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DYNAMIC HARDWARE CONFIGURATION
FOR ENERGY MANAGEMENT SYSTEMS
USING TASK ATTRIBUTES

This application claims priority to European Application
Serial No. 00402331.3, filed Aug. 21, 2000 and to European
Application Serial No. 00402946 .0, filed Oct. 24, 2000. U.S.

patent application Ser. No. 09/932,651, now U.S. Pat. No.
6,751,705, 1s mncorporated herein by reference.

BACKGROUND OF THE INVENTION

1. Technical Field

This invention relates in general to integrated circuits and,
more particularly, to managing energy 1n a processor.

2. Description of the Related Art

For many years, the focus of processor design, including
designs for microprocessor units (MPUs), co-processors and
digital signal processors (DSPs), has been to increase the
speed and functionality of the processor. Presently, energy
consumption has become a serious 1ssue. Importantly, main-
taining low energy consumption, without seriously impair-
ing speed and functionality, has moved to the forefront in
many designs. Energy consumption has become important
in many applications because many systems, such as smart
phones, cellular phones, PDAs (personal digital assistants),
and handheld computers operate from a relatively small
battery. It 1s desirable to maximize the battery life 1n these
systems, since 1t 1s mconvenient to recharge the batteries
after short intervals.

Currently, approaches to minimizing energy consumption
involve static energy management; 1.€., designing circuits
which use less energy. In some cases, dynamic actions have
been taken, such as reducing clock speeds or disabling
circuitry during idle periods.

While these changes have been 1mportant, 1t 1s necessary
to continuously improve energy management, especially in

systems where size and, hence, battery size, 1s important to
the convenience of using a device.

In addition to overall energy savings, in a complex
processing environment, the ability to dissipate heat from
the 1ntegrated circuit becomes a factor. An mtegrated circuit
will be designed to dissipate a certain amount of heat. If
tasks (application processes) require multiple hardware sys-
tems on the integrated circuit to draw high levels of current,
it 1s possible that the circuit will overheat, causing system
failure.

In the future, applications executed by integrated circuits
will be more complex and will likely involve multiprocess-
ing by multiple processors, including MPUs, DSPs, copro-
cessors and DMA channels 1n a single integrated circuit
(hereinafter, a “multiprocessor system”). DSPs will evolve
to support multiple, concurrent applications, some of which
will not be dedicated to a specific DSP platform, but will be
loaded from a global network such as the Internet.
Accordingly, the tasks that a multiprocessor system will be
able to handle without overheating will become uncertain.

Accordingly, a need has arisen for a method and apparatus
for managing energy 1n a circuit without seriously impacting
performance.

BRIEF SUMMARY OF THE INVENTION

In the present invention, a processing device 1s provided
including a processing module coupled to one or more
assoclated circuits for supporting the processing module,
where the processing module 1s capable of multitasking,
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2

multiple tasks. A memory stores a control word for config-
uring the associated circuits, wherein each task has an
assoclated control word which 1s stored 1n the memory while
the task 1s being executed by the processing module.

The present 1nvention provides significant advantages
over the prior art by providing for a fully dynamic energy
management. As the tasks executed 1n the processing system
change, circuits used by the task can be configured to an
optimum configuration, thereby conserving energy.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

For a more complete understanding of the present
invention, and the advantages thereof, reference 1s now
made to the following descriptions taken 1n conjunction with
the accompanying drawings, 1n which:

FIG. 1 1llustrates a block diagram of a multiprocessor
system,

FIG. 2 1llustrates a software layer diagram for the multi-
Processor system;

FIG. 3 1llustrates an example showing the advantages of
energy management for a multiprocessor system,;

FIGS. 4a and 4b illustrate flow diagrams showing pre-
ferred embodiments for the operation of the energy man-
agement software of FIG. 2;

FIG. § illustrates the building system scenario block of
FIG. 4;

FIG. 6 1illustrates the activities estimate block of FIG. 4;
FIG. 7 illustrates the power compute block of FIG. 4;

FIG. 8 illustrates the activity measure and monitor block
of FIG. 4;

FIG. 9 illustrates a block diagram showing the multipro-
cessor system with activity counters;

FIG. 10 1illustrates a block diagram of a portion of a
processing system showing a capability to manage power to
various subcomponents;

FIG. 11 illustrates the block diagram of FIG. 10 during
execution of a task to disable circuitry not needed by the

task;

FIG. 12 illustrates the block diagram of FIG. 10 during

execution of a task to configure certain circuits during
operation of a task;

FIGS. 13a and 13b 1llustrate the configuration of a pro-
cessing device to optimize the data bandwidth to the pro-
cessing device;

FIG. 14 illustrates the organization of a task attributes
control word;

FIG. 15 1illustrates a functional depictions of the loading,
of the task attribute register (and other registers) in connec-
tion with a context switch; and

FIG. 16 1llustrates a mobile communications device using,
processing circuitry mcluding the invention.

