US006886094B1
a2 United States Patent (10) Patent No.: US 6,886,094 B1
Blandy 45) Date of Patent: Apr. 26, 2005
(54) APPARATUS AND METHOD FOR 5,764,962 A * 6/1998 Buzbeeccccven.... 703/23
DETECTING AND HANDLING EXCEPTIONS 5768510 A * 6/1998 GiSh .vovvveereereereerrernns 709/203
5,778,219 A * 7/1998 Amerson et al. 712/244
(75) Inventor: Geoffrey Owen Blandy, Austin, TX 5,787,302 A 7/1998 Hampapuram et al. ~ 395/800.24
(US) 5,812,850 A 9/1998 Wimble 395/704
5,819,058 A 10/1998 Miller et al. 395/386
. . . . 5826054 A 10/1998 Jacobs et al.
(73) Assignee: International Business Machines 5828886 A 10/1998 Ha;:;asshie N 395/709
Corporation, Armonk, NY (US) 5,922,065 A 7/1999 Hull et al. 712/24
(*) Notice: Subject to any disclaimer, the term of this (Continued)
patent 1s extended or adjusted under 35
U.S.C. 154(b) by 713 days. OTHER PUBLICATIONS
Fitzgerald et al., “Marmot: An Optimizing Compiler for
(21) Appl. No.: 09/671,877 Java”, Microsoft Research, Jun. 16, 1999, Technical Report
MSR-TR-99-33, pp. 1-29.
(22) Filed: Sep. 28, 2000 > PP
Continued
(51) Inte CL7 oo GOGF 9/40 (Continued)
(52) US.CL e 712/244; 712/233 Primary Examiner—Henry W. H. Tsal
58) Field of Searchcccccocevevnnnn... 712/244, 245, (74) Attorney, Agent, or Firm—Duke W. Yee; Volel Emile;
(58) /244, 245,
712/233, 234, 220, 218, 238, 200 Stephen J. Walder, Jr.
(56) References Cited (57) ABSTRACT

An apparatus and method are provided for detecting and
handling exceptions. Instructions that are executed only

U.S. PATENT DOCUMENTS

4,435,753 A 3/1984 RIZZ1 ceeevvvvniinninninninnenn. 364/200 when there 1S an excep‘[ion pending are quaﬁﬁed by a first
4,642,764 A 2/1987 Auslander et al. 364/300 predicate register in a predicate register pair. Instructions
4782444 A 11/1988 Munshi et al. 364/300 {hat are exccuted only when there is no exception pending
4,833,599 A >/1989 - Colwell et al. 304/200 are qualified based on a second predicate register in the
4961,141 A 10/1990 Hopkins et al. 364/200 : : : : \
5057837 A 10/1991 Colwell et al. ..ov.e....... 341/s5 ~ Ppredicate register pair. When an exception is thrown, a
5 448746 A 9/1995 Eickemeyer et al. 395/800 determination 1s madtf: as to whether or not the instruction
5497499 A 3/1996 Garg et al.co.o........ 395/800 that threw the exception 1s 1n a try block, or range, of the
5,504,932 A 4/1996 Vassiliadis et al. 395/800 method that threw the exception. If not, the first predicate
5,600,810 A 2/1997 Ohkamicco....... 395/567 register predicated instruction to branch to a return stub for
5,613,121 A 3/1997 Blainey 395/709 the method 1s generated. If the instruction that threw the
5,627,981 A= 5/1997 Adleretal. 712/235 exception 1s 1n a try block of the method, the first predicate
5,628,016 A * 5/1997 Kukolccoovveeninnnn.n.. 717/140 register predicated instruction to branch to a snippet asso-
5,634,023 A * 5/1997 Adleretal. 712/244 ciated with the method is generated.
5,669,001 A 9/1997 Morenoceeevunn... 395/706
5748936 A * 5/1998 Karp et al. ...cove....... 712/218
5,761,470 A 6/1998 Yoshidacooennen.. 395/386 21 Claims, 4 Drawing Sheets
ENTER
610

630

GENERATE INVOKE

INSTRUCTION

BEFORE BRANCH
?

