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INFOSPHERES DISTRIBUTED OBJECT
SYSTEM

CLAIM OF PRIORITY

This application claims priority under 35 USC §119(e) to
U.S. Patent Application Ser. No. 60/082,475, filed Apr. 21,
1998.

STATEMENT AS TO FEDERALLY SPONSORED
RESEARCH

This invention was made with Government support under
Grant No. F4920-94-1-0244 awarded by the AFOSR, Grant
No. CCR-9120008 awarded by the NSF, and Grant No.

CCR-9527130 awarded by the NSF. The Government has
certain rights in the mvention.

NOTICE OF COPYRIGHTS

A portion of the disclosure of this patent document
contains material which 1s subject to copyright protection.
The copyright owner has no objection to the facsimile
reproduction by any one of the patent disclosure, as it
appears 1n the Patent and Trademark Office patent files or
records, but otherwise reserves all copyright rights whatso-
ever.

TECHNICAL FIELD

This invention relates to computation and communication
architectures, and more particularly to a distributed system
framework and a distributed system architecture that pro-
vides for distributed applications that use worldwide net-
works connecting large numbers of people, software tools,
monitoring instruments, and control devices.

BACKGROUND

Frameworks are reusable designs for solftware system
processes, described by the combination of a set of objects
and the way those objects can be used. More particularly,
frameworks are pre-built sets of code, tools, and documen-
tation that help programmers develop reliable systems more
casily than from scratch. Following are some types of known
frameworks.

Metacomputing frameworks use the Internet as a resource
for concurrent computations. For example, Globus provides
the infrastructure to create networked virtual supercomput-
ers for running applications. Similarly, NPAC at Syracuse
secks to perform High Performance Computing and Com-
munications (HPCC) activities using a Web-enabled con-
current virtual machine. Javelin 1s a Java-based architecture
for writing parallel programs, implemented over Internet
hosts, clients, and brokers. Legion 1s a C language based
architecture and object model for providing the 1llusion of a
single virtual machine to users for wide-area parallel pro-
cessing. Javelin 1s a Java-based architecture for writing

parallel programs, implemented over Internet hosts, clients,
and brokers.

Component frameworks have the goal of creating distrib-
uted system components. CORBA 1s an architecture for
distributed object computing that allows for language-
independent use of components through a standardized
Object Request Broker. The ADAPTIVE Communication
Environment (ACE) provides an integrated framework of
reusable C language wrappers and components that perform
common communications software tasks; this framework 1s
amenable to a design pattern group useful to many object-
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oriented communication systems. Hector 1s a Python-based
distributed object framework that provides a communica-
fions transparency layer enabling negotiation of communi-
cation protocol qualities, comprehensive support services
for application objects, and a four-tiered architecture for
interaction. Aglets provide a Java-based framework for
secure Internet agents that are mobile, moving state along
with the program components themselves. OpenDoc 1s a
component software architecture that allows for the creation
of compound documents. JavaBeans 1s a platform-neutral
API and architecture for the creation and use of Java
components.

Communication frameworks relate to concurrent commu-
nication of processes. The Communicating Sequential Pro-
cesses (CSP) model assumes each process is active for the
entire duration of the computation. Examples include For-
tran M and recent ORB services. One ORB service 1s the
CORBA process model, implemented using the Basic
Object Adaptor (BOA) of a given Object Request Broker
(ORB), which maintains that only the broker stay active for
the entire duration of the computation. Like Client-Server,
Remote Procedure Call, and Remote Method Invocation
systems, CORBA only spawns remote processes to perform
1solated remote tasks.

Collaborative Technologies allow collaboration using the
Internet. Synchronous collaboration i1ncludes
teleconferencing, provided by applications such as Netscape
CoolTalk, Internet Relay Chat, Internet Phone, and White
Pine Software CU-SeeMe, and shared whiteboards, pro-
vided 1n applications such as CU-SeeMe, wb, and Microsoft
NetMeeting. Current agreement protocols has made syn-
chronous collaborations more flexible, but much research
remains to be done in infrastructure for asynchronous tools
such as concurrent version-control.

The Open Software Foundation’s Distributed Computing
Environment (DCE) is an example of a commercial distrib-
uted system framework. DCE provides a suite of tools and
services to support distributed system creation primarily in
the C programming language. These services include a
distributed file system, time synchronization, remote proce-
dure calls, naming, and threads.

SUMMARY

The present mnvention includes a distributed system
framework and a distributed system architecture that
includes three features: it can accommodate a large number
of addressable entities, 1t 1s possible to connect any arbitrary
oroup of enfities together mnto a virtual network, and the
infrastructure supports large numbers of concurrent virtual
networks.

In one aspect, the 1nvention includes a distributed system
framework for a networked environment, mncluding a plu-
rality of process objects, each process object including: a
program method for creating at least one 1nbox for storing
messages received from another process object; a program
method for creating at least one outbox for storing messages
to be transmitted to another process object; a freeze method
that saves the state of the process object to persistent storage,
thereby changing the process object to a frozen process
object; a thaw method that restores the frozen process object
from the persistent storage, thereby changing the frozen
process object to a ready process object; a program method
for interconnecting each created outbox of the process object
to a created inbox of at least one other process object,
thereby establishing a personal network between the process
object and such other process objects within a communica-
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tion session to perform at least one task by passing messages
between the 1nterconnected outboxes and 1nboxes.

The preferred embodiment of the invention provides:
a generic object model;

a variety of messaging models, including asynchronous,
synchronous, and remote procedure/method calls; and

a variety of distributed system services, mcluding local
and global naming, object instance control, object
persistence, and dynamic object extensibility.

Using these tools, a developer can build robust distributed
systems on the Internet. Furthermore, the 1deas, algorithms,
and theories developed within this framework are directly
applicable to existing distributed systems and frameworks.
In a preferred embodiment, the framework 1s written 1n Java,
allowing cross-platform development.

Distributed systems 1n the future could potentially span
the globe, subsuming every hardware and software resource
on the Internet. We term this global distributed system the
Worldwide Object Network (WON). The objects participat-
ing 1n such a system may be supporting hand-held devices,
home appliances, scientific instruments, or software tools.
Systems that benefit from a distributed system architecture
include:

Electronic Mail (source-initiated information
fransmission);

Domain Name Service (hierarchical, cached, client-pull/
server-push based naming across geographic regions);

World Wide Web (semi-structured on-demand
information);

Technical Report Archive (enterprise document
management); and

Automated Bank Tellers (centralized database access,

distributed transactions, electronic commerce).

The details of one or more embodiments of the invention
are set forth 1n the accompanying drawings and the descrip-
tion below. Other features, objects, and advantages of the
invention will be apparent from the description and
drawings, and from the claims.

DESCRIPTION OF DRAWINGS

FIG. 1 1s a block diagram showing the infosphere frame-
work of the present mvention.

FIG. 2 1s a data flow diagram showing a session of djinns
for a particular example of one use of the 1nvention.

FIG. 3 1s a data flow diagram showing how an initiator
uses an 1nvoker’s address directory to set up a session
between existing djinns.

FIG. 4 1s a block diagram showing an example of djinn
inbox and outbox connections.

Like reference numbers and designations in the various
drawings indicate like elements.

DETAILED DESCRIPTION

Introduction

Millions of people use the World-Wide Web for informa-
tion exchange and for client-server applications. Widespread
use has led to the development of a cottage industry for
producing Web-based documentation; large numbers of
people without formal education 1n computing are develop-
ing server applications on the Web. This invention extends
this infrastructure to a distributed system with peer-to-peer
process communication across the Global Information Infra-
structure (GII). Aspects of the invention include a frame-
work of reusable designs for software system processes,
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software components that can be composed to create dis-
tributed applications, implementation of software compo-
nents as classes in an object-oriented framework, develop-
ment of a compositional methodology for constructing
correct distributed applications from the components, and
implementation of a library of applications that demon-
strates the methodology.

A Framework for Structured Distributed Object Computing

The invention includes a framework for a distributed
system that implements distributed applications over world-
wide networks connecting large numbers of people, soft-
ware tools, monitoring 1nstruments, and control devices.

Frameworks are reusable designs for software system
processes, described by the combination of a set of objects
and the way those objects can be used. The framework of the
present mvention consists of middleware APIs, a model for
using them, and services and patterns that are helpful not
only 1n 1nheriting from objects, but extending them as well.
These features allow the reuse of both design and code,
reducing the effort required to develop an application.

A distributed system 1s a set of cooperating entities that
run 1n logically different memory locations. In general,
distributed systems have geographically scattered compo-
nents. However, a single computer can be a distributed
system 1f 1t can run multiple processes that communicate
using interprocess communication (IPC) mechanisms like
sockets. Distributed systems are often prototyped on single-
processor machines, which give a programmer a high degree
of control over system conditions.

Distributed systems can be client-server or peer-to-peer.
In client-server systems, one or more clients connect to one
or more servers and request data. For example, 1n the World
Wide Web, the servers provide the information in the form
of Web pages, and the clients are browsers that display that
information in a meaningful way. By contrast, in peer-to-
peer systems, all programs 1n the system can behave as both
clients and servers, able both to deliver and manipulate data.
With the present invention, developers can create both
client-server and peer-to-peer systems.

Objects are groups of data with associated methods to
query and modify that data. Objects have the three primary
properties: encapsulation, polymorphism, and inheritance. A
distributed object 1s an object that can communicate across
a network with other objects, through remote method calls
or message passing. Objects can be single threaded or
multithreaded. Some systems permit objects to maintain
state across instantiations. Distributed objects extend the
ideas of encapsulation, inheritance, and polymorphism.

Encapsulation. Encapsulation allows an object to have an
exposed 1nterface to the outside world, with a complemen-
tary private implementation that conforms to that interface.
In a distributed system, any object that implements a given
interface can be replaced with any other object that imple-
ments the same interface.