DETAILED DESCRIPTION OF THE
INVENTION

The present invention 1s best understood 1n relation to
FIGS. 1-16 of the drawings, like numerals being used for
like elements of the various drawings.

FIG. 1 1llustrates a general block diagram of a general
multiprocessor system 10, imncluding an MPU 12, one or
more DSPs 14 and one or more DMA channels or copro-
cessors (shown collectively as DMA/Coprocessor 16). In
this embodiment, MPU 12 includes a core 18 and a cache 20.
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The DSP 14 includes a processing core 22 and a local
memory 24 (an actual embodiment could use separate
instruction and data memories, or could use a unified
instruction and data memory). A memory interface 26
couples a shared memory 28 to one or more of the MPU 12,
DSP 14 or DMA/Coprocessor 16. Each processor (MPU 12,
DSPs 14) can operate in full autonomy under its own
operating system (OS) or real-time operating system
(RTOS) in a real multiprocessor system, or the MPU 12 can
operate the global OS that supervises shared resources and
memory environment.

FIG. 2 illustrates a software layer diagram for the multi-

processor system 10. As shown in FIG. 1, the MPU 12
executes the OS, while the DSP 14 executes an RTOS. The
OS and RTOSs comprise the OS layer 30 of the software. A
distributed application layer 32 includes JAVA, C++ and
other applications 34, power management tasks 38 which
use profiling data 36 and a global tasks scheduler 40. A
middleware software layer 42 communicates between the
OS layer 30 and the applications 1n the distributed applica-
tion layer 32.

Referring to FIGS. 1 and 2, the operation of the multi-
processor system 10 1s discussed. The multiprocessor sys-
tem 10 can execute a variety of tasks. A typical application
for the multiprocessor system 10 would be 1n a smartphone
application where the multiprocessor system 10 handles
wireless communication, video and audio decompression,
and user interface (i.e., LCD update, keyboard decode). In
this application, the different embedded systems in the
multiprocessor system 10 would be executing multiple tasks
of different priorities. Typically, the OS would perform the
task scheduling of different tasks to the various embedded
systems.

The present invention integrates energy consumption as a
criterion 1n scheduling tasks. In the preferred embodiment,
the power management application 38 and profiles 36 from
the distributed applications layer 32 are used to build a
system scenario, based on probabilistic values, for executing
a list of tasks. If the scenario does not meet predetermined
criteria, for example if the power consumption 1s too high,
a new scenarlio 1s generated. After an acceptable scenario 1s
established, the OS layer monitors the hardware activity to
verily that the activity predicted in the scenario was accu-
rate.

The criteria for an acceptable task scheduling scenario
could vary depending upon the nature of the device. One
important criterion for mobile devices 1s minimum energy
consumption. As stated above, as electronic communication
devices are further miniaturized, the smaller battery alloca-
tion places a premium on energy consumption. In many
cases during the operation of a device, a degraded operating
mode for a task may be acceptable 1n order to reduce power,
particularly as the batteries reach low levels. For example,
reducing the LCD refresh rate will decrease power, albeit at
the expense of picture quality. Another option 1s to reduce
the MIPs (millions of instructions per second) of the mul-
tiprocessor system 10 to reduce power, but at the cost of
slower performance. The power management software 38
can analyze different scenarios using different combinations

of degraded performance to reach acceptable operation of
the device.

Another objective 1n managing power may be to find the
highest MIPs, or lowest energy for a given power limit
setup.