NO

PREDICATED INSTRUCTIONS

GENERATE P2

!

GENERATE P1 PREDICATED
BRANCH TO RETURN STU

650"

IN
TRY BLOCK
?

640 YES

GENERATE Pi PREDICATED
660 BRANCH TO SNIPPET

670"

GENERATE SNIPPET:
mov 18 = pc
br.cond Lookup

Handler

(EXIT)

US 6,886,094 B1

Page 2
U.S. PATENT DOCUMENTS 6,615,403 B1 * 9/2003 Muthukumar et al. 717/160
6,622,238 B1 * 9/2003 Benjamin et al. 712/226
5,966,537 A 10/1999 Ravichandran 395/709 6,640,313 Bl 10/2003 Quachcccoovevennene.e. 714/10
6,009,517 A * 12/1999 Baketal. 7127245 6,640,315 Bl * 10/2003 Hwu et al. ..c..ooeuvvennnne... 717/17
6,018,799° A 172000 Wallace et al. 712/300 6,658,551 B1 12/2003 Berenbaum et al. 712/24
6,035,120 A 3/2000 Ravichandran 395/705 6,675,375 B1 1/2004 Czajkowski 717/151
6,041,399 A * 3/2000 Terada et al. 712/24
6,108,771 A 8/2000 Gaertner et al. 712/217 OTHER PUBLICATIONS
6,110.226 A 8/2000 BOthnercevveeveevenn.. 717/7
6,151,703 A 11/2000 Creliercoovvvvenveninnnen.., 717/5 Azevedo et al., “Java Annotation—Aware Just—In—Time
6,158,048 A 12/2000 TLueh et al. 717/9 (AJIT) Compilation System”, ACM 1999, San Francisco,
6,237,077 Bl 5/2001 Sharangpani et al. 712724 CA, USA, pp. 142-151.
6,240,510 Bl 5/2001 Yeh et al. ...occovvvnnve 712/236 Larus et al., “SPIM S20: A MIPS R2000 Simulator”, Com-
6,286,135 Bl 9/2001 Santhanam 717/9 : : : : : .
P , . puter Sciences Department, University of Wisconsin, Madi-
6,301,705 B1 * 10/2001 Doshi et al. 717/154 . hi 1900—1997 195
6,308,318 B1 * 10/2001 Krishnaswamy 717/139 son, copyright > PP- 1740.
6,311,325 B1 10/2001 Levine et al.cceeeeen...... 717/4 Aho et al., “Compilers: Principles, Techniques, and Tools”,
6,317,872 B1 11/2001 Gee et al.ccoeeneennnnne. 717/7 copyright 1986, Bell Telephone Labs, Inc., 4 pages.
grgé}gg E ﬂﬁ ggg gu“;l et ?Ll """""""""" ;gﬁ 2 Fernandez, “Simple and Effective Link—Time Optimization
1 1 cadlc ¢l dl.eevvvvennnn... 29
Sk of Modula—3 Programs”™, Nov. 7, 1997 . 1-7.
6336213 Bl 1/2002 Beadle et al. vovovvvvvvnn... 717/5 Vs Stas: > +77 05 PP |
6339841 Bl 1/2002 Merrick et al. .o.o.......... 71710 Ishizaki et al., Design, Implementation, and Evaluation of
6385660 Bl 5/2002 Griesemer et al. 709,315 Optimizations 1 a Just-In—Time Complier, ACM, Jun.
6,408,433 B1 6/2002 Click, Ir. et al. 717/154 1999, pp. 119-122.
6,412,105 Bl 6/2002 Maslennikov et al. 717/9 Sinclair et al., “ASIC Design for Conditional Nested Loops
grjégrggg E 13@333 ghalmtt’erf etal. ;égggg with Predicate Registers”, Aug. 11, 1999, Circuits and
1 dUl €L al. ..vvevviivinnenes Ficd . .
St Syst 1999, 42™* Midwest S 1. 2 .
6.487.601 Bl 11/2002 Hubacher et al. 709/229 8%’2_@’8“;57’ ’ HEWESE SYHIPOSIHIL, - VOL.- = PP
6,507,946 B1 1/2003 Alexander, Il et al. 717/145 T | o |
6.513.109 B1 * 1/2003 Gschwind et al. 7127200 “The Java Virtual Machine Specification”, Sun Microsys-
6,539,473 B1 3/2003 Hubacher et al. 713/2 tem, Inc., copyright 1997, http://java.sun.com/docs/books/
6,567,974 Bl 5/2003 Czajkowski 717/151 vmspec/html/Instructions2.doc14.html.
6,571,385 Bl 5/2003 Muthukumar et al. 717/150
6,604,167 Bl 8/2003 Blandy et al. 711/100 * cited by examiner

