US006889358B1
a2 United States Patent (10) Patent No.: US 6,889,358 B1
Lieuwen et al. 45) Date of Patent: May 3, 2005
(54) CONCURRENCY CONTROL IN 5,999.930 A * 12/1999 Wolllcooovivviiiiininnnn, 707/8
MATERIAILIZED VIEWS OF A DATABASE 5,099.931 A * 12/1999 Breitbart et al. 707/10
6,026,413 A * 2/2000 Challenger et al. 7077202
(75) Inventors: Daniel Francis Lieuwen, Plainfield, NJ 6,032,216 A * 22000 Schmuck etal. 7107200
(US); Akira Kawaguchi, New York, OTHER PURIICATIONS
NY (US); Inderpal Singh Mumick,
Berkeley Heights, NJ (US); Dallan Roussopoulos, Nick et al., Principles and Techniques 1n the
Wendell Quass, Palo Alto, CA (US); Design of ADMS, Comupter |periodical], IEEE Computer
Kenneth A. Ross, New York, NY (US) Society, vol. 19, No. 12, pp.19-25, Dec. 1986.*
Grithin, Timothy et al., Incremental Maintenance of Views
(73) Assignee: Lucent Technologies Inc., Murray Hill, with Duplicates, ACM, pp. 328-339, 1995.%
NJ (US) Cer1, Stefano et al., Deriving Production Rules for Incre-
mental View Maintenance, Proceedings of the 17th Interna-
(*) Notice: Subject to any disclaimer, the term of this tional Conference on Very Large Databases, pp. 577-589,
patent 1s extended or adjusted under 35 Sep. 1991.*
U.S.C. 154(b) by 746 days. Blakeley, Jose et al., Efficiently Updating Materialized
Views, ACM, pp. 61-70, 1986.%
(21) Appl. No.: 09/004,265 (Continued)
(22) Filed: Jan. 8, 1998 Primary Examiner—William L. Bashore
(51) Int.CL7 ..o, GO6F 15/00; GO6F 7/00; (57) ABSTRACT
GO6F 17/30; GO6F 17/21
(52) US.CL .o, 715/500; 707/1; 707/2; In a database, a database manager can gencrate a view,
707/8; 707/9; 707/202; 707/203 which, 1n concept, 1s a subset of the database, which 1s
(58) Field of Search 707/1-9, 100, placed outside the database for use without disturbing the
707/101, 201, 202-203, 10; 715/500 database, and without disturbance by others using the data-
base. The subset, or view, can be understood as a collection
(56) References Cited of rows, or tuples, of data copied from the database. With

U.S. PATENT DOCUMENTS

5,237,678 A * 8/1993 Kuechler et al. 707/5
5,280,612 A * 1/1994 Torie et al.cceeeenn..e. 707/8
5,317,731 A * 5/1994 Diasetal.cceeevennn..e. 707/8
5,440,735 A * §/1995 Goldringceeevveneeneenen.. 707/8
5452445 A * 9/1995 Hallmark et al. 707/2
5594809 A * 1/1997 Knudsen et al. 707/2
5,666,526 A * 9/1997 Reiter et al. 707/2
5,692,178 A * 11/1997 Shaughnessy 707/8
5,701,480 A * 12/1997 RaZ ..covevevviiniiinnninnnnn, 709/101
5,832,484 A * 11/1998 Sankaran et al. 707/8
5,893,117 A * 4/1999 Wangcc.cceevvevennnnn. 707/203
5,940,827 A * §/1999 Hapner et al. 707/8
5,983,225 A * 11/1999 Anfindsencoeuun..e... 707/8

views existing, multiple copies of data within the database
now exist: the original 1in the database, and copies 1 the
views. If one of these 1s changed, without corresponding
changes made 1n the others, then inconsistencies occur,
which cannot be tolerated. Under the invention, when a user
secks a lock on a view, indicating that a change may be
imminent, the invention locks a superset of the tuples in the
database from which the view 1s derived. A superset 1s a set
which contains the set of tuples of the view, plus possibly
others. Thus, more tuples are locked than strictly necessary.
The excess locking is tolerated because other benelits are
obtained.