With distributed object systems, encapsulation 1s
extended. First, an object’s state 1s fully encapsulated from
the outside world, so that the only way an object A can cause
a change 1n the state of another object B 1s for A to
communicate with B by sending a message to B or calling
a method on B. A thread 1n one object cannot refer to, have
a reference for, or modily, the state of any other object.
Second, encapsulation 1n distributed systems allows location
fransparency. An object can have a reference to a remote
object with which it can communicate, but it does not need
to know the actual physical location of that object.

Inheritance. Generally, inheritance allows a developer to
construct a new object from the interfaces and 1implemen-
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tations of existing objects. A “child” object inherits from one
or more “parent” objects, through class inheritance and/or
type inheritance. With class inheritance, 1implementations
are 1nherited, so that the behavior of a child object defaults
to the parent object behavior 1f it 1s not overridden. With type
inheritance, mterfaces are inherited, so that “subtypes™ of a
parent type are contractually bound to implement the par-
ent’s 1nterface, but do not necessarily reuse their parent’s
code.

Notions of class and type inheritance still hold for dis-
tributed objects, though there are new 1ssues that need be
taken 1nto account. One such 1ssue 1s method 1nvocation
overhead (due to network latency and bandwidth); if a
delegation model 1s used, one must take into account the fact
that each additional method call, unless optimized or short-
circuited, bumps the delay in response significantly due to
network 1ssues. Three more factors that come 1nto play when
dealing with distributed object inheritance are scoping 1ssues
(note the scoping rules for Java, for instance, and how they
differ from C++), engineering practices (the implied “super”
in constructors, for instance), and lack of awareness of
locality (in dealing with network errors for method invoca-
tions and the like).

Polymorphism. Polymorphism allows an object to specity
an 1nterface that can handle multiple types, reacting accord-
ingly to different types and values. A system that has
multiple objects responding to the same message—based on
its type and value—is analogous to a polymorphic system.

In distributed object systems, the concept of polymor-
phism extends to the network interface. An object receives
and responds to messages, which are normally objects
themselves, of various types in exactly the same manner that
local objects respond to method calls with parameters of
various types. In addition, multiple distributed objects of
different (though usually related) types can receive and
respond to messages of the same type, acting polymorphic
with respect to the message’s network interface.

Personal Command and Control Applications

The GII will soon connect large numbers of processes that
manage devices and human interfaces. Interprocess commu-
nication will allow processes to respond to events on such
devices as medical monitoring equipment, scientific
instruments, home appliances, and security systems, and on
such software as scheduling programs, document manage-
ment systems, Web browsers, and complex computation
engines.

A major contribution of the present invention 1s a simple,
generic framework for developing distributed systems for
personal applications. By employing this framework, devel-
opers can quickly build interactive command and control
processes that run over the Internet. Our framework 1s
composed of at least four facets: (1) processes are persistent
communicating objects (we coin the phrase djinn to distin-
oguish a process used 1n a collaborative distributed applica-
tion from processes used 1n traditional distributed systems);
(2) personal networks provide wiring diagrams and behav-
1lors for these connected processes, and enable long-term
collaborations between people or groups; (3) sessions are
transactions performed by the processes participating 1 a
personal network; more particularly, a session 1s a temporary
network of djinns that carries out a task such as arranging a
meeting time for a group of people; and (4) infospheres are
custom collections of processes for use 1n personal net-
works.

FIG. 1 1s a block diagram showing the infosphere frame-
work of the present invention, described 1n greater detail
below. A session 10 imcludes a plurality of processes 12,
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cach having an mmbox 14 and an outbox 16 controlled by a
maildaemon object 18. Various processes 12 are intercon-
nected by means of their inboxes 14 and outboxes 16 to form
a temporary personal network 20.

Infospheres and Personal Networks “Warfighter’s infos-
phere” 1s a term coined by the military to represent the
clectronic interface between a military unit and its environ-
ment. An infosphere includes the collection of instruments,
appliances, computing tools, services, and people accessible
from that person’s environment, wherever 1t may be physi-
cally located (for example, in the office or on an airplane).
This human-computer interface 1s provided by the military
C4I (command, control, communications, computers, and
intelligence) infrastructure.

Our goal 1s to provide a framework for transitioning the
concepts of infospheres and C41 to individuals and small
organizations to create analogous lightweight command and
control systems. Personal networks are roadmaps for such
systems, speciltying processes arranged 1n a topology, with a
specified cooperative behavior. For example, a person in
Nevada may have an emergency notification personal net-
work that incorporates processes for medical monitoring
devices 1n her parents’ home 1n Florida, security and utility
systems 1n her home and car in New York, a global position
sensing device on her teenage son’s car i Montréal, a
Nikke1 Market stock ticker tape, and software programs that
monitor urgent pages and e-mails.

Personal networks can also be used by mstitutions and
businesses to create taskforces to handle short-term situa-
fions. The structure of personal networks comprises the
organizational, informational, and workflow structures of
the corresponding task force. Worktlow describes the man-
ner in which jobs are processed i1n stages by different
ProCesses.

One example of a task force 1s a panel that reviews
proposals submitted to the National Science Foundation
(NSF). Panel members come from a variety of institutions,
and the panel has an organizational structure with a general
chair, subcommittees, primary reviewers, and secondary
reviewers. The panel’s informational structure includes the
hierarchy of proposals and reviews, and the panel’s work-
flow 1s the flow of proposal and review copies. The panel has
its own organizational, informational, and workilow struc-
tures that coexist with those of NSFE. In this sense, NSF’s
organizational and informational structures adapt 1 a
dynamic, but systematic, way to include new people and
resources as needed.

Framework Functional Criteria

A framework to support personal networks (and their
components) should satisfy four main criteria: scalability,
simplicity, security, and adaptability.

Scalability. Personal networks should scale to include
devices, tools, and people connected to the Internet. The
critical scaling issue 1s not the number of processes con-
nected 1 a personal network, but rather the size of the pool
from which the processes in personal networks are drawn.
The only limit to the number of processes connected 1n a
personal network 1s the number of activities that can be
managed effectively. However, 1ssues of scaling in naming,
connections, and services depend on the size of the global
set of processes and resources.

Personal networks should be tolerant of wide ranges of
quality of service because the processes in a personal
network can exist on a single system or span several
continents. The framework should both support large num-
bers of concurrent personal networks and provide a core set
of services for creating and using personal networks.
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Simplicity. The usage and programming model for per-
sonal networks should be simple enough to be usable by
anyone. The simplicity of dialing a telephone led to the
widespread use of telephones despite the complexity of the
worldwide telecommunications network. If personal net-
works are to become effective tools, their use should be
similarly intuitive. So, the model’s API (Application Pro-
gram Interface) should be easy for programmers to learn
quickly, and the accompanying visual tools should allow
non-programmers to use palettes of existing constructs to
customize their personal networks.

Security. The framework should allow processes to have
multiple typed interfaces and provide the ability to set
security restrictions on at least a per-interface basis. For
example, a research instrument shared by several people
may have one interface for setting control parameters and a
different interface, accessible by a small set of authorized
personnel, for accessing the data recorded by the instrument.
Also, 1nstruction messages sent to the “modify-parameter”
interface may be of a different type than instructions to the
“read-data” interface.

Adaptability. The framework should be extensible enough
to support mteroperability with other distributed technolo-
oles. Thus, it should be possible to create and modily
personal networks rapidly and flexibly, because task forces
often need to be set up quickly and in an ad hoc manner.
Network topologies should be emergent rather than static, so
processes should be able to create and delete connections
during a session. Additionally, personal network processes
should be able to communicate with applications and
devices that were unknown or nonexistent prior to the
creation of the personal network.

Preferred Design of an Extensible Framework

Our framework employs three structuring mechanisms for
processes: personal networks, to facilitate long-term col-
laborations between people or groups; sessions, to provide a
mechanism for carrying out the short-term tasks necessary
within these personal networks; and infospheres, to allow
customization of processes and personal networks. Infos-
pheres are discussed below. This section focuses on the
conceptual models for processes, personal networks, and
S€SS10NS.

To 1llustrate these structuring mechanisms, consider a
consortium of 1nstitutions carrying out research on a com-
mon problem. It has a personal network composed of
processes that belong to the infospheres of the consortium
members. This personal network 1s a structured way to
manage the collection of resources, processes, and commu-
nication channels used 1n distributed tasks such as simulat-
ing financial scenarios, determining meeting times, and
querying distributed databases. Each session of this personal
network handles the acquisition, use, and release of
resources, processes, and channels for the life of a speciiic
task.

Conceptual Model: Processes

Processes are the persistent communicating objects that
manage devices and interfaces. Every object, whether active
or stored, has a unique name. In the mitial implementation
of our framework, we call these processes djinns. Processes
or djinns are uniquely named; can be persistent; can be
multi-threaded; can interoperate with other programs,
services, and infrastructures; and can find and connect to
these other services automatically. Djinns communicate
asynchronously using messages sent between mailboxes. A
djinn’s mailboxes are message queues that are handled and
processed by the djinn’s maildaemon object or thread. These
communication mechanisms, including mailboxes and
messages, and djinns are described below.
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Djinns make infospheres constructible: thus, as used
herein, an 1nfosphere 1s a personal collection of related

djinns that are applied by a person to accomplish a particular
task.

Process States. A given process can be 1n one of three
states: active, waiting, and frozen. An active process 1S a
process that has at least one executing thread; 1t can change
its state and perform any tasks it has pending, including
communications. A waiting process has no executing
threads; its state remains unchanged while 1t 1s waiting, and
it remains 1n the waiting state until one of a specified set of
input ports becomes nonempty, at which point it becomes
active and resumes execution. Active and waiting processes
are collectively referred to as a ready process.