FIGS. 3a and 3b illustrate an example of using the power
management application 38 to prevent the multiprocessor
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4

system 10 from exceeding an average power dissipation
limit. In FIG. 3q, the DSP 14, DMA 16 and MPU 12 are

concurrently running a number of tasks. At time tl, the
average power dissipation of the three embedded systems
exceeds the average limit imposed on the multiprocessor
system 10. FIG. 3b 1illustrates a scenario where the same
tasks are executed; however, an MPU task 1s delayed until
after the DMA and DSP tasks are completed 1n order to

maintain an acceptable average power dissipation profile.

FIG. 4a illustrates a flow chart describing operation of a
first embodiment of the power management tasks 38. In
block 50, the power management tasks are 1nvoked by the
global scheduler 40, which could be executed on the MPU
12 or one of the DSPs 14; the scheduler evaluates the
upcoming application and splits 1t into tasks with associated
precedence and exclusion rules. The task list 52 could
include, for example, audio/video decoding, display control,
keyboard control, character recognition, and so on. In step
54, the task list 52 1s evaluated 1n view of the task model file
56 and the accepted degradations file §8. The task model file
56 1s part of the profiles 36 of the distributed applications
layer 32. The task model file 56 1s a previously generated file
that assigns different models to each task 1n the task list.
Each model 1s a collection of data, which could be derived
experimentally or by computer aided software design
techniques, which defines characteristics of the associated
task, such as latency constraints, priority, data flows, 1nitial
energy estimate at a reference processor speed, impacts of
degradations, and an execution proflle on a given processor
as a function of MIPs and time. The degradation list 58 sets
forth the variety of degradations that can be used in gener-
ating the scenario.

Each time the task list is modified (i.e., a new task is
created or a task is deleted) or when a real time event occurs,
based on the task list 52 and the task model 56 in step 54,
a scenar1o 1s built. The scenario allocates the various tasks
to the modules and provides priority information setting the
priority with which tasks are executed. A scenario energy
estimate 359 at a reference speed can be computed from the
tasks’ energy estimate. If necessary or desirable, tasks may
be degraded; 1.., a mode of the task that uses fewer
resources may be substituted for the full version of a task.
From this scenario, an activities estimate 1s generated in
block 60. The activities estimate uses task activity profiles
62 (from the profiling data 36 of the distributed application
layer 32) and a hardware architectural model 64 (also from
the profiling data 36 of the distributed application layer 32)
to generate probabilistic values for hardware activities that
will result from the scenario. The probabilistic values
include each module’s wait/run time share (effective MHz),
accesses to caches and memories, I/O toggling rates and
DMA flow requests and data volume. Using a period T that
matches the thermal time constant, from the energy estimate
59 at a reference processor speed and the average activities
derived 1n step 60 (particularly, effective processors speeds),
it 1s possible to compute an average power dissipation that
will be compared to thermal package model. If the power
value exceeds any thresholds set forth 1n the package
thermal model 72, the scenario 1s rejected 1 decision block
74. In this case, a new scenario 1s built 1n block 54 and steps
60, 66 and 70 are repeated. Otherwise, the scenario 1s used
to execute the task list.

During operation of the tasks as defined by the scenario,
the OS and RTOSs track activities by their respective
modules 1n block 76 using counters 78 incorporated 1n the
hardware. The actual activity 1n the modules of the multi-

processor system 10 may vary from the activities estimated
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in block 60. The data from the hardware counters are
monitored on a T periodic basis to produce measured
activity values. These measured activity values are used 1n
block 66 to compute an energy value for this period, and
hence, an average power value 1 block 66, as described
above, and are compared to the package thermal model 1n
block 72. If the measured values exceed thresholds, then a
new scenario 1s built in block 54. By continuously moni-
toring the measured activity values, the scenarios can be
modified dynamically to stay within predefined limits or to
adjust to changing environmental conditions.

Total energy consumption over T for the chip 1s calculated
as:

E=J 2 odutes W Cpdf Vddz].dEEmﬂdufes[ET(ﬂ.)].de.f Vddz

where, 1 1s the frequency, V , , 1s the supply voltage and o 1s
the probabilistic (or measured, see discussion in connection
with block 76 of this figure) activity. In other words,
> Aa)*Cpd*f*V > the energy corresponding to a particular
hardware module characterized by equivalent dissipation
capacitance Cpd; counters values give 2 {(a) and E is the
sum of all energies for all modules 1in the multiprocessor
system 10 dissipated within T. Average system power dis-
sipation W=E/T. In the preferred embodiment, measured and
probabilistic energy consumption 1s calculated and the aver-
age power dissipation 1s derived from the energy consump-
tion over period T. In most cases, energy consumption
information will be more readily available. However, it
would also be possible to calculate the power dissipation
from measured and probabilistic power consumption.