18 Claims, 9 Drawing Sheets

8,005 START

6,618 v NEED

6.029
j

EFRESHING 7

BASESET <<-- SET COF ALL BASE RELATIONS IN DEPENDENCY GRAPH G
OF VIEW V. COMPUTE USING A TRAVERSAL (eg, DEPTH- or BREADTH- FIRST) COF G

¢

6,030 READ LOGS FOR ALL BASE RELATIONS IN BASESET

A

6,040~ COMPUTE CHANGED TUPLES FOR

RELATIONSHIPS IN THE DEPENDENCY GRAPH OF V AS NEEDED

VIEW V. READING BASE

'

65,0587 WRITE THE CHANGED TUPLES TO THE MATERIALIZATION OF VIEW V

US 6,389,358 Bl
Page 2

OTHER PUBLICAITONS

Dasgupta, Partha et al., The five color concurrency contrl
protocol; non—two—phase locking in general databases,
ACM Transactions on Database Systems, vol. 15, Issue 2,
pp. 281-307, Jun. 1990.%

Scgev, Arie et al., Updating Distributed Materialized Views,
IEEE Transactions on Knowledge and Data Engineering,
vol. 1, No. 2, pp. 173-184, Jun. 1989.*

Segev, Arie et al., Concurrency—Based Updates To Distrib-
uted Materialized Views, IEEE Proceedings of the Sixth

International Conference on Data Engineering, pp. 512-520,
Feb. 1990.*

Xiaole1, Qian et al., Incremental Recomputataion of Active
Relational Expressions, IEEE Transactions On Knowledge
and Data Engineering, vol. 3, No. 3, pp. 337-341, Sep.
1991.*

Locking 1n a Relational Data Data Base, IBM Technical
Disclosure Bulletin, vol. 25, Issue 10, Mar. 1983, pp.
5027-5028.*

Colby, Latha S. et al., Algorithms for deferred view main-
tenance, ACM International Conference on Management of
Data and Symposium on Principles of Database Systems,

Jun. 3-6, 1996, pp. 469—4K0.7

* cited by examiner

US 6,889,358 B1

AN aEmy EEm . - s v sy besw TER SR -_—y o - EE s i -— = wmy - —— —y o —

Sheet 1 of 9

R N O/ a0
NN NN L]
NI NI NI TR 1]
IR RR O i 1 d]
gyt I JE L
AN I 1 N N O O A Rt

DDDDDDDDD@@H]_I_ [y ~— MOY
Z0 10

F @_H_m_ SLINM .M:‘NQ zZDJoo|\

J5VHV.LVU
g0

May 3, 2005

s 0oy

U.S. Patent

US 6,889,358 B1

Sheet 2 of 9

May 3, 2005

U.S. Patent

SdNOYO MIIA <<—- ~9A
MIIA Q3¥¥3430 <<-- Q

M3IIA 10OHSJVNS <<-- &
M3TIA FLVIOQIWWI <<-- 1

'S13av |

S37gvyL 3SvVE
‘35vav.iva NI
ViVA MVY <<--*Q

MIIA ¥V <<—-""A
ON3937

A MIIA 40 NOLLYZIWINTLYW JHL OL S31dNL TIONVHD IHL TLI¥M ke 0Se'9

J3033N SY A -0 HdVY¥9 AONIONIJ3Q 3HL NI SJIHSNOILY 13N _.
35vE ONIQV3Y ‘A M3IIA ¥Od S3TdNL Q3ONVHD 3indwos [~ ¥vYS

US 6,889,358 B1

- _ 13535va NI SNOILYI3M 3ISvA TV ¥04 S907 Q3 0EL'S
<z - -
;| —— L
0 40 (1SYNI4 -H1av3YNg Yo -H1d43Q 'B8) WSHIAVML YV ONISN J1INdW0OD ‘A M3IA 40
0 HAVYMO ADNIANIJI3IC NI SNOILY13Y 3Isvg TV 40 L3S -->> 1383sv4
“ I -
> = _1
) 0909 Bcb9
=
>