Ready processes occupy process slots and can make use
of other resources provided by the operating system. In
contrast, processes 1n the third state, frozen, do not occupy
process slots. In fact, frozen processes do not use any
operating system resources except for the persistent storage,
such as a file or a database, that 1s used to maintain process
state information.

Freezing, Summoning, and Thawing Processes. Associ-
ated with each process 1s a freeze method, that saves the state
of the process to a persistent store, and a thaw method, that
restores the process state from the store. Typical processes
remain 1n the frozen state nearly all the time, and therefore
require minimal resources. In the preferred embodiment of
our framework, only a waiting process can be frozen, and 1t
can only be frozen at process-specified points. When its
freeze method 1s 1nvoked, a process yields all the system
resources 1t holds except for its persistent store.

Aready process can summon another process. If a process
1s frozen when 1t 1s summoned, the act of summoning
instantiates the frozen process, causes its thaw method to be
invoked, and initiates a transition to the ready state. If a
process 1s ready when 1t 1s summoned, 1t remains ready. In
either case, a summoned process remains ready until 1t
receives at least one message from 1fs summoner or a
specified timeout 1nterval elapses.

Mobile Processes. Frozen processes can migrate from one
machine to another, but ready processes cannot. This restric-
tion allows ready processes to communicate using our
framework’s underlying fast transport layer, which requires
static addresses for communication resources. All processes
have a permanent “home address” from which a summons
can be forwarded. Once a process becomes ready at a given
location, it remains at that location until the process 1s next
frozen. While a particular process may be instantiated at any
location, 1its persistent state 1s always stored at the home
address of that process.

Conceptual Model: Personal Networks

Conceptually, a personal network 1s a wiring diagram,
analogous to a home entertainment system, with directed
wires connecting device outputs to the inputs of other
devices. We chose this model for its simplicity. More
particularly, a personal network consists of an arrangement
of processes (distributed objects) and a set of directed,
typed, secure communication channels connecting process
output ports to the input ports of other processes. The
topology of a personal network can be represented by a
labeled directed graph, where each node 1s a process and
cach edge 1s a communication channel labeled with 1ts type
and the mput and output ports or mailboxes connected by
that channel. Note that, unlike home entertainment system
components, processes can freely create input ports, create
output ports, and change wire connections or channels. A
personal network 1s created when the collaboration 1s
requested and 1s deleted when the collaboration terminates.
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Communication Structures. Processes communicate with
cach other by passing messages. Associated with each
process 1s a set of inboxes and a set of outboxes. Inboxes and
outboxes are collectively called mailboxes. Every mailbox
has a type and an access control list, both of which are used
to enforce personal network structure and security. These
mailboxes correspond to the device mputs and outputs used
in the wiring diagram conceptual model.

A connection 1s a first-in-first-out, directed, secure, error-
free broadcast channel from the outbox to each connected
inbox. Process interconnections are asymmetric: a process
can connect any of 1ts outboxes to any set of mmboxes for
which 1t has references, but cannot construct a connection
from an outbox belonging to another process to any of its
inboxes. Our framework contains support for message
prioritization, available through standard multithreading
techniques.

Message Delivery. Our framework communication layer
works by removing the message at the head of a nonempty
outbox of a process and appending a copy of that message
to each connected inbox of other processes. If the commu-
nication layer cannot deliver a message, an exception 1s
raised 1n the sender process containing the message, the
destination inbox, and the specific error condition. The
preferred system uses a sliding window protocol to manage
the messages 1n transit.

Every message at the head of an outbox will eventually be
handled by the communication layer. The preferred embodi-
ment of the invention uses asynchronous messages rather
than remote procedure calls, to be tolerant of the range of
message delays experienced along different links of the
Internet. As a result, we can think about message delivery
from an outbox to 1nboxes as a simple synchronous opera-
tion even though the actual implementation 1s asynchronous
and complex.

Dynamic Structures. A process can create, delete, and
change mailboxes in addition to being able to create and
delete connections between 1ts outboxes and other pro-
cesses’ 1nboxes. The operation of creating a mailbox returns
a global reference to that mailbox. This reference can then
be passed, 1n messages, to other processes. Since a process
can change 1ts connections and mailboxes, the topology of
a personal network can evolve over time as required to
perform new tasks.

As long as a process remains ready, references to 1its
mailboxes are valid; when a process 1s frozen, all references
to 1ts mailboxes become 1nvalid. Since all references to the
mailboxes of frozen processes are 1invalid, frozen processes
can move and then be thawed, at which point the references
to their mailboxes need be refreshed via a summons.
Because no valid references to their mailboxes exist, frozen
processes cannot participate in sessions.

Conceptual Model: Sessions

Operationally, a session is a task carried out by (the
processes 1n) a personal network. From another point of
view, a session can be viewed as a generic transaction
between a set of distributed active objects where the par-
ticipants in the transaction are not identified before the
fransaction commences. A session 1s 1nitiated by a process in
the personal network, and 1s completed when the task has
been accomplished. A later session may use the same
processes to carry out another task. Thus, a personal network
consists of a group of processes 1 a specified topology,
interacting 1n sessions to perform tasks. Djinns are com-
posed together to form distributed sessions. Sessions need
not be static; after 1nitiation, they may grow and shrink as
required by the djinns.
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A session 1s specified 1n terms of the precondition and
postcondition predicates of its component processes, thus
reasoning on sessions 1s possible. Sessions can be composed
using sequential and choice composition, and the system can
reason about sessions using theory from the field of sequen-
tial programming.

The Session Constramnt. We adopt the convention that
sessions must satisty a two-part session constraint which
ensures that, during a session, information flows correctly

between processes:

1. As long as any process within the session holds a
reference to a mailbox belonging to another process
within the session, that reference must remain valid.

2. A mailbox’s access control list (ACL) cannot be
constricted as long as any other process in the session
holds a reference to that mailbox.

An 1mportant corollary to the session constraint 1s that
frozen processes cannot participate 1n sessions because no
valid references to their mailboxes exist.

A session 1s usually started by the process initially
charged with accomplishing a task. This initiator process
creates a session by summoning the processes that will
initially participate. It then obtains references to their
mailboxes, passes these references to the other processes,
and makes the appropriate connections of its outboxes to the
inboxes of the participating processes. We discuss session
implementation and reasoning 1ssues below.

There are many ways of satisfying the session constraint.
One simple way 1s to ensure that once a process participates
1n a session 1t remains ready until the session terminates, and
that once a process sends its mailbox references to other
processes 1t leaves these mailboxes unchanged for the dura-
fion of the session. Another approach 1s to have the mitiating
process detect the completion of the task through a diffusing
computation, after which it can inform the other session
members that the session can be disbanded.

An Example Session. An example of a session 1s the task
of determining an acceptable meeting time and place for a
quorum of committee members. Each committee member
has an infosphere containing a calendar process that man-
ages his or her appointments. A personal network describes
the topology of these calendar processes. A session 1nitiator
process sets up the network connections of this personal
network. The processes negotiate to find an acceptable
meeting time or to determine that no suitable time exists.
The task completes, the session ends, and the processes
freeze. Note that the framework does not require that pro-
cesses freeze when the session terminates (but that this will
usually be the case).

During a session, the processes must receive the quality of
service they need to accomplish their task. Therefore, it 1s
oreatly preferred that communication 1s routed directly from
process to process, rather than through object request bro-
kers or mtermediate processes as in client-server systems.
Once a session 1s constructed, our framework’s only com-
munication role 1s to choose the appropriate protocols and
channels. A session can negotiate with the underlying com-
munication layer to use the most appropriate process-to-
process mechanism. A current embodiment of the mnventive
framework supports only UDP (User Datagram Protocol),
but it 1s possible to support a range of protocols such as TCP
(Transmission Control Protocol) and communication layers
such as Globus.

Structuring Mechanisms

Personal networks and sessions can be used not only as
structuring mechanisms, but also for reasoning about the
services provided to distributed systems.
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Reasoning About Sessions. Consider a consortium of
institutions working together on a research project. From
fime to time, people and resources of the consortium carry
out a collaborative task by initiating a session, setting up
connections using the personal network, performing the
necessary machinations for the task, disbanding the
connections, and terminating the session. Furthermore, sev-
cral sessions 1nitiated by the same consortium may be
executing at the same time. For instance, a session to
determine a meeting time for the executive committee and a
session that reads measurements from devices 1n order to
carry out a distributed computation could execute simulta-
neously. Moreover, the same process may participate con-
currently 1n sessions 1nitiated by different consortia or task
forces. For example, a calendar manager may participate
concurrently 1n sessions determining meeting times for a
scout troop and a conference program committee. Our
framework allows processes to participate in concurrent
SE€SS101S.

A resource may be requested by a session i1n either
exclusive mode or nonexclusive mode. For example, a
visualization engine may need to be 1n exclusive mode for
a task: while the task i1s executing, no other task can access
it. However, a process managing a calendar can be useful in
nonexclusive mode: several sessions can not only read the
calendar concurrently, but also modify different parts of the
calendar concurrently.

Because we cannot predict a prior1 the applications and
sessions that will run concurrently, 1n the preferred
embodiment, we restrict access to modily the states of the
processes participating 1n a given session, to reason about
that session’s behavior. Such restrictions may be provided in
thread libraries by mutexes and monitors; our invention
provides similar constructs with our framework for use in
distributed systems 1n a generic, extensible, and scalable
manner.

Services for Sessions. New capabilities are added to our
framework either by subclassing existing processes or by
extending the framework. A service 1s a framework exten-
sion that 1s applicable to an assortment of distributed algo-
rithms. Examples include mechanisms for locking, deadlock
avoldance, termination detection, and resource reservation.