FIG. 4b 1s a flow chart describing operation of a second
embodiment of the power management tasks 38. The tlow of
FIG. 4b 1s the same as that of FIG. 4a, except when the
scenario construction algorithm is invoked (new task, task
delete, real time event) in step 50, instead of choosing one
new scenario, n different scenarios that match the perfor-
mances constraints can be pre-computed in advance and
stored 1n steps 54 and 59, in order to reduce the number of
operations within the dynamic loop and provide faster
adaptation 1f the power computed 1n the tracking loop leads
to current scenario rejection 1 block 74. In FIG. 4b, 1if the
scenario 1s rejected, another pre-computed scenario 1is
selected 1n block 65. Otherwise the operation 1s the same as
shown 1n FIG. 4a.

FIGS. 5-8 1illustrate the operation of various blocks of
FIG. 3 1n greater detail. The build system block 54 1s shown
i FIG. 5. In this block, a task list 52, a task model 56, and
a list of possible task degradations 58 are used to generate
a scenario. The task list 1s dependent upon which tasks are
to be executed on the multiprocessor system 10. In the
example of FIG. §, three tasks are shown: MPEG4 decode,
wireless modem data receive and keyboard event monitor. In
an actual implementation, the tasks could come from any
number of sources. The task model sets forth conditions
which must be taken i1n consideration 1n defining the
scenarlo, such as latency and priority constraints, data flow,
initial energy estimates, and the impact of degradations.
Other conditions could also be used 1n this block. The output
of the build system scenario block 1s a scenario 80, which
assoclates the various tasks with the modules and assigns
priorities to each of the tasks. In the example shown 1n FIG.
5, for example, the MPEG4 decode task has a priority of 16
and the wireless modem task has a priority of 4.

The scenarios built 1n block 54 could be based on a
number of different considerations. For example, the sce-
narios could be built based on providing the maximum
performance within the packages thermal constraints.
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Alternatively, the scenarios could be based on using the
lowest possible energy. The optimum scenario could change
during operation of a device; for example, with fully charged
batteries a device may operate at a maximum performance
level. As the power 1n the batteries diminished below a
preset level, the device could operate at the lowest possible
power level to sustain operation.

The scenario 80 from block 54 1s used by the activities
estimate block 60, shown 1n FIG. 6. This block performs a
probabilities computation for various parameters that affect
power usage 1n the multiprocessor system 10. The probabi-
listic activities estimate 1s generated 1n conjunction with task
activity profiles 62 and hardware architectural models 64.
The task activity profiles include information on the data
access types (load/store) and occurrences for the different
memories, code profiles, such as the branches and loops
used 1n the task, and the cycles per mstruction for instruc-
fions 1n the task. The hardware architectural model 64
describes 1n some way the impact of the task activity profiles
62 on the system latencies, that will permit computation of
estimated hardware activities (such as processor run/wait
time share). This model takes into account the characteristics
of the hardware on which the task will be implemented, for
example, the sizes of the caches, the width of various buses,
the number of 1I/0 pins, whether the cache 1s write-through
or write back, the types of memories used (dynamic, static,
flash, and so on) and the clock speeds used in the module.
Typically, the model can consist of a family of curves that
represent MPU and DSP effective frequency variations with
different parameters, such as data cacheable/non-cacheable,
read/write access shares, number of cycles per instruction,
and so on. In the 1llustrated embodiment of FIG. 6, values for
the effective frequency of each module, the number of
memory accesses, the I/0 togeling rates and the DMA flow
are calculated. Other factors that atfect power could also be
calculated.

The power compute block 66 1s shown 1n FIG. 7. In this
block, the probabilistic activities from block 60 or the
measured activities from block 76 are used to compute
various energy values and, hence, power values over a
period T. The power values are computed 1n association with
hardware power profiles, which are specific to the hardware
design of the multiprocessor system 10. The hardware
proiiles could include a Cpd for each module, logic design
style (D-type flip-flop, latches, gated clocks and so on),
supply voltages and capacitive loads on the outputs. Power
computations can be made for integrated modules, and also
for external memory or other external devices.