N P10'S
— 1dV1S —/H BPB'0 @ @EE

U.S. Patent

N1 AJIAOIW ONV

Nl 0L S3IONVHI JLNdWOI _ R

US 6,889,358 B1

(MDSA NI S3 1dNL dv3du PEO'8

&N
S |
= (M1)SA NI ST TNL ¥0d4 SIWINI 9071 V3N
P .
S
SA Ham@m
=
—
L\
3y.,, ¢, O3NIVLINIVIW
= ON LSY1 SYM N1 JINIS

NILLI¥M N3JG (M1SA NI
3 1dNL ANV SVH

17 el

D108

0BE'8 LV 1S

U.S. Patent

US 6,889,358 B1

Sheet 5 of 9

May 3, 2005

U.S. Patent

SO0

(LI 1de TV

o

(ANIVLINIVIW 11VJ
Fl B+0'6

SNOd L~ BL96

M1dC TV

BO06

SRIIE

ON

(M1)S0 NI

S31dNL A001 dvde

SA

LdaVLS

POB'6

L BED'S

BCB'6

US 6,889,358 B1

Sheet 6 of 9

May 3, 2005

U.S. Patent

(I)1dC 11V

SINOQ

(L) 1dC TV

01’0l Ol

S4A

¢ 1450vdd 145 Uv3dd
034V 1030-d¥d HLIM
L NOILOVSNVYH1L dWOS dH04

N (1 3SOYIMINOILDYSNYYN L
-NID3g = 1
OL0' Ol
PSR'Ol ON

¢ Nl
3 1dMNL MJIA UONV
A MJIA JWOS H04

S3A

H 0900l

E._>L -1

9 e

PEQ' Q]

14V 1S

0CO 01

g121745%)

US 6,889,358 B1

Sheet 7 of 9

May 3, 2005

U.S. Patent

/L D)lle]

0r 9 NOILVOIONI 1d0HY NV d0 W Ul
;o uogy Wl gI0 NOILOVSNVML V SNYN1dd LI IINN LIVM ONV
ON SA 135 NI SMJIA T1V NIVLNIVH Ol

W1 NOILOVSNVEL dONVNILNIVIN NMVJS

>3 VOE 91

(L1H0EVY 1dC T1VD .
13SAv3Y NI SMIIA —>> SA

9RS'al

BOC Ol

Y
0se'el Ol |

ON

13450v3y NI WLl V1vO
345Vd Ad3Ad A00 1 UVdd

Gol'al

¢ U3LLIWWNOD W1
d31dvV (0JdHSIdd4d SA NI
SMJIA JHL dJ0 ANV

ANV JH3IM

S3A (uottoesued juiBaq)dz TV

00101

US 6,889,358 B1

Sheet 8 of 9

May 3, 2005

U.S. Patent

(A} 1 USSSMBIA
SdA -—>> USSGSMIIA

¢ SVM A
NIHM (JHSdaady USSESMILA

NI SMJIA T IV
3 3M

0LOTT ﬂ
GLOTT

S5-A
pEaTl

¢ N1 J0dNL 0NV

A M3IA JWOS 0
(N1 4 =1

o30U

ON

@901

P8AT T

(L1 1dC T1VO

Q601

ON

(180dV) 1dZ 11VO

ANOU

(1) 1dd 11Vd

BZaT]

8 =]

14V 1S

ON

¢, UOTLoRSURJ | UIbaq
= [54004 .

BraTI

jl RN

SA

- 0 -->> SM3IA

U.S. Patent May 3, 2005 Sheet 9 of 9 US 6,889,358 Bl

>
(0~
L L
)

US 6,589,358 Bl

1

CONCURRENCY CONTROL IN
MATERIALIZED VIEWS OF A DATABASE

The 1nvention concerns a database system which pro-
vides multiple views of the database. The system assures
that, when a user reads views, consistent data 1s delivered to
the user.

BACKGROUND OF THE INVENTION

FIG. 1 1llustrates a database DB, which contains data units
3, which, for simplicity, are shown organized into rows R1,
R2, RN and columns C1, C2, . .. CM. Users can query the
database, by commanding a database management system to
retrieve a specified collection of the data units.

For example, assume that the database 1s a nationwide
telephone directory. A user may 1ssue a query requesting
retrieval of all telephone numbers assigned to parties named
Miller, who live on Main Street, 1n all cities nationwide. The
management system will return these telephone numbers to
the user.

In many situations, 1t 1s convenient for users of the
database DB to deal with a subset of the database, rather than
with the database itself. Further, 1t also may be convenient
for these subsets to be formatted differently, 1n order to suit
the users’ preferences.

2

These subsets are termed “views.” Continuing the
example given above, one view may contain all telephone
data within the state of New Jersey. If the user 1ssues the
same query 1dentified above, but to this view istead of to
the database as-a-whole, only telephone numbers of parties
in New Jersey would be retrieved.

