US0068954978B2
a2 United States Patent (10) Patent No.: US 6,895,497 B2
Fetzer et al. 45) Date of Patent: May 17, 2005
(54) MULTIDISPATCH CPU INTEGRATED 5,724,565 A * 3/1998 Dubey et al. 712/245
CIRCUIT HAVING VIRTUALIZED AND 5,761,469 A * 6/1998 Greenley 712/210
MODULAR RESOURCES AND ADJUSTABLE 5944811 A * 81999 Motomura 712/23
DISPATCH PRIORITY 6,105,127 A * 8/2000 Kimura et al. 712/215
| 6,349,381 Bl * 2/2002 Tremblayc........... 712/215
(75) Inventors: Eric S. Fetzer, Longmont, CO (US); 6.742.111 B2 * 52004 SONi wevveveoreoorerrerereornn 712/217
Wayne Kever, Fort Collins, CO (US);
Eric DelL Fort Collins, CO (US
ric DeLano, Fort Collins, €O (US) FOREIGN PATENT DOCUMENTS
7 Ao HovlePudard Dedopment g o
’ ’ ’ WO WO 01/04750 1/2001
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 * cited by examiner
U.S.C. 154(b) by 479 days.
(21) Appl. No.: 10/092,714 Primary Examiner—Eric Coleman
(22) Filed: Mar. 6, 2002 (57) ABSTRACT
(65) Prior Publication Data A multiple dispatch processor has several instruction fetch
US 2003/0172250 A1 Sep. 11, 2003 1'mits, e‘ach for providil?g a Strea]:n of 1nstructions to an
_ instruction decode and dispatch unit. The processor also has
(51) Int. CL7 e, GO6F 9/38 an resource allocation unit, and multiple resources such as
(52) U-.S. Cle o 712/215; 712/23 combined integer and address execution pipelines and float-
(58) Field of Search 712/21%,11 %/125?;., ing point execution pipelines. Each instruction decode and

dispatch unit requests resources needed to perform an

(56) References Cited mstruction of the resource allocation unit, which arbitrates

among the multiple instruction decode and dispatch unaits.
U.S. PATENT DOCUMENTS

5627982 A * 5/1997 Hirata et al. 7127206 5 Claims, 4 Drawing Sheets
199\ l
Vs 200,
L 220 o
Instruction < y)
Fetch Unit /
7/ | /224
Address/ o 8 Lc::ad;’f |
Instruction Ol;;?;?;ﬂ - || | store > o
Decode Execution [TS gpera:!nn E
and : /220 TN XeCulion @
Disp@\tch Address? — P j=
< N Integer [4 | o4 E‘
206 Operation N //’ %
210 Execution /f ' Load/ =
/’// 56,7/220 Faa Store E
- Resource Adare — _/H_ Operation @
Allocation ah Intege.r TN | Execution C
Unit Operation | 1 I papi.
Execution Sort
220 _
. e Register | Load/
Address? —o . Store
Integer Hlle AN . -
/ 208 = Opergtic:n Operation
T Execution
Instruction Execution \\\
Decode A 222 230 -
and Float”
Dispateh /T Operation
Execution |
=204 222
o
1n5truf;timn Float
T :
Fetch Unit gpem‘f"“
xecution
A :

U.S. Patent May 17, 2005 Sheet 1 of 4 US 6,895,497 B2

99\

A0 10 |
N
Instruction __ ; — |
Fetch Unit _ |
r 106 110§ >
O
_ /1 U4 Address Load!/ £ 3
Operation Store | = 2
: - - > = Q |
Instruction Execution | Operation [I
Decode - Execution S~
106 O
and - | L // | .
. Dispatch Address 110
~— Operation —- z / |
' T Execution | |
Load/
108 Store | |
Operation
Integer]
. Execution
- Operation
Execution |— | MuitiPort
108 Register
| - File
Integer
Operation ; ;
Execution l _ 114
:412 4/
Float 5
i Operation |
Execution |
//112 |
| \ Float |
L Operation _
Execution i ‘ _

Fig. 1
PRIOR ART

U.S. Patent May 17, 2005 Sheet 2 of 4 US 6,895,497 B2

19
. 9\ 202 o0 B
v .

