US006898776B1
a2 United States Patent (10) Patent No.: US 6,898,776 Bl
Jacobson et al. 45) Date of Patent: May 24, 2005
(54) METHOD FOR CONCURRENTLY 5,635,855 A 6/1997 Tang
PROGRAMMING A PLURALITY OF IN- 5,838,954 A * 11/1998 Trimberger 716/16
SYSTEM-PROGRAMMARBIE 1.OGIC 5,999,014 A * 12/1999 Jacobson et al. 326/38
6,184,713 B1 * 2/2001 Agrawal et al. 326/41
KEEII%%% I;X};;}II;JOUUREIESNI;‘EE{ESAST}‘SN 6,714,040 B1 * 3/2004 Ja%obson et al. 326/38
TIME * cited by examiner
(75) Inventors: Neil G. Jacobson, Mountain View, CA Primary Examiner—Vuthe Siek
(US); Emigdio M. Flores Jr., Coral Assistant Examiner—Binh Tat
Springs, FL (US); Sanjay Srivastava, (74) Attorney, Agent, or Firm—Patrick T. Bever; Edel M.
San Jose, CA (US); Bin Dai, Mountain Young; Lois Cartier
View, CA (US); Sungnien Jerry Mao,
Fremont, CA (US) (57) ABSTRACT
_ - A method for concurrently programming a series of
(73) Assignee: Xilinx, Inc., San Jose, CA (US) in-system devices by grouping the devices into sequentially-
i} - _ Lo _ programmed groups, wherein a best possible grouping of
(*) Notice: Sub]ect' o any dlsclalmer,: the term of this devices 1s determined that achieves a minimum total con-
patent is extended or adjusted under 35 figuration time. When a system includes multiple devices, 1t
U.S.C. 154(b) by 359 days. is sometimes more efficient (i.e., requires less total configu-
ration time) to program the devices in two or more groups,
(21) Appl. No.: 10/162,008 as compared to programming all of the devices at the same
(22) Filed: Tun. 3. 2002 time (i.e., as a single group). The method utilizes device
' ’ information to identify an optimal or best grouping by
(51) Inmt. CL7 e, GO6KF 17/50 comparing the total configuration times of several possible
(52) US. Cle oo 716/16; 716/17 groupings, and selecting the grouping having the lowest
(58) Field of Search 716/1-17; 326/38, total configuration time. Once a best grouping 1s determined,
326/39, 4 programming 1s performed by selecting a first group from
the grouping and programming the first group while bypass-
(56) References Cited ing devices all other groups. Once the first group 1is

U.S. PATENT DOCUMENTS

programmed, a next group 1s programmed, and so on.

5519633 A * 5/1996 Chang et al. 716/19 13 Claims, 6 Drawing Sheets
(" BEGIN)
18 /710
RESET BEST TIME
- > 720
| SELECT GROUPING
' >1|r 730
SELECT GROUP N OF SELECTED
~_GROUPING
I 740

CALCULATE TOTAL PROGRAMMING
TIME FOR GROUP N

‘[, 750

ADD TOTAL PROG TIME FOR GROUP
N TO TOTAL GROUPING PROG TIME

4 INCREMENT N

7"7'5_:,L

765 760
— MORE
Y GROUPS?

v

Y
SET BEST GRCUPING =
SELECTED GROUPING
y MORE N
— GROUPINGS
?
N

US 6,898,776 B1

(LYY HOIl4dd)
1 "OId
— - - > 0aQL
MOL
& SINL
-
-
" MOL S MOL SINL MOL SINL
b
o -
7 [(TTTTTITTITTTTT 1] 6661y [TTTTT11]e66v [TTT]e6vv
0 L lev —— []2v eV
m = | —-— LY | LY L[]
-« BREER 111]ov LoV 1oV
a “ A MMM AR A Rk
= e~ LI e~ LI LD L] -«-n-u-
oalL n-nnnnnnun-n-n-u-u-u-u- al| |oal = -n-u-u n-n-n- _A_ﬁ oal AL ﬁ al
--- _4._yfN _1
05 =dl 00} =dl 002 = d1
9l =14 6 = Y b =Y
0002 = Y# 000} = V# 00S = V#
EIDIAIa 2 3OIA3a T IDIAIA

U.S. Patent

U.S. Patent May 24, 2005 Sheet 2 of 6 US 6,898,776 B1

* TEST-LOGIC -
RESET |[* |
SELECT

2
RUN-TEST/ |1 >
IDLE IR-SCAN
0 0
4 11

-
0

:
| CAPTURE-DR CAPTURE-IR
0o 0
5 12 y
SHIFT-DR SHIFT-IR Ii)
R 1
<8 vy 13
1
| EXIT1-DR } EXIT1-IR
0 0
7 14
PAUSE-DR D | PAUSE-IR B
1 1
~ 8 ~ 15 -
0 0
! EXIT2-DR EXIT2-IR]
’ 1 |
~ 9 16
' UPDATE-DR |le— UPDATE-IR

| l1 0 1 0

.