Views are generated, or defined, through the use of
queries. A view 1s either virtual or materialized. A virtual
view 1S not physically stored as a subset of data 1n permanent
storage, such as a fixed drive or tape. Rather, 1t 1s computed
on demand by executing the query which generates the view,
and the results of the query are stored 1n system memory.

In a materialized view, a query also generates, or defines,
the view. However, unlike a virtual view, the results of the
query which generates the materialized view are stored 1n
permanent storage.

With the use of materialized views, multiple 1nstances of
a single piece of data can exist. For example, an original
piece of data can exist in the database, and copies of that
same data can exist in materialized views. If one of these
instances of data changes, then a person reading two copies
of the same underlying data may see different values of the
data. For instance, in the example given above, if Miller’s
telephone number has changed, the person might see both
Smith’s current and previous phone number. In many
situations, this inconsistency cannot be tolerated.

These 1nconsistencies can be caused by transactions
which modity the database. A database transaction can be
viewed as a series of commands starting with a “Begin-
Transaction” command and completing with either an
“AbortTransaction” or “CommitTransaction” command. An
“AbortTransaction” command rolls back all work performed
by the transaction, and returns the database to the condition
prevailing prior to the “BeginTransaction” command. A
“CommitTransaction” command causes the transaction to
take effect, and makes the results of the transaction durable,
by storing sufficient information on stable storage (e.g., disk)
to ensure that none of the transaction’s actions will be lost.

The data 1n the database 1s stored in the form of tuples.
Before a transaction reads or writes a tuple, the appropriate

10

15

20

25

30

35

40

45

50

55

60

65

2

read-or write-lock must be acquired. These locks prohibit
other parties from gaining access to the locked data. This
prohibition prevents the other parties from reading or modi-
fying the data 1n manner different from the transaction’s
modifications, and thereby prevents inconsistencies from
arising.

To perform any of these transactional tasks, the underly-
ing database transaction manager must be invoked. Trans-
action managers having the capabilities described above are
known 1n the art. However, existing managers, while pre-
venting the mconsistencies described above from occurring
in base data of the database itself, do not necessarily prevent
inconsistencies from occurring in transactions which read
materialized views of the database.

SUMMARY OF THE INVENTION

In one form of the invention, a database manager gener-
ates views. When a transaction seeks to 1ssue a read-lock on
a target tuple 1n a view, the mvention attempts to lock a
superset of tuples 1n the database. If certain conditions are
met, the attempted lock succeeds.

The superset contains the tuples from which the target
tuple 1s derived. Locking the superset prohibits changes in
the superset-tuples, which may cause inconsistencies
between the superset-tuples and the target tuple. However,
the superset may also contain tuples which are not involved
in deriving the target tuple, so that unrelated tuples may
become locked. A trade-off occurs.

On the one hand, 1t 1s computationally expensive to
identify a minimal set of tuples in the database from which
the target tuple 1s derived, and lock only that minimal set. On
the other hand, it 1s inexpensive to 1dentify the superset. The
disadvantage of locking the superset, including extra tuples,
1s seen as offset by the convenience in avoiding computation
of the minimal set.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a generic 1llustration of a database, and also of
views of the database.

FIG. 2 1llustrates a dependency graph used by the mnven-
tion.

FIGS. 3-8 are tlow charts illustrating logic implemented
by the mvention.

FIG. 9 1llustrates one form of the mvention.

DETAILED DESCRIPTION OF THE
INVENTION

Overview

The mvention provides extensions to the capabilities of
existing transaction managers, including three new routines
for reducing inconsistencies which these managers can
produce.

One routine eliminates inconsistencies entirely. The other
two eliminate inconsistencies enfirely if certain conditions
hold. A particular transaction will either (1) use the conven-
tional transaction manger, or (2) repeatedly use exactly one
of these three extended routines, 1n the course of executing
transactional tasks.

Preliminary Matters

Logic executed by the invention will be explained by
reference to flow charts. In the flow charts, the symbol “T”
and “Tm” refer to a transaction, which 1s a group of

US 6,589,358 Bl

3

operations; “V” and “VS” refer to views; “U” refers to a
base tuple, which 1s a tuple contained i1n a database, and
which can be either written to, or read; “Tu” refers to a view
tuple, which 1s a tuple contained 1n a view, and which can be
read, but not written to, by database users.

A materialized view tuple can be modified as part of
maintenance to bring 1t up-to-date with the underlying base
data. FIG. 3 1s a flow chart describing how to maintain a
VIEW.