U.S. Patent Apr. 26, 2005 Sheet 1 of 4 US 6,886,094 B1

100

N

CLIENT

SERVER
CLIENT
T
106—"] STORAGE I:I
- 112
FIG. T
CLIENT
202 204
\
PROCESSOR PROCESSOR
206
SYSTEM BUS
M
- 200
MEMORY v
208 ~J CONTROLLER/ | 1/0 BRIDGE |~210
CACHE
214
216
PCI BUS
MEMORY DGE
1/0 NETWORK
, 212 BUS ADAPTER
GRAPHICS 222
230 ADAPTER 218 220
PCl BUS PCI BUS
BRIDGE
226
»39.] HARD DISK 50T BUS PCI BUS
" BRIDGE [
228

U.S. Patent Apr. 26, 2005 Sheet 2 of 4 US 6,886,094 B1

HOST/PCl MAIN AUDIO
PROCESSOR o= CACHE /BRIDGE [N—~ MEMORY ADAPTER

236

SCSI HOST AN EXPQEEION | GRAPHICS A\?IBIE%/
BUS ADAPTER ADAPTER INTERFACE | ADAPTER ADAPTER
202 260 | 204 268 7269

DISK ~-276 | KEYBOARD AND
PE | MOUSE ADAPTER‘ MODEM | | MEMORY

278
- 270 272 274
- - FIG. 2B
FIG. 3A

300

| JAVA VIRTUAL PLATFORM SPECIFIC

504 MACHINE (JVM) OPERATING SYSTEM

JAVA | 502
APPLICATION/APPLET

306

g0LS
N3

SAOHLIN

0109

43 10NVH
SUORLIN
0109

0¢L 0¢L

S3A

US 6,886,094 Bl

00¥

vy Old

dilS NJNL3Y 40 SSIYAaY

¢NOILd33X3
INJH4NY 404

A3018 AdL NIHLIM

Jdd Sl

X018 GOHLIN)

ON

-+ 0L IR
&
o Y3IN3
o~
~
o ¢9¢ 09¢
SIYVYEIT
ERLVANEIL)
) %ﬁ“‘ AOHEI ALV YILTIJYIINT | ¥TIdHOD
= 9ce INIINT NOTLNDIX3
@\
. 1299 8G¢
S 1Y,
3 SY3UV VIVa JNIINNY
<

INJNIOVNVA

ASONAN

SAIVLS Sy3ISI9 SNV vy | | o I
QOHLIN 4V3H
oL 2 VAT GOHLIN

blg $g g9¢ ,_,I« 99¢ 218 0/8

53114 NILSASENS HAAVOT X
SSY1D SSY10 A5} nee

U.S. Patent

U.S. Patent Apr. 26, 2005 Sheet 4 of 4 US 6,886,094 B1

500
FIG. 5
JIT CODt BUFFER
RETURN STUBS
e.g. mov arpfs = rdd
mov Ip = ra6
broret rp

SYNCHRONIZED RETURN STUBS

e.q. mov ar.pfs = r3d

mov rp = r3b

br.cond MonitorExit
MonitorExit |
. FlIG. 6
LOOKUP HANDLER ENTER
] 610 GENERATE INVOKE
COMPILED METHODS
. 620

INSTRUCTION NO

BEFORE BRANCH
?