FIG. 2 (PRIOR ART)

U.S. Patent May 24, 2005 Sheet 3 of 6 US 6,898,776 B1

310
323l
BOARD INFO [] 4
<
PROG DATA -5
330
FIG. 3
320 .
TO/FROM _) N —
310 DEV 1 DEV 2 | DEV 3 DEV 4 EV 5
215 FH#A=500" SH#A=500" #A=50 #A=800 #£A=800
RL=1024i | RL-—512 RL=36 RL=2048 RL=8
o1 \TP=10 /| |} TP=30 TP= 40 TP=50

TDI TDO
™S TCK

—»lTDl TDOI»ITDI TDO»ITDI TDO
TMS TCK| [TMS TCK| [TMS TCK ITMS TCK
e ——— —

| [TMS TCK| [TMS TCK| [TMS TCK| [TMS TCK| |[TMS TCK
JPO L TDO TDI«—TDO TDI—TDO TDI—TDO TDlle{TDO TDI

| #A=100001 | #A=5000 #A=1000 #A=1000 #A=2000

| TMS
TCK

I RL=1024 RL=512 RL=1024 RL=1024 RL=2048
TP=10 TP=40 TP=50 TP=100 TP=100
| | DEV 10 DEVY | DEV 7 DEV 6
—— — |
FIG. 4
(BEGIN)
TO/FROM 610
BOARD B USE GROUPING TOOL TO
| 315 | DETERMINE BEST GROUPING
e, ‘f o Y ,r_620
310 SELECT GROUP FROM BEST ‘
— — 1 | | BOARD/ GROUPING
ﬁggfpégg > < DEVICE IR ,L 630
et oL | INFO [USE PROGRAMMING TOOL TO
= = PROGRAM DEVICES OF
P - i e | _
PROGRAM | | | | | PoE | SELECTED GROUP |
TOOL 530 510 I
-] i

BEST GROUPING
540

e oy e g ol o o o A B B B e --'.---J

l-.-—m.-..--.--.-ﬁ_--l.- e A B O T e ol ol e v e el N

FIG. 5

US 6,898,776 B1

Sheet 4 of 6

May 24, 2005

U.S. Patent

L Ol
.................... T (9 '©Id) 029 O1

¢
SHNIdNOHO
JHOW

A

ol el

ONIdNOYD A310313S

W A A A -y ol L Aol ---—-T..‘ 1

| = ONIdNOYD 1534 L3S |
............................ \g//
_
A
prme - J N LNIWIHONI |
m ” mm | 09. G927
MWEQ {1 ZA3a| |8A3d || 6A3A| [OT AA} | S _ B
m e JNIL 5OHd HDNIdNOYD TV1O0L OL N
— —\— dNOHD HO4 ANIL HOHd V101 dav
| | 05”7
. 0 mm¢>ma £ Add cAN3al | 1L AAd m N dNouD HOd INIL
................ T _ ONINNYHOOH TV.LOL 3LVINOVO _
GdD do ov.” —
- A<vm .O_u_ ONIdNOHD
(" e ———— m a3.10313S 40 N dNOYD 1937138
” oA3d| | Z7A3dl | §A3G “ Oes . — o
1 “ “ | DNIdNOYH LD T3S
___,_w.............“H.........H_....uH......H...“..H.”...,H....H...H.“.....lnH..............,H.....H..H.......,._...u.;......t.,.,..MHHHH...t.. 0c h\ —

I:I....I.._Ill.l-..l....l.__._.l- bR B B B e Y F I T T Y R ARl kN P R Y I P Y Rt PP R R YRR T LY

US 6,898,776 B1

Sheet 5 of 6

May 24, 2005

U.S. Patent

I E
L1 'DI4 0L 0D

-

S30IANIA
TV OL WVJHLS V.iVQ
A31VNILVYONOD 1INSNVYHL

0901 N

¢S40IN30
JHOIN

0G0 |

NVIHLS
VL1vda
Ol V1VQ
SSYdAS
30IA3A aay

NVAHLS
VivQd
O1LV.ivQd
40IAdd ady

I INJN3HONI

GS0O TH..

| = I 30IA30 13S)

(6 'OI4)
046 WOHA

(L O14)

6 "Oid
O} 'OI4 0L 0D

1

| S=H0IATA
11V OL AV3HLS NOILONYLSNI
A3dLVNILVONOD LINSNYHL

046 1

¢5d0OIN3A
4d0N

I INJNIHONI

G96

096

NVIHILS
NOILONYLSNI
OL NOILONH1SNI

SSVdAY
J0IA30 ddVv

056 _

0c6

(dNOHD NI
I 30IA3d

026
o—mJ

¢d:904dd
L 40IAdA NI

Saav Tiv

NVAHLS
NOILONHLSNI

Ol NOILONYHLSNI

NVHO0dd
40IAJ4 Addv

(9 ©Id)

G641 WOH4-»(_ | = I 3DIA3A 13S }— 029 NOHH

U.S. Patent May 24, 2005 Sheet 6 of 6 US 6,898,776 B1

FROM 1080 SET DEVICE I =1 1110

(FIG. 10) SET CURRENT
WAIT TIME =0

1120
DEVICE I
BYPASSED?
N Y

ALL ADRS'S

INDEVICE I
PROG'D?

1130

1140
THIS ADRS

PROGD? Y
1150 1160,
CURRENT SET CURRENT |
WAIT TIME < v | WAIT TIME =
DEVICE I WAIT DEVICE I
TIME? WAIT TIME
l 1175
MORE
— INCREMENT T |¢—<__pevicEs? N
1180

WAIT FOR TIME EQUAL TO CURRENT
I— WAIT TIME WHILE ADDRESSED

CELLS ARE PROGRAMMED
1190

CHECK/RETRY PROCESS
| (OPTIONAL)

e _

GO T‘C') 910 GO TO 640
(FIG. 9) (FIG. 6)

FIG. 11

US 6,898,776 Bl

1

METHOD FOR CONCURRENTLY
PROGRAMMING A PLURALITY OF IN-
SYSTEM-PROGRAMMABLE LOGIC
DEVICES BY GROUPING DEVICES TO
ACHIEVE MINIMUM CONFIGURATION
TIME

FIELD OF THE INVENTION

The present mvention relates generally to the field of
programmable logic devices and more particularly to an
improved method for effecting operations on a plurality of
in-system programmable complex programmable logic

devices (CPLDs).