FIG. 3

Maintain View V, Which 1s Utilized 1n Transaction
M

Input: View V

Output: Materialization of V will be made consistent with
the Current State of the Base Tables from which V 1s
Derived.

In FIG. 3, processing begins 1n block 6,000, which leads
to block 6,010, which inquires whether view V requires
refreshing. The 1nquiry 1s answered by interrogating the logs
of the base relations over which V is defined. If no modi-
fications have occurred to the underlying data in the base
relations, V requires no refreshing. If modifications have
occurred, the modifications may trigger the marking of V as
requiring refreshing.

If refreshing 1s not required, then block 6,060 is reached,
and the processing terminates. In this case, the view has been
maintained, but not refreshed. A view 1s refreshed when
maintenance must modily its contents.

If refreshing 1s required, block 6,020 1s reached, which
places mto a BASESET all base relations of the database
which are needed to derive view V. These base relations are
identified through a dependency graph G. FIG. 2 provides an
example of a dependency graph. Items B1-BS represent the
raw data 1in the database, and will be called base tables
herein.

View V1 i1s derived from a single source, namely, base
table B1. However, view V10 1s derived from two sources,
namely, base tables B4 and BS. A preferred approach to
identifying the base relations in the dependency graph is

through use of a depth- or breadth-first traversal, as indicated
in FIG. 3.

In effect, by using the dependency graph, block 6,020
identifies all relations, also called tables, needed to construct
view V. These relations will be updated in later steps.

Next, block 6,030 1s reached, which reads the logs for all
base relations 1 the BASESET. Logs store information
about changes made to the base relations. When a base
relation’s contents are changed, information about the
changes are stored 1n a log for that relation. The logs allow
previous states of the relation to be reconstructed, and are
used, for example, 1f current relations becomes corrupted.

Block 6,030 reads the log entries for all base relations in
the BASESET. That 1s, all log entries for all relations in the
database which are necessary to produce view V are read
(i.c., all relations that appear in the query that defines V).
Within these relations, block 6,040 identifies the tuples
which have changed for view V, using the dependency graph
G. When the changed tuples have been identified, block
6,050 writes the changed tuples to the materialization of
view V.

For maintenance purposes, the mvention treats all views
used 1n the definition of other views as virtual. Hence, the

invention performs maintenance only 1n terms of the under-

10

15

20

25

30

35

40

45

50

55

60

65

4

lying base data. For imstance, view V16 in FIG. 2 1is
maintained based on B4 and BS5, not on view V10. Exten-

sions to the algorithms to make use of the intermediate

materialized views (e.g., view V10) are straightforward to
those skilled 1n the art.

After block 6,050, block 6,060 is reached, ending the

maintenance routine. The routine then returns to the point 1n
the program which called the maintenance routine.

Therefore, 1n FIG. 3, view V 1s maintained and perhaps
refreshed. FIG. 3 provides a maintenance routine for an
entire view. FIG. 4 contains a routine to maintain a single
tuple, Tu.

FIG. 4

Refresh Tuple(Tu)

INPUT: Tuple(Tu), from View V, which is to be Refreshed
OUTPUT: Reftresh 1s Performed

In FIG. 4, processing begins 1 block 8,000. Decision
block 8,010 mquires whether any tuple 1n derivation set
DS(Tu) has been written since Tu was last maintained. The
derivation set DS('Tu) is the set of tuples in the base relations
from which tuple Tu, 1n view V, 1s derived.

In practice, a superset of DS(Tu) 1s used which is easy to
compute, rather than the exact set DS(Tu) which may be
quite expensive to compute. For simplicity, the term “DS
(Tu)” will be used to mean a particular superset of DS(Tu).
A particularly simple-to-compute superset of DS(Tu) is the
set of all tables mentioned 1n the query defining the view V
which contains Tu.

Another algorithm for computing DS(Tu) is found in
“Concurrency Control Theory for Deferred Maternalized
Views,” by A. Kawaguchi, D. Lieuwen, I. Mumick, D.
Quass, and K. Ross, in pp. 306-320 (esp. pages 312, 313) of
“Database Theory—ICDT’97, 6th nternational Conference
Proceedings,” Delphi, Greece, January, 1997, published by
Springer, Berlin, Lecture Notes in Computer Science 11-86.