Locking Mechanisms. Even 1f a process participates con-
currently 1n several sessions, there are points 1n a compu-
tation when one session needs exclusive access to certain
objects. For example, at some point, the session determining
the meeting time for a program committee needs to obtain
exclusive access to the relevant portions of the calendars of
all the committee members. Therefore, one service that the
preferred embodiment of the mnvention framework provides
1s the acquisition of locks on distributed objects accessed
during a session. A great deal of work exists relating to
locking 1n distributed databases and distributed transaction
systems. Presently, the preferred embodiment provides only
an exclusive lock on an object, but the framework can be
extended to include other types of locks, such as read and
write locks, 1n accordance with known techniques.

Deadlock Avoidance. If sessions lock objects in an 1ncre-
mental fashion, deadlock can occur. For instance, if one
session locks object A and then object B, and another session
locks B and then A, the sessions may deadlock because each
session holds one object while waiting for the other. The
preferred embodiment deals only with the case where a
session requests locks on a set of objects only when 1t holds
no locks; a session must release all locks that 1t holds before
requesting locks on a different set of processes. An alterna-
tive solution would be to allow incremental locking 1n some
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total ordering, but this solution has some drawbacks because
it does not scale to distributed systems drawn from a
worldwide pool of objects.

Termination Detection and Resource Reservation. Other
services that can be extended mto our framework include
session termination detection and resource reservation. Ter-
mination detection can be used by an 1nitiating process of a
session to, for instance, determine when the states of the
processes involved 1n the session need to be “rolled back™ 1n
the event of a failure. Resource reservation 1s a generic
service through which the resources required by a session
can be reserved for some time 1n the future. For instance, one
might reserve a visualization engine at location X and a
monitoring mstrument at location Y for the earliest time after
5:00 PM today. Techniques for implementing these func-
tions are well known.

Collaboration Patterns. Patterns help programmers
develop code quickly. Patterns encapsulate software solu-
fions to common problems, and our framework has incor-
porated some applications of concurrency patterns in Java.
Initial experience with our framework has suggested several
patterns, both for collaborations between processes and for
state-transition systems.

In particular, several patterns of collaboration network
topologies have emerged from our exploration of personal
networks. A personal network consisting of a “master”
process maintaining all modifications to an object shared by
the other objects of the personal network fits a Personal
Network Star pattern. For example, a concurrent document
editing system with a single process responsible for main-
taining changes during a personal network would match this
pattern. This pattern roughly corresponds to a system with a
single server with a set of clients, though more sophisticated
systems (such as a hierarchy with multiple servers and
multiple clients) could also be developed.

A personal network in which each of the processes
collaborate without a master, with all modifications
announced to the entire group, fits a Personal Network Full
Connection pattern. For example, a concurrent document
editing system 1n which every process sends every modifi-
cation to every other process, and every process 1S respon-
sible for updating the local view of the shared object, would
match this pattern. This pattern roughly corresponds to a
peer-to-peer distributed system, though more sophisticated
systems (such as different priorities for different peers) could
also be developed.

A personal network 1n which messages are propagated 1n
a ring during collaboration fits the Personal Network Ring
pattern. For example, a document editing system 1n which
the session-initiator process has a document and makes
changes to it, then sends the modified document to the next
process for it to make changes, and so on until the document
1s returned to the session-1nitiator process, would match this
pattern. This pattern roughly corresponds to a workilow
distributed system, though more elaborate workiflow tem-
plates could also be developed.

Other middleware patterns may be used as well, such as
hierarchical broadcast using publishing and subscribing
processes, and dataflow using waiting and notification pro-
CESSES.

State-Transition System Patterns. In addition to collabo-
ration patterns among the processes 1n a personal network,
our experiences with user interfaces for describing network
topologies has given rise to a pair of state-transition system
patterns. Using these patterns, developers can design and
reason about the changes of state 1n the processes partici-
pating 1n a sess1on.
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One pattern 1s the Transition on Modes pattern, 1n which
the processes change their states based on a combination of
their respective modes and the messages they receive on
therr mboxes. For example, 1 a distributed accounting
system, a money receipt message would cause different
ledgers to be modified, based on whether the controlling
process was 1n “accounts receivable” or “accounts payable”
mode.

Another pattern 1s the Transition on Functions pattern, 1n
which the processes change their states based on a function
of the information contained within the messages they
receive on their inboxes. For example, in a distributed
accounting system, an income transfer may require different
actions based on how much money is being transferred, for
tax shelter purposes.

Framework Implementation

One embodiment of our tools and models 1s classified 1n
the “white box framework™ level of the taxonomy given by
the framework pattern language. With the addition of more
applications, services, visual builders, and language tools,
we have developed a “black box framework.” To guarantee
widespread, unrestricted use, our 1nitial implementation of a
framework has been developed using Sun Microsystem’s
Java Developer’s Kit (JDK) version 1.0.2, and uses Java
socket classes and thread primitives. The 1nitial implemen-
tation uses UDP, and 1t includes a layer to ensure that
messages are delivered 1n the order they were sent. Although
this implementation uses Java, the fundamental ideas apply
to any object-oriented language that supports messaging and
threads. The Infospheres source code and User Manual for
the 1nitial implementation of the mvention 1s available at
http://www.infospheres.con/releases/I1.html, and both 1tems
are hereby incorporated by reference.

The 1nitial framework can be optimized for JDK version
1.1 by taking advantage of the following newly standardized
packages:

Remote Method Invocation (RMI) for a proxy-based
distributed object model.

Object Serialization facilities for packing and unpacking
objects and messages (both for communication and for
persistent storage).

Java Database Connectivity support for persistent storage
of, and queries on, process, state, and interface data.

Interface Definition Language (IDL) packages for
interoperability with Common Object Request Broker
Architecture (CORBA) distributed objects.

Security packages for communication encryption and
process authentication.

Reflection packages for innovative structuring of emer-
gent personal networks and process behavior.

Distributed Applications

Using the framework described above, distributed appli-
cations can be built by nonprogrammers and programmers
alike. Following 1s a discussion of the preferred character-
istics of such distributed applications.

Temporary Duration. In many collaborative applications,
a distributed session 1s set up for a period of time, after
which the session 1s discarded. For instance, calendar djinns
of the executive committee are linked together 1into a djinn-
network session, and after the djinns agree on a meeting date
and time, the session 1s cancelled. Some distributed sessions
may have longer duration. For instance, in the second
example set forth below, the distributed session of partici-
pants 1n a system design lasts as long as the design.

Durations of distributed sessions in collaborative appli-
cations can vary widely. By contrast, traditional distributed
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systems such as command and control systems are semi-
permanent. The software layer should support distributed
sessions with wide variations in duration.

Persistent State Across Multiple Temporary Sessions. In
the first example set forth below, the state of an executive
committee member’s appointments calendar must persist; an
appointments calendar that disappears when an appointment
1s made has no value.

Different parts of the state may be accessed and modified
by different distributed sessions. For instance, a distributed
session to set up an executive committee meeting may have
access to Mondays and Fridays on one user’s calendar, but
not to other days, and a distributed session to inform
collaborators about the status of a document may have
access to document information but not to the calendar.

The state of a process may be accessed and modified by
multiple concurrent sessions. Each session (e.g., a calendar
session or a document management session) only has access
to portions of the state relevant to that session. The speci-
fication of a session must be 1ndependent of other sessions
with which 1t may be executing concurrently. Two sessions
must not be allowed to proceed concurrently if one modifies
variables accessed by the other.

Accordingly, preferred embodiments should provide a
distributed infrastructure that sets up sessions that modily
the persistent states of their participants, allows a member to
participate 1n concurrent sessions, and ensures that sessions
that interfere with each other are not scheduled concurrently.

Composition of Services. A traditional distributed system
1s architected 1n a series of well-defined layers, with each
layer providing services to the layer above 1t and using
services of the layer below. For instance, a distributed
database application employs services—e.g., checkpointing,
deadlock detection, and transaction abortion—of the distrib-
uted operating system on which 1t runs.

A session also needs operating system services. The
model of application development for sessions and djinns 1s,
however, very different from that in traditional systems. We
do not expect each djinn developer to also develop all the
operating systems services—e.g., checkpointing, termina-
tion detection, and multiway synchronization—that an
application needs. Accordingly, a preferred embodiment
facilitates the development of a library of operating systems
services (which we could call servlets) that djinn developers
could use 1n their djinns, as needed.

Coping with a Varied Network Environment. Communi-
cation delays can vary widely. One process 1n a calendar
application may be in Australia while two other processes
are 1n the same building in Pasadena. The system must cope
with these delays; 1n addition, the system must also cope
with faults 1n the network such as undelivered messages.

Patterns of Collaboration. In distributed applications, it 1s
more difficult to verity the correctness of the concurrent and
distributed aspects than 1t 1s to verily the sequential pro-
gramming aspects. The difficult parts of a distributed system
design include the correct implementations of process
creation, communication, and synchronization. However,
we can ease the programmer’s burden of writing correct
distributed applications, 1f moditying one distributed appli-
cation to obtain another one with the same patterns of
communication and synchronization can be done by modi-
fying only the sequential parts of the application while
leaving the concurrent and distributed parts unchanged.
Accordingly, a preferred embodiment should 1dentify these
patterns, include class libraries that encapsulate these
patterns, and include a library of distributed applications that
demonstrate how common collaboration patterns can be
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tailored to solve a specific problem by modifying the
sequential components.
Distributed System Design

Example of Intended Use

A consortium of institutions forms a research center, and
the executive committee of the center has members from its
component institutions. The director of the center wants to
pick a date and place for a meeting of the executive
committee. Several known algorithms can be used to solve
this problem.