BACKGROUND OF THE INVENTION

IEEE Standard 1149.1 and 1a enfitled IEEE Standard Test
Access Port and Boundary-Scan Architecture, published
Oct. 21, 1993 by the IEEE under ISBN 1-55937-350-4
relates to circuitry that may be built into an IC device to
assist 1n testing the device as well as testing the printed
circuit board on which the device 1s placed. In particular, the
standard provides for testing IC devices connected on a
standard control bus in series (commonly referred to as a
daisy chain).

FIG. 1 shows a structure comprising three devices, con-
trolled by four signals, a test data mput signal TDI applied
to DEVICE 1, a test data output signal TDO applied by
DEVICE 1 to DEVICE 2 and chained through DEVICE 3,
a test mode select signal TMS, and a test clock signal TCK.
This structure complies with IEEE Standard 1149.1. A data
output port TDO from one device 1s connected to the data
input port TDI of the next device to create the daisy chain.
All data and 1nstructions for all devices are loaded 1nto the
data input port of the first device in the chain.

The test mode select signal TMS and the clock signal
TCK control a 16-state state machine shown in FIG. 2 that
1s within the IC device, which meets IEEE Standard 1149.1,
and controls shifting 1n of the data. On each rising edge of
clock signal CLK, the state of test mode select signal TMS
is inspected by a state machine within the IC device. (Such
state machines are well known and are not discussed here.)
FIG. 2 shows movement through the states based on the
TMS signal at the rising edge of CLK. As shown 1n FIG. 2,
five consecutive high (logic 1) TMS signals place the state
machine mto STATE 1, the Test-Logic Reset state. From

there, a single low signal or a continuous low signal places
the state machine into STATE 2, the Run-Test Idle state in

which no action occurs but from which action can be
mnitiated more quickly.

Loading data into the data registers of the devices will
now be discussed. From STATE 2 (FIG. 2), a single logic 1
moves the state machine to STATE 3, the Select-DR-Scan
state, which 1s a path select state from which loading of data
registers can be 1nitiated. One logic 0 signal mitiates STATE
4, from which 1nitializing data are loaded 1n parallel from an
internal register. Next, a logic O signal initiates STATE 5, the
Shift-DR state, which 1s held by logic 1 TMS signals while
serial data are shifted into a shift register or registers. After
serial shifting of data, a logic 1 followed by logic 0 causes
a pause at STATE 7. Another 10 returns to STATE 5 for more
loading of serial data. Following STATE 5 or STATE 7, two
logic 1’s inmitiate STATE 9 in which the appropriate data
registers are actually updated. While the state machine 1s in
STATE 9, data that have been shifted into the IC are latched

into the data registers on the falling edge of TCK. From here,

10

15

20

25

30

35

40

45

50

55

60

65

2

continuous high signals return the state machine to STATE
1, the Test-Logic Reset state, and continuous low signals

return to STATE 2, the Run-Test Idle state.

Loading instruction data into the instruction registers of
the devices will now be discussed. From STATE 2, two logic
1 signals prepare for capturing instructions into the instruc-
tion register by moving the state machine to STATE 10, the

Select-IR-Scan state. A logic O then initiates STATE 11, the
Capture-IR state, and a logic O then 1nitiates STATE 12 1n
which instruction data are shifted into the 1nstruction register
while the TMS signal remains at logic 0. State 14 allows for
a pause 1n the shifting of instructions into the instruction
register, and STATE 16 causes the actual latching of the
instructions 1nto the instruction register, on the falling edge

of TCK. Once the new instruction has been latched, it
becomes the current instruction.

Programming, erasing, or reading back data from the
devices will now be discussed. Some CPLD devices are
programmed by a nonvolatile means such as EPROM cells
or flash cells (transistors). Generally, these devices can be
programmed using the IEEE standard discussed above. The
programming step 1nvolves raising voltages at certain tran-
sistor gates to a high level and maintaining the high level
until sufficient charge has flowed onto or away from a
floating gate of the transistor to cause the transistor to
maintain a certain state when the high voltage 1s removed.
Typically, a stream of data from ten to several hundred bits
long can be shifted mnto several devices 1n less time than 1s
required to program a transistor (cell) in a device. Thus a
practical and widely used programming procedure is to
serially shift an mstruction and then a unit of programming
data through a daisy chain of devices (STATEs § and 12 of
FIG. 2) and then move into a programming mode (usually
occurs 1n STATE 2 of FIG. 2 when entered from STATE 9
or STATE 16) during which all addressed EPROM,
EEPROM, or flash transistors (cells) are programmed simul-
tancously as specified by the programming data. This
method 1s practical and efficient when all devices 1n the
daisy chain are the same size and have the same require-
ments for programming time and programming voltage.
However, the devices are often unequal 1n size.

One prior art method for programming a daisy cham of
devices having unequal size 1s disclosed 1n U.S. Pat. No.
5,635,855 to Tang. Tang discloses a method for simulta-
neously programming a plurality of in-system program-
mable devices connected 1n series. If three devices are to be
programmed and the three are of unequal size, Tang teaches
a method by which all three devices are programmed
simultaneously until the first 1s done, and the remainder
continue until they are also done (see Tang FIG. 9). Such a
method can be used to significantly reduce the
programming, erase and readback times as compared to
accessing each device 1n sequence, especially for a large
number of devices. Tang’s method 1s satisfactory when all
such devices have programmable cells which are accessed
(programmed, erased, or read back) in about the same
amount of access time and which are substantially free of
programming omissions or otherwise do not require retries.
However, Tang’s method 1s not compatible with IEEE
Standard 1149.1 and also 1s not the optimum method when
the devices have unequal access times (wait periods). The
wait per1od 1s the time that 1t normally takes a programmable
device to respond to programming data by altering 1ts cell
states (for programming and erase operations) or indicating
its cell states (for a read back operation) and then generating
an output signal indicating completion of that process. Since
the wait period 1s typically much longer than the time

US 6,898,776 Bl

3

required to mput programming data, the wait period for a
device 1s the principal factor in the overall time required to
program a device.