Activity measure and monitor block 76 1s shown 1n FIG.
8. Counters are implemented throughout the multiprocessor
system 10 to measure activities on the various modules, such
as cache misses, TLB (translation lookaside buffer) misses,
non-cacheable memory accesses, wait time, read/write
requests for different resources, memory overhead and tem-
perature. The activity measure and monitor block 76 outputs
values for the effective frequency of each module, the
number of memory accesses, the I/O toggling rates and the
DMA flow. In a particular implementation, other values may
also be measured. The output of this block 1s sent to the
power compute block 66.

FIG. 9 1llustrates and example of a multiprocessor system
10 using power/energy management software. In this
example, the multiprocessor system 10 includes a MPU 12,
executing an OS, and two DSPs 14 (individually referenced
as DSP1 14a and DSP2 14b), each executing a respective
RTOS. Each module 1s executing a monitor task 82, which
monitors the values 1n various activity counters 78 through-
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out the multiprocessor system 10. The power compute task
84 1s executed on DSP 14a. The various monitor tasks
retrieve data from associated activity counters 78 and pass
the information to DSP 144 to calculate a power value based
on measured activities. The power management tasks, such
as power compute task 84 and monitor task 82, can be
executed along with other application tasks.

In the preferred embodiment, the power management
tasks 38 and profiles 36 FIG. 2 are implemented as JAVA
class packages 1 a JAVA real-time environment.

The embodiment shown above provides significant
advantages over the prior art. First, it provides for a fully
dynamic power management. As the tasks executed in the
multiprocessor system 10 change, the power management
can build new scenarios to ensure that thresholds are not
exceeded. Further, as environmental conditions change,
such as battery voltages dropping, the power management
software can re-evaluate conditions and change scenarios, it
necessary. For example, if the battery voltage (supply
voltage) dropped to a point where Vdd could not be sus-
tained at 1ts nominal value, a lower frequency could be
established, which would allow operation of the multipro-
cessor system 10 at a lower Vdd. New scenarios could be
built which would take the lower frequency into account. In
some 1nstances, more degradations would be introduced to
compensate for the lower frequency. However, the lower
frequency could provide for continued operation of the
device, despite supply voltages that would normally be
insufficient. Further, 1in situations where a lower frequency
was acceptable, the device could operate at a lower Vdd
(with the availability of a switched mode supply) in order to
conserve power during periods of relatively low activity.

The power management software 1s transparent to the
various tasks that it controls. Thus, even 1f a particular task
does not provide for any power management, the power
management soltware assumes responsibility for executing
the task 1n a manner that 1s consistent with the power
capabilities of the multiprocessor system 10.

The overall operation of the power management software
can be used with different hardware platforms, with different
hardware and tasks accommodated by changing the profiles
36.

FIG. 10 illustrates a portion of a processing system 10,
showing a detailed block diagram of an autonomous pro-
cessor (MPU 12), coupled to a coprocessor 16 along with
other peripheral devices 100a and 1005. MPU 12 includes
core circuitry 102, comprised of various core blocks 1044,
1045, and 104¢. Core 102 further includes a Current Task ID
register 106, a Task Priority register 108 and a Task
Attributes register 110. Core 102 1s coupled to a cache
subsystem 112, including and instruction RAMset cache
114, a local RAM 116, an n-way instruction cache 118, an
n-way data cache 120, a DMA (direct memory access)
channel 122, and micro TLB (translation lookaside buffer)
caches 124a, 124H, and 124¢. MPU 12 further includes
voltage select circuitry 126 for selecting between two (or
more) voltages to power the MPU 12.

The cache subsystem 112 shown 1n FIG. 10 has several
different caching circuits. The micro TLBs 124a—c are a
small TLB structures that cache a few entries, used where a
larger TLB (typically providing 64 entries or more) would
penalize the speed of the processor. The n-way caches 118
and 120 can be of conventional design (or could be a direct
mapped cache). A RAMset cache is designed to cache a
contiguous block of memory starting from a chosen main
memory address location. The RAMset cache 114 can be
designed as part of the n-way cache; for example, a 3-way
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instruction cache 118 could be configured as one RAM set
cache and a 2-way set associative cache. The particulars of
the cache subsystem shown 1n FIG. 10 are provided only as
an example; the cache subsystem could be varied by a circuit
designer as desired.

