US006889314B2
a2 United States Patent (10) Patent No.: US 6,889,314 B2
Samra et al. 45) Date of Patent: May 3, 2005
(54) METHOD AND APPARATUS FOR FAST 5787287 A 7/1998 Bharadwaj 717/149
DEPENDENCY COORDINATE MATCHING 6,016,540 A 1/2000 Zaidi et al. 712/205
6,065,105 A 52000 Zaidi et al. worooovveen..... 712/215
(75) Inventors: Nicholas . Samra, Austin, TX (US); 6,366,993 B1 * 4/2002 Schraderc.ccvuvenn.n... 711/169
Murali S. Chinnakonda, Austin, TX 6.557.095 Bl * 4/2003 Henstrom 712/216

(US)
* cited by examiner
(73) Assignee: Intel Corporation, Santa Clara, CA
(US)
Primary Fxaminer—Eric Coleman

(*) Notice: Subject to any disclaimer, the term of this (74) Attorney, Agent, or Firm—Larry M. Mennemeier
patent 15 extended or adjusted under 35

U.S.C. 154(b) by 509 days. (57) ABSTRACT

Disclosed herein 1s a method for matching dependency
coordinates and an efficient apparatus for performing the

(21) Appl. No.: 09/965,211

(22) Filed: Sep. 26, 2001 dependency coordinate matching very quickly. A plurality of
buflers to store instructions 1s set forth. Each storage loca-

(65) Prior Publication Data tion of a buffer corresponds to a particular pair of depen-
US 2003/0061466 Al Mar. 27, 2003 dency coordinates. Dependency matching loigic rece:ives the
dependency coordinates for a buifered instruction and

(51) Int. CL7 e, GO6F 9/52 scheduling information pertaining to dispatched instruc-
(52) US. Cle oo 712/216 tions. The dependency matching logic indicates whether a
(58) Field of Searchcccooooovvvveeveeean... 712/216 dependency precludes scheduling of the corresponding bufi-
ered instruction. Dependency checking logic produces a

(56) References Cited ready signal for the buffered instruction when no such

dependency 1s indicated by the dependency matching logic.
U.S. PATENT DOCUMENTS

5,710,902 A * 1/1998 Sheaffer et al. 712/216 29 Claims, 12 Drawing Sheets

UOP VALID BUFFER DEPENDENCY ZERO
ENTRY BIT SELECT MATCH LOGICDETECT

203 201 226 216 215
\ & .0 1(2 3 01 2\34
0 iR l L] -
T
2 ; :
3 r | | "
4l : B ~
i::::%g:g:::::::::::::;
0 H{EE |-
S Hir
'3 , i -
=0 b |
219 i $
0 {HEEE I | * |-
E‘I || \; | . -
2 E i 1, :
§3) __H‘ I
4 | [-
229
ol 111 i |
= i K
2 ? 4 -
3| ';
4 ’ HEEEEE

B o om e =i BN am mr owin e O S Em W W e ol W TR oER T

+ +l-

F_-E--=-=-!-=-=-!-=-i-!-_
L HEEEEEEEREE
a --I.....
O B BEEREEER
HEEEEEEREEEE
A_--!--=-i-=-=-E-!-=-=--
_-=-=-!-=-=-n—
HEREERE
--!-=-=-i-=-=-=--
HEEEEERREEE
HEEEEEEEEEEE
Tttt
BEEEEEEEEEEEEEEEE
HEEEEEEEEEN
HEEEEEEEREEE
HEREEEEEEEEE

o
h e " —

e AN M TV ONDOLCNOOD W W

lll.ll'.l__l_..l...l..ll..l__.ll_l.I.ll_l_l_l..__l_l...l.l.lrl.l.ll.'-ll-.l..l...l.'ll.ll-ll.l_.l.__l-.'.l.lI-II'I..I...I...‘I..III'I.—

US 6,889,314 B2
ZERO
DETECT
1 f

Sheet 1 of 12

DEPENDENCY
MATRIX
106

0123456 7\89

May 3, 2005

101

UOP VALID
ENTRY BIT

U.S. Patent
FIG. 1
PRIOR ART

U.S. Patent May 3, 2005 Sheet 2 of 12 US 6,889,314 B2

FIG. 2a

UOP VALID BUFFER DEPENDENCY ZERO
ENTRY BIT SELECT MATCH LOGICDETECT
203 201 226 216 215

218

¢ ..T. T T

———————————————————————

U.S. Patent May 3, 2005 Sheet 3 of 12 US 6,889,314 B2

FIG. 2b

UOP VALID BUFFER DEPENDENCY ZERO

ENTRY BIT SELECT MATCH LOGICDETECT
203 201 236 216 215

2}1 012}34

boeeet ¥

218

U.S. Patent May 3, 2005 Sheet 4 of 12 US 6,889,314 B2

FIG. 2¢
UOP VALID BUFFER DEPENDENCY ZERO
ENTRY BIT = SELECTS MATCH LOGIC DETECT
203 201 246 216 225
0 1\2 3 4
—
—p

218

———————————————————————

———————————————————————
———————————————————————

--¢¢

‘_—---—--—--—----—-----—-.