Typically, devices having larger numbers of program-
mable cells can generate programming voltages more
quickly and therefore have shorter wait periods for program-
ming a cell or set of cells than devices having smaller
numbers of programmable cells because of the internal cell
overhead. Thus, a large device that 1s, say, eight times as
large as a smaller device will not take eight times as long to
program.

If the programming of all devices 1s done based upon the
longest wait period, the time needed to program all of the
devices 1s made longer than necessary. However, 1f a shorter
wait period 1s used, programming of devices with the longer
wait times will not be performed properly. Thus there 1s a
need to provide an improvement that accommodates serially
connected devices having different wait periods and cell
numbers while simultaneously reducing the overall time of
programming the devices.

Another prior art method that addresses the problem
mentioned above 1s disclosed in U.S. Pat. No. 5,999,014 to
Jacobson et al (Jacobson 014). Jacobson ’014 discloses a
method for concurrently accessing in-system PLDs for
program, erasure or readback, and accommodates retries to
assure completion of programming even when the initial
attempt 1s not entirely successtul. According to the method
disclosed 1n Jacobson 014, where there are devices having
different numbers of programmable memory cells, and
whose memory cells require different wait periods to carry
out programming, the method provides for programming

only the devices requiring programming at the rate required
by the slowest of the devices requiring programming. For
example, referring again to FIG. 1, assume DEVICE 1
includes 500 addresses (#A=500), each address having a
programming time TP=200 ms, where TP 1s the time
required to program one address location. DEVICE 1 also
includes a four-bit data register 11 (RL=4) that stores
shifted-in data for programming into a group of four bits
assoclated with a selected address AO—-A499 of DEVICE 1
includes four bits that are written from a four-bit data
register 11. Further, DEVICE 1 includes an instruction
register 12 for storing instructions shifted in the boundary
scan chain. Assume also that DEVICE 2 has 1000 addresses,
a TP=100 ms and an eight-bit data register 21, and that
DEVICE 3 has 2000 macrocells, a TP=50 ms, and a sixteen-
bit data register 31. DEVICES 2 and 3 have instruction
registers similar to instruction register 12. The number of
addresses defines the logic capacity of the PLD.

In accordance with the method disclosed by Jacobson
014, since DEVICE 1 1s the slowest of the three and
requires 200 ms to program, programming initially occurs
for 200 ms. That 1s, configuration data 1s shifted into the data
registers 11, 21, and 31 of each of the three devices, and then
programming 1s performed for 200 ms. This data shifting
and programming 1s repeated until programming of the
slowest device (i.e., DEVICE 1) is completed. When the
programming of the slowest device 1s completed, the pro-
gramming rate 1s increased to the next slowest device that
still has addresses to program (i.e., DEVICE 2), and main-
tained at this programming rate until programming of the
next slowest device 1s completed. Finally, when all slower
devices have been programmed, the programming rate
increases to that of the fastest device (i.e., DEVICE 3),
which 1s typically the device having the largest number of
programmable cells, until programming 1s completed.

Although the method disclosed by Jacobson 014 gener-
ally provides for better throughput, 1t 1s not true that arbi-

10

15

20

25

30

35

40

45

50

55

60

65

4

trary application of this methodology results 1n optimal
throughput. For instance, concurrently accessing devices
with very long programming burn times along with devices
having very short programming burn times may not be
efficient. In addition, if the time 1t takes to shift in the data
1s very close to the programming burn time, there may be
little benefit to using the concurrent approach disclosed by
Jacobson 014. In other words, when 1t comes to concurrent
programming in a heterogeneous device environment, one
size does not fit all.

What 1s needed 1s an improved method of concurrently
accessing 1n-system PLDS for program, erasure or readback
that optimizes programming times by taking into account the
programming burn times and data shift times.

SUMMARY OF THE INVENTION

The present 1nvention 1s directed to a method for concur-
rently programming a series of m-system devices by group-
ing the devices 1nto sequentially-programmed groups, and in
particular to a method 1 which a best-possible grouping of
devices 1s determined that achieves a most effective total
conflguration time before programming 1s commenced. The
present 1nventors have determined that when a system
includes multiple devices, 1t 1s sometimes more efficient
(i.c., requires less total configuration time) to program the
devices 1n two or more groups, In comparison to program-
ming all of the devices at the same time (i.e., as a single

group).

The present mvention provides a method for determining
an optimal or best grouping that achieves a most effective
conflguration time by comparing the total configuration
times of several possible groupings, and selecting the group-
ing having the best (smallest) total configuration time. Once
a best grouping 1s determined, programming 1s performed by
selecting a first group from the grouping and programming
the first group while bypassing devices of all other groups.
Once the first group 1s programmed, a next group 1s
programmed, and so on, until all of the groups are pro-
grammed.

Because the calculations associated with determining the
best grouping typically require much less time than the
actual programming process, the total programming time for
programming several systems having i1dentical device
arrangements 1s greatly reduced, thereby reducing total
manufacturing costs.

