(12) United States Patent

US006889288B2
10y Patent No.: US 6,889,288 B2

Bono et al. 45) Date of Patent: May 3, 2005
(54) REDUCING DATA COPY OPERATIONS FOR 6,457,102 B1 * 9/2002 Lambright et al. 711/129
WRITING DATA FROM A NETWORK TO 2004/0034743 Al * 2/2004 Wolrich et al. 711/132
STORAGE OF A CACHED DATA STORAGE FOREIGN PATENT DOCUMENTS
SYSTEM BY ORGANIZING CACHE BLOCKS
AS LINKED LISTS OF DATA FRAGMENTS WO WO 91/06053 5/1991 GO6F/12/00
WO WO 91/08536 6/1991 GO6E/12/08
(75) Inventors: Jean-Pierre Bono, Westboro, MA (US); WO WO 91/08537 S GU6L/12/08
Jiannan Zheng, Ashland, MA (US); OTHER PUBLICATIONS
Peter C. Bixby, Westborough, MA _ _
(US); Xiaoye Jiang, Shrewsbury, MA Me{ldel Rosenblum and John K Ousterhout, UI]lVG.I'Sl’[y of
(US) California at Berkley “The Design and Implementation of a
Log—Structured File System;” ACM Transactions on Com-
(73) Assignee: EMC Corporation, Hopkinton, MA puter Systems, vol. 10, No. 1, Feb. 1992, pp. 26-52.
(US) Fred Douglis and John K. Ousterhout, “Log—Structured File
. . _ _ _ _ Systems;” Digest of Papers, Comp.con89.
(*) Notice: Sub]ect. to any d15cla1mer,: the term of this Kessler, Gary C.; ISDN: concepts, facilities, and services /
patent 1s extended or adjusted under 35 Gary C. Kessler, Peter V. Southwick—3"™ ed. , 1997; pp.
U.S.C. 154(b) by 324 days. 32-35; pp. 393-395; pp. 474-482; pp. 524-537.
_ “Internet Protocol—DARPA Internet Program—_Protocol
(21) Appl. No.: 10/308,159 Spectfication;” Sep. 1981; Information Sciences Institute,
(22) Filed: Dec. 2, 2002 University of Southern California.
(65) Prior Publication Data Z[({]stjr %g;&gmm Protocol;” J. Postel, ISI, Aug. 28, 1980
US 2004/0107318 Al Jun. 3, 2004 “Transmission Control Protocol—DARPA Internet Pro-
1) It CL7 o GOGF 12/02; GOGF 1516 §74Lrotocol Specification;” Information Sciences Insti-
(52) US.CL oo 711/118; 711/170; 711/141; ’ Y DFP 27
709/232; 709/238 * cited by examiner
(58) Field of Search 711/118, 129, Primary Examiner—Jack A. Lane
7117170, 173, 141, 143; 709/232, 238 (74) Attorney, Agent, or Firm—Novak Druce & Quigg,
(56) References Cited LLP; Richard Auchterlonie

4,916,605
5,155,845
5,206,939
5,269,019
5,301,286
5,377,342
5,381,539
5,459 857
5,544,345
5,630,067
5,803,140
5,001,327
6,076,148

g i i I B i i i

4/1990
10/1992
4/1993
12/1993
4/1994
12/1994
1/1995
10/1995
3/1996
5/1997
4/1999
5/1999
6/2000

U.S. PATENT DOCUMENTS

Beardsley et al. 364/200
Beal et al. 395/575
Yanai et al. 395/400
Peterson et al. 395/600
Rajanicccceevnnnnnnnnnn. 395/400
Sakai et al. ..c.ouennn.....n 395/425
Yanai et al. 395/425
Ludlam et al. 395/182.04
Carpenter et al. 395/477
Kindell et al. 395/200.09
Vahalia et al. 711/118
Ofek woveeeieieiieannnn.. 395/825
Kedemccovvvvennennnn... 711/162

LOGICAL ELOCK INDEX

41

(57) ABSTRACT

In a network attached cached disk storage system, data 1s
transmitted over the network 1n data packets having a data
length that 1s much smaller than the logical block size for
reading or writing to disk storage. To avoid copying of data
from network port buflers to the cache memory, the cache
blocks of the cache memory are organized as linked lists of
list elements, which can be used as network port mnput or
output buffers. For TCP data packets, for example, each list
clement has a data slot for storing up to 1,500 bytes, and a
field indicating the number of bytes stored m the data slot.

43 Claims, 15 Drawing Sheets

‘..-u—--l'-'l-ﬂ
42 P

LOGICAL BLOCK | CACHE BLOCK

ADCRESS ADDREES

IN-CACHE OTHER LOGICAL
FLAG BLOCK ATTRIBUTES

0

1

2

N-1

CACHE BLOCK INDEX ,— 51
- 52 L~ 53

CACHE BLOCK

LIET

ADDRESS ADDRESS

CACHE MEMORY
BLOCK ATTRIBUTES

0

1 | S—
—

e

2 o

M-1
-~ 58

PCINTER TO
LIST OF FREE
LISF ELEMENTS

L IST ELEMENT POOL & ¥4
- 55 - 56 - 57

LIST ELEMENT 1,
ADDRESS

00 BYTE
SLOT

POINTER TO | BYTES
NEXT SLOT USED

1

, .

3 i

EM

U.S. Patent May 3, 2005 Sheet 1 of 15 US 6,889,288 B2

CLIENT I 34 l CLIENT f 53

31
34
¥
38 35
T 36
P PORT
CACHE
STORAGE MEMORY
CONTROLLER
< Ty 37
DISK
STORAGE
36
=
37
TCP/IP
DATA <«—»|IP PORT M%’“‘JSFEY DISK
PACKETS STORAGE
FRAGMENTS CACHE BLOCKS DISK BLOCKS
<1,500 BYTES = 8 K BYTES = § K BYTES

FIG. 2

U.S. Patent May 3, 2005 Sheet 2 of 15 US 6,889,288 B2

LOGICAL BLOCK INDEX 40
M4 43
LOGICAL BLOCK | CACHE BLOCK |IN-CACHE | OTHER LOGICAL
ADDRESS ADDRESS FLAG | BLOCK ATTRIBUTES

g Ay -

N-1
CACHE MEMORY TABLE ,_— 44
45 46
CACHE BLOCK 8 KBYTES | CACHE MEMORY
ADDRESS DATA BLOCK ATTRIBUTES
0
1
2
M-1
- 47
FREE PINNED WRITE U
CACHE CACHE PENDING i
BLOCKS BLOCKS CACHE BLOCKS

(PRIOR ART)

U.S. Patent May 3, 2005

Sheet 3 of 15

LOGICAL BLOCK INDEX

41

LOGICAL BLOCK | CACHE BLOCK

ADDRESS ADDRESS FLAG

0

1

2z

IN-CACHE

42

OTHER LOGICAL
BLOCK ATTRIBUTES

US 6,889,288 B2

43

N-1

CACHE BLOCK
ADDRESS

0

1
2

M-
1 58

POINTER TO

LIST OF FREE
LIST ELEMENTS

LIST ELEMENT
ADDRESS

1
2
3

6M

CACHE BLOCK INDEX ~ 57

02

LIST
ADDRESS

o3

CACHE MEMORY
BLOCK ATTRIBUTES

LIST ELEMENT POOL o 24

o0

1500 BYTE
SLOT

POINTER TO
NEXT SLOT

o6 ~ o
BYTES
USED

FIG. 4

U.S. Patent May 3, 2005 Sheet 4 of 15 US 6,889,288 B2

50
POINTER TO
L1ST FOR CACHE
BLOCK "K"
51
DATA1 | POINTER1 | 1500
62
POINTER2 | 1.500
63
DATA3 | POINTER3 | 1500
54
DATA4 | POINTER4 | 1500
65
DATA5 | POINTERS5 | 1.500
66

FIG. 5

U.S. Patent May 3, 2005 Sheet 5 of 15 US 6,889,288 B2

INITIALIZATION
(CACHE FLUSH)

/1

INVALIDATE ALL CACHE MEMORY BLOCK
ADDRESSES ASSOCIATED WITH THE LOGICAL
BLOCKS IN THE LOGICAL BLOCK iNDEX

/2

PUT ALL LIST ELEMENTS OF THE LIST
ELEMENT POOL INTO THE LIST OF FREE
ELEMENTS:

FOR I=1 TO 6M-1:

POINTER_TO NEXT SLOT(l) -—|+1
NEXT |

POINTER_TO_NEXT_SLOT(6M) < 0

POINTER_TO LIST OF FREE ELEMENTS 1

RETURN

FIG. 6

U.S. Patent May 3, 2005 Sheet 6 of 15 US 6,889,288 B2

REQUEST TO WRITE NEW BLOCK OF
DATA TO LOGICAL BLOCK (K)

81

REMOVE A FREE LIST ELEMENT FROM
THE HEAD OF THE FREE ELEMENT LIST

i (2

82

USE THE FREE LIST ELEMENT AS A
RECEIVE BUFFER FOR THE WRITE DATA
IN THE TCP/IP DATA PACKET

84

REMOVE A FREE LIST
ELEMENT FROM THE HEAD
OF THE FREE ELEMENT LIST

AND LINK IT TO THE
PRECEDING LIST ELEMENT

MORE
WRITE DATA
FOR THE LOGICAL
BLOCK?