U.S. Patent May 3, 2005 Sheet 5 of 12 US 6,889,314 B2

Dispatched

: Instruction

; Information

Dependency

: Bufter Coordinate

; Select

5 P

WEN Dep;nder.'nc;y J Dependency
VALID Match Logic /b Check Logic _FiEADY E
é DATA#’ | :
: | i
i 316 315 §
300 ’

- e e we EDn Em mamk D T T ol e W B =l S A S ---———--—-—*‘--—n-—---__--ﬂ‘--—-—----'----—'--‘-—"ﬂ___'-'-"_-‘--‘---_*-_

U.S. Patent May 3, 2005 Sheet 6 of 12 US 6,889,314 B2

RGE
L\ - JOUT
411N\412 |
VALID "T
416

b e s oo ke W A ---——-—--—-—--—-—-.--u—-—-—--—--—--——-———-—————--——---'----------—--'—-—-'_--‘--‘---"-"'---‘

U.S. Patent May 3, 2005 Sheet 7 of 12 US 6,889,314 B2

-_--__--i-_----_-—__*_..—___-.—_.—-__-.__.___._,_,__-_.-._....-,.--—...-..—.--.—.——l—_—._—._.—u-u--u-———-——---_----n-——--ﬁ-——-‘

l 467] 447

--*——--——-—-——-———-—-_-——-——-.——-—------—---———--—-——-———————------—ﬂ'----‘---—-'-'-""-"‘""""—_—-_--__*

U.S. Patent May 3, 2005 Sheet 8 of 12 US 6,889,314 B2

U.S. Patent May 3, 2005 Sheet 9 of 12 US 6,889,314 B2

r_————---——_-—--!---l—-_—l'_‘_"-'-'-"-'_—--—----—-------—r-—--—l--------'------_-‘-ﬂ-*ﬁ

On
N
N

o)
. H

S

i
A
N
A PR (PR U AN) R A A

I
Ol
W

DATAQ ,
READY:

VALID
DATB4 1

DATB3

o)
&)
Il

929

c,."
O
O

-—-------—_-----—_*---------------——------————----—---—-----—*----_---

U.S. Patent May 3, 2005 Sheet 10 of 12 US 6,889,314 B2

FIG. b6a
B) - o 611
‘ Store instruction A Iin buffer R at location S. _l

| 612

Store instruction B, dependent on instruction A, in
buffer Q at location T.

| 613

Generate coordinate U to indicated that instruction B
depends on an instruction in buffer R.

614

Generate coordinate V to indicated that instruction B
depends on an instruction at location S.

| 615
Dispatch instruction A.
| 616

L

Use coordinate U to access coordinate V.
| 617

Dispatch instruction B after accessing
vector V.

U.S. Patent May 3, 2005 Sheet 11 of 12 US 6,889,314 B2

FIG. 6b
611
Store instruction A in buffer R at location S.
| 612

Store instruction B, dependent on instruction A, in
buffer Q at location T.

| 613

Generate coordinate U to indicated that instruction B
depends on an instruction in buffer R.

| 614
Generate coordinate V to indicated that instruction B

depends on an instruction at location S.

| 615

Dispatch instruction A.
Match coordinate U.

Match coordmate V.

Dispatch mstruchon B after matching
coordinate U and coordinate V.

U.S. Patent May 3, 2005 Sheet 12 of 12 US 6,889,314 B2

r*---‘---‘_*----h‘---“‘--__'-_-—-_---- —-_----——--‘--*—-—---_—--—_-—_-—_---.—_-—-----*------"*'----_-

- i
S E
< Dependency ;
, 3 Determination i
. >, :
e SRty Rty A 5
; - A 7\ :
E 8 5 UOP Dependency
5 i Buffers Coordinate
' . 719 _
. 7a L oXeedte [Dispawch T .

720

| Peripheral System(s) \
Graphics Controller“ L [_)is;& /0O System(s) ,
e
Memory System(s)

Svystem Bus(ses

oo s o B B T W W E O O B o O B B A B ol [a—

- e

i gl mi 4m i

wills - S BN AR AN W A A W R W A A e B e Al E e o W S e el ol A S wl e i EE A B B A e SN A e A e e sl e B TR A G O O G o e nl e me ol e W W B B B EE B i OB e ol e mae spe ol A S W AN nle ol AN e B iy wir il gy e dpnl aBh ol mEE dme ol

US 6,589,314 B2

1

METHOD AND APPARATUS FOR FAST
DEPENDENCY COORDINATE MATCHING

FIELD OF THE INVENTION

This mvention relates generally to the field of computer
systems, and 1n particular to matching instructions with
corresponding source data dependencies.

BACKGROUND OF THE INVENTION

Computing systems use a variety of techniques to
improve performance and throughput. One technique 1is
known 1in the art as out-of-order (OOO) execution. In OOO
execution, instructions are scheduled for execution 1 par-
allel and as soon as corresponding source data dependencies
can be resolved, thereby increasing execution speed of the
overall system.

One method of resolving source data dependencies 1is
shown 1n FIG. 1 In a dependency matrix 106, dependency
ograph 1information 1s stored corresponding to an instruction
to be executed. Each row of the matrix may be used to store
dependency graph information for a corresponding instruc-
tion. The number of columns 1n the dependency matrix
corresponds to the number of concurrently tracked instruc-
tions. Instructions stored 1n a buffer 109 include one or more
micro-operations (UOP entry 103) and corresponding valid
indicators (valid bit 101). For any particular instruction with
dependency graph information stored 1mn a row of depen-
dency matrix 106, an entry in a column may be set to
indicate a prior sequential instruction that produces source
data required for its execution.

In order to 1dentity relevant prior sequential instructions,
the required sources may be compared against the destina-
tions of all concurrently active instructions. If a dependency
1s found to exist, then a corresponding column may be used
to record the source dependency. When an instruction (or
micro-operation) is dispatched from the buffer a column in
dependency matrix 106 corresponding to the dispatched
instruction may be cleared. When all source dependencies
are satisfied for an instruction, it may be dispatched for
execution. Zero detect 105 detects when all bits 1n a depen-
dency vector stored 1in a row of dependency matrix 106 have
been cleared and produces signal 108 to 1dentity the corre-
sponding instruction (or micro-operation) as ready for
scheduling. One limitation to this method 1s the number of
comparators required for matching sources with destina-
fions.