The traditional approach has the director (or someone on
the staff) call each member of the committee repeatedly, and
ncgotiate with each one in turn until an agreement 1is
reached. The approach we propose 1s to employ secretary
and calendar processes—programs running concurrently on
cach committee member’s desktop computer—to suggest a
set of candidate dates that can then be approved or rejected
by the members. FIG. 2 1s a data flow diagram showing a
session of djinns for this example.

Each member of the committee has a calendar process—a
djinn—responsible for managing that member’s calendar. A
calendar djinn 1s a process: 1t operates 1 a single address
space, 1t communicates with files by standard I/0O operations,
and 1t communicates with other processes through ports.
Associated with each calendar djinn 1s an Internet address
(i.e., IP address and port id). There may in addition be
similar secretary djinns (as shown in FIG. 2), or possibly a
coordinator djinn. The djinns are composed together 1nto a
temporary network of djinns that we call a session. The task
of the session 1s to arrange a common meeting time. When
this task 1s achieved, the session terminates. Note that each
djinn 1s running on a different computer, and the arrowed
lines represent communication between distributed pro-
cesses over the Internet.

Associated with each session 1s an initial process an
initiator djinn—that 1s responsible for linking djinns
together. FIG. 3 1s a data flow diagram showing how an
mnitiator uses an mvoker’s address directory to set up a
session between existing djinns. In this example, the center
director invokes an 1nitiator djinn, and passes it a directory
of addresses (e.g., Internet IP addresses and ports) of com-
ponent djinns that are to be linked together into a session.

Djinn connections are achieved using the address direc-
tory. The 1nitiator djinn sends a request to the component
djinns; this request asks the components to link themselves
up to form a session. For example, 1in our calendar session,
cach calendar user djinn may be linked to a common
coordinating secretary djinn, as 1s done 1n FIG. 3. As another
example, 1n a distributed card game session, a player djinn
may be linked to 1ts predecessor and successor player djinns
(which correspond to the players to its left and right,
respectively).

A djinn, on rece1ving a request to participate 1n a session,
may accept the request and link 1tself up, or it may reject the
request (because the requesting djinn was not on the receiv-
ing djinn’s access control list, or because the receiving djinn
1s already participating 1n a session and another concurrent
session would cause interference). When a session
terminates, component djinns unlink themselves from each
other.

Overall Distributed System Design

The following describes with more particularity the over-
all design of a distributed system that uses the framework
described above, and highlights the software components we
believe are useful for developing distributed applications.
Our goal 1s to design a simple layer to support correct
distributed application development; 1n the preferred
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embodiment, we employ Java features and Java classes to
achieve this end.

Messages. Objects that are sent from one process to
another are subclasses of a message class. An object that 1s
sent by a process 1s converted 1nto a string, sent across the
network, and then reconstructed back into its original type
by the receiving process. Java methods are used to convert
an object to a string and to create an instance of the sending
object at the receiver.

Inboxes, Outboxes, and Channels. Each process has a set
of mmboxes and a set of outboxes. Inboxes and outboxes are
message queues. A process can append a message to the tail
of one of its outboxes, and 1t can remove the message at the
head of one of its inboxes. The methods that can be 1nvoked
on 1nbox and outbox objects are described later. Each inbox
has a global address: the address of its djinn (i.e., its IP
address and port) and a local reference within the djinn
Process.

Associated with each outbox is a set of inboxes to which
the outbox 1s bound; there 1s a message channel from an
outbox to each mbox to which 1t 1s bound. An example of a
set of bound djinn inboxes and outboxes 1s given in FIG. 4.
Each message channel i1s directed from exactly one outbox
to exactly one mmbox. Messages sent along a channel are
delivered 1n the order sent. Message delays in channels are
arbitrary.

As shown 1n FIG. 4, an outbox can be bound to an
arbitrary number of 1nboxes. Likewise, an mbox can be
bound to an arbitrary number of outboxes. Therefore, there
arc an arbitrary number of outgoing channels from an
outbox, and there are an arbitrary number of 1ncoming
channels to an mbox.

The distributed computing layer removes the message at
the head of a nonempty outbox and sends a copy of the
message along all channels connected to that outbox. The
network layer delivers a message 1n a channel to the desti-
nation mnbox of the channel. The delay incurred by a
message on a channel 1s arbitrary; the delay 1s independent
of the delay experienced by other messages on that channel,
and 1t 1s independent of the delay on other channels. Also, 1f
a message 1s not delivered within a specified time, an
exception 1s raised.

In the preferred embodiment, each object has two special
named 1nboxes: the exception inbox and the management
Inbox. An object can receive requests to connect itself to
other objects through its management Inbox. A virtual
personal network 1s created as follows: A singular object
wishes to create a virtual network, this object 1s called the
mnitiator of the virtual network. The inmitiator of a virtual
network sends messages to the Management Inboxes of the
collection of objects with which 1t needs to collaborate,
requesting them to connect to other objects 1n the collection.
After the 1nitiator receives messages from all the objects 1n
the collection that they have connected themselves, the
initiator sends a start message to each object which then
proceed with the computation. If the virtual network cannot
be mstantiated, an exception 1s raised at the initiator via its
Exception Inbox which then takes appropriate action. A
virtual personal network can be specified and instantiated
ographically. After the collaboration 1s completed, the virtual
network 1s deleted by having each object delete appropriate
bindings of 1ts outboxes and delete appropriate mailboxes
(channel endpoints).

The duration of virtual personal networks vary; some
need to be created very rapidly (within a fraction of a
second), some are of medium duration (minutes to hours),
and others persist for a very long time (months to years). An
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example of a virtual network that has to be created rapidly
1s a network that connects the objects of a soft real-time
collaborative group of researchers. An example medium
duration virtual network 1s a crisis management team. A
long-term network might be a group of universities that are
collaborating on a multi-year government grant.

Methods Invoked on Outboxes. An outbox has a data
member 1nboxes, which 1s a list of addresses of inboxes to
which the outbox 1s bound. In one embodiment, the
application-layer methods that can be invoked on outboxes
are:

1. add (ipa)—where 1pa is the global address of an inbox;
this method appends the specified 1nbox to the list
inboxes if 1t 1s not already on the list. There 1s a directed
FIFO channel from each outbox to each inbox to which
it 1s bound.

2. delete(ipa)—removes the specified global address from
the list inboxes 1f 1t 1s 1n the list, and otherwise throws
an exception.

3. send(msg)—where msg belongs to a subclass of mes-
sage; this method sends a copy of the object msg along
cach output channel connected to the outbox. If this
message 15 not delivered within a specified time, an
exception 1s raised.

4. destination( )—returns inboxes.

Methods Invoked on Inboxes. In the 1llustrated
embodiment, the application-layer methods that can be
invoked on inboxes are:

1. is Empty( )—returns true if the inbox is empty.

2. awaitNonEmpty( )—suspends execution until the inbox
1s nonempty.

3. receive( )—suspends execution until the inbox is non-
empty and then returns the object at the head of the
inbox, deleting the object from the 1nbox.

Strings as Names for Inboxes. As a convenience, we also
allow each 1nbox to be addressed by a pair of 1dentifiers: its
unique djinn address (IP address and port), and a string in
place of its local 1d. For instance, a professor djinn may have
inboxes called “students” and “grades” in addition to
inboxes to which no strings are attached. An outbox of a
djinn can be bound to the “student” 1nbox of a professor
djinn. The add and delete methods of a djinn are polymor-
phic: an mbox can be either specified by a global address
(djinn address and local reference) or by a djinn address and
string.

Communication Layer Features. Our simple communica-
fion layer, when used with objects and threads, can provide
features present 1n more complex systems.

Some languages, such as C++, have a two-level hierarchy
of address spaces: a global address space and a collection of
local address spaces. So, pointers are of two kinds: global
and local. A global pointer in one local address space can
point to an object 1n any local address space. By contrast, a
local pointer mm a local address space can point only to
objects 1n that local address space. Remote procedure calls
(RPCs) on an object in a different local address space can be
executed only 1if the mnvoker has a global reference to that
object.

By contrast, in our implementation, all references are
local, with the exception that djinns and mnboxes have global
addresses. An outbox 1n one djinn can bind to 1mboxes 1n
other djinns. Addresses of inboxes and djinns can be com-
municated between djinns.

Global pointers and RPCs are implemented 1n our system
in a straightforward way: Associate an mmbox b with an
object p. Messages 1n b are directions to 1nvoke appropriate
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methods on p. Associate a thread with b and p; the thread
receives a message from b, and then invokes the method
specified 1n the message on p. Thus, the address of the inbox
serves as a global pointer to an object associated with the
inbox, and messages serve the role of asynchronous RPCs.
Synchronous RPCs are implemented as pairwise asynchro-
nous RPCs.

Inter-Djinn Services

We consider the problem of composing services with
djinns. The challenge 1s to make these services generic so
that they can be used for very different kinds of applications,
and make the services powerful enough to simplily the
design of djinns.

We focus our discussion here on inter-djinn services. In
the preferred embodiment, methods for coordination within
a djinn use standard Java classes. The questions we address
are: How can objects associated with a service be bound 1nto
a djinn 1n a straightforward way, and, what sorts of services
are helpful for djinn designers?

There are complementary ways of providing services to
djinns. We can provide a collection of service objects that a
designer can imclude 1n a djinn. In addition, we can have a
resource manager process, executing on each machine, that
provides a rich collection of services to djinns executing on
that machine. Our focus 1n the preferred embodiment 1s on
the former approach; we give a few examples of service
objects and show how these services can be used within a
djinn.

Tokens and Capabilities. In general, distributed operating,
systems manage 1ndivisible resources shared by processes;
we would like to provide service objects with this
functionality, which a djinn designer can incorporate as
needed. Aproblem 1s that generic service objects do not have
information about the specific resources used 1n a given
application.