650 GENERATE P2
PREDICATED INSTRUCTIONS

IN
T TRY BLOCK
?

GENERATE P1 PREDICATED 640 JFS
650 BRANCH TO RETURN STUB
GENERATE Pt PREDICATED
660 BRANCH TO SNIPPET
GENERATE SNIPPET:

mov r8 = pc
670 br.cond LookupHandler

US 6,536,094 Bl

1

APPARATUS AND METHOD FOR
DETECTING AND HANDLING EXCEPTIONS

RELATED APPLICATIONS

The present mvention 1s related to commonly assigned

and co-pending U.S. patent application Ser. No. 09/671,876
entitled “APPARATUS AND METHODS FOR

IMPROVED DEVIRTUALIZATION OF METHOD
CALLS”, Ser. No. 09/671,973 entitled “APPARATUS AND
METHOD FOR IMPLEMENTING SWITCH INSTRUC-
TIONS IN AN TA64 ARCHITECTURE”, Ser. No. 09/671,
770 entitled “APPARATUS AND METHOD FOR AVOID-
ING DEADLOCKS IN A MULTITHREADED
ENVIRONMENT”, Ser. No. 09/671,771 enfitled “APPA-
RATUS AND METHOD FOR VIRTUAL REGISTER
MANAGEMENT USING PARTIAL DATA FLOW
ANALYSIS FOR JUST-IN-TIME COMPILATION”, Ser.
No. 09/671,873 enfitled “APPARATUS AND METHOD
FOR AN ENHANCED INTEGER DIVIDE IN AN [A64
ARCHITECTURE”, Ser. No. 09/671,874 entitled “APPA-
RATUS AND METHOD FOR CREATING INSTRUC-
TION GROUPS FOR EXPLICITLY PARALLEL
ARCHITECTURES”, and Ser. No. 09/671,875 entitled
“APPARATUS AND METHOD FOR CREATING
INSTRUCTION BUNDLES IN AN EXPLICITLY PARAL-
LEL ARCHITECTURE”, filed on even date herewith and

hereby incorporated by reference.

BACKGROUND OF THE INVENTION

1. Technical Field

The present 1nvention 1s directed to an apparatus and
method for detecting and handling software exceptions such
as those thrown in Java and C++. More particularly, the
present invention 1s directed to an apparatus and method for
detecting and handling software exceptions 1n a machine
having predication and explicit parallelism.

2. Description of Related Art

When a software exception 1s thrown, normal program
flow 1s altered and an exception handler 1s invoked. Excep-
fions are typically thrown when an error or other exceptional
condition 1s encountered. This tends to be a rare occurrence
for most applications. However, to ensure that thrown
exceptions are properly caught 1t may be necessary to check
for their presence frequently. For example, a typical imple-
mentation of the Java Virtual Machines will include a check
for a pending exception after each method invocation.
Furthermore, some applications may use exception throwing
as a common flow control device. For these applications, the
efficient handling of exceptions 1s critical to their perfor-
mance. Therefore, 1t would be beneficial to have an appa-
ratus and method of efficiently detecting and handling
exceptions. It would further be beneficial to have an appa-
ratus and method for efficiently detecting and handling
exceptions 1n a machine having predication and explicit
parallelism.

SUMMARY OF THE INVENTION

An apparatus and method are provided for detecting and
handling exceptions. The apparatus and method make use of
predicate registers to 1dentify whether or not an exception 1s
pending. Instructions that are executed only when there 1s an
exception pending are qualified by a first predicate register
in the predicate register pair. Instructions that are executed
only when there 1s no exception pending are qualified based
on a second predicate register in the predicate register pair.

