

LDO1VE _EnK=0;

If Power Good & ! Raw3v3_ Under # Power_ Good &
Brick2VS__Under # Power Good & ! LDO1VE_ Under
Then 13 “ Exception IfThen

Else

Goto 4;

If Power Good & ! Raw3v3_ Under # Power Good &
! Brick2V5 Under # Power Good & ! LDO1VS8 Under

Then 13 “ Exception IfThen

Else

[f TIMER1 _TC Then 5 With TIMER1 _GATE =0
Else 4 With TIMER1__GATE=1;

[f Power Good & ! Raw3v3_ Under # Power_ Good &
Brick2V5 Under # Power Good & ! LDO1VS8__Under
Then 13 “ Exception IfThen

Else

I[f LDOTVS8 Under Then 6

Else 5;

Brick2V5_En.J =1 ; “ set Brick2V5_ En

Brick2V5_ _En.K =0

If Power Good & ! Raw3v3 Under # Power Good &
Brick2VS__Under # Power_ Good & ! LDO1VE__Under
Then 13 “ Exception IfThen

Else

Goto 7;

If Power Good & ! Raw3v3_ Under # Power Good &
Brick2V5 Under # Power Good & ! LDO1VS8_ Under
Then 13 “ Exception IfThen

Else

I[f Brick2VS__ Under Then &

Else 7;

RawiV3 |

HR2 GAT]
RawiV3 |

0 ; “ stop/clear timer 2

I"_EnJ=1;“set Raw3V3_FEI_En

I EnK=0;

Power Good.J =1 ; “ set Power Good

Power Good.K =0 ;

If Power_ Good & ! Raw3v3_ Under # Power_ Good &
Brick2V5_ Under # Power_ Good & ! LDO1VE_ Under
Then 13 “ Exception IfThen

Else

Goto 9;

[f Power Good & ! Raw3v3_ Under # Power_ Good &
Brick2V5 Under # Power Good & ! LDO1VS8 Under
Then 13 Exception [fThen

Else

[f TIMER2 TC Then 10 With TIMER2 GATE=0
Else 9 With TIME__ GATE=1;

CPU__Reset.J =1 ; *“ set CPU__Reset
CPU__Reset. K =0 ;

US 6,901,572 Bl

13

-continued

If Power_ Good & ! Raw3v3__ Under # Power Good &
Brick2V5_ Under # Power_ Good & ! LDO1VE_ Under
Then 13 “ Exception [fThen
Else
Goto 11;

State 11:
If Power Good & ! Raw3v3 Under # Power Good &
Brick2V5_ Under # Power_ Good & ! LDO1VS8_ Under
Then 13 “ Exception [fThen
Else
Goto 11;

State 12:

“ Begin Shutdown sequence.

“ All Exceptions branch here, but exceptions are

disabled.
Goto 13;

State 13:
Raw3V3_ FET En.J =0; * reset Raw3V3_ FEI_ En
Raw3V3_FET EnK=1;
Brick2V5__En.J =0 ; “ reset Brick2V5_ En
Brick2V5_ _EnK =1 ;
LDO1VE En.J =0; “ reset LDO1VS8_En
LDO1IVS8 _EnK=1;
Power_ Good.J = 0 ; “ reset Power__Good
Power Good. K =1 ;
CPU_ Reset.J = 0 ; *“ reset CPU__Reset
CPU_ ResetK =1 ;
Goto 14;

State 14
Goto 14;

END

A comparison of the relative complexity between the
power supply program and the resulting ABEL source code
demonstrates the usefulness of the disclosed PLD program-
ming technique. Not only 1s the power supply program
substantially less complex, 1t 1s also much easier to under-
stand and modity.

It will be appreciated that although the programming
technique of the present mnvention has been described with
respect to a programmable power sequence controller, this
technique 1s widely applicable to the programming of any
PLD. It will also be appreciated that the number of trans-
lations performed to produce the desired HDL code may be
varied and that translations may be direct or indirect without
departing from the principles of the mvention. Accordingly,
although the 1nvention has been described with respect to
particular embodiments, this description 1s only an example
of the invention’s application and should not be taken as a
limitation. Consequently, the scope of the mvention 1s set
forth 1n the following claims.