Our solution 1s to treat mndivisible resources 1n a generic
way. The generic service deals with managing i1ndivisible
resources, sharing them among djinns 1n a way that avoids
deadlock (if djinns release all resources before next request-
ing resources), and detecting deadlock if it does occur (if a
djinn holds on to some resources and then requests more).
The designer of a djinn can separate these service functions
from other concerns, and using a library of common service
functions can simplify djinn design.

We treat each resource as a token. Tokens are objects that
are neither created nor destroyed; a fixed number of them are
communicated and shared among the processes of a system.
Tokens have colors; tokens of one color cannot be trans-
muted mto tokens of another color. A token represents an
indivisible resource, and a token color 1s a resource type. A
file, for 1nstance, 1s represented by a token and each file-
token has a unique color.

A network of token-manager objects manages tokens
shared by all the djiins 1n a session. Atoken 1s either held by
a djnn or by the network of token managers. A token
manager assoclated with a djinn has a data member,

holdsTokens, which 1s the number of tokens of each color
that the djinn holds.

In the preferred embodiment, a process can carry out the
following operations on its token manager:

1. request (tokenList)—suspends until the requested
tokens (1.e., a specified number for each color) is
available, and then these tokens are removed from the
token manager collection and given to the djinn (i.e.,
these tokens are added to holdsTokens). If the token
managers detect a deadlock, an exception is raised. A
specific positive number of tokens of a given color can
be requested or the request can ask for all tokens of a
given color.
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2. release (tokenList)—releases the specified tokens from
the djinn and returns them to the token managers;
therefore, the specified tokens are decremented from
holdsTokens and returned to the token managers. If the
tokens specified 1in tokenList are not 1n holdsTokens, an

exception 1s raised.

3. totalTokens( )—returns an array of the total number of

tokens of all colors 1n the system.

The djinn that constructs the network of token managers
ensures that the mitial number of tokens 1s set appropriately.
Tokens are defined by the invariant that the total number of
tokens of each color 1n the system remains unchanged.

Tokens can be used 1n many ways. For example, suppose
we want at most one process to modify an object at any point
in the computation. We associate a single token with that
object, and only the process holding the token can modily
the object.

As another example, tokens can be used to implement a
simple read/write control protocol that allows multiple con-
current reads of an object but at most one concurrent write
(and no reads concurrent with a write) of the object. The
object 1s associated with a token color. A djinn writes the
object only 1f 1t has all tokens associated with the object, and
a djinn reads the object only 1if 1t has at least one token
associated with the object.

Clocks. Access to a global clock simplifies the design of
many distributed algorithms. For instance, a global state can
be easily checkpointed: all processes checkpoint their local
states at some predetermined time T, and the states of the
channels are the sequences of messages sent on the channels
before T and received after T. Another use of global clocks
1s 1n distributed conilict resolution. Each request for a set of
resources 1s timestamped with the time at which the request
1s made. Conilicts between two or more requests for a
common 1ndivisible resource are resolved in favor of the
request with the earlier timestamp. Ties are broken 1n favor
of the process with the lower ID value. If djinns release all
resources before requesting resources, and release all
resources within finite time, then all requests will be satis-
fied.

However, a problem 1s that djinns do not share a global
clock. Though local clocks are quite accurate, they are not
perfectly synchronized. We can, however, use unsynchro-
nized clocks for checkpointing provided they satisty the
global snapshot criterion. The global snapshot criterion 1s
satisfied provided every message that 1s sent when the
sender’s clock 1s T 1s received when the receiver’s clock
exceeds T. A simple algorithm to establish this criterion 1s:
every message 1s timestamped with the sender’s clock; upon
receiving a message, 1f the receiver’s clock value does not
exceed the timestamp of the message, then the receiver’s
clock 1s set to a value greater than the timestamp. Further
details of a preferred algorithm are set forth below.

Our message-passing layer 1s designed to provide local
clocks that satisfy the global snapshot criterion. Our local
clocks can be used for checkpointing and conflict resolution
just as though they were global clocks. Djinn designers can
separate the generic concerns of clock synchronization from
other concerns speciiic to their application.

Synchronization Constructs. Java provides constructs for
synchronizing threads within a djinn by using something
like a monitor. We have implemented and verified other
kinds of synchronization constructs—barriers, single-
assignment variables, channels, and semaphores—i{or
threads within a djinn. We are extending these designs to
allow synchronizations between threads in different djinns 1n
different address spaces.
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Djinns

As noted above, a djinn 1s the fundamental component 1n
the infospheres infrastructure of the present invention.
Djinns are components 1n the classical sense: they are
distributed applications of varying size that perform speciiic
tasks by working in tandem with other distributed services,
djinns, or other distributed objects. Djinns have well-defined
interfaces that allow them to be accessed by other djinns,
and can be extended through encapsulation and aggregation.
Djinns may be written using the infospheres infrastructure
packages in the Infospheres source code referenced above.

Djinns can be used to encapsulate a variety of services:
simple C, C++, and Fortran processes, distributed CORBA
and COM objects, object libraries and frameworks, legacy
business applications written 1n older languages or systems
such as COBOL and MVS, traditional DBMS and
filesystems, and non-traditional arbitrary processes with
deterministic interfaces. Djinns are primarily used to com-
POSE SESSIONS.

In the preferred embodiment, djinns can be multi-
threaded, persistent, and can migrate. Djinns preferably run
in one of three “execution modes” (basically per instance,
per object, and mutual exclusive modes), and can have
visual mterfaces so as to interact with a user.

Djinn Communication Layer

The generic djinn communication layer 1s based on asyn-
chronous messages of arbitrary size and type. These mes-
sages are sent to and from djinns through the use of inboxes
and outboxes, collectively known as mailboxes, as discussed
above. The maildaemon 1s the object, unique to each djinn,
that controls the flow of messages through the djinn’s
mailboxes. The maildaecmon object routes incoming mes-
sages to the appropriate mailbox, and ships outgoing mes-
sages to the correct target djinn. The maildaemon ensures
that all messages are ordered point-to-point, and that there 1s
no duplication, loss, or corruption of any message.

One can exert a fine grain of control on mailboxes to
provide typed message streams, message 1nheritance
between mailbox types, or source-controlled routing of
messages. Asynchronous messaging are the base communi-
cation mechanism of the Infospheres Infrastructure because
it 1s a fundamental messaging construct. Other familiar
mechanisms (like synchronous, typed, or high-throughput
messaging and remote method calls) can be layered on top
of this message mechanism.

Djinn Masters

The Djinn Master 1s responsible for the instantiation of,
and the nitial communication to, persistent djinns 1n a
distributed application or session. The Djinn Master main-
tains a table of current djinns running; 1f a summon message
is sent to a djinn that is not currently running (or does not
currently exist), the appropriate djinn is thawed (or 1nitiated)
and executed, and the message 1s forwarded to the djinn. The
Djinn Master 1s a djinn like any other. It can accept
messages, service requests, and can be summoned.

This mechanism is similar to the BOA (Basic Object
Adaptor) of CORBA. We provide three server models: that
of server per request, that of persistent server per session,
and that of a mutually exclusive server per session. Note that
the Djinn Master 1s much more lightweight than a CORBA
ORB and 1t 1s more flexible since 1t can initiate arbitrary
processes whether or not they conform to the infospheres
interface specification.

Archivable Distributed Components

Another aspect of the invention 1s the use of archivable
distributed components to construct archivable webs of
distributed asynchronous collaborations and experiments. A
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distinguishing feature of this approach 1s that the component
tools, software, data, and even participants are distributed
over a worldwide network. In describing this aspect of the
invention, we present an algorithm for using the Infospheres
Infrastructure described above to perform asynchronous
global snapshots for archiving.

More particularly, we describe the design of a software
technology that allows any component of a distributed
system to (1) archive a “global snapshot” of the distributed
system, (2) record events within components of the system,
and (3) replay a distributed computation by resurrecting the
system from an archived global snapshot and executing the
archived events from the snapshot onward. An annotated
collection of archived global snapshots, events, and docu-
ments can be linked into the World Wide Web automatically,
allowing distributed systems to be restarted from their saved
states, see these computations unfold, and follow the links to
related computations.

The 1dea of archiving states and replaying events has been
employed previously 1n such contexts as data backup, com-
piler analysis, and application debugging. Our contribution
1s that of archiving states and replaying events in distributed
computations. Specifically, we consider systems composed
of autonomous opaque objects with dynamic interfaces
distributed across the Internet.

We begin by describing our vision of a web of archived
distributed computations: first, we provide an overview of
software component technology, and then we discuss some
potential applications for the archival of computations in
distributed component systems. Since component technol-
ogy per se 1s not the focus of this discussion, we have
restricted our discussion of 1t to the details relevant to the
archival of distributed computations.

Component Technology

Component technology focuses on the representation and
use of self-contained software packages which can be
composed, or attached together, to create complete applica-
tions. Each component has an interface that specifies the
compositional properties, and sometimes the behavior, of
that component. Components can be composed either
through static linking at compile time, or through dynamic
linking over a network at run time. Our focus 1s on system-
atic composition of components that have dynamic inter-
faces and use asynchronous messages. There are several
popular commercial component technologies, including
CORBA, OpenDoc, ActiveX, and Java Beans.

Software component technology offers the potential for
building new applications quickly and reliably. Rapid appli-
cation development tools for creating component-based
software are emerging. However, current component infra-
structures are complex, requiring application developers to
compose components at compile time using stubs and skel-
ctons. Our focus 1s on dynamic composition of components
at run time and methods for reasoning about the behavior of
the resulting “collective™ applications.