In accordance with an embodiment of the present
mvention, the method utilizes a cost function to determine a
best grouping of the 1in-system logic devices that produces a
most effective concurrent configuration time. Speciiically,
cach grouping includes two or more groups, each group
having one or more devices. All devices of the system (or
board) are included in each grouping. The cost function
takes 1nto account the number of bits (addresses) to be
configured, the data register length, and the programming
latency (or burn) time for each device to calculate the total
programming time for each grouping. The number of pro-
cramming latency breaks per device may also be used. In
one example, the cost function calculates the total program-
ming time for each group, and then adds the total times for
cach group to calculate the total programming time for the
cgrouping. The grouping time 1s then compared with a best
time calculated using a previous grouping. If the current
total group time is better (i.e., requires less total program-
ming time) than that of the best time, then the currently
selected grouping replaces the previous grouping as the best
ogrouping. After a series of groups are calculated and com-

US 6,898,776 Bl

S

pared (e.g., when all possible grouping combinations are
analyzed), programming proceeds with the grouping that is
identified as the best (i.e., the optimal grouping selected
from all possible groupings, or the “best” grouping, selected
from a subset of all possible groupings, that requires the
least amount of programming time).

Note that the optimal grouping may result in some devices
being programmed sequentially (i.e., in a group of one),
while other devices of the system are programmed as a
group.

In accordance with another aspect of the present

invention, a stmilar method 1s optionally utilized to optimize
device erasure or pattern verification times.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other features, aspects and advantages of the
present invention will become better understood with regard
to the following description, appended claims, and accom-
panying drawings, where:

FIG. 1 1s a block diagram showing a simplified system
including three programmable logic devices;

FIG. 2 shows the TAP controller state machine controlled
by TMS and TCK signals according to the IEEE Standard
1149 .1;

FIG. 3 1s a simplified block diagram showing an arrange-
ment for programming devices 1 accordance with the
present mvention;

FIG. 4 1s a simplified block diagram showing an exem-
plary arrangement of devices mounted on a system board;

FIG. 5 1s a simplified block diagram showing a system for
programming devices 1n accordance with an embodiment of
the present invention,

FIG. 6 1s a flow diagram showing a method for program-
ming devices 1n accordance with an embodiment of the
present invention;

FIG. 7 1s a flow diagram showing a method for grouping,
devices 1 accordance with an embodiment of the present
mvention;

FIGS. 8(A), 8(B), and 8(C) are diagram showing exem-
plary groupings of devices of the system board of FIG. 4;

FIG. 9 1s flow diagram showing a method for passing
instruction data to a selected group of devices 1in accordance
with an embodiment of the present invention;

FIG. 10 1s flow diagram showing a method for passing
programming data to a selected group of devices 1n accor-
dance with an embodiment of the present invention; and

FIG. 11 1s flow diagram showing a method for selecting
a programming wait time used to program a selected group
of devices 1n accordance with an embodiment of the present
invention.

DETAILED DESCRIPTION OF THE DRAWINGS

FIG. 3 1s a simplified block diagram showing an arrange-
ment for programming devices mounted on a plurality of
system boards Bl through BN in accordance with the
present nvention. Each system board B1-BN includes an
identical set of devices D mounted thereon that are con-
nected 1n compliance with IEEE Standard 1149.1, as dis-
cussed further below. The arrangement 1includes a computer
or work station 310 for performing the device grouping and
programming functions described below. In particular, com-
puter 310 receives board/device information 320 and pro-
cramming data 330 from an external source according to
known techniques. Board/device information 320 identifies

10

15

20

25

30

35

40

45

50

55

60

65

6

cach device D on boards B1-BN, and includes information
necessary to perform the grouping function. Programming
data 330 includes data streams that are transmitted to
devices D of boards B1-BN during a programming function
over a Boundary-Scan bus 3135.

FIG. 4 shows an exemplary board B that i1s identical to
cach board B1-BN of FIG. 3. Board B includes ten devices
DEV 1 through DEV 10, which are connected to receive four
signals from bus 3135: a test data mnput signal TDI, a test data
output signal TDO, a test mode select signal TMS, and a test
clock signal TCK. Devices DEV 1 through DEV 10 are
connected 1n compliance with IEEE Standard 1149.1 to pass
programming and/or test signals between the devices of
board B and computer 310 (see FIG. 3) during programming
operations. In particular, programming data and/or instruc-
tion data are transmitted from one device to the next device
to create the daisy chain. Each device i1s controlled in

accordance with the state machine described above with
reference to FIG. 2.

As indicated 1n FIG. 4, each device DEV 1 through DEV
10 1s characterized by device information 320 that 1s utilized
during the device grouping and programming functions of
the present invention. For example, device DEV 1 includes

500 addresses (#A=500) of programmable cells, a register
length of 1024 (RL.=1024), and a program (burn) time of 10

microseconds (TP=10). Similarly, device DEV 2 includes
500 addresses (#A=500), a register length of 512 (RL=512),
and a program (burn) time of 20 microseconds (TP=20). The
programming data of each of the other devices DEV 3
through DEV 10 i1s indicated in FIG. 4. Note that system
connections that facilitate communications between devices
DEYV 1 through DEV 10, which are utilized during “normal”

operation of board B, are omitted from FIG. 4 for brevity.

FIG. 5 1s a simplified block diagram showing computer
310 1 additional detail. As mentioned above, computer 310
incorporates a central processing unit (CPU) 510 that is
controlled by instructions provided by a grouping tool 530
to perform the device grouping function of the present
invention, and a programming tool 330 for performing
programming functions in accordance with the present
invention.

FIG. 6 1s a flow diagram showing a method for operating,

computer 310 to program the devices of a system, such as
devices DEV 1 through DEV 10, 1in accordance with the
present 1vention.