An alternative approach calls for tracking dependency
information when sources and destinations are renamed.
This alternative reduces the number of comparators required
if 1nstructions being dispatched are not dependent upon data
produced by mstructions concurrently being scheduled for
execution. If such dependencies can exist, additional com-
parators may be required to determine when source data
needs to be bypassed from one instruction to a subsequent
instruction during execution, without waiting for the data to
be written 1nto 1ts intended destination. Permitting such data
to be bypassed potentially benefits execution speed, but
identification of the relevant dependency may delay the
dispatch of instructions.

For machines that employ wide superscalar execution of
instructions, the number of column entries 1n a dependency
matrix may be very large, and therefore corresponding
circuitry to check for dependencies in a row of the depen-
dency matrix needs to be increased accordingly. For the
16-entry butfer 109 depicted 1n FIG. 1, zero detect 105 may

10

15

20

25

30

35

40

45

50

55

60

65

2

comprise a 16-mnput NOR gate for each row of dependency
matrix 106. As the size of buffer 109 1s i1ncreased, both
dependency matrix 106 and zero detect 105 increase with
the square of the size of buffer 109. For example, an 80-entry
buffer 109, may require an 80x80 storage array for depen-
dency matrix 106 and a zero detect 105 having cighty
80-1nput NOR gates. Each 80-mnput NOR gate, comprising
five to six levels of logic, may become too slow to efficiently
signal for the dispatch of new instructions (or micro-
operations). Therefore, a new method of matching depen-
dencies and dispatching instructions 1s called for.

BRIEF DESCRIPTION OF THE DRAWINGS

The present mvention 1s illustrated by way of example
and not limitation i1n the figures of the accompanying
drawings.

FIG. 1 1llustrates a prior art system that uses a dependency
maftrix.

FIG. 2a 1llustrates one embodiment of a system that uses
dependency coordinate matching 1n accordance with the
teachings of the present mnvention.

FIG. 2b illustrates an alternative embodiment of a system
that uses dependency coordinate matching 1n accordance
with the teachings of the present invention.

FIG. 2c¢ illustrates another alternative embodiment of a
system that uses dependency coordinate matching 1n accor-
dance with the teachings of the present invention.

FIG. 3 illustrates one embodiment of an apparatus to
check for dependencies and to signal when an instruction 1s
ready for dispatch.

FIG. 4a 1illustrates one embodiment of a bit-slice of
dependency matching logic using a decoded bufler select
vector to record a dependency and to match scheduled
instructions with dependencies.

FIG. 4b 1llustrates an alternative embodiment of a bit-
slice of dependency matching logic using a coded buifer
select vector to record a dependency and to match scheduled
instructions with dependencies.

FIG. 35a 1illustrates one alternative embodiment of the
apparatus to check for dependencies and to signal when an
instruction 1s ready for dispatch.

FIG. 5b 1illustrates another alternative embodiment of the
apparatus to check for dependencies and to signal when an
instruction 1s ready for dispatch.

FIG. 64 1llustrates one embodiment of a process to record
a dependency and to match scheduled instructions with
dependencies.

FIG. 6b 1illustrates an alternative embodiment of the
process to record a dependency and to match scheduled
instructions with dependencies.

FIG. 7 1llustrates one embodiment of a computing system
including a processor that uses dependency coordinate

matching.

DETAILED DESCRIPTION

These and other embodiments of the present invention
may be realized 1n accordance with the following teachings
and 1t should be evident that various modifications and
changes may be made 1n the following teachings without
departing from the broader spirit and scope of the invention.
The specification and drawings are, accordingly, to be
regarded 1n an illustrative rather than restrictive sense and
the 1nvention measured only 1n terms of the claims.

Disclosed herein 1s a method for matching dependency
coordinates and an efficient apparatus for quickly perform-

US 6,589,314 B2

3

ing the dependency coordinate matching. It will be appre-
clated that, while the method and apparatus are disclosed 1n
the context of matching source data dependencies for the
scheduling of mstructions for OOO execution, they may be
applied to the scheduling of anything with dependency
requirements, for example dependent subtasks of a complex
procedure or automated assembly of a product.

A plurality of buifers to store instructions 1s set forth. The
buffers may be located 1n one or more devices. Each storage
location of a buffer corresponds to particular set, for
example a pair, of dependency coordinates. Dependency
matching logic receives the dependency coordinates for a
buffered instruction and scheduling information pertaining,
to dispatched instructions. The dependency matching logic
indicates whether a dependency precludes scheduling of the
corresponding buffered instruction. Dependency checking
logic produces a ready signal for the buffered instruction
when no such dependency 1s indicated by the dependency
matching logic.

For the purpose of the following disclosure, 1nstructions
may be considered to include, but are not limited to one or
more operations. Each operation may or may not depend on
source data from one or more previous sequential opera-
tions. Instructions may comprise complex instructions or
simple 1instructions or both. They may further comprise
macro-instructions or micro-instructions or both. Instruc-
fions or operations discussed herein may also be considered
to comprise emulation 1nstructions, for example, to emulate
the behavior of instructions from one 1nstruction-set archi-
tecture with 1nstructions from another instruction-set archi-
tecture. The methods herein disclosed may be understood,
by one skilled in the art, to apply to any of these 1nstruction
types. Accordingly, distinctions between the terms “instruc-
tion” and “operation” are not necessary to an understanding
of the mvention and, therefore, these terms may be used
interchangeably.