As an example of a collaboration-based distributed com-
ponent system, 1magine a group of researchers and observers
working together on an experiment with several compo-

nents:
data sets from databases in Houston and Syracuse;
a program composition tool at Caltech;
a CFD solver on a supercomputer at Argonne;

solid-mechanics simulators on a network of workstations
at Los Alamos;

visualization engines 1n the offices of the researchers; and

a classroom of students several weeks later, using stan-
dard web software to review the experiment and dis-
cuss 1t with their professor.

™

10

15

20

25

30

35

40

45

50

55

60

65

22

Opaque Distributed Software Components. An opaque (or
“black box) component furnishes a programmer only with
its interface specifications, not its actual implementation.
The 1nternal structure and behavior of an opaque component
are completely hidden from other components. We assume
that the components participating in a distributed collabo-
ration of the type described above will be opaque, because
it 1s unreasonable to require that users have access to the
internal workings of the components they use.

The opacity of components implies that the procedure for
archiving distributed state must itself be distributed. Since
no component has access to the implementation of any other
component, no single component can archive the state, or
even a state description, of another component 1n the system.
Therefore, each component must record its own state and
archive 1t locally, and archived states of the entire system
must be obtained by combining the locally archived states of
the 1individual components.

Dynamic Interfaces and Dynamic Composition. Compo-
nent interfaces can range in dynamism from completely
static to completely dynamic. Most component systems with
communication based on remote procedure calls (such as
CORBA, Java RMI, and Microsoft COM and DCOM)
support the use of static interfaces, which can be type
checked at compile time. However, there are problems
assoclated with the use of static interfaces in dynamic
distributed environments. Components with dynamic inter-
faces can interact more successfully in such environments
but, since the syntax of their interactions cannot be checked
at compile time, the components must handle faulty com-
munication links and unexpected interface changes at run
fime.

In the preferred embodiment, we prefer to use compo-
nents with dynamic interfaces in a dynamic environment,
although the central 1deas relating to archiving distributed
computations are applicable to components with static inter-
faces as well. The relevance of dynamic interfaces to the
archival of distributed computations 1s that the state of a
component must include its interface. For example, if the
interface of a component 1s defined 1n terms of communi-
cation channels, and the number and types of those channels
can change during a computation, then the archived state of
the component must i1nclude information describing the
channels 1n addition to any other information needed by the
component.

Selecting Components from a Worldwide Pool. Ideally,
users should be able to develop an application by using
components selected from a worldwide pool. These com-
ponents may be located at different sites, may be running on
systems with various architectures and operating systems,
and might have restricted availability.

Suppose, for instance, that an acronautical engineer wants
to do a multidisciplinary optimization experiment on air-
foils. This experiment requires the composition of a solid
mechanics computation dealing with vibrations and a fluid
dynamics computation dealing with airflow. Many sites
might offer a component that performs fluid dynamics
computations, but these sites might differ in computation
capability, access restrictions, and cost. The engineer should
be able to select whichever component fits his needs,
whether 1t 1s at Caltech, Los Alamos, or San Diego. Using
the mvention, it should be possible to develop an application
by using components at different remote sites as easily as by
using only local resources.

A worldwide pool of components 1s relevant to the
archival of distributed computations because of scaling
considerations. If all the components were located on an
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Intranet serving a small, single-site campus, then a potential
solution would be to take a global snapshot of the entire
intranet. However, since the Internet has many autonomous
units, such an approach 1s not feasible on a global scale.
Also, the use of resources at multiple distributed sites raises
1ssues of security, resource allocation, and privacy. Several
known solutions to these problems exist, such as Java’s
sandbox model and ActiveX’s code signing model.

Modes of Collaboration. There are two types of collabo-
ration between groups of people using programs, control
devices, and measuring instruments:

synchronous collaboration occurs when all components
collaborate at the same time, usually requiring the
continual presence of human beings.

asynchronous collaboration occurs when components can
participate at different times over the course of a
collaboration, only occasionally requiring the presence
of human beings.

Teleconferencing and multi-user whiteboarding are
examples of synchronous collaboration; these interactions
are typically carried out by small groups of people for
durations on the order of minutes to hours. A concurrent
version-control system, with people working together on
documents over extended periods of time, exemplifies asyn-
chronous collaboration. In such a system, different annotated
copies of documents flow through the system as individuals
check 1n their work and update their workspaces. In this
discussion, we consider methods of archiving distributed
system states for asynchronous collaboration, though the
ideas can be used 1 synchronous collaborations as well.

Infrastructure for Archiving Distributed Components

As discussed previously, an infrastructure to support
distributed applications that can utilize archived states must
support the composition of distributed opaque components
with dynamic interfaces. These components must be able to
participate 1n both synchronous and asynchronous collabo-
rations. The infrastructure should assist in locating and
composing components on the Internet. Finally, 1t should be
possible to archive a distributed computation and resurrect it
with reasonable use of resources, and these archived dis-
tributed computations should be linked into the Web 1n a
manner similar to other documents. In particular, such an
infrastructure should meet the following requirements.

Opaque Distributed Software Components. The only vis-
ible aspects of an opaque component are (1) its external
interface, so that other components can connect, and (2) a
specification of the component. In a distributed system, the
interface 1s specified 1n terms of remote method 1invocations,
object-request brokers, or messages. Each approach has
advantages and disadvantages, but the specific form of the
interface 1s less important than the fact that the component
implementations are hidden. The infrastructure must support
at least one of these methods of mterface specification.

Dynamic Interfaces and Interactions. A component must
be able to adapt to changing conditions 1n a computation.
These 1nclude the addition of new components to the
computation, temporary unavailability of communications
resources, and other common situations which arise 1n
Internet-based distributed systems. One way to deal with the
dynamic environment 1s to allow a component to change its
interface and connections to other components, during the
course of a computation, so we require that the infrastructure
allow component interfaces and interconnections to be com-
pletely dynamic.

Modes of Collaboration. All components participating in
a synchronous collaboration must be active concurrently. By
contrast, components participating in an asynchronous col-
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laboration need not be active concurrently; any given com-
ponent may be quiescent, becoming activated only when a
communication arrives for it. The advantage of asynchro-
nous collaboration is that the participating components need
not hold resources concurrently, since they use resources
only when they are computing. The disadvantage 1s that
handling an incoming communication can be expensive,
because the communication must be handled by a daemon
that activates the quiescent component and then forwards the
communication. Because of this tradeolif, we prefer that the
infrastructure support both synchronous and asynchronous
interactions, allowing individual component application
developers to choose whichever mode 1s appropriate for
their application.

Persistence. Components must be persistent, because a
collaboration 1nvolving a set of components may last for
years. Rather than forcing a component to stay active for the
life of 1ts collaborations, it 1s advantageous to design the
component system such that the life cycle of a component 1s
a sequence of active phases separated by quiescent phases.
In such a system, when a component 1s quiescent, 1ts state 1s
serialized (and can, for example, be stored in a file) and the
component uses no computing resources. When a compo-
nent 1s active, 1t executes 1 a process slot or thread and
listens for communications. Components designed 1n this
way are olten quiescent for most of their lifetimes, so the
fact that quiescent components use no computing resources
allows many more components to exist on the same machine
than could possibly run simultaneously. The infrastructure
must support the storage of persistent state information by
individual components. In addition, it 1s desirable for the
infrastructure to provide some method of efficiently updat-
ing persistent state information, such as by saving only
incremental changes.

A World Wide Web of Archived Distributed Computa-
tions. Web technologies already provide the necessary
mechanisms for linking archived distributed computations
so that dynamic content representing the state of a
component, or distributed experiment, or distributed com-
putation can be viewed, hyperlinked, and indexed for
scarching. Users can take advantage of web browsers to read
web pages and to follow links to archived information. The
infrastructure must provide a way to generate such pages
automatically, as well as a way to easily restart a distributed
computation from its saved state (for example, by clicking
on a link 1n a document).

Archiving Daistributed States

We now describe an algorithm that can be used by the
infrastructure described herein to archive distributed states.
This 1s an 1improvement on the known “global snapshot™
algorithm 1n which a clock, or sequence number, 1s stored
with the snapshot state. (See K. M. Chandy and L. Lamport.
Distributed snapshots: Determining the global states of
distributed systems. ACM Transactions on Computing
Systems, 3(1):63-75, February 1985). Within the snapshots,
these logical clocks can be used for timestamping.

The Global Snapshot Algorithm. If all components
recorded their complete states (including the states of their
mailboxes) at a specified time T, then the collection of
component states would be the state of the distributed
system at time T. The problem 1s that the clocks of the
components can drift, and even a small drift can cause
problems. For example, two components P and Q share an
indivisible token that they pass back and forth between
them. P’s clock 1s slightly faster than Q’s clock. Both
processes record their states when their clocks reach a
predetermined time T. Assume that the token 1s at Q when
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P’s clock reaches T, so P’s recorded state shows that P does
not have the token. Then, after Q has sent the token to P, Q’s
clock reaches time T. Q’s recorded state then shows that Q
does not have the token. Therefore, the recorded system
state—the combined recorded states of P and Q that shows
that no token 1s anywhere 1n the system—is erroneous. The
basic problem arises because () sends a message to P after
P records 1its state but before Q records 1its state.

We describe our algorithm 1n terms of taking a single
global snapshot. In practice, we will need to take a sequence
of global snapshots, and extending the single snapshot
algorithm to take sequences of snapshots 1s straightforward.

Initially, some component records its state; the mecha-
nism that triggers this initial recording can be any desired
event. For example, a component may record 1ts state when
its local clock gets to some predetermined time T, and the
component with the clock that reaches T first 1s the first to
record 1ts state.