YES

NO

85

SET POINTER TO NEXT
SLOT TO ZERO

8/

35 ALLOCATE CACHE BLOCK

INDEX ENTRY AND UPDATE
THE LOGICAL BLOCK INDEX
NO | TO REFERENCE THE CACHE

BLOCK INDEX ENTRY

LOGICAL

BLOCK IN CACHE
?

YES

8
RETURN EXISTING LIST FOR THE S
CACHE BLOCK TO THE FREE LIST

89

LINK THE TCP/NIP RECEIVE BUFFER TO THE
CACHE BLOCK INDEX ENTRY AND UPDATE RETURN
THE CACHE BLOCK ATTRIBUTES TO
WRITE PENDING -WRITEBACK NEEDED

FIG. 7

U.S. Patent

May 3, 2005

REQUEST TO READ
A LOGICAL BLOCK (K)

91

L OGICAL
BLOCK IN

NO
92

ALLOCATE A CACHE BLOCK
INDEX ENTRY FOR THE
LOGICAL BLOCK

93

UNLINK A LIST OF SIX FREE
ELEMENTS FROM THE HEAD
OF THE FREE ELEMENT LIST
AND LINK TO THE CACHE
BLOCK INDEX ENTRY FOR
THE LOGICAL BLOCK

94

READ THE LOGICAL BLOCK
FROM DISK STORAGE AND
WRITE TO THE DATA SLOTS
FOR THE SIX ELEMENTS
ALLOCATED TO THE CACHE
BLOCK INDEX ENTRY FOR
THE LOGICAL BLOCK

-95

LINK THE CACHE BLOCK
INDEX ENTRY FOR THE
LOGICAL BLOCK TO THE
ENTRY FOR THE [LOGICAL
BLOCK IN THE LOGICAL
BLOCK INDEX AND UPDATE
BLOCK ATTTIBUTES TO
INDICATE THAT THE
LOGICAL BLOCK IS IN CACHE

Sheet 7 of 15

GET LIST ADDRESS

FROM CACHE BLOCK
INDEX ENTRY

97
e YES
NO

98

USE THE NEXT LIST
ELEMENT AS A
TRANSMIT BUFFER

FOR A TCP/IP DATA
PACKET

99

GET POINTER TO

NEXT SLOT FROM
THE LIST ELEMENT

100
NO

YES

101

END

OF LOGICAL
BLOCK2Z~"VEs

NO

102

TRANSMIT ZERO-FILL
DATA TO THE END
OF THE BLOCK

RETURN

FIG.

US 6,889,288 B2

U.S. Patent May 3, 2005 Sheet 8 of 15 US 6,889,288 B2

(REQUEST TO CLEAR
A LOGICAL BLOCK (K)

122

ALLOCATE CACHE BLOCK

INDEX ENTRY AND UPDATE
THE LOGICAL BLLOCK INDEX
TO REFERENCE THE CACHE
BLOCK INDEX ENTRY

LOGICAL

BLOCK IN CACHE
?

RETURN EXISTING LIST FOR THE
CACHE BLOCK TO THE FREE LIST

OF ELEMENTS

124

SET LIST ADDRESS TO ZERO IN
THE CACHE BLOCK INDEX ENTRY
FOR THE LOGICAL BLOCK (K) AND

UPDATE THE CACHE BLOCK
ATTRIBUTES TO WRITE PENDING -
WRITEBACK NEEDED

RETURN

FIG. 9

U.S. Patent

May 3, 2005

REQUEST FOR PARTIAL

WRITE TO LOGICAL BLOCK (K)
(READ-MODIFY-WRITE)

131

LOGICAL
BLOCK IN
CACHE? YES

NO
~132

ALLOCATE A CACHE BLOCK
INDEX ENTRY FOR THE
LOGICAL BLOCK

133

UNLINK A LIST OF SIX FREE

ELEMENTS FROM THE HEAD

OF THE FREE ELEMENT LIST
AND LINK TO THE CACHE
BLOCK INDEX ENTRY FOR

THE LOGICAL BLOCK

134

READ THE LOGICAL BLOCK
FROM DISK STORAGE AND
WRITE TO THE DATA SLOTS
FOR THE SIX ELEMENTS
ALLOCATED TO THE CACHE
BLOCK INDEX ENTRY FOR
THE LOGICAL BLOCK

135

LINK THE CACHE BLOCK
INDEX ENTRY FOR THE
LOGICAL BLOCK TO THE
ENTRY FOR THE LOGICAL
BLOCK IN THE LOGICAL
BLOCK INDEX AND UPDATE
BLOCKATTTIBUTES TO
INDICATE THAT THE
LOGICAL BLOCK IS IN CACHE

Sheet 9 of 15

136

GET LIST ADDRESS
FROM CACHE BLOCK

INDEX ENTRY

137

SCAN LISTUP TO
OFFSET FOR PARTIAL
WRITE

138

WRITE DATA
REPLACES LIST
ELEMENT(S)?

YES

NO
139

COPY DATA FROM
TCP/IP INPUT BUFFER
TO THE CACHE LIST
ELEMENT(S)

140

SUBSTITUTE THE
TCP/IP INPUT BUFFER
FOR THE CACHE LIST

ELEMENT(S)

141

UPDATE CACHE
BLOCK ATTRIBUTES

TO WRITE PENDING -
WRITEBACK NEEDED

RETURN

FIG. 10

US 6,889,288 B2

L1 Old

US 6,889,288 B2

NQ
€
Z
!
5 1018 1X3N 10718 sSINAQY
. O1 ¥3AINIOd | 3LAL 005"} INEERENEIR
Z /G e GG _
= b —¥ 100d LN3IW3T3 1SIT SLNIWTd ST
5 3344 40 1SI
72 01 YILNIOJ
") L-N
— 1
—
L\
s
>
s °‘>-—— - _ N
> ~ 1
0
S3LNGIYLLY X018 SILNGIYLLY ¥D01d OV SSINAQY
L 1t r AN I _ b QQIMAAY | QU1
ASOWFWN FHOVYD IVOIODO T d3HLO JHIOV SN =y e AMO0149 GvIIO0T
£G P 2 ZS
o7 X3ANI ¥D01€ W90

U.S. Patent

U.S. Patent May 3, 2005 Sheet 11 of 15 US 6,889,288 B2

150

POINTER TO
LIST FOR CACHE
BLOCK "K"

151

DATA 1 POINTER 1 140

152
DATA2 | POINTER 2

153
DATA3 | POINTER 3 240

154
DATA4 | POINTER 4 m

155
DATA5 | POINTERS 180

156

DATA 73 0 240

FIG. 12

U.S. Patent May 3, 2005 Sheet 12 of 15 US 6,889,288 B2

FRAGMENT MERGING
BACKGROUND PROCESS
161

GET NEXT NON-EMPTY
LIST IN CACHE

162
SET ELEMENT

POINTER TO FIRST
ELEMENT IN LIST

163
BU1 w-— BYTES USED
MTU1 .« MTU SIZE

164
END

YES

NO
165

oET ELEMENT
POINTER TO NEXT
ELEMENT IN LIST

166
EU2 <+—BYTES USED

167

< BU1+BUZ2
>MTU1? YES

NO

v FIG. 13

U.S. Patent

191

May 3, 2005 Sheet 13 of 15

COPY THE BUZ2 BYTES

FROM THE CURRENT
ELEMENT TO THE

PREVIOUS ELEMENT

171

/,1 72

SET BYTES USED IN

PREVIOUS ELEMENT
TO BU1+BUZ2

173

REMOVE THE
CURRENT ELEMENT
FROM THE LIST
(ELEMENT POINTER IS
RESET TO PREVIOUS

ELEMENT)