Likewise, distinctions between “dispatching an instruc-
tion” and “scheduling an mstruction for execution™ are not
necessary to an understanding of the invention. Accordingly,
these terms may be considered synonymous for the purpose
of the following disclosure.

FIG. 2a 1illustrates one embodiment of a 20-entry system
that uses dependency coordinate matching. Instructions (or
MICro- operatlons) are stored 1n one of four buffers, buffer

209, buffer 219, buffer 229, or buffer 239. Buffers have five

storage locations, each comprising an instruction (UOP
entry 203) and a valid indication (valid bit 201). For each
mnstruction stored there 1s a corresponding first dependency
coordinate (buffer select 226) and a corresponding second
dependency coordinate (dependency match logic 216).

According to the embodiment illustrated, dependency
match logic 216 may store a decoded location coordinate
having one of five bits set, and buffer select 226 may store
a decoded buflfer coordinate having one of four bits set. For
example buifer select 226 may store a binary representation
of 1000 to indicate buffer 209, a binary representation of
0100 to indicate buffer 219, a binary representation of 0010
to indicate buffer 229, and a binary representation of 0001
to 1ndicate buifer 239. Dependency match logic 216 may,
likewise, set one bit corresponding to the assigned location
within the buil

er that the instruction 1s stored. Interaction
between bufler select 226 and dependency matching logic

216 are discussed in greater detail below with respect to
FIG. 4a.

Dependency match logic 216 indicates whether a depen-
dency precludes scheduling of the corresponding instruction

10

15

20

25

30

35

40

45

50

55

60

65

4

(or micro-operation). Dependency checking logic (zero
detect 215) produces signal 218 to identify the correspond-
ing instruction (or micro-operation) as ready for scheduling,
when dependency match logic 216 does not indicate a
dependency precluding scheduling.

It will be appreciated that the dependency coordinates
may be conveniently chosen of various sizes suitable to the
target system and that the storage requirements for depen-
dency coordinates of the 20-entry system 1illustrated in FIG.
2a are nine storage elements per instruction rather than
twenty storage elements per instruction as called for in a
dependency matrix. It will also be appreciated by one skilled
in the art that istructions may be assigned to buffers and
corresponding coordinates according to a symmetric assign-
ment scheme (e.g. randomly or sequentially), a functional
assignment scheme (e.g. according to execution resources or
instruction types) or a hierarchical assignment scheme (e.g.
according to priorities, speculativeness, or importance).

FIG. 2b illustrates an alternative embodiment of a system
that uses dependency coordinate matching. Again, mnstruc-
tions (or micro-operations) are stored in one of four buffers,
buffer 209, butfer 219, bufter 229, or buffer 239, and buffers
have five storage locatlons For each instruction stored there
is a corresponding first dependency coordinate (buffer select
236) and a corresponding second dependency coordinate
(dependency match logic 216).

According to the embodiment illustrated, buffer select
236 may store an encoded buifer coordinate. For example
bufler select 236 may store a binary representation of 00 to
indicate buifer 209, a binary representation of 01 to indicate
buffer 219, a binary representation of 10 to indicate bufler
229, and a binary representation of 11 to indicate buffer 239.
Interaction between buller select 236 and dependency

matching logic 216 are discussed in greater detail below
with respect to FIG. 4b.

It will be appreciated by one skilled 1n the art that an
additional pair of dependency coordinates may be conve-
niently associated with each instruction without exceeding
the number of storage elements called for mn a dependency
matrix. For example FIG. 2c¢ illustrates another alternative
embodiment of a system that uses dependency coordinate
matching. As before, instructions (or micro-operations) are

stored 1n one of four buffers, buffer 209, butfer 219, buffer
229, or buff

er 239, and buffers have five storage locations.
For each instruction stored there are two corresponding first
dependency coordinates (buffer selects 246) and two corre-
sponding second dependency coordinates (dependency
match logic 216). Dependency checking logic (zero detect
225) produces signal 218 to identify the corresponding
instruction (or micro-operation) as ready for scheduling
when dependency match logic 216 does not indicate a
dependency precluding scheduling. Interaction between
buffer selects 246, dependency match logic 216 and depen-
dency checking logic (zero detect 225) are discussed in
orcater detail below with respect to FIG. 5b.

According to the embodiment illustrated, two source data
dependencies may be resolved for each instruction. It will be
appreciated by one skilled 1n the art that a system may be
extended to use as many pairs of dependency coordinates as
are determined convenient.

FIG. 3 1llustrates one embodiment of an apparatus 300 to
check for dependencies using dependency match logic 316
and dependency checking logic 315 and to signal when an
mstruction 1s ready for dispatch. Dependency match logic
316 receives, for a corresponding instruction, a p-bit depen-
dency coordinate from buffer select 326 to indicate a source

US 6,589,314 B2

S

data dependency involving an instruction stored 1n a par-
ficular buffer and a b-bit dependency coordinate DATA to

indicate which particular location within the buffer the
mstruction 1s stored. If the VALID signal and the WEN

(write enable) signal are concurrently asserted as inputs to
dependency match logic 316, then dependency match logic
316 may record the b-bit dependency coordinate DATA.
When all of the recorded source data dependencies for this
instruction have been cleared the istruction may be dis-

patched for execution.

Dependency match logic 316 may also receive p-bit
scheduling information pertaining to dispatched instructions
from mterface 327. If the scheduling information matches
the dependency coordinates, then the b-bit dependency
coordinate DATA may be cleared. It will be appreciated that,
the dependency coordinate data may be cleared 1n the same
cycle that WEN 1s asserted, which may have otherwise
required the use of extra bypass comparators.