We claim:

1. A method of programming a programmable logic
device (PLD), wherein the PLD controls a circuit’s behavior
according to a desired circuit behavior implementation,
comprising:

(a) reading a program, wherein the program comprises

instructions defining inputs, outputs, and conditional
branching that implement the desired circuit behavior;

(b) translating the program into an abstract state
sequencer;

(¢) translating the abstract state sequencer into hardware
description language (HDL) source code as governed
by the programmable architecture of the PLD; and

(d) translating the HDL source code into a programming

bit pattern used to program the PLD.

2. The method of claim 1, wherein the PLD comprises a
power sequence controller and wherein the program 1n act
(a) comprises a power supply program that describes the
desired power sequence behavior.

10

15

20

25

30

35

40

45

50

55

60

65

14

3. The method of claim 2, wherein the abstract state
sequencer of act (b) 1s a one-clock-cycle-per-instruction
state sequencer and includes an individual state for each
power supply program instruction.

4. The method of claim 2, wherein the abstract state
sequencer of act (b) is a multiple-clock-cycle-per-instruction
state sequencer and includes an individual state for each
clock cycle per power supply program instruction.

5. The method of claim 2, wherein the HDL source code
formed in act (¢) is ABEL source code.

6. The method of claim 2, wherein the HDL source code
formed in act (¢) is VHDL source code.

7. The method of claim 2, further comprising;:

identifying states created in act (b) that will be subject to
an exception, wherein the exception defines a Boolean
expression such that i1if the Boolean expression is
satisfied, the abstract state sequencer will synchro-
nously go to a specified state.
8. The method of claim 7, wherein the exception also
defines a Boolean expression such that if the Boolean
expression 1s safisfied, the abstract state sequencer 1s asyn-

chronously reset.
9. The method of claim 1, further comprising:

programming the PLLD with the programming bit pattern.

10. A computer readable medium on which 1s stored a
computer program for executing the method of claim 1.

11. A method of programming a programmable power
sequence controller, comprising:

reading a power supply program, wherein the program
comprises 1nstructions defining desired controller
behavior 1n terms of inputs, outputs, and conditional
branching;

translating the instructions of the power supply program
into hardware description language (HDL) code; and

translating the HDL code into a programming bit pattern

used to program the power sequence controller.

12. The method of claim 11, wherein an abstract state
machine defined by the power supply program instructions
includes one or more clock cycles per instruction.

13. The method of claim 11, wherein the power supply
program 1nstructions include instructions from an 1nstruc-
tion set that includes one or more of the following member
instruction formats:

WaitFor a <Boolean expression>;
Turn on <output signal>;

Turn off <output signal>;
Assert (output signal);
Release (output signal);

[f (<Boolean expression> THEN <ThenStep> Else <Els-
eStep>;

Wait for (timeout value) using Timer <number:>;

Go'lo <Gotostep>;

Halt; or

Nop.

14. The method of claim 13, wherein the instruction set

includes all of the member 1nstruction formats.
15. The method of claim 11, wherein the HDL source code

1s ABEL source code.

16. The method of claim 11, wherein the HDL source code
1s VHDL source code.

17. The method of claim 11, wherein the act of translating
the 1nstructions of the power supply program into hardware
description language (HDL) code comprises:

US 6,901,572 B1
15 16

translating the program instructions into an intermediate reading a power supply program, wherein the program
set of instructions that takes into account the number of comprises 1nstructions defining desired controller
clock cycles of the program instruction being trans- behavi(?r in terms of inputs, outputs, and conditional
lated; and branching;

translating the instructions of the power supply program

translating the intermediate set of instructions into HDL into hardware description language (HDL) code; and

code. - - - -
translating the HDL code 1nto a programming bit pattern
18. The method of claim 11, including programming the used togprogram the power seguegnce cont%oller?
programmable power sequence controller with the program- 20. The computer readable medium of claim 19, wherein
ming bit pattern. the computer program includes instructions for program-
19. A computer readable medium on which is stored a Y ming the programmable power sequence controller with the
computer program for executing the following instructions programming bit pattern.

for programming a programmable power sequence control-
ler: % % k% % %

	Front Page
	Drawings
	Specification
	Claims