5

10

15

20

25

30

35

40

45

50

55

60

65

2

When an application or system 1s mnitialized, the predicate
pair 1s set to indicate that no exception 1s pending, 1.e. the
first predicate 1s set to zero and the second 1s set to one.
When an exception 1s thrown, the settings of the predicate
pair 1s reversed thereby indicating the presence of a pending
exception.

Whenever an exception must be detected, a branch
instruction qualified by the first of the predicate pair is
inserted 1nto the 1nstruction group at the site where detection
1s required. All instructions in the instruction group that
precede the inserted branch are qualified by the second
predicate. In this way, the standard mstructions of the group
will be executed when no exception 1s pending but only the
inserted branch instruction will be executed when an excep-
tion 1s pending.

The target of the inserted branch depends on whether an
exception handler 1s provided to handle exceptions at the
detection site. If not the branch will target code that termi-
nates the current method and returns to the method’s caller.
Otherwise the branch will target code that will invoke a
lookup handler routine passing it parameters that identify the
detection site. The lookup handler routine will determine 1f
any of the exception handler(s) associated with the detection
site handles the current pending exception. If so control will
be passed to the handler. If not the current method will be
terminated and a return will be made to 1ts caller. Other
features and advantages of the present invention will be
described 1n, or will become apparent to those of ordinary
skill 1in the art in view of, the following detailed description
of the preferred embodiment.

BRIEF DESCRIPITION OF THE DRAWINGS

The novel features believed characteristic of the invention
are set forth 1n the appended claims. The invention itself,
however, as well as a preferred mode of use, further objec-
fives and advantages thereof, will best be understood by
reference to the following detailed description of an 1llus-
frative embodiment when read in conjunction with the
accompanying drawings, wherein:

FIG. 11s an exemplary block diagram of a distributed data
processing system according to the present mnvention;

FIG. 2A 1s an exemplary block diagram of a data pro-
cessing system according to the present invention;

FIG. 2B 1s an exemplary block diagram of a data pro-
cessing system according to the present invention;

FIG. 3A 15 a block diagram 1llustrates the relationship of
software components operating within a computer system
that may implement the present invention;

FIG. 3B 1s an exemplary block diagram of a Java Virtual
Machine (JVM) according to the present invention;

FIG. 4 1s an exemplary block diagram illustrating a
method block 1n accordance with the present 1nvention;

FIG. 5 1s an exemplary block diagram illustrating a

Just-In-Time (JIT) code buffer;

FIG. 6 1s a flowchart outlining an exemplary operation of
the present invention; and

FIG. 7 1s a flowchart outlining an exemplary operation of
a lookup handler.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

With reference now to the figures, and 1n particular with
reference to FIG. 1, a pictorial representation of a distributed
data processing system 1n which the present invention may

US 6,536,094 Bl

3

be 1mplemented 1s depicted. Distributed data processing
system 100 1s a network of computers in which the present
invention may be implemented. Distributed data processing
system 100 contains a network 102, which 1s the medium
used to provide communications links between various
devices and computers connected together within distributed
data processing system 100. Network 102 may include
permanent connections, such as wire or fiber optic cables, or
temporary connections made through telephone connec-
fions.