It 1s the responsibility of dependency checking logic 315
to 1dentity when all of the recorded source data dependen-
cies for this mstruction have been cleared. Dependency
checking logic 315 receives a b-bit indicator of whether a
dependency precludes scheduling of the corresponding
instruction and produces a READY signal to identify the
mnstruction for scheduling when no such dependency 1is
indicated—following from the dispatch of all instructions
producing the source data. It will be appreciated that the
embodiment illustrated in FIG. 3 requires (p+b) storage
elements whereas a dependency matrix uses (pxb) storage
clements. It will also be appreciated that dependency check-
ing logic 315 needs only to check the b bits of dependency
match logic 316 rather than checking (pxb) bits of a depen-
dency matrix.

FIG. 4a 1llustrates one embodiment of a bit-slice of the
dependency matching logic using a decoded select vector to
record a dependency and to match scheduled instructions
with dependencies. Dependency match logic 416 receives,
for a corresponding instruction, a dependency coordinate
from buffer select bit 429, buffer select bit 428, . . . and
buffer select bit 421. Dependency match logic 416 also
receives one bit of a second dependency coordinate, DATA.
[f the VALID signal and the WEN (write enable) signal are
concurrently asserted as inputs to dependency match logic
416, then dependency match logic 416 may record the one
bit of the second dependency coordinate, DATA.

Dependency match logic 416 may also receive scheduling
information interface bit 497, scheduling information inter-
face bit 487, . . . and scheduling information interface bit 417
pertaining to dispatched instructions. For example, interface
bit 497 may pertain to an instruction being dispatched from
storage location number 4 1 buffer 209, scheduling infor-
mation interface bit 487 may pertain to an instruction being
dispatched from storage location number 4 in buffer 219, . . .
and scheduling mmformation interface bit 417 may pertain to
an 1nstruction being dispatched from storage location num-
ber 4 1n buffer 239. If an instruction stored in buffer 239 1s
indicated by buifer select bit 421, and the location associated
with dependency match logic 416 1s storage location number
4, then when an instruction 1s dispatched from the storage
location number 4 1n buifer 239, the signal received from
scheduling information interface bit 417 1s asserted at the
input gate of device 411. If dependency match logic 416 has
stored a set bit of the second dependency coordinate for an
mstruction in buffer 239, then buffer select bit 421 1s asserted
at the mput gate of device 412, and so the data stored by
storage element 413 1s cleared, outputting a logic zero value

at OUT. Thus, when the scheduling infor-

10

15

20

25

30

35

40

45

50

55

60

65

6

mation matches the dependency coordinates, a recorded set
bit of the second dependency coordinate, 1s cleared. Sched-
uling information 1s processed in a similar manner by

devices with 1nput gates coupled to receive from any of
scheduling information bits 497, 487, . . . and 447.

When VALID 1s negated, storage element 413 1s set. As
was previously mentioned, the dependency coordinate data
may be cleared 1n the same cycle that WEN 1s asserted
without the use of extra bypass comparators when the
scheduling 1nformation received matches the dependency
coordinates.

FIG. 4b 1llustrates an alternative embodiment of a bit-
slice of the dependency matching logic using a coded select
vector to record a dependency and to match scheduled
mnstructions with dependencies. Dependency match logic
436 receives, for a corresponding instruction, a dependency
coordinate from buiffer select bit 432 and buifer select bat
431. Dependency match logic 436 also receives one bit of a
second dependency coordinate, DATA. If the VALID signal
and the WEN (write enable) signal are concurrently asserted
as mputs to dependency match logic 436, then dependency
match logic 436 may record the one bit of the second
dependency coordinate, DATA.

Dependency match logic 436 may also receive scheduling,
information. For example, the location associated with this
dependency match logic 436 may be storage location num-
ber 2, and so scheduling information interface bit 477 may
pertain to an 1instruction being dispatched from storage
location number 2 1n buffer 239, scheduling information
interface bit 467 may pertain to an instruction being dis-
patched from storage location number 2 1n buffer 229, . . .
and scheduling information interface bit 437 may pertain to
an 1nstruction being dispatched from storage location num-

ber 2 1n bufter 209.

If an mstruction stored 1n buftfer 209 1s indicated by bufler
select bit 432 having a logical value of zero and bufler select
bit 431 having a logical value of zero, then when depen-
dency match logic 436 has stored a set bit of the second
dependency coordinate for an instruction in buifer 209
(corresponding to buffer select bits 432 and 431 having a
value of 00) the signal line 418 is asserted high at the input
gate of device 414 and signal line 4135 1s asserted high at the
input gate of device 419. Whenever an instruction 1s dis-
patched from the storage location number 2 1n buifer 209,
the signal received from scheduling information interface bit
437 1s asserted at the input gate of device 411. Therefore, the
scheduling 1nformation matches the dependency
coordinates, and the data stored by storage element 413 1is
cleared, outputting a logic zero value at OUT. Scheduling
information 1s processed 1n a similar manner by devices with
input gates coupled to receive from scheduling information

bits 477, 467 and 447.

FIG. Sa 1illustrates one alternative embodiment of an
apparatus 500 to check for dependencies using dependency
match logic 516 and dependency checking logic 515 and to
signal by asserting READY when an instruction 1s ready for
dispatch. Dependency match logic 516, comprising depen-
dency match logic 544, 543, . . . and 540, receives, for a
corresponding 1nstruction, a first dependency coordinate
comprising ¢ bits from bufler select 526 and a second
dependency coordinate comprising DATA4, DATA3J, . . . and
DATAO. If the VALID signal and the WEN (write enable)
signal are concurrently asserted as inputs to dependency
match logic 516, then dependency match logic 516 may
record the second dependency coordinate comprising
DATA4, DATA3, . . . and DATAJ.