In the preferred embodiment, each message sent by a
component 1s tageed with a single boolean variable which
identifies the message as being either (1) sent before the
component recorded its local state, or (2) sent after the
component recorded 1ts local state. In the preferred
infrastructure, every message i1s acknowledged (i.e., an
acknowledgment message is returned), so each acknowledg-
ment 1s also tagged with a boolean variable indicating
whether the acknowledgment was sent before or after the
component recorded its state. When a message tagged as
being sent after the sender recorded 1its state arrives at a
receiver that has not recorded its state, the system causes the
receiver’s state to be recorded before delivering the message
to the receiver. Acknowledgements are also tagged and are
handled in the same way. Thus, the algorithm maintains the
invariant that a message or acknowledgment sent after a
component records its state 1s only delivered to components
that have also recorded their states.

The 1ssue of acknowledgments 1s somewhat subtle, so we
describe 1t in more detail. Consider a component P sending
a message m to a component (. The message m 1s at the
head of an outbox of P. The message-passing layer sends a
copy of m to Q’s mbox, to which P’s outbox 1s connected.
Note that m remains 1n P’s outbox while the copy of m 1s 1n
transit to Q’s inbox. When the acknowledgment for m
arrives at P, then and only then 1s message m discarded from
P’s outbox. If the acknowledgment 1s a post-recording
acknowledgment, then P’s state i1s recorded before the
acknowledgment 1s delivered, and therefore P’s state 1s
recorded as still having message m 1n 1ts outbox.

Repeated Snapshots. The algorithm for taking a single
snapshot of an entire distributed system requires each com-
ponent to have a boolean variable indicating whether that
component has recorded its state. Also, each message and
acknowledgment has a boolean variable indicating whether
that message or acknowledgment was sent before or after the
sender of that message or acknowledgment had recorded its
state. For repeated snapshots, the boolean variable 1is
replaced by a date represented by a sequence of integers for
year, month, day, time 1n hours, minutes, seconds,
milliseconds, and so on, to the appropriate granularity level.
The date field of a component indicates when the component
last recorded 1its state, and this date field 1s copied into
messages and acknowledgments sent by the component. If a
component receives a message or acknowledgment with a
date that 1s later than its current date field, 1t takes a local
snapshot, updates its date field to the date of the mncoming
message, and (if necessary) moves its clock forward to
exceed the date of the incoming message.
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Replaying a Distributed Computation. There 1s a distinc-
tion between having the saved state of a distributed com-
putation and being able to replay the computation. An
archived snapshot helps 1n a variety of ways but, because
some distributed computations are nondeterministic, 1t does
not guarantee that the distributed computation can be
replayed.

In the preferred embodiment, the components are black
boxes, so we cannot tell whether a component 1s determin-
istic. Re-executing the computation of a nondeterministic
component from a saved state can result in a different
computation, even though the component receives a
sequence ol messages 1dentical to the sequence it recerved 1n
the original computation. Replaying precisely the same
sequence of events requires each component to execute
events 1 exactly the same order as 1n the original sequence,
so the replay has to be deterministic. For example, 1f there
1s a race condition in the original computation, then the
replay must ensure that the race condition 1s won by the
same event as in the original. Since components are black
boxes, the 1nventive infrastructure cannot control events
within a component. Therefore, the designers of the com-
ponents must have a record-replay mechanism for recording
the event that occurs 1in each nondeterministic situation and
playing back this event correctly during replay.

During replay, the inventive infrastructure ensures that
messages are delivered to a component 1n the same order as
in the original computation, provided all components in the
computation send the same sequences of messages. It the
components have deterministic replay, the computation from
the saved state will be an exact replay: a sequence of events
identical to those of the original computation.

The 1inventive infrastructure guarantees that messages are
delivered 1n the same order as in the original computation in
the following way: a mail daemon executes on each com-
puter that hosts components, logging the outbox, inbox and
message ID for each mmcoming message. Because the con-
tents of the messages are not necessary to properly deal with
nondeterminism 1n the message-passing layer, they are not
recorded by the mail daemon. During replay, the mail
daemon holds messages that arrive in a different order,
delivering them to the appropriate mboxes only after all
previous messages 1n the original computation have been
delivered.

A World Wide Web of Daistributed Spaces

The existing Infospheres infrastructure supports saving
the states of components and summoning components from
these archived states to form new sessions. When a com-
ponent 1s summoned from an archived state, it resumes
computation from that state. It 1s convenient to treat each
archived component as being unique; for instance, there may
be a solid-mechanics computation component that 1s persis-
tent (and, for practical purposes, lives forever), but an
experimenter may have a sequence of related components
corresponding to states of that component used at different
fimes 1n different experiments. Our intent 1s to provide
access to these archived components through a Web
browser, using the standard summoning mechanism.
Comparison to Prior Work

Although our framework could be used for metacomput-
ing applications, we prefer to provide mechanisms for
programmers to develop distributed system components and
personal networks quickly, and we plan to provide mecha-
nisms for non-programmers to easily customize their com-
ponents and personal networks. We differ from prior com-
ponent frameworks because our emphasis 1s on reasoning
about global compositional distributed systems with opaque
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components that have dynamic mterfaces and interact by
using asynchronous messages. Unlike Fortran M, sessions in
accordance with the present invention provide a hybrnd
technique for running communicating distributed processes
that are frozen when they are not performing any work, yet
have persistent state that can be revived whenever a new
session 1s 1nitiated. This persistence model differs from
mechanisms provided as recent ORB services by supporting
interaction not just through a broker or server, but also
directly between the ports of distributed processes 1n a
peer-to-peer fashion.

The present invention deals with providing software com-
ponents and compositional methods that support the devel-
opment of correct distributed applications. The methods
employed by Web users for developing client-server appli-
cations are not the best methods for developing correct
peer-to-peer distributed applications. Furthermore,
approaches for debugging sequential programs are inad-
equate for ensuring correctness in distributed applications.
The invention provides methods and approaches to deal with
the difficult problems of distributed systems—problems
such as deadlock, livelock, and sending unbounded numbers
of messages—that are not 1ssues 1n sequential programs.

In particular, certain kinds of distributed systems are
inherently complex, deal with myriad functions, have strict
performance requirements, and have disastrous conse-
quences of failure; examples of these systems include appli-
cations 1n telemedicine, air traffic control, and military
command. Such systems are developed 1n a painstaking
manner, with each system design led by a single group of
expert designers that has primary responsibility for the entire
system. By contrast, many Web-based applications are rela-
fively simple, are collaborative by nature, have limited
functionality, are performance-limited by the GII, and may
be developed by people who are not experts 1n concurrent
computing. Designers of such applications have little control
over the networks, protocols, operating systems, and com-
puters on which their applications execute.

Computer Implementation

Although the preferred embodiment of the invention 1s
implemented m a Java-like computer language, the 1mnven-
tion may be implemented 1n hardware or other software, or
a combination of both (e.g., programmable logic arrays).
Unless otherwise specified, the algorithms included as part
of the invention are not inherently related to any particular
computer or other apparatus. In particular, various general
purpose machines may be used with programs written in
accordance with the teachings herein, or 1t may be more
convenient to construct more specialized apparatus to per-
form the required method steps. However, preferably, the
invention 1s implemented 1n one or more computer programs
executing on programmable systems each comprising at
least one processor, at least one data storage system
(including volatile and non-volatile memory and/or storage
elements), at least one mput device, and at least one output
device. The program code 1s executed on the processors to
perform the functions described herein.

Further, each such program may be implemented 1n any
desired computer language (including machine, assembly, or
high level procedural, logical, or object oriented program-
ming languages) to communicate with a computer system.
In any case, the language may be a compiled or interpreted
language.

Each such computer program is preferably stored on a
storage media or device (e.g., ROM, CD-ROM, or magnetic
or optical media) readable by a general or special purpose
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programmable computer, for configuring and operating the
computer when the storage media or device 1s read by the
computer to perform the procedures described herein. The
inventive system may also be considered to be implemented
as a computer-readable storage medium, configured with a
computer program, where the storage medium so configured

causes a computer to operate 1 a speciiic and predefined
manner to perform the functions described herein.

A number of embodiments of the present invention have
been described. Nevertheless, it will be understood that
various modifications may be made without departing from
the spirit and scope of the invention. Accordingly, other
embodiments are within the scope of the following claims.

What 1s claimed 1s:

1. A distributed system framework for a networked
environment, mncluding a plurality of process objects, each
of said process objects 1ncluding:

(a) a program method for creating at least one inbox for
storing messages received from another process object;

(b) a program method for creating at least one outbox for
storing messages to be transmitted to another process
object;

(¢) a freeze method that saves a state of the process object
to persistent storage, thereby changing the process
object to a frozen process object which does not use
operating system resources;

(d) a thaw method that restores the frozen process object
from the persistent storage, thereby changing the frozen
process object to a ready process object;

(¢) a program method for interconnecting each created
outbox of the process object to a created 1inbox of at
least one other process object, thereby establishing a
personal network between the process object and such
other process objects within a communication session
to perform at least one task by passing messages
between the interconnected outboxes and mboxes;

wherein each message 1ncludes a snapshot variable that
indicates whether a process object has recorded its
state; and

wherein the snapshot variable 1s a date field, and each
process object includes a snapshot method that eaves
the state of the process object if a date field value within
a received message 1s later than current date value for
the process object, updates the current date value for
the process object to the date field value of the received
message, and increments a clock for the process object
to a value exceeding the date field value of the received
message.

2. The distributed system framework of claim 1, wherein
cach message includes a snapshot variable that indicates
whether a process object has recorded its state.

3. The distributed system framework of claim 1, wherein
the summoning response method causes the thaw method of
the process object to be mvoked 1f the process object 1s
frozen when summoned by another process.

4. The distributed system framework, of claim 1, each
process object further including a summoning response
method, for instantiating the process object if the process
object 1s summoned by another process object.

5. The distributed system framework of claim 1, each
process object further including at least one mail daemon
object, for controlling the order of messages 1n each ibox.
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