For a given task, certain of the cache components may not
be needed, or the cache components may be configured for
optimal operation. For example, for a certain task, it may be
desirable to configure a 4-way instruction cache as a RAM-
set cache 114 and a 3-way set associative cache, while the
data cache 120 was configured as a direct mapping cache.

The voltage select circuitry 126 provides a supply voltage
to the MPU 12. As 1s well known 1n the art, the voltage
needed to support processing circuitry 1s dependent upon
several factors; temperature and frequency are two of the
more significant factors. For tasks where a high frequency 1s
not needed, the voltage can be lowered to reduce energy
consumption in the processing system 10.

One or more coprocessors and other peripheral devices
may be used by the MPU 12 for various functions. The
coprocessor 16 1s used to provide high speed mathematical
computations. Peripheral A 100a could be a input/output
port, for example. Peripheral B could be a pointing device
interface, such as a touch screen interface.

The MPU core 102 provides the processing function for
MPU 12. This processing function 1s broken into multiple
discrete blocks 104. Each block performs a function that
may or may not be needed for a given task. For example,
floating point arithmetic unit, a multiplier, auxiliary
accumulator, saturated arithmetic unit, count-leading-zeros
logic, and so on, could each be treated as a MPU Block 104.

The Current Task ID register 106 stores a unique identifier
for the current task being executed on the MPU 12. Other
autonomous processors would also have a Current Task ID
register 106 and may be executing a task different from the
current task executed by the MPU 12. The Task Priority
register 108 associates a priority with the task. The Task
Attributes register 110 stores a control word having fields
which can enable/disable circuitry or configure circuitry to
an optimum configuration.

The operation of the Task Attributes register 110 to enable
or disable circuitry 1s shown 1n connection with FIG. 11. The
data stored in the Task Attributes register 110 has multiple
fields which map to associated devices. For a simple on/oft
attribute, the field could be a single bit. Multiple bit fields
can be prov1ded for other functions, such as choosing
between three or four voltages 1n the voltage select circuit
126.

Each of the components shown i FIG. 11 as being
mapped to the Task Attributes register 110 has circuitry that
1s responsive to a respective control field 128 1n the register.
For the voltage select circuit 126, one of multiple voltages
1s selected based on the value of the respective field 128. In
FIG. 11, VddO could be chosen 1f the field 1s a “0” and Vdd1l
could be chosen 1if the field 1s a “1”. For a voltage select
circuit with four possible voltages, Vdd0 could be chosen 1t

the field 1s a “00” and Vdd1 could be chosen 1f the field 1s
a “01”, Vdd2 could be chosen 1f the field 1s a “10” and Vdd3
could be chosen 1f the field 1s a “117.

Coprocessor 16 is shown as disabled (power off), along
with peripheral A 100q, while peripheral B 1005 1s shown as
enabled. Each of these devices has an associated power
switching circuit that supplies power to the component
responsive to the value of the associated field i Task
Attributes register 110. Disabling power to a component that
1s not used 1n a task can significantly reduce the overall
power consumed by the processing system 10. Similarly,
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MPU block A 104a and MPU block C 104¢ are enabled,
while MPU block B 104b 1s disabled.

In some cases, a hardware resource may be coupled to
multiple autonomous processors. For example, a Level 2
shared memory may be coupled to both the MPU and the
DSP. In cases where a hardware resource 1s shared between
ftwo or more autonomous processors, the resource can be
coupled to the Task Attributes register 110 of each processor,
and the subsystem can be enabled or disabled based on a
logical operation on the associated bit values. For example,
assuming that a bit value of “1” represented an “on” state for
the hardware subsystem, a logical OR operation on the task
attribute bits would enable the resource if either processor
was executing a task that needed the resource.

Using the task attribute register as shown 1n FIG. 11 can
significantly reduce the power consumed by the processing
system 10 by disabling circuitry which 1s not used by a
specific task.

FIG. 12 illustrates a second scenario where the voltage to
the MPU 12 i1s reduced. In FIG. 12, the Task Attributes
register 110 provides voltage Vdd(0 to MPU 12. It 1s assumed
that Vdd0<Vdd1. To compensate for the reduction 1n supply
voltage, the Task Attributes register 110 also configures the
MPU blocks 104 to operate a lower frequency. Other sub-
systems 1n the MPU 12 may also be switched to a lower
frequency due to the lower supply voltage.