192 193

POINTER TO BYTES MTU BYTE
NEXT ELEMENT USED SLOT

194

US 6,889,288 B2

FIG. 16

US 6,889,288 B2

Sheet 14 of 15

May 3, 2005

U.S. Patent

Gl Old

¢

8

L

AJOWIN
AHOVO

081l

JOVHOLS
MSIC
S S —
43710YLNOD
AOVHOLS
LY0d
118YOID
181 . 7—
881 o8l
S3LA8 S3LAg
000't > 000'6 >
SINIWOVYA SININOWY -
MHOMLIN

AHOMLAN 1dA4

119V¥OI19

14d0d

14Nd3H13
A

141

S3LA8
00G'L >
SLNINOVHA

AHOMLAN
19NHJH LS

D>

G8

US 6,889,288 B2

Sheet 15 of 15

May 3, 2005

U.S. Patent

SL1O'1S J1AS
000+ HLIM

SLN3IWN33
10 100d
INJNWITI LSIT

14014

Ll Dl

S101S J1LAd
0006 HLimM

SINJWI14
40 100d
INE N ERENED

£0c

S101S 341A8
000 ¥ HLIM
SINJW313

34344 40 LSIT

OL d31NIOd

LOC

S1071S 31A49
00S'L HLIM
SLINIW3IT3

40 700d
ININITT 1SN

c0¢

S1071S 31A4

000'6 HLIM
SIN3INITI

33444 40 1917
OL Hd31NIOd

90¢

LOC

XAANI 40019 TVOID0T

00¢

S101S 31LA9
00S'L H1IMm

SLIN3IWN3I13
d344 40 1SI7
Ol H31NIOd

G0C

US 6,389,268 B2

1

REDUCING DATA COPY OPERATIONS FOR
WRITING DATA FROM A NETWORK TO
STORAGE OF A CACHED DATA STORAGE
SYSTEM BY ORGANIZING CACHE BLOCKS
AS LINKED LISTS OF DATA FRAGMENTS

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present 1nvention relates generally to data storage
systems, and more particularly to a data storage system
attached to a data network for receiving and storing data
from a network client.

2. Background Art

Mainframe data processing, and more recently distributed
computing, have required increasingly large amounts of data
storage. This data storage 1s most economically provided by
an array ol low-cost disk drives integrated with a large
semiconductor cache memory. Such cached disk arrays were
originally introduced for use with IBM host computers. A
channel director 1n the cached disk array executed channel
commands received over a channel from the host computer.
Moreover, the cached disk array was designed with sufli-
cient redundancy so that data written to the cache memory
would be available despite any single point of failure 1n the
cached disk array. Therefore, most applications could con-
sider that a write from the host to the cached disk array was
completed once the data was written to the cache memory.
This characteristic of the cached disk array 1s known as a
“fast write” capability because the write operation 1s con-
sidered to be completed much faster than the time to write
the data to disk storage.

More recently there has been a trend toward attaching
storage systems to data networks so that the storage is
available to multiple hosts. The hosts can range from main-
frame computers to engineering workstations to commodity
personal computers. Due to the “fast write” capability of the
cached disk array, the data network has been seen as a
limitation on the performance of the network-attached stor-
age. There has been a confinuing desire to reduce the
performance penalty for attaching a cached disk array to a
host through a data network 1nstead of a dedicated channel.

SUMMARY OF THE INVENTION

In accordance with a first aspect, the invention provides a
storage system 1ncluding a storage controller, a cache
memory, and data storage. The storage controller 1s pro-
grammed to respond to a request to access a specified logical
block of data 1n the data storage by accessing a logical block
index to determine whether or not the specified logical block
1s 1 the cache memory. When the logical block index
indicates that the logical block 1s 1n the cache memory, the
storage controller accesses the logical block of data in the
cache memory, and when the logical block index indicates
that the logical block of data 1s not 1n the cache memory, the
storage controller accesses the logical block of data in the
data storage. The cache memory contains a multiplicity of
logical blocks of data, each of which 1s organized as a
respective linked list of list elements containing fragments
of the data of the logical block.

In accordance with another aspect, the invention provides
a storage system 1ncluding a storage controller, a cache
memory, and data storage. The storage controller 1s pro-
crammed to respond to a request to access a specified logical
block of data 1n the data storage by accessing a logical block

10

15

20

25

30

35

40

45

50

55

60

65

2

index to determine whether or not the specified logical block
1s 1n the cache memory. When the logical block index
indicates that the logical block 1s 1n the cache memory, the
storage controller accesses the logical block of data in the
cache memory, and when the logical block index indicates
that the logical block of data 1s not 1n the cache memory, the
storage controller accesses the logical block of data in the
data storage. The cache memory contains a list element pool
of list elements, and at least some of the list elements 1n the
list element pool are linked in respective lists for a multi-
plicity of logical blocks of data. Each list element 1n the list
clement pool includes a data slot, a field for a pointer to a
next list element 1n the list element pool, and a field for an
indication of how many bytes of data are contained in the
data slot. The storage controller has a network port for
attachment to a data network for communicating data pack-
ets with clients 1n the data network. The storage controller 1s
programmed to use the list elements as transmit and receive
buflers for communicating the data packets with the clients
in the data network.

In accordance with a final aspect, the invention provides
a method of operating a storage system having a storage
controller, a cache memory, and data storage for storing
logical blocks of data. The storage controller has a network
port for attaching the storage controller to a data network for
communicating data packets with clients 1n the data net-
work. The storage controller 1s programmed to respond to a
request to access a speciiied logical block of data in the data
storage by accessing a logical block mndex to determine
whether or not the specified logical block 1s 1n the cache
memory. When the logical block index indicates that the
logical block is 1n the cache memory, the storage controller
accesses the logical block of data 1n the cache memory, and
when the logical block index 1ndicates that the logical block
of data 1s not 1n the cache memory, the storage controller
accesses the logical block of data in the data storage. The
method mcludes the storage controller maintaining a pool of
list elements 1n the cache memory, linking at least some of
the list elements 1nto respective linked lists for a multiplicity
of the logical blocks of data stored in the data storage, and
storing, 1n the list elements for each respective linked list for
cach of the multiplicity of the logical blocks of data stored
in the data storage, the data of the respective logical block.
The method further includes the storage controller using the
list elements as transmit and receive buflers for communi-
cating the data packets with the clients in the data network.

BRIEF DESCRIPITION OF THE DRAWINGS

Other objects and advantages of the invention will
become apparent upon reading the following detailed
description with reference to the drawings, in which:

FIG. 1 shows a block diagram of a data network including,
a data storage system;

FIG. 2 1s a flow diagram showing how data i1s written to
or read from disk storage 1n the data storage system of FIG.
1;

FIG. 3 shows conventional cache memory data structures
for the network-attached storage of FIG. 1;

FI1G. 4 shows cache memory data structures 1n accordance
with one aspect of the invention;

FIG. 5 1s a schematic diagram showing a list of list

elements for a logical block of data 1n the cache memory of
FIG. 4;

FIG. 6 1s a flowchart of a procedure for inifializing or
flushing the cache memory of FIG.4;

FIG. 7 1s a flowchart of a procedure for responding to a
request to write a new block of data to a specified logical

block;

US 6,389,268 B2

3

FIG. 8 1s a flowchart of a procedure for responding to a
request to read a logical block from storage;

FIG. 9 1s a flowchart of a procedure for responding to a
request to clear a logical block;

FIG. 10 1s a flowchart of a procedure for responding to a
request for a partial write to a specified logical block;

FIG. 11 1s an alternative organization of cache memory
data structures 1in accordance with the invention;

FIG. 12 1s a schematic diagram showing a list of list
clements for a case where the data slots are only partially
filled with respective data fragments;

FIGS. 13 and 14 comprise a flowchart of a background
process for merging data fragments of a logical block of data
in the cache memory 1n order to reduce the number of list
clements 1n the list for the logical block;

FIG. 15 shows a data storage system in which the same
data storage may be accessed over different types of network
interfaces, each having a different maximum data transfer
unit size (MTU);

FIG. 16 shows a list element pool 1n which all of the list
clements in the pool have the same data slot size, and each

of the list elements has a field indicating the data slot size of
the list element; and

FIG. 17 shows cache memory data structures for manag-
ing the cache memory 1n the data storage system in FIG. 135,
the cache memory data structures including a respective list
element pool (as shown in FIG. 16) for each of the different
types of network interfaces.

While the invention 1s susceptible to various modifica-
tions and alternative forms, a specific embodiment thereot
has been shown by way of example 1n the drawings and will
be described 1n detail. It should be understood, however, that
it 1s not 1ntended to limit the form of the invention to the
particular form shown, but on the contrary, the intention 1s
to cover all modifications, equivalents, and alternatives
falling within the scope of the invention as defined by the
appended claims.