Instruction < = | | - |
| FetCh Unit |
| /4224
Address/ | o]
Integer _ S?:re
Instruction | QOperation * | @
Decode i i Execution | M- Operat!on %3
| 290 Execution =
and 57'/ <
Disp@ Addres | £
integer -
"] 2724 o
206 Operation iy // %
210 Execution | | L.oad/ p=
/ | 220 | Store 2
- Resource Addre | Operation | &
' Allocation Integer Execution O
Unit Operation Mufti_ ~
| Execution |
1 Port o
Register 03
l Addres File ~ Store i
208 Integgr Operation
/ Jperation Execution
Instruction Execution | \
Decode 227 230
and | E ” // 224
I - Filoat
| Urspatch Operation |
| ﬁ EXECUtiOn l
7‘/204 __/./222 |
Instruction Float :
Feteh Unit Operation i
Execution

Fig. 2

U.S. Patent May 17, 2005 Sheet 3 of 4 US 6,895,497 B2

12

31 e,
Instruction N 302_ o |
Fetch Unit d/ ey 306 |
Address/ ~ /

Filoat
Operation
Fxecution

' 304
Filoat |

Operatior
Executior

QL
8 |
Integer [N LS?:d; 2
‘ Operation |] - |
Instruction ED . A ' Operation > >
Decode xecution Execution g
e 002 | q,
Dispatch Address %
== Integer 1] 06 | 1= |
300 Operation ‘ //3_ &
: Execution = | oad/
Resource | 302 Store | | \
Allocation 314 re /" Operation |
Unit o integer Execution
Operation | _ .}
[Execution [Multi-
» | 07 Port
| Execution Register
Unit oS File
| Available Integer
Register _ Operation
;.\ﬂﬂﬂ | Execution |
- 4 308
516 | |

Fig. 3

US 6,895,497 B2

Sheet 4 of 4

May 17, 2005

U.S. Patent

210

X\

S}UN 8p0o28(] R U8
UOINIISU| J8YI0 10} JLRIS)

SINAuUl 1S8NHay

4
T

POjUBRIS) $82:N058% & NAC V

pajsanbay s8oin0sey g Nag — e

41

N
=

DIJURIL) §80IN0SSY WV NAG VL
pajsanbay sauunosay v Nad Nu'

-
Y

O
m/
-—

III.'L

Allocation Logic

|

-

SHUHIHHOH

Sj4BliEAY

sanuoud Jsyio

Ajold g NAa

L alle A L.

BUReO| 4 BI]E|lBAY

lebajui/ssalppy

102

—

- Aloud ¥ Naa

F
1

Resource
| Avallable Register

Priority Assignment Register

i

Fig. 4

US 6,395,497 B2

1

MULTIDISPATCH CPU INTEGRATED
CIRCUIT HAVING VIRTUALIZED AND
MODULAR RESOURCES AND ADJUSTABLE
DISPATCH PRIORITY

FIELD OF THE INVENTION

The invention pertains to the field of multi-dispatch,
superscalar, computer architecture. In particular, the 1nven-
tion relates to circuitry and methods for simultaneously
dispatching multiple operations from multiple 1nstruction
decode and dispatch units into multiple pipelines, where the
multiple pipelines are shared by the multiple 1nstruction
decode and dispatch units.

BACKGROUND OF THE INVENTION

Most modern processors embody several pipelined func-
tional units. Typical such units include integer units capable
of performing integer arithmetic between register operands,
and floating point units capable of performing floating point
arithmetic between register operands. There may be dedi-
cated functional units for performing address arithmetic, or,
in some machines, integer units may perform these opera-
tions. Other functional units may include fetch and store
units that operate to retrieve operands from, or store results
into, memory. These functional units are referred to as
rESOurces.

Many modern processors are capable of commanding
operations 1n more than one functional unit simultaneously.
The process of commanding operations in functional units 1s
instruction decode and dispatch.

Superscalar machines have sufficient resources, and suf-
ficiently complex control, that it 1s possible to dispatch
operations from more than one instruction simultaneously. It
1s known, however, that such machines can only keep all
their functional units busy for only a small percentage of
fime. Most of the time only a subset of functional units are
actually performing useful work, 1n effect the load factor on
these functional units 1s typically low.

Much modern software 1s written to take advantage of
multiple processor machines. This software typically is
written to use multiple threads. Software 1s also frequently
able to prioritize those threads, determining which thread
should receive the most resources at a particular time.