This aspect of the invention can significantly reduce
power consumption where a processing element can perform
a task at a frequency lower than its maximum frequency.

FIGS. 13a and 135 1llustrate the use of the Task Attributes
register 110 to alter the configuration of the processing
device 10 for more efficient operation. In this embodiment,
the MPU Core 102 and Cache subsystem 112 are substan-
fially the same as shown 1n FIGS. 10-12. A cache interface
130 couples the cache subsystem 112 to a traflic controller
132. Trathic controller 132 and cache interface 130 control
the flow of traffic between the system buses and the com-
ponents of the cache subsystem 112.

Importantly, cache interface 130 and traffic controller 132
are designed such that the bandwidth to components 1n the
cache subsystem can be varied as desired. For example, FIG.
13a 1llustrates a configuration where the currently executed
task 1s computation intensive. In this configuration, the Task
Attributes register 110 1s set to provide a 64-bit instruction
path to the 1nstruction cache 118 and the microTLB register
124 and a 128-bit bidirectional path to the microTLB 124b,
data cache 120 and local RAM 116. MicroTLLB 124¢, DMA
122 and RAMset cache 114 are turned off.

In FIG. 13b, a new task 1s being executed resulting 1n a
change 1n the task attribute register. The task shown 1n FIG.
135 allocates high bandwidth to DMA transfer management,
and a lower bandwidth for data and instruction transfers.

Accordingly, a 64-bit 1nput bus i1s shared between the
microlLB 124a/RAMset 114 instruction caches and the

microTLB 124b/local RAM 116 data caches. The 128-bit
bi-directional bus 1s coupled to microTLB 124¢ and DMA
circuit 122.

In addition to the bus configuration set by the cache
interface 130 and tratfic controller 132, the Task Attributes
register 110 could also configure the cache architecture. In
FIG. 13b, cache resources can be allocated between the
instruction cache 118 and RAMset cache 114. For example,
the cache resources could be allocated as a 3-way set
assoclative cache with a RAMset cache 114, a 2-way set
assoclative cache with a larger RAMset cache, a 4-way set
associative cache with no RAMset cache (as shown) or as a
direct mapped cache with or without a RAMset cache 114.
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Depending upon the task (or scenario), the most efficient
cache architecture could be chosen. Other hardware could be

configured for maximum efficiency as well.
As shown 1n FIG. 14, some fields 128 1n the Task

Attributes register 110 may configure the processing device
10 for a g1ven scenario while others configure the device 10
for on each task. Scenario specific attribute fields 128a
remain the same while tasks are switched. For example,
certain attributes, such as the core voltage to the processing
device 10 or a system DMA controller, may be set for a
scenario 1ncluding several tasks which are being simulta-
neously executed by one or more processors. When the

scenar1o changes, for example when a new task 1s executed
or when of the current tasks 1s terminated, a new scenario 1S

created, and the scenario specific attributes may change.
The task specific attribute fields 1285 of Task Attributes
register 110, on the other hand, may switch during multi-

tasking of several tasks in a scenario. Each time a task
becomes the active task 1n a processing element of the
processing system 10, the attribute fields of that task over-
write the task specific attribute fields of the previous active
task (scenario specific attribute fields 1284 unchanged).

The task attribute fields for a given scenario and for each
task 1n the scenario can be generated by the global tasks
scheduler 40 based on the task list 52 and associated profiles
36, as shown m FIGS. 4a and 4b. The energy savings
provided by the ability to enable/disable hardware and to
configure hardware for optimum performance are taken into
account 1n generating the scenario. An attribute word 1s
computed for each task and stored as part of the task’s
context information. Upon a context switch, the attribute
word for the active task 1s loaded into the Task Attributes
register 110. The Current Task ID register 106 and Task
Priority register 108 are also loaded at this time.