If the answer 1s No, then block 8,070 1s reached, and
processing terminates. If the answer 1s Yes, then block 8,020
is reached, in which the log entries for the tuples in DS(Tu)
are read from a log.

As explained above, log entries indicate the changes
which have been made to an original base tuple. Block 8030
reads the tuples in DS(Tu). Block 8040, using the log entries
of block 8020 and the tuples of block 8030, computes the
changes made to the original tuple Tu, and modifies the
original to reflect the changes. Now the original tuple Tu has
been modified to be current. Processing terminates 1n block

8070.

Therefore, 1n FIG. 4, a tuple Tu 1n view V 1s updated to
bring 1t up to date with changes to the underlying tuples 1n
the base relations.

FI1G. §

Strict Currency Mat-Serializable 2PL. Algorithm

INPUT: operation I {r[u], w[u], r'TTu], BeginTransaction,
CommitTransaction, AbortTransaction} of Transaction T,
wherein:

rlu] requests a read lock on base tuple u;

w|u] requests a write lock on base tuple u;

r” [Tu] requests a read lock on a view tuple Tu from view

V.
OUTPUT: Wait-or-Proceed Decision, so that 2PL Sched-

ules with Strict Currency are Produced.

US 6,589,358 Bl

S

All operations except r'(Tu) are standard operations sup-
ported by the locking subsystem of any transaction manager
supporting two-phase locking. Two-phase locking 1s known
in the art. An extensive treatment of how to build the
mechanisms underlying two-phase locking can be found in
Jim Gray and Andreas Reuter, Transaction Processing: Con-

cepts and Techniques, 2nd printing, Morgan Kaufmann,
1993,

The mvention builds a locking protocol on top of a known
transaction manager which properly handles views. The

Specification will describe this by making reference to the
2PL routine called 1n the flow charts of FIG. § and others.

The underlying transaction management machinery
knows nothing of views. Hence, 1t will treat a view tuple just
like a base tuple 1n terms of locking. This leads to 1ncon-
sistencies 1f additional machinery 1s not employed.
However, 1t also means that the machinery can be used to
lock view tuples to prevent other transactions from reading
the maintained tuples until the transaction that does the
maintenance completes.

In brief, two-phase locking entails two phases: a growing
phase, and a shrinking phase. The growing phase exists
while an transaction 1s requesting that locks be granted.
However, once the transaction releases one, or more, locks,
the shrinking phase begins. During the shrinking phase, no
further locks can be acquired by the transaction.

In FIG. §, processing begins 1n block 9000. Block 9020
inquires whether the operation I requests a read lock on a
view tuple “Tu,” which 1s a tuple belonging to view V. If not,
block 9060 is reached, and the underlyimng 2PL. machinery of
the transaction manager 1s used to execute the conventional
request, and processing completes 1n block 9,070. I, 1n
block 9020, the read lock 1s requested, block 9030 1s
reached, which obtains a read lock on the tuples in the
derivation set of tuple Tu. As explained above, the derivation
set DS(Tu) 1s the set of tuples in the base relations from
which tuple Tu 1s derived.

Next, block 9040 calls the routine MAINTAIN(V), which
was described 1n connection with FIG. 3. Alternatively, the
process RefreshTuple(Tu) in FIG. 4 could be used.

Optimizations are possible. For example, if the transac-
tion has already performed MAINTAIN(V) and has not
modified any tuples of the base relations used 1n the defi-
nition of V, then the transaction need not re-execute
MAINTAIN(V). Similar optimizations will be readily
apparent to those skilled 1n the art.

Block 9050 requests a read lock from the underlying
storage manager for the view tuple Tu. The underlying
storage manager 1s not aware that Tu 1s anything more than
a standard tuple, and so 1t can lock Tu using normal
procedures. To guarantee consistency, both the locks on

DS(Tu) and on Tu are required. Processing terminates in
block 9070.

FIGS. 6 and 7

Loose Currency Mat-Serializable 2PL Algorithm

INPUT: Operation I BeginTransaction(ReadSet), 1fu],

wlu], r'l'Tu], AbortTransaction, CommitTransactiony of
Transaction T, wherein:

rfu], wlu], and r'[Tu] are defined in the previous section;
and

BeginTransaction(ReadSet) requests initiation of transac-
tion T which has a read set named ReadSet, which
contains all the base tuples (or relations) and views to
be read by the transaction.

OUTPUT: Wait, Proceed, or Abort Decision, so that 2PL

Schedules with Loose Currency are Produced. Views in
ReadSet are maintained.