As 1ndicated at the top of FIG. 6, the method begins by
utilizing grouping tool 520 (FIG. 5) to determine a best
grouping for subsequent programming (block 610). In
particular, grouping tool 520 1s loaded 1nto CPU 510 accord-
ing to known techniques, and 1s then operated in conjunction
with device information 320 to determine a best grouping of
in-system devices DEV 1 through DEV 10 that produces a
most elffective total configuration time.

As used herein, the noun “grouping” 1s used to mean a set
of groups of programmable devices wherein every device 1s
included 1n one group. The phrase “best grouping” describes
a grouping selected from a global set of analyzed groupings
that, when 1ts groups are sequentially programmed, requires
the least amount of programming time. Note that, when a
large number of devices are included 1n a system, 1t may not
be practical to analyze every possible grouping combination,
so the best grouping may be selected from a subset of all
possible groupings. An “optimal grouping” 1s a best group-
ing identified from all possible grouping combinations.

FIG. 7 1s a flow diagram showing an exemplary grouping,
process performed when block 610 1s called 1n FIG. 6. First,

US 6,898,776 Bl

7

a best time value 1s reset to a predetermined large value
(block 710). Next, a grouping is selected in accordance with
a predetermined procedure (block 720). Grouping selection
1s discussed 1n detail below. Once a grouping 1s selected, a
first group is chosen from the grouping (block 730), and the
device information for the devices i the selected group 1is
used to calculate the total programming time for the selected

group (block 740).

Note that the calculation of programming time takes mnto
account the programming process to be utilized during the
programming function. In one embodiment, the program-
ming time 1s calculated 1n accordance with the programming
operation described below with reference to FIGS. 9-11.
After calculating the programming time for the selected
ogroup, the calculated programming time 1s added to a total
grouping programming time (block 750), which is reset for
cach grouping. This calculation process 1s repeated for each
group until a programming time 1s calculated for every
group (NO in block 760), thereby providing a total grouping
programming time for the selected grouping. Next, this total
grouping programming time 1s compared with the best time
(block 770), and the selected grouping replaces a previously
established best grouping if the total grouping programming
time is less than the best time (block 775). The process is
then repeated for each grouping generated 1n block 720 until
all possible or predetermined groupings are analyzed. In this
manner, a best grouping 1s 1dentified from the set of group-
ings provided 1n block 720 by comparing the programming
fime for each grouping, and identifying the grouping that
requires the lowest amount of programming time.

As mentioned above, several possible methods may be
used to generate groupings in block 720 (FIG. 7). One
simple method would be to stmply group a predetermined
number of devices in each group. For example, exemplary
groupings of devices DEV 1 through DEV 10 of a board B
(discussed above) are shown in FIG. 8(A) (five devices per
group) and FIG. 8(B) (two devices per group). In particular,

FIG. 8(A) shows a first grouping that includes two groups
GP1 and GP2, with group GP1 including devices DEV 1

through DEV 5, and group GP2 including devices DEV 6
through DEV 10. FIG. 8(B) shows a second grouping that
includes five groups GP3 through GP7, with group GP3
including devices DEV 1 and DEV 2, GP4 including devices
DEV 3 and DEV 4, GPS including devices DEV 5 and DEV
6, GP6 including devices DEV 7 and DEV 8, and group GPS
including devices DEV 9 and DEV 10. Note that the groups
of a grouping do not necessarily have the same number of
devices. For example, FIG. 8(C) shows a third grouping in
which groups GP8 and GP10 have three devices each, and
group GPY has four devices. Note further that the devices in
cach group need not be connected in sequence. For example,
a group may include devices DEV 1, DEV 3, and DEV 7.
Those of ordinary skill in the art will recognize that several
algorithms may be utilized to form groupings conducive to
identifying an optimal (or best) grouping for the purposes of
the present invention.

As mentioned above, the calculated total programming
time (block 740; FIG. 7) is typically consistent with the
programming process ultimately utilized to program each
system (e.g., boards B1-BN; FIG. 1). In one embodiment, a
cost function 1s utilized 1n which a total programming time
for each group 1s calculated using a number of addresses to
be configured 1 each device, a data register length for each
device, and the programming latency time for each device.
The methodology 1s iterative and guided by selecting better
ogroupings based on the return value of the cost function. One
possible methodology can be described as follows: 1) Group

10

15

20

25

30

35

40

45

50

55

60

65

3

devices with similar sized burn times (sec in one group,
msec in another group, usec 1n a third group, etc.); 2) In each
burn time group, collect devices with similar total number of
addresses to configure; 3) In each burn time/address group
add a device to the group as long as the bit streaming rate (in
bits per second) multiplied by the number of bits to shift per
program operation multiplied by an efficiency factor (e.g.,
10) is less than the maximum burn time of the devices in the
group; and 4) Repeat 3) to create groups.

Another approach 1s to assign a direct cost factor to each
device and then select devices to optimize the cost. One
possible cost factor could be calculated as: Address Count®

(ProgramBits*BitRate)+Address Count*(Burn Time). In
this case the cost 1s measured 1n seconds. Additional devices
add to the cost as follows:

Sum over all Devices

{MAX|Device(AddressCount)*(Device(Program Bits)*Bit Rate)+
MAX][Device(AddressCount) |*(MAX[Device(Burmn Time)])}

where MAX 1s the maximum of all devices considered.
AddressCount 1s the total number of device address loca-
tions to program. The cost function may also calculate the
total programming time for each grouping using a number of
programming latency breaks per device. The problem then
becomes a classical optimization problem of selecting
device combinations to minimize this cost equation. Those
of ordinary skill in the art will recognize that several
methods other that the cost function examples provided
above may be utilized to identify a best grouping from a set
of groupings.