DESCRIPTION OF ILLUSTRAITIVE
EMBODIMENTS

FIG. 1 shows an Internet Protocol (IP) network 31 linking
a number of clients 32, 33 to a network-attached storage
system 34. The network-attached storage system 34 includes
a storage controller 35, a cache memory 36, and disk storage
37. The storage controller 35 has an IP port 38 for linking the
storage controller 35 to the IP network 31.

Data transmission from clients 32, 33 to the storage
controller 35 1n the data processing system of FIG. 1
typically uses a Transmission Control Protocol (TCP) lay-
ered over the Internet Protocol. As shown 1n FIG. 2, when
the Transmission Control Protocol i1s used, the IP port 38
receives data fragments from TCP/IP data packets. Each 1s
of the data fragments 1s less than or equal to 1,500 bytes. The
data fragments are written to cache blocks in the cache
memory 36. Later, as a background process, the modified
cache blocks are written back to corresponding disk blocks
in the disk storage 37.

Typically, the data fragments are much smaller than the
cache blocks. For example, each cache block and disk block
has a data length of eight kilobytes, and at least six data
fragments from the IP port 38 are needed to completely fill
a cache block with new data.

During a write operation, the data fragments have been
copied from an input buffer of the IP port mto the cache
memory blocks. The present invention provides a way of

10

15

20

25

30

35

40

45

50

55

60

65

4

climinating a need to copy the data fragments from an 1nput
buffer of the IP port into the cache memory blocks for most
write operations.

FIG. 3 shows conventional data structures for the cache
memory 36 of FIG. 1. As shown m FIG. 3, these data
structures include a logical block mdex 40 and a cache
memory table 44. The logical block 1index 40 includes, for
cach logical block that 1s stored 1n the cache memory, an
assoclated cache block address 41, and a flag 42 indicating
whether or not the logical block 1s 1n cache. The logical
block index 40 also includes other logical block attributes 43
of each logical block. These other logical block attributes,
for example, include a logical-to-physical mapping indicat-
ing the physical location where the data of the logical block
is found in the disk storage (37 in FIG. 2).

The cache memory table 44 includes, for each cache block
address, a field 45 for storing eight kilobytes of data, and a
field 46 for storing a number of cache memory block
attributes 46. For example, the cache memory block
attributes 1nclude a set of flags, including a flag indicating,
whether a write back 1s pending, a flag indicating 1s whether
a write back operation needs to be initiated, a flag indicating,
whether the cache block i1s “pmned” or not, and a flag
indicating whether the cache block 1s free or not.

Typically, the cache memory 1s operated 1n such a way
that when a cache block 1s needed for storing data of a
logical block and there are no free cache blocks, then the
least recently used cache block will be de-allocated and
reused. In order to quickly determine the least recently used
cache memory block, a linked list called the least recently
used (LRU) list 47 1s maintained in such a way that the least
recently used cache block will be found at the head of the
LRU list. In particular, each time that a cache block 1is
accessed, any pointer to the cache block already existing 1n
the LRU list 1s removed from the LRU list, and a pointer to
the cache block 1s mserted at the tail of the LRU list.

As shown 1n FIG. 3, a number of additional lists can be
maintained 1n order to facilitate the use of the cache
memory. For example, a list 48 can be kept of the write
pending cache blocks. In this fashion, the write pending
cache blocks can be serviced 1n such a way that priority 1s
ogrven to the oldest write pending request.

For some applications, it may be desired to keep data 1n
cache until 1t 1s used, and after 1t 1s used, 1t no longer needs
to be 1n cache memory. To handle such instances, there is
maintained a list 49 of pinned cache blocks, and a list 50 of
free cache blocks. In such a system, for example, a pointer
to each cache block 1s found either in the LRU list 47 1if the
cache block 1s neither pinned nor free, 1n the list 49 of pinned
cache blocks if the cache block 1s to remain 1n cache, or 1n
the list 50 of free cache blocks 1f the cache block no longer
needs to be 1n cache. For example, when a cache memory
block needs to be associated with a logical block, a pointer
to the block 1s obtained from the list 49 of free cache blocks
unless this list 1s empty. If this list 1s empty, then a pointer
to the cache block 1s obtained from the head of the LRU list
47.

The present invention relates to a novel organization of
the cache memory 1n such a way that respective lists of list
clements are used in lieu of cache memory blocks. In
particular, it has been found that a network-attached storage
system 34 as shown 1n FIG. 1 can be improved by using list
clements that can also be used by the WP port 38 as transmut
or receive buflers. In this case, data fragments do not need
to be copied between the transmit or receive butfer of the 1P
port and the cache memory blocks when reading data from

US 6,389,268 B2

S

cache or writing new cache blocks. Instead, for each data
fragment to be transmitted or received 1in each TCP/IP
packet, a respective cache memory list element 1s used as a
transmit or receive builfer. In this fashion, a pointer to the
cache memory list element can be passed between the
TCP/IP port driver program and the cache memory program
instead of copying data fragments between a TCP/IP trans-
mit or receive buller and the cache memory.

FIG. 4 shows one way of carrying out the present inven-
fion by modifying the cache memory and related data
structures of FIG. 3. As shown in FIG. 4, the cache memory
table (44 in FIG. 3) is replaced by a cache block index 51,
a list element pool 54, and a pointer 38 to a list of free list
clements. The cache block index 51 1s similar to the cache
memory table 44, except the eight-kilobyte data blocks (44
in FIG. 3) have been replaced with list addresses 52. Each
list address 52 can be either zero, indicating that there 1s no
data or the data 1s zero 1 the cache block, or a non-zero
address of a list of the list elements in the list element pool

54.

The list element pool 54 1s organized as a table of list
clements. In this example, 1s each list element includes a
1,500 byte slot 55, a field for containing a pointer to a next
slot 56, and a field 57 for containing an i1ndication of how
many bytes are used in the 1,500 byte slot 55. (In an
alternative arrangement, the list elements can have different
lengths to accommodate various sizes for the data slot, as

further below with reference to FIGS. 13 to 17.)

When a list element 1s used 1n a list, the pointer 56 to the
next slot 1s either zero indicating that the end of a list has
been reached, or 1s the list element address of the next list
clement 1n the list. The pointer 538 to the list of free list
clements 1s either zero, indicating that there are no free list
clements 1n the list element pool 54, or 1t points to the list
clement address of the first list element in the list of free list
clements

FIG. 5 shows a preferred format for a linked list of list
clements substituting for an eight-kilobyte cache memory
block “K”. The list includes a first list element 61, including
1,500 bytes of data of a first data fragment (DATA 1), a
second list element 62 including 1,500 bytes of data of a
second data fragment (DATA 2), a third list element 63
including 1,500 bytes of data of a third data fragment (DATA
3), a fourth list element 64 including 1,500 bytes of data of
a fourth data fragment (DATA 4), a fifth list element 65
including 1,500 bytes of data of a fifth data fragment (DATA
§), and a sixth list element 66 including 692 bytes of data of
a sixth data fragment (DATA 6). The pointer to next in the
sixth list element 66 1s zero, indicating the end of the list.
The list address 60 points to the first list element 61 1n the
lst.

In the example of FIG. §, the fact that each list element
except for the last list element 66 has its respective data slot
completely filled by a respective data fragment 1s not typical
for TCP. This may occur 1if the Universal Datagram Protocol
(UDP) were used instead of TCP, or if the TCP programming
layer 1n the client were modified. The case of a typical list

of list elements for TCP 1s described further below with
reference to FIGS. 13 to 14.

FIG. 6 shows a procedure for initializing the cache
memory of FIG. 3. In a first step 71, all of the cache memory
block addresses associated with the logical blocks 1n the
logical block 1index are invalidated. Step 71, for example, 1s
performed 1n the conventional fashion by clearing the “in-
cache” flags 42 1n the logical block index 40. Then, 1n step
72, the storage controller puts all list elements of the list

10

15

20

25

30

35

40

45

50

55

60

65

6

clement pool mto the list of free elements. This 1s done by
setting the pointer to next slot of each list element to point
to the next element 1n the list element pool, and for the last
list element 1n the list element pool, by setting 1ts pointer to
next slot to zero. Also, the pointer 58 to the list of free list
clements 1s set equal to 1. After step 72, the initialization
procedure 1s finished.

FIG. 7 shows a procedure executed by the storage con-
troller for responding to a client request to write a new block
of data to a specified logical block (K). In a first step 81, the
storage controller removes a free list element from the head
of the list of free elements. (If the list of free elements is

found to be empty, then the least-recently-used cache block
can be de-allocated to free some list elements and

re-populate the list of free elements.) Then, in step 82, the
storage controller uses the free list element as a receive
buffer for a fragment of the write data received 1n a TCP/IP
data packet associated with the client request. Then 1n step
83, execution branches if there 1s more write data for the
logical block. If so, then execution branches from step 83 to
step 84. In step 84, the storage controller removes another
free list element from the head of the list of free elements,
and links the free list element to the preceding list element.
Execution then loops from step 84 back to step 82.