Multithreaded processors are those that have more than
one 1nstruction counter, typically have more than one reg-
ister set, and are capable of executing more than one
instruction stream. For example, machines are known
wherein a single pipelined execution unit i1s timeshared
among several instruction streams. Since the execution unit
1s timeshared, each instruction stream tends to execute
somewhat slowly. These machines appear to software as
multiple, independent, typically slow, processors.

Machines of superscalar performance having multiple
processors on single 1ntegrated circuits are known.
Machines of this type include the IBM Power-4 and the PA
8800. Typically, each processor on these integrated circuits
has its own set of execution unit pipelines. Their die area,
and therefore cost, for execution units 1s therefore typically
much greater than with a timeshared multithreaded machine.

It 1s also known that that the power consumed by large
logic circuits, such as processors, 1s a function of the number
of gates switching in each clock cycle, the capacitance on
cach gate, and the power supply voltage. There are many
advantages to reducing the power consumed by a processor,

10

15

20

25

30

35

40

45

50

55

60

65

2

ranging from increased battery life in portable or mobile
applications to lessening air conditioning load of computer
rooms containing multiple large machines.

While single-integrated-circuit multiprocessor machines
offer good performance, they make mefficient use of their
resources and consume considerable power.

SUMMARY OF THE INVENTION

A multiple dispatch machine has multiple, pipelined,
dynamically allocated, functional umits. These functional
units include generalized functional units, for example each
integer unit 1s capable of performing integer numeric opera-
tions as well as address computations. An embodiment
incorporates floating point and load/store units 1 addition to
generalized integer and address numeric units.

The multidispatch machine also has two, three, or more
instruction decode and dispatch units, and a functional unit
allocation unit. The functional unit allocation unit 1s capable
of dynamically allocating the functional units to instruction
streams executing on the multiple 1nstruction decode and
dispatch units. The allocation 1s performed 1n such way that
the functional units have a higher utilization factor than in a
typical machine as known 1n the art. The machine therefore
makes more efficient use of its resources than a typical
multiple-processor integrated circuit while consuming less
pPOWETr.

In a particular embodiment, the functional unit allocation
unit 1s priority-based, with individual priority settings for
cach imstruction decode and dispatch unit. A particular
instruction decode and dispatch unit may be given high
priority, such that i1t receives all the resources 1t requests; a
medium priority, where it receives resources on a basis equal
to other medium priority units when they are not used by
high priority units; a low priority; and a low priority with a
guaranteed minimum throughput.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a block diagram of portions of a superscalar
processor as known 1n the art, having six execution
pipelines, of which two are dedicated to performing address
operations, two are capable of performing general integer
operations, and two are dedicated to floating point opera-
tions;

FIG. 2, a block diagram of portions of a superscalar
processor embodying the present invention;

FIG. 3, a single-dispatch machine having the ability to
dynamically allocate its pipelines, such that some pipelines
may be shut down in low load conditions; and

FIG. 4, a block diagram of a resource allocation unit for
a multi-dispatch machine.

DETAILED DESCRIPTION OF THE
EMBODIMENTS

FIG. 1 1s a block diagram of portions of a core of a
superscalar processor 99 as known 1n the art. This processor
receives instructions from cache (not shown) through a
cache/memory interface 100 into an instruction fetch unit
102. These 1nstructions are decoded 1 an mstruction decode
and dispatch unit 104, which then dispatches them to func-
tional units (106, 108, 110, and 112) for execution. Address
operations are dispatched to address operation execution
units 106, integer operations to integer operation execution
units 108, load/store operations to load/store operation
execution units 110, and floating point operations to floating
point execution units 112. Address operation execution units

US 6,395,497 B2

3

106, integer operation execution units 108, load/store opera-
tfion execution units 110, and floating point execution units
112 fetch their operands and store their results in a multiport
register file 114. Multiport register file 114 has a large
number of port, for example 1n one prior art machine it may
have twelve read ports, and eight write ports.

Corresponding portions 199 of the present processor
receive 1nstructions from cache through cache/memory
interface 200 for a first thread 1nto a first instruction fetch
unit 202. Additional instructions are fetched for a second

thread through cache/memory interface 200 into a second
instruction fetch unit 204. Instructions from the first mstruc-
tion fetch unit 202 are decoded 1 a first instruction decode
and dispatch umit 206, and instructions from the second
instruction fetch unit 204 are decoded 1n a second instruction
decode and dispatch unit 208. Each instruction decode and
dispatch unit may receive multiple instructions 1n a proces-
sor clock cycle; although the actual number of instructions

dispatched each cycle will vary with load and dependencies.