US 6,589,314 B2

7

Dependency match logic 516 may also receive p-bit
scheduling information pertaining to dispatched instructions
from interface 527. If the scheduling information matches
the dependency coordinates, then the second dependency
coordinate comprising DATA4, DATAJ, . . . and DATAO 1s
cleared. As noted above, the dependency coordinate data
may be cleared 1n the same cycle that WEN 1s asserted.

Dependency checking logic 515 receives an indicator of
whether a dependency precludes scheduling of the corre-
sponding instruction and produces a READY signal to
identity the instruction for scheduling when no such depen-
dency 1s indicated. For example, dependency checking logic
515 may be realized by an NOR gate as shown. It will be
appreciated that for an embodiment such as the one 1llus-
trated 1n FIG. Sa, dependency checking logic 515 may be
conveniently sized to require less circuitry (thereby provid-
ing for area savings) and to require less logic levels (thereby
providing for performance increases) than may be required
for a similarly sized dependency matrix.

FIG. 5b 1llustrates another alternative embodiment of an
apparatus 501 to check for dependencies using dependency
match logic 516 and dependency checking logic 525 and to
signal by asserting READY when an instruction 1s ready for
dispatch. Dependency match logic 516, comprising depen-
dency match logic 544, 543, . . . and 540, receives, for a
corresponding 1nstruction, a first pair of dependency coor-
dinates including a coordinate comprising r bits from buifer
select 526 and a coordinate comprising DATA4, DATA3J, . . .
and DATAQ. Dependency match logic 516, further compris-
ing dependency match logic 554, 553, . . . and 550, also
receives, for the corresponding instruction, a second pair of
dependency coordinates including a coordinate comprising r
bits from bufler select 536 and a coordinate comprising,
DATB4, DATBS3, . . . and DATBO. If the VALID signal and
the WEN (write enable) signal are concurrently asserted as
mputs to dependency match logic 516, then dependency
match logic 516 may record the coordinate comprising

DATA4, DATA3, . . . and DATAO and the coordinate
comprising DATB4, DATB3, . . . and DATBO.

Dependency match logic 516 may also receive p-bit
scheduling information pertaining to dispatched instructions
from interface 527. If the scheduling information from
interface 527 matches the first pair of dependency
coordinates, then the coordinate comprising DATA4,
DATA3, . . . and DATA0 may be cleared by dependency
match logic 516. If the scheduling information from inter-
face 527 matches the second pair of dependency
coordinates, then the coordinate comprising DATB4,
DATB3, . . . and DATBO0 may be cleared by dependency
match logic 516. Either or both coordinates may be cleared
in the same cycle that WEN 1s asserted.

Dependency checking logic 525 receives an indicator
from dependency match logic 516 of whether a dependency
precludes scheduling of the corresponding mstruction and
produces a READY signal to identify the instruction for
scheduling when no such dependency 1s indicated.

FIG. 6a illustrates a diagram of one embodiment of a
process to record a dependency and to match scheduled
instructions with dependencies. The process 1s performed by
processing blocks that may comprise software or firmware
operation codes executable by general purpose machines or
by special purpose machines or by a combination of both.

The process diagram begins in processing block 611 with
the storing of an instruction, A, 1n a buffer, R, at storage
location S. Processing continues 1n processing block 612
with the storing of an imstruction, B, dependent on instruc-

10

15

20

25

30

35

40

45

50

55

60

65

3

tion A, 1n a buffer, Q, at storage location T. It will be
appreciated that while instruction B may be different than
instruction A, buffer R may be the same as buffer Q, or that
S may refer to the same storage location 1n buffer R as T
refers to 1n buifer Q. It will also be appreciated that the
processing, for example of processing block 611 and pro-
cessing block 612 may take place concurrently or 1n either
order, particularly 1n an OOO processor.

Now turning to processing block 613, a coordinate, U, 1s
generated to indicate that instruction B depends on an
instruction 1n a buifer referred to by R. In processing block
614, a coordinate V 1s generated to indicate that the 1nstruc-
fion B depends on and instruction at a storage location
referred to by S.

Processing continues in processing block 615, with the
dispatching of instruction A. In processing block 616, the
coordinate, U, 1s used to access the coordinate, V. Then,
following after the access of coordinate V, instruction B is
dispatched 1n processing block 617.

It will be appreciated that one skilled in the art may use
the techniques taught herein, and use the coordinate V
instead, to access the coordinate U without departing from
the broader spirit and scope of the invention. Accordingly,
the diagrams disclosed herein are to be regarded m an
illustrative rather than restrictive sense and the invention
measured only 1n terms of the accompanying claims.

FIG. 6b 1llustrates a diagram of an alternative embodi-
ment of a process to record a dependency and to match
scheduled 1nstructions with dependencies. The process dia-
oram begins again 1n processing block 611 with the storing
of an instruction, A, in a buffer, R, at storage location S.
Processing continues 1n processing block 612 with the
storing of an 1nstruction, B, dependent on instruction A, 1n
a buffer, QQ, at storage location T. As before, 1n processing,
block 613, a coordinate, U, 1s generated to indicate that
instruction B depends on an instruction 1n a buffer referred
to by R, and 1n processing block 614, a coordinate V 1is
ogenerated to indicate that the instruction B depends on and
Instruction at a storage location referred to by S.