Referring again to FIG. 6, after a best grouping i1s
determined, programming tool 530 (FIG. 5) is loaded into
CPU 510, and programming 1s then performed by selecting
a group from the best grouping (block 620), using program-
ming tool 530 to program the selected group while bypass-
ing all devices not in the selected group (block 630), and
then repeating the group selection and programming process
until all of the groups (devices) are programmed (block
640). The programming function performed in block 630 is
described 1n additional detail below with reference to FIGS.
9 through 11.

FIG. 9 shows the flow for forming the instruction stream
to be loaded through the daisy chain on lines TDI and TDO
(FIG. 4) and loading the instruction stream into devices
DEV 1 through DEV 10. In FIG. 9, the instruction stream 1s
formed and transmitted to all devices. As described above
with reference to FIG. 2, the mstructions transmitted to each
device control whether that device 1s to be programmed,
read from, erased, or bypassed, and also control test opera-
tions as defined by IEEE Standard 1149.1.

As shown 1n FIG. 9, after resetting variable I to one (block
910), the programming process begins by determining
whether the device I (i.e., DEV 1 initially, and DEV 2
through DEV 10 as I increments) is in the selected group. If
not, then a bypass instruction 1s added to the current mstruc-
tion stream for that device (block 950). If the device I 1s in
the selected group, then an 1nitial step 1n shifting instruction
data for either program, erase or read output i1s determining
whether or not the active address space for device I has been
exhausted (block 930). If it has not been exhausted, at block
940 the device access mstruction 1s added to the current
mstruction stream. If 1t has been exhausted, at block 950 the
device bypass instruction 1s added to the current instruction
strcam. By incrementing I at block 960, this process of
adding bits to the 1nstruction stream 1s repeated for all of the
interconnected devices until block 960 indicates there are no
more devices. Then at block 970 the concatenated instruc-
tion stream 1s transmitted to all devices.

US 6,898,776 Bl

9

After 1nstructions have been shifted into position 1n the
instruction registers of devices DEV 1 through DEV 10, a
data loading mode occurs for loading data and programming
a current address 1n the device.

FIG. 10 shows steps for shifting data mto the devices.
After re-initializing variable I (block 1010), the process
begins by determining whether all addresses in DEV 1 have
been programmed, or whether device DEV 1 1s not 1n the
selected group, by checking whether the device 1s bypassed.
If not, at block 1030 device data are added to the data stream.
If yes, at block 1040 device bypass data are added to the data
stream. This process 1s repeated for each device (blocks
1050 and 10S5S5). After block 1050 indicates all devices for
which an address 1s unprogrammed have had data added to
the data stream, at block 1060 the data are transmitted
through the ten devices so that the devices of the selected
group can be programmed.

Recall that if a device 1s not in the selected group, or if
programming of a device of the selected group 1s completed,
as shown 1 FIG. 9, a bypass instruction will have been
added to the instruction stream. Only one bit of bypass data
need be added to the data stream for devices that are fully
programmed or otherwise bypassed. As data are being
loaded 1nto one address, data are being shifted out from a
previous address. In one preferred embodiment, the first two
bits of data shifted in for each device i1dentify whether the
input data are to be operated on, and the first two bits shifted
out are status bits that indicate whether programming was
successful for the previous data. In other embodiments,
status bits may not be included, or may be used for other
PUIPOSES.

As shown 1 FIG. 11, a programming step occurs next.
Another step 1n the improved inventive method of the
present 1nvention 1s determining and applying programming,
voltages for an appropriate wait time. Programming 1s
accomplished by the following steps. First, at block 1110 1t
1s assumed that the 1nitial condition 1s a zero wait time for
device I=1. In block 1120, if the address space for I=1 1s not
yet exhausted, and if in block 1140 the current address has
not yet been successiully programmed, at block 1150, the
current wait time will be compared to the wait time (TP, or
burn time) of the first device in the selected group. The
current wait time (i.e. 0) will, of course, be less than that of
the first device to be programmed, so that at block 1160, the
current wait time will be set equal to the wait time of the first
device.

By cycling through blocks 1170 and 1175 as necessary,
wait times of the other devices that are 1n the selected group
and with unexhausted address space are then compared. At
block 1170, after there are no more devices for wait times to
be examined, the process stops and waits for a time equal to
the finally determined wait time while the addressed cells
are programmed (block 1180). In this manner, the wait time
for N devices 1n the selected group will always be set to the
longest wait time of the N devices which still have unex-
hausted address space. This provides the shortest possible
wait times during the entire programming process even as
the smaller and slower devices become fully programmed.

Next, in block 1190, one or more optional retry operations
may be utilized for checking and retransmitting the program
data (if programming is determined to be unsuccessful for
the transmitted data). Several such retry procedures are
disclosed 1n Jacobson 014, cited above and incorporated
herein by reference. Finally, in block 1195, the process of
sending instructions and program data is repeated (i.e.,
control returns to block 910, FIG. 9) if programming of the
selected group is not yet completed (i.e., if program data still

10

15

20

25

30

35

40

45

50

55

60

65

10

needs to be sent to one or more devices of the selected
group), and control passes to block 640 (FIG. 6) if program-
ming of all devices of the selected group 1s completed.
Referring again to FIG. 6, after completing the program-
ming of the selected group, the process returns to block 640
and a second (or next) group of devices is selected from the
best grouping (block 620), and then the programming pro-
cess described above with reference to FIGS. 9-11 1is

repeated for this next group (block 630). The selection of a
group and programming of the selected group 1s repeated
until all groups of the grouping are programmed (No in
block 640). Note that because each device of the system is
included 1n one group of the best grouping, all of the devices
are programmed when the programming process 1S cOm-
pleted.