FIG. 15 1illustrates a function diagram showing the cre-
ation of the data used for the Task Attributes register 110.
Upon the creation or deletion of a task, the global task
scheduler 40 builds a scenario based on the task list 52 and
assoclated models and profiles. Using this information,
power and conflguration attributes are computed for the
run-time environment (the scenario attributes 1284) and also
computes the priority information and the power and con-
figuration attributes for the individual tasks in the scenario.
For each task, the priority and attributes are stored 1 a
respective task control block 129. Upon a context switch,
where tasks are changed for a given processor, the informa-
tion 1n the task control block for the new task are loaded mto
the appropriate registers. Task control blocks 129 may also
contain other state mformation for the task that is restored
upon the context switch.

FIG. 16 illustrates an implementation of a mobile com-
munications device 130 with microphone 132, speaker 134,
keypad 136, display 138 and antenna 140. Internal process-
ing circuitry 142 includes one or more processing devices
with the energy saving features described herein. It 1s
contemplated, of course, that many other types of commu-
nications systems and computer systems may also benefit
from the present ivention, particularly those relying on
battery power. Examples of such other computer systems
include personal digital assistants (PDAS), portable
computers, personal digital assistants (PDAs), smart phones,
web phones, and the like. As power dissipation 1s also of
concern 1n desktop and line-powered computer systems and
micro-controller applications, particularly from a reliability
standpoint, it 1s also contemplated that the present invention
may also provide benefits to such line-powered systems.

Telecommunications device 130 includes microphone
132 for receiving audio input, and speaker 134 for outputting,
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audible output, 1n the conventional manner. Microphone 132
and speaker 134 are connected to processing circuitry 142,
which receives and transmits audio and data signals.

Although the Detailed Description of the invention has
been directed to certain exemplary embodiments, various
modifications of these embodiments, as well as alternative
embodiments, will be suggested to those skilled i1n the art.
The invention encompasses any modifications or alternative
embodiments that fall within the scope of the Claims.

What 1s claimed 1s:

1. A processing device comprising:

a processing module capable of multitasking multiple
tasks:

one or more assoclated circuits, which may be selectively
conilgured responsive to control signal, coupled to said
processing module for supporting the processing
module, said one or more associated circuits includes a
cache configuration circuitry for configuration of a
cache; and

a memory storing task attribute bits for configuring the
cache via the cache configuration circuitry, wherein
cach task has an associated task attribute bit which 1s
stored 1n the memory while the task 1s being executed
by the processing module.

2. The processing device of claim 1 wherein said task

attribute bits comprises a plurality of fields.

3. The processing device of claim 2 wherein each of said
assoclated circuits has an associated field.

4. The processing device of claim 3 wherein each of said
associated circuits has configuration circuitry for configur-
ing the associated circuit responsive to a value stored 1n said
assoclated field.

5. The processing device of claim 1 wherein said pro-
cessing module comprises a {first processing module, and
further comprising one or more additional processing mod-
ules.

6. The processing device of claim 1, wherein:

said cache includes a plurality of selectively configurable
cache ways; and

said cache configuration circuitry coniigures said cache
ways according to said task attribute bits.

10

15

20

25

30

35

40

12

7. The processing device of claim 1, wherein:

said cache mcludes a plurality of selectively configurable
data paths; and

said configuration circuitry configures said cache data

paths according to said task attribute bits.

8. A method of operating a processing device including a
processing module capable of multitasking multiple tasks
coupled to one or more associated circuits, said one or more
associated circuits includes a cache configuration circuitry
for configuration of a cache, comprising the steps of:

identifying a current task; and

storing task attribute bits associated with said current task
In a memory; and

coniiguring the cache circuitry via the cache configuration
circuitry to a state responsive to the task attribute bits
during execution of said current task.

9. The method of claim 8 wherein said storing step
comprises the step of storing task attribute bits having a
plurality of predefined fields.

10. The method of claim 9 wherein each of said associated
circuits has an associated field 1n said task attribute bits.

11. The method of claim 10 wherein said enabling or
disabling step comprises the step of configuring each of the
assoclated circuits responsive to a value stored m said
associated field.

12. The method of claim 8 wheremn said processing
module includes a plurality of processing subsystems and
further comprising the step of configuring said processing
subsystems responsive to said task attribute bits.

13. The method of claim 8, wherein:

said step of configuring the cache circuitry via the cache
conilguration circuitry configures cache ways accord-

ing to the task attribute bits.
14. The method of claim 8, wherein:

said step of configuring the cache circuitry via the cache
conflguration circuitry configures cache data paths
according to said task attribute bits.
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