10

15

20

25

30

35

40

45

50

55

60

65

6

In FIG. 6, processing begins 1n block 10,000. Decision
block 10,020 1s reached, which inquires whether operation I
requests a read lock on a view tuple “Tu,” which 1s a tuple
belonging to view V. If so, block 10,060 calls a 2PL routine
requesting a lock on Tu (where 2PL treats the view tuple Tu

like a standard base relation tuple). Processing terminates in
block 10,050.

If the NO branch 1s taken from block 10,020, then
decision block 10,030 1s reached. This block inquires
whether operation I 1s the beginning operation 1n a transac-
tion T, wherein transaction T contains a pre-declared read
set, named ReadSet. If not, processing proceeds to block 10,
040 and the underlying transaction manager handles the total
request. Processing terminates 1n block 10,050.

If operation I does represent the beginning of such a
transaction T, then block 10,100 1n FIG. 7 1s reached. The
underlying transaction manager 1s used to start a transaction.
Then, block 10,105 1s reached. For the transaction T started
in block 10,100, the pre-declaration of the read set, named
ReadSet, acts as a request for a lock on all enfities from base
relations listed in ReadSet.

The pre-declaration of the read set also acts as a request
for maintenance of all views 1n ReadSet. Consequently,
special operations must be undertaken 1n order to handle
transaction T. In block 10,105, a read lock 1s imposed on
every base data item listed in the read set. The locks are
acquired using the underlying 2PL routine used elsewhere
(e.g., block 10,040). The term “base data item” refers to data
items within the base relations, as opposed to 1items 1n views.

Next, block 10,200 assigns to a variable VS the set of
views 1n ReadSet. Then, block 10,300 spawns, or launches,
a maintenance transaction Tm. The maintenance transaction
Tm maintains all views 1n set VS, using the maintain routine
of FIG. 3. After completing, Tm returns 1ts transaction
identifier, M, or an abort 1ndication.

If, in decision block 10,400, maintenance transaction Tm
aborted, then block 10,500 1s reached, which calls a 2PL
abort routine which operates on transaction 1. This 2PL
routine restores the status quo to the system, returning the
system to its condition prior to 1nifiation of transaction T,
since T has been aborted. Then, as indicated, block 10,050
1s reached.

If maintenance transaction Tm does not abort, then, 1n
block 10,600, a check 1s made to see 1f any of the views in
VS were refreshed after Tm committed. In order to allow
this check, the transaction 1dentifier of the last transaction to
refresh a view V 1s stored 1n the database, or 1n some other
place, such as a server 1n the network.

Some system, such as the database or a server, also keeps
track of the sequence of transaction commits. If any of the
views were refreshed after Tm committed, block 10,500 is
reached, and the transaction T aborts. Transaction T 1s
aborted because, 1f the views were maintained at different
times, the possibility of inconsistency exists.

Another maintainer has refreshed at least one view after
Tm completed. Continuing might lead to inconsistent
results.

As one summary of the preceding: the logic of FIGS. 6
and 7 inquires whether operation I wishes to begin a new
fransaction with a pre-declared read set. If so, maintenance
transaction Tm 1s launched to maintain all views 1n the set
VS. Next, inquiry 1s made whether all views 1 VS have
been maintained at the same time. If so, processing com-
pletes. If not, the newly started transaction T 1s aborted,
because of the possibility of inconsistent data within the
views. Lock requests, commit, and abort are passed to the
underlying transaction manager for handling.

US 6,589,358 Bl

7
FIG. 8

Periodic Concurrency

INPUT: Operation I (BeginTransaction,
AbortTransaction, CommitTransaction, r{u], w|u], r'[Tu]) of
Transaction T, wherein:

rffu], wlul], and r"| Tu] are defined in the previous section.

OUTPUT: Wait, Proceed, or Abort Decision, so that 2PL
Schedules with Periodic Currency are Produced. Views in
ReadSet are maintained.

In FIG. 8, decision block 11,040 inquires whether opera-
tion I represents the beginning of a transaction Tr. If so,
block 11,050 sets an indicator variable ViewsSeen to the
empty set. ViewSeen 1s the set of all views seen 1n the
current transaction. Future calls to this routine to lock view
tuples will make use of this set. This indicator variable 1s
used later to detect the occurrence of an event of interest, as
will be scen.