Note that when several identical systems are to be
programmed, such as boards B1-BN (FIG. 1), the grouping
function performed 1n block 610 need be performed only
once, while blocks 620 through 640 arc repeated for each
system (board). Accordingly, once a best grouping is deter-
mined using, for example, the process shown i FIG. 7,
programming 1S performed on one or more systems using the
best grouping generated 1n the grouping process of FIG. 7.
Because the calculations associated with determining the
best grouping typically require much less time than the
actual programming process, the total programming time for
programming several Systems having identical device
arrangements, such as boards B1-BN (FIG. 1), is greatly
reduced, thereby reducing total manufacturing costs.

In accordance with another embodiment of the present
invention, a method similar to that used during program-
ming 1S optionally utilized to optimize device erasure or
pattern verification times.

Although the present mvention has been described with
respect to certain speciiic embodiments, 1t will be clear to
those skilled 1n the art that the inventive features of the
present invention are applicable to other embodiments as
well, all of which are intended to fall within the scope of the
present 1nvention.

What 1s claimed 1s:

1. A method for concurrently programming a plurality of
in-system logic devices, the method comprising:

(a) utilizing a cost function to determine a best grouping
of said m-system logic devices that produces a most
cifective concurrent configuration time, wherein utiliz-
ing the cost function comprises calculating a total
programming time for each grouping using a number of
addresses to be configured in each device, a data
register length for each device, and the programming
latency time for each device;

(b) selecting a group from the best grouping;

(¢) programming the devices of the selected group while
bypassing all devices associated with non-selected
groups; and

repeating (b) and (c) until all of the plurality of in-system
logic devices are fully programmed.

2. The method according to claim 1, wherein utilizing the
cost function further comprises calculating the total pro-
gramming time for each grouping using a number of pro-
cgramming latency breaks per device.

3. The method according to claim 1, wherein utilizing the
cost function comprises utilizing the cost function to calcu-
late a total programming time for each group of a grouping,
and then adding the total programming times for each group
of the grouping to calculate the total programming time for
the grouping.

4. The method according to claim 3, further comprising,
storing a best grouping and a best programming time,

US 6,898,776 Bl

11

comparing the best programming time with the total pro-
cramming time for each grouping, and replacing the best
cgrouping with a selected grouping when the total program-
ming time for the selected grouping is less than the best
programming time.

5. The method according to claim 4, further comprising
replacing the best programming time with the total program-
ming time of the selected grouping.

6. The method according to claim 1, wherein utilizing the
cost function comprises:

(a) grouping devices with similar sized burn times;

(b) in each burn time group, collecting devices with
similar total number of addresses to configure;

(¢) in each burn time/address group adding a device to the
group as long as the bit streaming rate multiplied by the
number of bits to shift per program operation multi-
plied by an efficiency factor 1s less than the maximum
burn time of the devices 1n the group; and

repeating step (c¢) to create the groups.
7. The method according to claim 1, wherein program-
MmIing COMPriSes:

(a) determining the longest wait time of all of the devices
of the selected group having unexhausted address
space;

(b) applying the longest wait time as the current wait time
in programming the devices; and

(¢) repeating steps (a) and (b) until all of the devices are
fully programmed.
8. A method for concurrently programming a plurality of
in-system devices connected to a boundary scan chain, the
method comprising:

(a) grouping the plurality of devices into a plurality of
groups such that each device 1s assigned to only one
group, Including utilizing a cost function to determine
a best grouping from a set of possible groupings such

that the best grouping produces a total programming
time, as determined by the cost function, that 1s less
than total programming times of all other groupings 1n
the set of possible groupings, wherein utilizing the cost
function comprises calculating a total programming
time for each grouping using a number of addresses to
be configured 1n each device, a data register length for
cach device, and the programming latency time for
cach device;

(b) selecting a group from the grouping;

10

15

20

25

30

35

40

45

12

(c) programming the devices of the selected group while
bypassing all devices associated with non-selected
groups; and

repeating (b) and (c) for each group of the grouping.

9. The method according to claim 8, wherein utilizing the
cost function further comprises calculating the total pro-
gramming time for each grouping using a number of pro-
cgramming latency breaks per device.

10. The method according to claim 8, wherein utilizing
the cost function comprises utilizing the cost function to
calculate a total programming time for each group of a
ogrouping, and then adding the total programming times for
cach group of the grouping to calculate the total program-
ming time for the grouping.

11. The method according to claim 10, further comprising
storing the best grouping and a best programming time
associated with the best grouping, comparing the best pro-
cramming time with each subsequently calculated total
programming time for each subsequent grouping, and
replacing the best grouping with a selected grouping when
the total programming time for the selected grouping is less
than the stored best programming time.

12. The method according to claim 11, further comprising
replacing the best programming time with the total program-
ming time of the selected grouping.

13. A method for concurrently programming a plurality of
in-system devices connected to a boundary scan chain, the
method comprising;:

(a) grouping the plurality of devices into a plurality of
ogroups such that each device 1s assigned to only one

group;,

(b) calculating a total programming time needed to pro-
oram all groups of the grouping, including calculating
the total programming time using a number of
addresses to be configured 1n each device, a data

register length for each device, and the programming
latency time for each device;

repeating (a) and (b) for a plurality of different groupings,
and selecting a best grouping from the plurality of
different groupings that has a lowest total programming,
time; and

programming the plurality of devices by (c) selecting a
group from the best grouping, (d) programming each
device of the selected group while bypassing all other
devices, and repeating (c) and (d) until all groups of the
best grouping are programmed.

G o e = x

	Front Page
	Drawings
	Specification
	Claims