Once all of the data fragments for writing to the logical
block have been received and linked into a list of the list
clements, execution continues from step 83 to step 85. In
step 85, the storage controller sets the pointer to the next slot
of the last list element to zero. Then 1n step 86, the storage

controller tests whether the specified logical block (K) is in
cache. If not, then execution branches from step 86 to step
87 to allocate a cache block index entry to the logical block
and to update the logical block index to reference this cache

block 1index entry. Execution continues from step 87 to step
89.

In step 86, if the logical block 1s 1n cache, then in step 88
any existing list for the cache block is returned to the free
list. Execution continues from step 88 to step 89. In step 89,
the TCP/IP receive buffer (i.e. the list of list elements having
received the TCP/IP data) 1s linked to the cache block index
entry and the cache block attributes are updated to indicate

a write pending and indicate that a write-back operation
needs to be mitiated. After step 89, the procedure of FIG. 7
1s finished.

FIG. 8 shows a procedure executed by the storage con-
troller for responding to a client request to read a specified
logical block (K). In a first step 91, execution branches
depending on whether the specified logical block 1s 1n cache.
If the 1n-cache flag of the logical block index indicates that
the logical block 1s not in cache, then execution continues
from step 91 to step 92. In step 92, the storage controller
allocates a cache block 1ndex entry for the logical block.
Then 1n step 93, the storage controller unlinks a list of six
free elements from the head of the free element list and links
these six free elements to the cache block index entry for the
logical block. Then 1n step 94 the storage controller reads the
logical block from the disk storage and writes the data from
the disk storage to the data slots of the six list elements
allocated to the cache block index entry for the logical block.
This list of six list elements, for example, has the format
shown 1 FIG. 5. Then, 1n step 95, the cache block index
entry for the logical block 1s linked to the entry for the
logical block 1n the logical block index, and the logical block
attributes for the logical block (e.g., the in-cache flag) are
updated to mdicate that the logical block 1s now in cache.
After step 95, execution continues to step 96. Execution also
branches from step 91 to step 96 if 1n step 91 the specified
logical block 1s found to be 1n cache.

US 6,389,268 B2

7

In step 96, the storage controller gets the list address for
the logical block from the cache block index entry. Then in
step 97 execution branches depending on whether this list
address 1s equal to 0. If the list address i1s not 0, then
execution continues from step 97 to step 98. In step 98, the
storage controller uses the list element as a transmit buifer
for a TCP/IP data packet transmitted to the client having
requested the logical block. Then in step 99, the storage
controller gets the pointer to the next slot from the list
clement. In step 100, 1f this pointer 1s not equal to 0, then
execution loops back to step 98 to transmit another TCP/IP
data packet from the pointed-to list element. Eventually,
once all of the data from the linked list of list elements has
been transmitted, the pointer to the next slot from the list
clement will become equal to 0 and execution will then
continue from step 100 to step 101. In step 101, execution
branches depending upon whether the end of the logical
block has been reached after transmission of all of the data
from the linked list of list elements. If so, then execution
returns. Otherwise, execution continues to step 102. In
addition, execution branches to step 102 from step 97 it the
list address from the cache block index entry 1s equal to O.
In either case, mn step 102, the IP port of the storage
controller transmits zero-fill data until an entire block of data
has been transmitted to the client. After step 102, the
procedure of FIG. 8 1s finished.

FIG. 9 shows a procedure executed by the storage con-
troller 1n response to a request to clear a specified logical
block. In a first step 121, the storage controller accesses the
logical block index to test whether the logical block 1s 1n
cache. If not, then execution branches to step 122 to allocate
a cache block index entry and update the logical block 1ndex
to reference the cache block index entry. In step 121, 1if the
logical block 1s 1n cache, then execution continues to step
123 to return the existing list for the cache block to the list
of free list elements. In other words, the pointer-to-next-slot
in the last element of the existing list 1s set to the present
value of the pointer to the list of free list elements, and the
address of the first element in the existing list becomes the
new value of the pointer to list of free list elements.

After step 122 or 123, execution continues to step 124. In
step 124, the storage controller sets the list address to zero
in the cache block index entry for the specified logical block
(K) and updates the cache block attributes to write pending,
write-back needed. After step 124, the procedure of FIG. 9
1s finished.

FIG. 10 shows a procedure executed by the storage
controller 1in response to a client request for a partial write
to a specified logical block (K). Such an operation is a
“read-modify-write” if the specified logical block (K) is not
already 1n cache, because only full cache blocks are written
back to disk storage. The organization of the cache block as
a linked list of list elements permits such a partial write to
be done 1n a more efficient manner if a list element con-
taining the new data to be written can simply be substituted
for a list element containing the old data of the cache block.
For example, a client application could be written to request
cither full writes to cache blocks or only partial writes of
complete data fragments in the linked list format of FIG. 5.
The application could reduce the use of any such partial
writes by using data structures (such as tables) having fields
aligned on the data fragment boundaries.

In the first step 131, the logical block 1mndex 1s accessed to
determine whether the logical block 1s 1n cache. If not, then
execution continues to steps 132, 133, 134 and 135, which
are similar to steps 92 to 95 1n FIG. 8. Steps 132, 133, 134,

and 135 stage the logical block from disk storage to a cache

10

15

20

25

30

35

40

45

50

55

60

65

3

block linked-list data structure having the format shown in
FIG. 5. After step 135, execution continues to step 136.
Execution also branches to step 136 from step 131 1f the
specified logical block (K) is found to be in cache.

In step 136, the storage controller gets the list address
from the cache block index entry for the specified logical
block (K). Then in step 137 the storage controller scans the
list up to a specified byte offset for the partial write. In step
138, execution branches to step 139 if the write data does not
replace a list element 1n the linked list of list elements for the
cache block. In step 139, the storage controller copies data
from the TCP/IP mput 11 buifer to the cache list elements.
The list elements used as the TCP/IP mput buifer can then
be returned to the list of free list elements.

In step 138, 1f the write data simply replaces a list element
(or a sequence of list elements) of the cache block, then
execution branches to step 140. In step 140, the TCP/IP 1nput
buffer (containing the new write data) is substituted for the
corresponding list elements of the cache block (containing
the old data to be written over). In other words, the list
clements of the cache block containing the old data are
unlinked from the linked list of the cache block, the list
clements of the TCP/IP input buifer contamning the new data
are linked 1nto the linked list of the cache block, and the list
clements containing the old data are returned to the list of
free list elements. Execution continues from step 139 and
step 140 to step 141. In step 141, the cache block attributes

arc updated to indicate write pending, writeback needed.
After step 141, the procedure of FIG. 10 1s finished.

FIG. 11 shows an alternative cache memory organization
in accordance with the present invention. In this case, the
cache block index 51 of FIG. 4 has been merged with the
logical block index 40 of FIG. 4 to produce the logical block
index 151 shown 1n FIG. 11. The logical block index 151
includes, for each logical block, the associated list address
52 (valid only if the logical block is in cache), the in-cache
flag 42, the other logical block attributes 43, and the cache
memory block attributes (valid only if the logical block is in

cache). The list element pool 54 has the same organization
as 1 FIG. 4.

FIG. 12 shows a typical example of a linked list of list
clements substituting for an eight-kilobyte cache memory
block “K”, where each element of the linked list has a II data
slot filled with a respective data packet from network data
transmission 1n accordance with TCP. In this example, the
list 1includes a first list element 151 mcluding 140 bytes of
data of a first data fragment (DATA 1), a second list element
152 including 35 bytes of data of a second data fragment
(DATA 2), a third list element 153 including 240 bytes of
data of a third data fragment (DATA 3), a fourth list element
154 1ncluding 80 bytes of data of a fourth data fragment
(DATA 4), a fifth list element 155 including 180 bytes of
data of a fifth data fragment (DATA 5), and a seventy-third
list element 156 including 240 bytes of data of a seventy-
third data fragment (DATA 73). The pointer to next in the

sixth list element 66 1s zero, indicating the end of the list.
The list address 150 points to the first list element 151 1n the

list.