Both 1nstruction decode and dispatch units 206 and 208
communicate with a resource allocation unit 210. Each
decode and dispatch umit 206 and 208 determines the
resources 1t needs to perform the instructions it is preparing
to dispatch, and requests those resources of the resource
allocation unit 210. Resource allocation unit 210 then allo-
cates and grants resources to each decode and dispatch unit
206 and 208. Decode and dispatch units 206 and 208 then
distribute decoded operations to the appropriate functional

execution units 220, 222, and 224.

Functional execution units 220, 222, and 224 include
multifunction integer units 220, capable of performing either
integer arithmetic operations or address computations; float-
ing point units 222 capable of performing floating point
arithmetic operations; and load/store units 224.

The functional units 220, 222, and 224 retrieve their

operands, and store results, 1n a multiport register file 230.

In normal operation, 1t 1s anticipated that the functional
units requested by each instruction decode and dispatch unit
206, 208, will vary from cycle to cycle. Sufficient functional
execution units are provided that each decode and dispatch
unit receives all resources 1t requests 1n most, but not all,
processor cycles.

For typical instruction mixes, each instruction decode and
dispatch unit can dispatch to 1ts maximum possible number
of functional units 1n only a minority of processor cycles. In
those cycles 1t 1s statistically likely that other decode and
dispatch units of the machine will need fewer functional
units than their maximum. Therefore, an optimum number
of functional umits 1s provided where each instruction
decode and dispatch unit rarely stalls due to unavailability of
resources. This optimum 1s less than the number of func-
tional units required for multiple independent processors of
similar, superscalar, performance.

The resource allocation unit 210 1s capable of operating in
a random mode and 1n a priority mode. In random mode,
when fewer resources are available than requested, resource
allocation unit 210 grants the available resources evenly
among requesting instruction decode and dispatch units 206,
208. In priority mode, resource allocation unit 210 grants
resources such that high priority instruction decode and
dispatch units 206 have first call on resources, with remain-
ing resources distributed among instruction decode and
dispatch units 208 of lower priority. Multiple levels of
priority are provided, and each struction decode and
dispatch unit 206, 208, 1s associated with a priority level.

When an instruction decode and dispatch unit 206, 208
requests one or more functional units that are not granted to

10

15

20

25

30

35

40

45

50

55

60

65

4

it, 1t dispatches as many operations as possible to granted
units, and stalls the remaining operations until the next
cycle.

The design of FIG. 2 1s extensible to greater numbers of
instruction decode and dispatch units 206 and 208, as well
as to greater numbers of functional units including combined
address and integer operation execution units 220. In
particular, an 1mplementation having four decode and dis-
patch units 206 and 208 1s anfticipated. The design 1s also
extensible to machines having additional types of functional
units as known 1n the art.

It 1s anficipated that for typical instruction mixes and
dependencies, the present design 1s capable of maintaining

high load factors 1n the functional execution units 220, 222,
and 224.

It 1s also anticipated that one or more instruction decode
and dispatch units 206 and 208 may be disabled as perfor-
mance and power consumption needs of the system dictate.
In a particular mode of operation, only one instruction
decode and dispatch unit 206 1s operational. When the
machine 1s operated this way, the machine operates as a
single dispatch machine. This mode 1s of particular use when
executing software has only one thread ready for execution.

In a particular embodiment, the integer functional units
220 have a pipeline length of a maximum of ten cycles, and
of accepting commands from the instruction decode and
dispatch units 206, 208 every cycle. In this embodiment the
allocation unit 210 1s capable of reallocating the integer
functional units 220 between among the instruction decode
and dispatch units 206, 208 every cycle.

There may be times when 1t 1s desired to operate the
machine at less than 1ts maximum possible performance. At
these times, one or more of the plurality of combined
address and integer operation execution units 220, floating,
point units 222, or load/store units 224, may be turned off.
So long as one or more of each unit type 1s left operating, the
machine 1s capable of operation at reduced performance.
Turning off functional units conserves power by reducing
the number of logic gates switching. Turning off functional
units 1s performed by enabling or disabling unit available
flags in an execution unit available register (not shown)
assoclated with the allocation unit 210. Those units marked
unavailable 1n the execution unit available register may have
their clocks disabled to further conserve power.