Processing continues in processing block 615, with the
dispatching of instruction A. In processing block 626, coor-
dinate U 1s matched, and 1n processing block 627 coordinate
V 1s matched. Then, following after the matching of coor-
dinate U and coordinate V, instruction B 1s dispatched 1n
processing block 628.

FIG. 7 1llustrates one embodiment of a computing system
700 1including central processing unit 701 that uses depen-
dency coordinate matching.

In processing block 721, instructions (typically macro-
instructions, micro-instructions or emulation instructions)
may be fetched from local memory 710 or from cache

memory 711 by fetch logic 713 through memory control
logic 712.

Decode logic 714 receives instructions from fetch logic
713 and 1s coupled with dependency determination logic 715
to provide decoded instructions (typically micro-
instructions, micro-operations or emulation operations) and
dependency information to processing block 731.

In processing block 731, instructions are stored 1n UOP
buffers 717 and dependency coordinates are provided to
dependency coordinate logic 716 for matching to dispatched
instructions. Instructions in UOP buffers 717 may be dis-
patched for execution to execute logic 719 by dispatch logic
718 when they have been 1dentified as ready for scheduling
by dependency coordinate logic 716. After completing
execution, instructions are provided to retire logic 720 to be
retired and, if necessary, reordered.

US 6,589,314 B2

9

In one embodiment of system 700, central processing unit
701 supports most or all of the 1nstructions supported by any
one of the Intel Pentium® 4, Intel Pentium® III Xeon™,
Intel Pentium® III, Intel Celeron™, Intel Pentium® II
Xeon™, Intel Pentium® II, and Pentium® Pro processors;
the Pentium® processor with MMX™ technology; the Pen-
tium® processor; and the Intel486™, Inte]l386™, Intel 286,
and Intel 8086 processors; all available from Intel Corpo-
ration of Santa Clara, Calif. In another embodiment of
system 700, central processing unit 701 supports all the
operations supported 1n the IA-32 Intel® Architecture, as
defined by Intel Corporation of Santa Clara, Calif. (see
[A-32 Intel® Architecture Software Developer’s Manual,
volume 1 and volume 2, 2000, available from Intel of Santa
Clara, Calif.).

In another embodiment of system 700, central processing,
unit 701 supports most or all of the instructions supported by
any one of the Intel Itantum™ processors, available from
Intel Corporation of Santa Clara, Calif. In another embodi-
ment of system 700, central processing unit 701 supports all
the instructions supported by any one of the PowerPC™
processors, available from Motorola of Schaumburg, I11. or
from IBM of Armonk, N.Y. In another embodiment of
system 700, central processing unit 701 supports all the
instructions supported by any one of the PA-RISC™
processors, available from Hewlett-Packard of Palo Alto,
Calif. In another embodiment of system 700, central pro-
cessing unit 701 supports all the instructions supported by
any one of the Sun SPARC™, UltraSPARC™ and
MicroSPARC™, processors, available from Sun Micro-
sytems of Palo Alto, Calif. In another embodiment of system
700, central processing unit 701 supports all the instructions
supported by one or more current processors, not limited to
the processors noted above. In addition the system 700,
specifically central processing unit 701 can be modified to
incorporate future instructions.

Computing system 700 may comprise a personal
computer, workstation or server including but not limited to
central processing unit 701, graphics memory, graphics
controller(s), and local memory 710; system bus(ses), local
bus(ses) and bridge(s); peripheral systems, disk and input/
output systems, network systems and memory systems.

The above description 1s intended to illustrate preferred
embodiments of the present invention. From the discussion
above 1t should also be apparent that the mmvention may be
modified 1n arrangement and detail by those skilled 1n the art
without departing from the principles of the present inven-
tion within the scope of the accompanying claims.

What 1s claimed 1s:

1. An apparatus comprising:

dependency matching logic to receive a first dependency
coordinate and a second dependency coordinate corre-
sponding to a single dependency relationship, the
dependency matching logic, upon receiving the first
and second dependency coordinates, to identify
whether the dependency precludes scheduling; and

dependency checking logic to produce a ready signal if
the dependency matching logic has not i1dentified that
scheduling 1s precluded.
2. The apparatus of claim 1 wherein the first dependency
coordinate 1dentifies a first buifer of a plurality of buifers.
3. The apparatus of claim 2 wherein the second depen-
dency coordinate identifies a first location within the first
buffer.
4. The apparatus of claim 2 wherein the first dependency
coordinate 1dentifies a buffer in an arrangement selected

5

10

15

20

25

30

35

40

45

50

55

60

65

10

from the group of a hierarchical bu
functional buf
arrangement.

5. The apparatus of claim 1 further comprising:

a scheduling mformation interface to transmit, to the
dependency matching logic, a dispatch signal pertain-
ing to an 1nstruction being dispatched, the dependency
matching logic, upon receiving the dispatch signal to
identify whether the first dependency precludes sched-
uling by matching the dispatch signal to the first and
second dependency coordinates.

6. The apparatus of claim § further comprising;:

a write-enable 1nput to transmit, to the dependency match-
ing logic, a write-enable signal to enable the depen-
dency matching logic to store the second dependency
coordinate.

7. The apparatus of claim 6 wherein the dependency
matching logic, upon receiving the dispatch signal 1s to
identify whether the first dependency precludes scheduling
by clearing the second dependency coordinate.

8. The apparatus of claim 7 wherein the dependency
matching logic, upon receiving the dispatch signal 1is
enabled to clear the second dependency coordinate while
receiving the write-enable signal.