In the example of FIG. 12, each list element has 1ifs
respective data slot only partially filled, and 1n most cases
less than half filled with data. In the worst case, the data slot
of each list element could be filled with only one byte of
data, so that 8192 data packets would be needed to entirely
f1ll an 8 K byte cache block. When the fragmentation of a
cache block becomes too high, it 1s desirable to merge the
network data packets in order to keep the number of ele-

US 6,389,268 B2

9

ments of the linked list for the cache block within a
reasonable range, and to minimize the number of list ele-
ments 1n order to reduce the overhead of transitioning from
one list element to the next when accessing the list for a
client or write-back to disk storage. The network data
packets can be merged 1n a background process relative to
the process of responding to requests to access specified
logical blocks of data in the data storage, so that 1n most
cases the number of list elements 1n the linked list of a cache
block will be reduced between the time that data from a
network client has been written to a cache block and the time
that the cache block is later accessed by a client or written
back to disk storage.

FIG. 13 shows a first sheet of a flowchart of a fragment
merging background process. This background process is
periodically invoked, for example, by a task scheduler of the
storage controller when the storage controller has processing
fime that 1s not being used for higher-priority tasks such as
servicing client requests or writing back data from cache to
disk storage. In general, each time the background process
1s 1nvoked, a cache list 1s processed by scanning the ele-
ments 1n the list to determine whether or not neighboring list
clements in total have less data than the cache slot size of the
carlier of the neighboring list elements. If so, the data 1n the
later of the neighboring list elements 1s copied to the empty
portion of the cache slot of the earlier of the neighboring list
clements, and then the later of the neighboring list elements
1s removed from the list.

In FIG. 13, 1n a first step 161, the storage controller gets
a next non-empty list of elements 1in cache for processing.
This could be done, for example, by looking for a new cache
block pointer having been inserted at the tail of the write-
pending list and processing the list of elements for such a
new cache block pointer, or by servicing a list of fragment-
merge-pending cache blocks. For example, whenever a
client writes a new list of elements to a cache block, a
pointer to the cache block 1s mnserted at the tail of the list of
fragment-merge-pending cache blocks at the same time that
a pointer to the cache block is inserted at the tail of the list
of write-pending cache blocks. In this example, the fragment
merging background process would get a next non-empty
list in cache 1n step 161 by removing the pointer to the cache

block at the head of the list of fragment-merge-pending
cache blocks.

In step 162 of FIG. 13, the storage controller sets an
clement pointer to point to the first element of the list
selected 1n step 161. Then 1n step 163, the storage controller
accesses this list element to find the number of bytes used 1n
the data slot of the list element, and for the case where the
data slot size 1s not fixed, to find the data slot size of the list
element. (For the storage system of FIG. 1 as described
above, the data slot size 1s fixed at 1,500 bytes, but for the
storage system of FIG. 15 as described below, the data slot
size of each element 1n the list can have any one of three
different sizes.)

In step 164, if the end of the list has been reached, then
the fragment merging background process 1s finished pro-
cessing the list. Otherwise, execution continues to step 1635.
In step 165, the storage controller advances the element
pointer to point to the next element in the list, so that this
next list element becomes the current list element. In step
166, this current list element 1s accessed to find the number
of bytes used 1n the data slot of the current list element. In
step 167, the sum of the number of bytes used (BU1) in the
data slot of the previous list element and the number of bytes
used (BU2) the current list element is compared to the size
(MTUL) of the data slot of the previous list element. If the

10

15

20

25

30

35

40

45

50

55

60

65

10

sum (BU1+BU2) is greater than the size (MTU1) of the data
slot of the previous list element, then the data fragment 1n the
current list element cannot be merged into the previous list
clement, and therefore execution loops back to step 163 to
continue the fragment merging background process.

Otherwise, execution continues from step 167 to step 171 of
FI1G. 14.

In step 171 of FIG. 14, the (BU2) bytes in the data slot
from the current list element are copied into the unused
memory space 1n the data slot of the previous element, so
that the BU2 bytes are appended to the BU1 bytes 1n the data
slot of the previous element. Next, in step 172, the “bytes
used” field 1n the previous list element 1s set to the 11 sum
BU1+BU2. Finally, 1n step 173, the current element is
removed from the list and returned to the pool of free list
clements, and this removal step resets the element pointer to
point to the previous element. After step 173, execution
loops back to step 163 of FIG. 13. This fragment merging
background process continues until the end of the list 1s

reached 1n step 164 of FIG. 13.

Referring now to FIG. 15, there 1s shown a data storage
system 180 1n which the same data storage can be accessed
over different types of network interfaces. The data storage
system 180 1ncludes a storage controller 181, a cache
memory 182, and disk storage 183. The storage controller
181 includes an Ethernet port 184 interfacing the data
storage system 180 to clients (not shown) in an Ethernet
network 185, a Gigabit port 186 interfacing the storage
system 180 to clients (not shown) in a Gigabit network 187,
and a Fiber Distributed Data Interface (FDDI) port 188

interfacing the storage system 180 to clients (not shown) in
an FDDI network 189.

In the data storage system 180, 1t 1s desirable for certain
data objects such as files 1n the disk storage 183 to be shared
among clients 1 the different types of data networks 1835,
187, 189. Each of the different types of data network
transmits and receives data packets including respective data
fragments having a different maximum transfer unit (MTU)
size. For example, a data fragment 1n a data packet of the
Ethernet network 185 has no more than 1,500 bytes, a data
fragment 1n a data packet of the Gigabit network 187 has no
more than 9,000 bytes, and a data fragment 1n a data packet

of the FDDI network 189 has no more than 4,000 bytes.

In order to save cache memory, 1t 1s desirable for the list
clements to have different data slot sizes, so that when each
network port 184, 186, and 188 receives new data to be
written to the cache memory 182, the network port can use
list elements having a data slot size matching the MTU size
of the data packets received by the network port. Moreover,
it 1s desirable for the list processing operations to handle a
list of elements for a cache block 1n such a way that each
clement can have a different data slot size.

To accommodate list elements having different data slot
sizes, each list element 1s provided with a field for specifying
the size of the data slot 1n the list element, and a respective
list element pool 1s provided for each different data slot size.
FIG. 16 shows the list elements 1in such a list element pool
190. The list element pool 190 1s organized as a table 1n
which each row of the table 1s a list element. Each list
element includes a field 191 for the MTU size (i.c., the
number of bits in the data slot 194), a field 192 for a pointer
to the next element 1n the list, a field 193 indicating the
number of bytes used 1n the data slot, and the data slot 194.

FIG. 17 shows cache memory data structures for manag-
ing the lists of elements for the cache blocks 1n the data
storage system of FIG. 15. These cache memory data

US 6,389,268 B2

11

structures include a logical block 1ndex 200, a cache block
index 201, a list element pool 202 of elements with 1,500
byte data slots, a list element pool 203 of elements with
9,000 byte data slots, a list element pool of elements with

4,000 byte data slots, and a respective “free list” pointer 2035,

206, 207 for each of the pools of list elements 202, 203, 204.
The logical block index 200 in FIG. 17 1s similar to the
logical block index 40 1n FIG. 4, and the cache block 1index
201 1n FIG. 17 1s similar to the cache block index 51 m FIG.
4. Each list element pool 202, 203, 204 has the format shown
in FIG. 16. Preferably the pointers to the list elements are
cache memory addresses, so that 1t 1s easy to link list
clements of different lengths from the different pools in the
same list and to link a list beginning in any one of the list
clement pools 202, 203, 204 to an entry 1n the cache block
imndex. Whenever a list element becomes free, it 1S returned

to a respective list of free elements 1n 1ts respective pool 202,
203, 204 of list elements.

In view of the above, there have been described network-
attached cached disk storage systems in which data 1s
transmitted over the network 1n data packets having a data
length that 1s much smaller than the logical block size for
reading or writing to disk storage. To avoid copying of data
from network port buffers to the cache memory, the cache
blocks of the cache memory are organized as linked lists of
list elements, which can be used as network port mput or
output buffers. For TCP data packets, for example, each list
clement has a data slot for storing up to 1,500 bytes, and a
field indicating the number of bytes stored 1n the data slot.
In a data storage system having different types of network
interfaces, the list elements may have different sizes, so that
cach different type of network interface may use list ele-
ments of a particular size for receiving network data to be
written to the cache. In this case, each list element may have
a field indicating the size of a data slot in the list element.

What 1s claimed 1s:

1. A storage system comprising a storage controller, a
cache memory, and data storage, wherein the storage con-
troller 1s programmed to respond to a request to access a
speciflied logical block of data 1n the data storage by access-
ing a logical block index to determine whether or not the
specified logical block of data 1s in the cache memory, and
when the logical block index indicates that the specified
logical block of data 1s 1 the cache memory, to access the
specified logical block of data in the cache memory, and
when the logical block index indicates that the specified
logical block of data 1s not in the cache memory, to access
the specified logical block of data in the data storage,
wherein the cache memory contains a multiplicity of logical
blocks of data, and each of the multiplicity of logical blocks
of data contained in the cache memory 1s organized as a
respective linked list of list elements containing fragments
of the data of said each of the multiplicity of logical blocks
of data contained 1n the cache memory.