If operation I does not represent the beginning of trans-
action Tr, then, by inference, operation I 1s not the beginning
step of a set of operations, but one of the operations
themselves. Decision block 11,060 1s reached, which
inquires whether operation I requests a read lock on a tuple
Tu of view V. If not, block 11,020 1s reached, and the
underlying transaction manager 1s handed the request I for
processing. Processing completes 1n block 11,030. If opera-
tion I requested a read lock on tuple Tu of View V, block
10,070 1s reached.

Block 11,070 inquires whether V was refreshed at a
different time than any of the other views seen by the current
transaction. If so, block 11,075 is reached and the transaction
1s aborted. Otherwise, inconsistent data may be seen. If not,
then transactionally consistent views have been seen thus
far.

The current view 1s added to the set of views seen thus far
by the transaction in block 11,080. Block 11,090 acquires a
read lock from the underlying transaction manager. Process-
ing terminates at block 11,030.

FIG. 9

FIG. 9 illustrates (1) a server SERV, which may take the
form of a complex of distributed servers, and (2) individual
computers, or terminals, C1-C3, which are linkable to the
server, as 1ndicated by the double-ended arrows. The server
contains database DB. Software, indicated by modules SA,
SB, SC, and SD, mndividually and collectively, execute the
logic described in the flowcharts contained 1n this Specifi-
cation. The software indicated also represents the database
management system described above, which generates
VIEWS.

Numerous substitutions and modifications can be under-
taken without departing from the true spirit and scope of the
mvention. What 1s desired to be secured as Letters Patent 1s
the 1nvention as defined in the following claims.

What 1s claimed 1s:

1. A system, comprising:

a database;

means for generating views of the database, said views
containing view tuples; and

means for detecting issuance of a read-lock-request for a
target view tuple and, 1n response, locking tuples 1n the
database which include a superset of tuples from which
the target view tuple 1s derived;

10

15

20

25

30

35

40

45

50

55

60

3

wherein the members of the superset are ascertained using
a dependency graph between the view containing the
target view tuple and the base data.

2. System according to claim 1, wherein the superset 1s
limited to a derivation set of the target view tuple.

3. System according to claim 1, wherein a transaction T
i1ssues the read-lock-request and, prior to the issuance, the
transaction T declares a read set which contains all data to
be read by transaction T.

4. System according to claim 3, wherein the transaction T
locks a subset of the read set before processing operations in
the transaction T.

5. System according to claim 4, wheremn the subset
contains all base data members of the read set.

6. System according to claim 3, wherein the transaction T
initiates an independent maintenance transaction Tm to
maintain a set of views 1n the read set.

7. System according to claim 6, wherein the set of views
contains all view members of the read set.

8. System according to claim 6, and further comprising
means for aborting the transaction T 1f the maintenance
fransaction Tm 1s aborted.

9. System according to claim 6, and further comprising
means for aborting the transaction T if refreshing of any
views 1n the read set occurs after the transaction Tm com-
mits and before the transaction T commuts.

10. A method of handling a database, comprising the
following steps:

generating views of the database, said views containing
view tuples; and

detecting 1ssuance of a read-lock-request for a target view
tuple and, 1n response, locking tuples 1n the database
which mnclude a superset of tuples from which the target
view tuple 1s derived;

wherein the members of the superset are ascertained using
a dependency graph between the view containing the
target view tuple and the base data.

11. Method according to claim 10, wherein the superset 1s
limited to a derivation set of the target view tuple.

12. Method according to claim 10, wherein a transaction
T 1ssues the read-lock-request and, prior to the 1ssuance, the
transaction T declares a read set which contains all data to
be read by transaction T.

13. Method according to claim 12, wherein the transaction
T locks a subset of the read set before processing operations
in the transaction T.

14. Method according to claim 13, wherein the subset
contains all base data members of the read set.

15. Method according to claim 12, wherein the transaction
T 1nitiates an 1ndependent maintenance transaction Tm to
maintain a set of views 1n the read set.

16. Method according to claim 15, wherem the set of
views contains all view members of the read set.

17. Method according to claim 15, and further comprising
the step of aborting the transaction T if the maintenance
fransaction Tm 1s aborted.

18. Method according to claim 15, and further comprising
the step of aborting the transaction T if refreshing of any

views 1n the read set occurs after the transaction Tm com-
mits and before the transaction T commuits.

	Front Page
	Drawings
	Specification
	Claims