9. A method for scheduling an instruction for execution
comprising:

generating a first dependency coordinate to indicate that a
second 1nstruction 1s dependent on a first instruction;

generating a second dependency coordinate to indicate
that the second instruction 1s dependent on the first
mstruction;

dispatching the first instruction for execution;

using the first dependency coordinate to access the second
dependency coordinate 1n response to the first imstruc-
tion being dispatched; and

dispatching the second instruction after accessing the

second dependency coordinate.
10. The method of claim 9 further comprising:

storing the first instruction 1n a first location correspond-
ing to second dependency coordinate within a first
buffer.

11. The method of claim 10 wherein the first dependency
coordinate indicates that the first instruction 1s stored in the
first buffer.

12. An article of manufacture comprising,

a machine-accessible medium including data that, when
accessed by a machine, cause the machine to perform
the method of claim 11.
13. A method for scheduling an instruction for execution
comprising:
storing a first 1nstruction 1n a first location within a first
buffer;
storing a second instruction, dependent on the first
mstruction, 1n a second location within a second buffer;

generating a first dependency coordinate for the second
instruction to indicate that the second instruction is
dependent on an instruction stored in the first buffer;
and

generating a second dependency coordinate for the second
instruction to indicate that the second instruction is
dependent on an 1nstruction stored 1n the first location.
14. The method of claim 13 further comprising:

dispatching the first instruction for execution;

matching the first dependency coordinate to a dispatch
from the first buffer in response to the first instruction
being dispatched;

fer arrangement, a
er arrangement, and a symmetric buifer

US 6,589,314 B2

11

matching the second dependency coordinate to a dispatch
from the first location 1n response to the first instruction
being dispatched; and

dispatching the second instruction after matching the first
dependency coordinate and the second dependency
coordinate.

15. A dependency matching logic comprising:

a first storage location to store a first dependency coor-

g™

dinate referencing one of a plurality of operation bufl-
€IS;

a second storage location to store a second dependency
coordinate referenemg a location of a plurality of
addressable locations in an operation buffer;

an 1nterface to receive an indication of a first scheduled
operation, the dependency matching logic, upon receiv-
ing the indication of the first scheduled operation, to
identifty whether the first scheduled operation corre-
sponds to the location referenced by the second depen-
dency coordinate 1n the buffer referenced by the first
dependency coordinate.

16. The apparatus of claim 15 further comprising;:

a write-enable input to transmit, to the dependency match-
ing logic, a write-enable signal to enable the depen-
dency matching logic to store the second dependency
coordinate.

17. The apparatus of claam 16 wherein the dependency
matching logic, 1s to clear the second dependency coordinate
responsive to 1dentifying that the first scheduled operation
corresponds to the location referenced by the second depen-
dency coordinate 1n the bufler referenced by the first depen-
dency coordinate.

18. The apparatus of claam 17 wherein the dependency
matching logic, responsive to 1dentifying that the first sched-
uled operation corresponds to the location referenced by the
second dependency coordinate in the bufl

er referenced by
the first dependency coordinate i1s enabled to clear the
second dependency coordinate concurrent with the receiving
of the write-enable signal.

19. A dependency matching logic comprising:

means for storing a first dependency coordinate referenc-
ing one of a plurality of operation buifers;

means for storing a second dependency coordinate refer-
enemg a location of a plurality of addressable locations
In an operation buifer;

means for receiving an indication of a first scheduled
operation; and

means for identifying whether the first scheduled opera-
tion corresponds to the location referenced by the
second dependency coordinate 1n the buffer referenced
by the first dependency coordinate.

20. The apparatus of claim 19 further comprising;

means for clearing the second dependency coordinate
concurrent with the cycle in which 1t 1s received for
storing.

10

15

20

25

30

35

40

45

50

55

12

21. An article of manufacture comprising;:

a machine-accessible medium including data that, when
accessed by a machine, cause the machine to:
generate a first dependency coordinate for a first
instruction to indicate that the first instruction 1s
dependent on an instruction stored in a first buffer;

generate a second dependency coordinate for the first
instruction to indicate that the first instruction is
dependent on an 1nstruction stored in a first location
in a buffer;

match the first dependency coordinate to a dispatching
of a second instruction from the first bufter;

match the second dependency coordinate to a dispatch-
ing of the second 1nstruction from the first location in
the first buffer; and

dispatch the second instruction after matching the first
dependency coordinate and the second dependency
coordinate.

22. A computing system comprising;:

dependency coordinate logic to store a first dependency
coordinate referencing one of a plurality of operation
buffers and a second dependency coordinate referenc-
ing a location of a plurality of addressable locations 1n
an operation buffer;

dispatch logic coupled to the dependency coordinate logic
to send an indication of a first scheduled operation;

dependency match logic to 1dentily whether the first
scheduled operation corresponds to the location refer-
enced by the second dependency coordinate in the
buffer referenced by the first dependency coordinate.

23. The computing system of claim 21 further comprising:

fetch logic to receive a first instruction from a first
memory; and

decode logic coupled with the fetch logic to translate the
first 1nstruction into at least one operation to be stored
in one or more of the plurality of addressable locations
in the operation buffer.

24. The computing system of claim 22 wherein the decode
logic comprises an integrated circuit.

25. The computing system of claim 22 wherein the decode
logic comprises a combination of an integrated circuit and
emulation data.

26. The computing system of claim 22 wherein the first
Instruction comprises an emulation instruction.

27. The computing system of claim 22 wherein the first
Instruction comprises a macro-instruction.

28. The computing system of claim 26 wherein the at least
one or operation comprises a micro-operation.

29. The computing system of claim 26 wherein the at least
one operation comprises an emulation instruction.

	Front Page
	Drawings
	Specification
	Claims