2. The storage system as claimed in claim 1, wherein the
storage controller has a network port for attachment to a data
network for receiving data packets from clients 1n the data
network, and the storage controller 1s programmed to
respond to a request for writing new data to the specified
logical block of data in the data storage by storing the new
data mto a respective linked list for the specified logical
block of data 1n the data storage, wherein the respective
linked list for the specified logical block of data 1n the data
storage includes multiple list elements 1n the cache memory,
and the storing of the new data into the respective linked list
for the specified logical block of data in the data storage
includes storing data of each data packet into a correspond-

10

15

20

25

30

35

40

45

50

55

60

65

12

ing one of multiple list elements of the respective linked list
for the specified logical block of data in the data storage.

3. The storage system as claimed in claim 1, wherein the
storage controller 1s programmed to respond to a request for
writing new data to the specified logical block of data in the
data storage by storing the new data into a first linked list of
multiple list elements 1n the cache memory, accessing the
logical block index to identify a second linked list of
multiple list elements 1n the cache memory containing old
data of the specified logical block of data 1n the data storage,
and updating the logical block index to associate the first
linked list of multiple list elements with the specified logical
block of data in the data storage.

4. The storage system as claimed 1n claim 3, wherein the
storage controller has a network port for attachment to a data
network for receiving data packets from clients 1n the data
network, and wherein the storing of the new data into the
first linked list includes storing data of each data packet into

a corresponding one of the multiple list elements in the first
linked list.

5. The storage system as claimed in claim 1, wherein the
storage controller 1s programmed to respond to a request for
writing a packet of new data to the specified logical block of
data 1n the data storage by storing the packet of new data into
a first list element 1n the cache memory, accessing the logical
block mdex to identify a respective list of multiple list
clements 1in the cache memory containing data of the speci-
fied logical block of data 1n the data storage, inspecting the
respective list of multiple list elements 1n the cache memory
containing data of the specified logical block of data in the
data storage to 1dentify a second list element in the cache
memory containing old data of the specified logical block of
data 1n the data storage, removing said second list element
from the respective list of multiple list elements 1n the cache
memory containing data of the specified logical block of
data 1n the data storage, and nserting said first list element
into the respective list of multiple list elements 1n the cache
memory containing data of the specified logical block of
data 1n the data storage in order to replace said first list
clement with said second list element 1n the respective list of
multiple list elements 1n the cache memory containing data
of the specified logical block of data in the data storage.

6. The storage system as claimed 1n claim 1, wherem the
storage controller has a network port for attachment to a data
network for communication of data packets 1s with clients 1n
the data network, and wherein the storage controller is
programmed to respond to a request from one of the clients
for reading data from the specified logical block of data in
the data storage by accessing the logical block index to
identify a respective linked list of multiple list elements 1n
the cache memory containing data of the specified logical
block of data 1n the data storage, and transmitting to said one
of the clients a series of data packets, each data packet in the
serics of data packets being a respective one of the list
clements 1n the respective linked list of multiple list ele-
ments 1n the cache memory containing data of the specified
logical block of data in the data storage.

7. The storage system as claimed 1n claim 1, wherein each
list element 1n the respective linked list of said each of the
multiplicity of logical blocks of data contained in the cache
memory 1ncludes a data slot containing a number of bytes of
data of said each of the multiplicity of logical blocks of data
contained 1n the cache memory, a field for a pointer to a next
list element 1n the respective linked list of said each of the
multiplicity of logical blocks of data contained in the cache
memory, and a field for an indication of how many bytes of
data of said each of the multiplicity of logical blocks of data
contained in the cache memory are contained in the data slot.

US 6,389,268 B2

13

8. The storage system as claimed 1n claim 7, wherein said
cach list element 1n the respective linked list of said each of
the multiplicity of logical blocks of data contained in the
cache memory further mcludes a field for indicating a size
of the data slot.

9. The storage system as claimed 1n claim 7, wherein each
logical block of data in the data storage has a length of eight
kilobytes, and the data slot of said each list element has a
length of 1,500 bytes.

10. The storage system as claimed 1n claim 7, wherein the
storage system has an Internet Protocol port for linking the
storage system to clients 1n an Internet Protocol data
network, the storage controller 1s programmed for receiving
Transmission Control Protocol data packets at the Internet
Protocol port and writing data of each Transmission Control
data packet to the data slot of a respective one of the list
clements 1n the cache memory.

11. The storage system as claimed 1n claim 1, wherein the
cache memory 1ncludes list elements associated with respec-
tive logical blocks of data storage and free list elements not
associated respective logical blocks of data storage, and the
storage controller 1s programmed to 1nitialize the cache

memory by linking the list elements into a list of free list
clements.

12. The storage system as claimed 1n claim 11, wherein
the storage controller 1s programmed to respond to a request
for writing new data to the specified logical block of data in
the data storage by storing the new data 1nto a first linked list
of the list elements, accessing the logical block index to
identify a second linked list of the list elements containing
old data of the specified logical block of data in the data
storage, 1nserting the second linked list of the list elements
into the list of free list elements, and updating the logical
block index to associate the first linked list of the list
clements with the specified logical block of data 1n the data
storage.

13. The storage system as claimed 1n claim 12, wherein
the storage controller has a network port for attachment to a
data network for receiving data packets from clients 1n the
data network, and wherein the storing of the new data into
a first linked list of the list elements includes storing data of
cach data packet into a corresponding one of the list ele-
ments 1n the first linked list of the list elements.

14. The storage system as claimed 1n claim 1, wherein the
storage controller has a network port for attachment to a data
network for communicating data packets with clients in the
data network, and wherein the storage controller 1s pro-
crammed to use the list elements as transmit and receive
buffers for communicating the data packets with the clients
in the data network.

15. The storage system as claimed 1n claim 14, wherein
the storage controller 1s programmed to use the Transmis-
sion Control Protocol for communicating the data packets
with the clients 1n the data network, and wherein each of the
list elements has a data length of 1,500 bytes.

16. The storage system as claimed 1n claim 1, wherein the
storage controller has network ports of different types for
receiving data packets of different respective maximum data
lengths, and the storage controller 1s programmed so that the
different types of network ports use list elements of different
lengths for receiving the data packets of different respective
maximum data lengths.

17. The storage system as claimed 1n claim 1, wherein the
storage controller has network ports of different types, and
the storage controller 1s programmed so that each different
type of network port uses list elements of a respective
different length corresponding to a respective maximum data
length of data packets received by said each different type of
network port.

10

15

20

25

30

35

40

45

50

55

60

65

14

18. The storage system as claimed in claim 17, wherein
the storage controller 1s programmed to maintain the list
clements of each respective different length 1n a respective
list element pool mncluding free and allocated list elements.

19. The storage system as claimed 1n claim 18, wherein
the storage controller 1s programmed to maintain the free list
clements 1n each list element pool 1n a respective list of free
list elements for said each list element pool.

20. The storage system as claimed in claim 1, wherein at
least some of the list elements of at least some of the
respective linked lists have data slots larger than the frag-
ments of data stored 1n said at least some of the list elements,
and the storage controller 1s programmed to perform a
fragment merging process upon said at least some of the
respective linked lists for merging the data fragments 1n at
least some neighboring ones of the list elements 1n said at
least some of the respective linked lists 1n order to reduce the
number of list elements contained 1n said at least some of the
respective linked lists.

21. The storage system as claimed 1n claim 20, wherein
the storage controller 1s programmed to perform the frag-
ment merging process as a background process relative to a
process for responding to requests to access specified logical
blocks of data 1n the data storage.

22. A storage system comprising a storage controller, a
cache memory, and data storage, wherein the storage con-
troller 1s programmed to respond to a request to access a
specified logical block of data in the data storage by access-
ing a logical block index to determine whether or not the
specified logical block of data 1s in the cache memory, and
when the logical block index indicates that the specified
logical block of data i1s 1n the cache memory, to access the
specified logical block of data in the cache memory, and
when the logical block index indicates that the specified
logical block of data 1s not 1n the cache memory, to access
the specified logical block of data in the data storage;

wherein the cache memory contains a list element pool of
list elements, and at least some of the list elements 1n
the list element pool are linked 1n respective lists for a
multiplicity of logical blocks of data;

wherein each list element 1n the list element pool includes
a data slot, a field for a pointer to a next list element 1n
the list element pool, and a field for an i1ndication of
how many bytes of data are contained 1n the data slot;
and

wherein the storage controller has a network port for
attachment to a data network for communicating data
packets with clients 1n the data network, and the storage
controller 1s programmed to use the list elements as
transmit and receive bullers for communicating the
data packets with the clients in the data network.