In an alternative embodiment (FIG. 3), having but one
instruction decode and dispatch unit 300, there are a plural-
ity of combined address and integer operation execution
units 302, floating point units 304, and load/store units 306.
These pipelined execution units 302, 304, and 306 are
coupled to a register file 308 for storing operands. The
load/store units 306 load and store operands to/from cache
and memory (not shown) through a cache & memory
interface 310, which also provides instructions through an

mnstruction fetch unit 312 to the istruction decode and
dispatch unit 300.

When the instruction decode and dispatch unit 300
requires resources, such as execution pipeline units 302,
304, and 306, it requests those units of a resource allocation
unit 314. The resource allocation unit 314 1s associated with
an execufion unit available register 316.

With this embodiment, software sets the execution unit
available register with a setting based on system loading and
power availability. This setting indicates at least one avail-
able execution unit of each type, but need not indicate that
all units are available. This setting may be changed by
software as system load and power availability change.

US 6,395,497 B2

S

Those units marked unavailable 1n the execution unit avail-
able register may have their clocks disabled to further
CONSErve poOwer.

An allocation unit 210 (FIG. 4), such as may be used with
the present processor, has a resource available register 404
and a priority register 402. Priority register 402 has a priority
assignment field associated with each 1nstruction decode and
dispatch unit, such as decode and dispatch units 206, 208
(FIG. 2). Resource available register has an available
resource fleld for each type of resource, such as floating
point units 222 and address/integer units 220, that may be
dynamically allocated in the system of which the allocation
unit 400 1s a part. The allocation unit also has arbitration
logic 406 that receives allocation requests 408, 410 from,
and grants resources to 412, 414, the instruction decode and
dispatch units 206, 208 and any other resource consumers in
the machine.

While the invention has been particularly shown and
described with reference to particular embodiments thereof,
it will be understood by those skilled in the art that various
other changes 1n the form and details may be made without
departing from the spirit and scope of the ivention. It 1s to
be understood that various changes may be made in adapting,
the invention to different embodiments without departing
from the broader inventive concepts disclosed herein and
comprehended by the claims that follow.

What 1s claimed 1s:

1. A multiple dispatch processor comprising:

a plurality of 1nstruction fetch units, each instruction fetch
unit capable of fetching a stream of instructions;

a plurality of instruction decode and dispatch units each
coupled to a corresponding instruction fetch unit of the
plurality of instruction fetch units to receive mstruc-
tions therefrom;

at least one register file coupled for storing operands;

a plurality of execution units coupled to the register file
and to the instruction decode and dispatch units for
performing operations on operands as directed by the
plurality of instruction decode and dispatch units; and

10

15

20

25

30

35

6

a resource allocation unit coupled to allocate execution
units among the instruction decode and dispatch units;
and

wherein the plurality of execution units further comprises
a plurality of multifunction execution units, each of the
multifunction execution units capable of handling inte-
ger and address operations.

2. The multiple dispatch processor of claim 1, wherein the
plurality of execution units further comprises a plurality of
floating point execution units.

3. A multiple dispatch processor comprising;:

a plurality of instruction fetch units, each instruction fetch
unit capable of fetching a stream of instructions;

a plurality of instruction decode and dispatch units each
coupled to a corresponding instruction fetch unit of the
plurality of instruction fetch units to receive instruc-
tions therefrom:;

at least one register file coupled for storing operands;

a plurality of execution units coupled to the register file
and to the instruction decode and dispatch units for
performing operations on operands as directed by the
plurality of instruction decode and dispatch units; and

a resource allocation unit coupled to allocate execution
units among the instruction decode and dispatch units;

wherein at least a first execution unit has a clock signal
turned off when the first execution unit 1s marked
unavailable 1 the resource available register, and the
clock signal 1s turned on when the first execution unit
1s marked available 1n the resource allocation register.
4. The multiple-dispatch processor of claim 3 wherein at
least one execution unit 1s marked unavailable 1n the
resource allocation register when the processor 1s operating
under low power availability.
5. The multiple-dispatch processor of claim 3 wherein the
execution units further comprise a plurality of address-and-
integer units and a plurality of floating point units.

	Front Page
	Drawings
	Specification
	Claims