23. The storage system as claimed 1n claim 22, wherein
said each list element in the list element pool further
includes a field for indicating a size of the data slot.

24. The storage system as claimed 1n claim 22, wherein
the storage controller 1s programmed to communicate the
data packets with the clients in the data network by storing
data of each data packet received from the data network 1n
a respective one of the list elements, and by reading data for
cach data packet transmitted to the data network from a
respective one of the list elements.

25. The storage system as claimed 1n claim 22, wherein
the storage controller 1s programmed to respond to a request
for writing new data to the specified logical block of data in
the data storage by storing the new data 1n a first linked list
of a plurality of the list elements 1n the cache memory,
accessing the logical block 1index to identity a second linked

US 6,389,268 B2

15

list of a plurality of the list elements 1n the cache memory
containing old data of the specified logical block of data in
the data storage, and updating the logical block index to
associate the first linked list of a plurality of the list elements
with the specified logical block of data in the data storage.

26. The storage system as claimed 1n claim 22, wherein
the storage controller 1s programmed to respond to a request
for writing a packet of new data to the specified logical block
of data 1n the data storage by storing the packet of new data
into a first list element 1n the cache memory, accessing the
logical block index to identify a respective list of a plurality
of the list elements 1n the cache memory containing data of
the specified logical block of data in the data storage,
inspecting the respective list of a plurality of the list ele-
ments 1n the cache memory containing data of the specified
logical block of data in the data storage to identify a second
list element 1n the cache memory containing old data of the
speciflied logical block of data in the data storage, removing
said second list element from the respective list of a plurality
of the list elements in the cache memory containing data of
the specified logical block of data in the data storage, and
inserting said first list element 1nto the respective list of a
plurality of the list elements 1n the cache memory containing,
data of the specified logical block of data 1n the data storage
in order to replace said first list element with said second list
clement 1n the respective list of a plurality of the list
clements 1n the cache memory containing data of the speci-
fied logical block of data in the data storage.

27. The storage system as claimed in claim 22, wherein
the storage controller 1s programmed to communicate with
the clients 1n the data network using the Transmission
Control Protocol, each logical block of data in the data
storage has a length of eight kilobytes, and the data slot of
cach of the list elements has a length of 1,500 bytes.

28. The storage system as claimed 1n claim 22, wherein
the storage controller 1s programmed to 1nitialize the cache
memory by linking the list elements nto a list of free list
clements.

29. The storage system as claimed in claim 28, wherein
the storage controller 1s programmed to respond to a request
for writing new data to the specified logical block of data in
the data storage by storing the new data 1nto a first linked list
of the list elements, accessing the logical block index to
identify a second linked list of the list elements containing
old data of the specified logical block of data in the data
storage, 1nserting the second linked list of the list elements
into the list of free list elements, and updating the logical
block index to associate the first linked list of the list
clements with the specified logical block of data 1n the data
storage.

30. A method of operating a storage system having a
storage controller, a cache memory, and data storage for
storing logical blocks of data, the storage controller having
a network port for attaching the storage controller to a data
network for communicating data packets with clients in the
data network, the storage controller being programmed to
respond to a request to access a specified logical block of
data 1n the data storage by accessing a logical block index to
determine whether or not the specified logical block of data
1s 1n the cache memory, and when the logical block 1ndex
indicates that the specified logical block of data 1s 1n the
cache memory, to access the specified logical block of data
in the cache memory, and when the logical block index
indicates that the specified logical block of data 1s not 1n the
cache memory, to access the specified logical block of data
in the data storage; wherein said method comprises:

said storage controller maintaining a pool of list elements
in the cache memory, linking at least some of the list

10

15

20

25

30

35

40

45

50

55

60

65

16

clements 1nto respective linked lists for a multiplicity of
the logical blocks of data stored 1n the data storage, and
storing, 1n the list elements for each respective linked
list for each of the multiplicity of the logical blocks of
data stored 1n the data storage, the data of said each of
the multiplicity of the logical blocks of data stored 1n
the data storage; and

said storage controller using the list elements as transmit
and receive buflers for communicating the data packets
with the clients 1n the data network.

31. The method as claimed 1n claim 30, wherein each list
clement 1 the pool of list elements 1includes a data slot, a
field for a pointer to a next list element in the list element
pool, and a field for an 1ndication of how many bytes of data
are contained 1n the data slot; and which includes storing, 1n
the data slot, a portion of the data of at least one of the
logical blocks of data 1n the data storage, and storing, in the
field for an indication of how many bytes of data are
contained in the data slot, a number indicating how many
bytes of data are contained 1n the data slot.

32. The method as claimed in claim 30, which i1ncludes
the storage controller communicating with the clients in the
data network by storing data of each data packet received
from the data network i1n a respective one of the list

clements, and by reading data for each data packet trans-
mitted to the data network from a respective one of the list

clements.
33. The method as claimed in claim 30, which 1ncludes

the storage controller responding to a request for writing
new data to the specified logical block of data in the data
storage by storing the new data 1n a first linked list of a
plurality of the list elements 1n the cache memory, accessing,
the logical block index to i1dentify a second linked list of a
plurality of the list elements 1n the cache memory containing,
old data of the specified logical block of data in the data
storage, and updating the logical block index to associate the
first linked list of a plurality of the list elements with the
specified logical block of data in the data storage.

34. The method as claimed 1n claim 30, which 1ncludes
the storage controller responding to a request for writing a
packet of new data to the specified logical block of data in
the data storage by storing the packet of new data into a first
list element 1n the cache memory, accessing the logical block
index to identify a respective list of a plurality of the list
clements in the cache memory containing data of the speci-
fied logical block of data 1n the data storage, inspecting the
respective list of a plurality of the list elements 1n the cache
memory containing data of the specified logical block of
data 1n the data storage to identify a second list element in
the cache memory containing old data of the specified
logical block of data in the data storage, removing said
second list element from the respective list of a plurality of
the list elements in the cache memory containing data of the
specified logical block of data in the data storage, and
inserting said first list element 1nto the respective list of a
plurality of the list elements 1n the cache memory containing,
data of the specified logical block of data 1n the data storage
in order to replace said first list element with said second list
clement 1n the respective list of a plurality of the list
clements in the cache memory containing data of the speci-
fied logical block of data in the data storage.

35. The method as claimed 1n claim 30, which 1ncludes
the storage controller communicating with the clients in the
data network using the Transmission Control Protocol, and
the data slot of each of the list elements has a length of 1,500
bytes.

36. The method as claimed in claim 30, which 1ncludes
the storage controller initializing the cache memory by
linking the list elements 1nto a list of free list elements.

US 6,389,268 B2

17

37. The method as claimed 1n claim 30, which includes
the storage controller responding to a request for writing
new data to the specified logical block of data in the data
storage by storing the new data 1nto a first linked list of the
list elements, accessing the logical block index to 1dentify a
second linked list of the list elements containing old data of
the specified logical block of data in the data storage,
inserting the second linked list of the list elements into the
list of free list elements, and updating the logical block index
to associate the first linked list of the list elements with the
speciflied logical block of data in the data storage.

38. The method as claimed 1n claim 30, wherein the
storage controller has network ports of different types for
receiving data packets of different respective maximum data
lengths, and the storage controller 1s programmed so that the
different types of network ports use list elements of different
lengths for receiving the data packets of different respective
maximum data lengths.

39. The method as claimed in claim 38, wherein the
storage controller has network ports of different types, and
cach different type of network port uses list elements of a
respective different length corresponding to a respective
maximum data length of data packets recerved by said each
different type of network port.

40. The method as claimed 1n claim 39, wherein the
storage controller maintains the list elements of each respec-

10

15

20

25

138

tive different length 1n a respective list element pool 1includ-
ing free and allocated list elements.

41. The method as claimed 1n claim 40, wherein the
storage controller maintains the free list elements 1n each list
clement pool 1n a respective list of free list elements for said
cach list element pool.

42. The method as claimed in claim 30, wherein at least
some of the list elements of at least some of the respective
linked lists have data slots larger than the fragments of data
stored 1 said at least some of the list elements, and the
storage controller performs a fragment merging process
upon said at least some of the respective linked lists for
merging the data fragments 1n at least some neighboring
onecs of the list elements 1n said at least some of the
respective linked lists 1in order to reduce the number of list
clements contained 1n said at least some of the respective
linked lists.

43. The method as claimed in claim 42, wherein the

storage controller performs the fragment merging process as
a background process relative to a process for responding to
requests to access specifled logical blocks of data 1n the data
storage.

	Front Page
	Drawings
	Specification
	Claims