In the depicted example, a server 104 1s connected to
network 102 along with storage unit 106. In addition, clients
108, 110, and 112 also are connected to a network 102.
These clients 108, 110, and 112 may be, for example,
personal computers or network computers. For purposes of
this application, a network computer 1s any computer,
coupled to a network, which receives a program or other
application from another computer coupled to the network.
In the depicted example, server 104 provides data, such as
boot files, operating system i1mages, and applications to
clients 108-112. Clients 108, 110, and 112 are clients to
server 104. Daistributed data processing system 100 may
include additional servers, clients, and other devices not
shown. In the depicted example, distributed data processing
system 100 1s the Internet with network 102 representing a
worldwide collection of networks and gateways that use the
TCP/IP suite of protocols to communicate with one another.
At the heart of the Internet 1s a backbone of high-speed data
communication lines between major nodes or host
computers, consisting of thousands of commercial,
government, educational, and other computer systems, that
route data and messages. Of course, distributed data pro-
cessing system 100 also may be implemented as a number
of different types of networks, such as, for example, an
Intranet or a local area network.

FIG. 1 1s intended as an example, and not as an architec-
tural limitation for the processes of the present invention.
The present invention may be implemented 1n the depicted
distributed data processing system or modifications thereot
as will be readily apparent to those of ordinary skill in the
art.

With reference now to FIG. 2A, a block diagram of a data
processing system which may be implemented as a server,
such as server 104 1n FIG. 1, 1s depicted 1n accordance to the
present mvention. Data processing system 200 may be a
symmetric multiprocessor (SMP) system including a plural-
ity of processors 202 and 204 connected to system bus 206.
Alternatively, a single processor system may be employed.
Also connected to system bus 206 1s memory controller/
cache 208, which provides an interface to local memory 209.
I/0 Bus Bridge 210 1s connected to system bus 206 and
provides an interface to I/O bus 212. Memory controller/
cache 208 and I/O Bus Bridge 210 may be integrated as
depicted.

Peripheral component interconnect (PCI) bus bridge 214
connected to I/0 bus 212 provides an interface to PCI local
bus 216. A modem 218 may be connected to PCI local bus
216. Typical PCI bus implementations will support four PCI
expansion slots or add-in connectors. Communications links
to network computers 108—112 in FIG. 1 may be provided

through modem 218 and network adapter 220 connected to
PCI local bus 216 through add-in boards.

Additional PCI bus bridges 222 and 224 provide inter-
faces for additional PCI buses 226 and 228, from which
additional modems or network adapters may be supported.
In this manner, server 200 allows connections to multiple

10

15

20

25

30

35

40

45

50

55

60

65

4

network computers. A memory mapped graphics adapter
230 and hard disk 232 may also be connected to I/O bus 212
as depicted, either directly or indirectly.

Those of ordinary skill in the art will appreciate that the
hardware depicted 1in FIG. 2A may vary. For example, other
peripheral devices, such as optical disk drive and the like
also may be used 1 addition or 1n place of the hardware
depicted. The depicted example 1s not meant to 1mply
architectural limitations with respect to the present mmven-
tion.

The data processing system depicted in FIG. 2A may be,
for example, an IBM RISC/System 6000 system, a product
of International Business Machines Corporation in Armonk,

N.Y., running the Advanced Interactive Executive (AIX)
operating system.

With reference now to FIG. 2B, a block diagram of a data
processing system 1n which the present invention may be
implemented 1s illustrated. Data processing system 250 1s an
example of a client computer. Data processing system 250
employs a peripheral component interconnect (PCI) local
bus architecture. Although the depicted example employs a
PCI bus, other bus architectures such as Micro Channel and
ISA may be used. Processor 252 and main memory 254 are
connected to PCI local bus 256 through PCI Bridge 258. PCI
Bridge 258 also may include an mtegrated memory control-
ler and cache memory for processor 252. Additional con-
nections to PCI local bus 256 may be made through direct
component interconnection or through add-in boards. In the
depicted example, local area network (LAN) adapter 260,
SCSI host bus adapter 262, and expansion bus interface 264
are connected to PCI local bus 256 by direct component
connection. In contrast, audio adapter 266, graphics adapter
268, and audio/video adapter (A/V) 269 are connected to
PCI local bus 256 by add-in boards inserted into expansion
slots. Expansion bus interface 264 provides a connection for
a keyboard and mouse adapter 270, modem 272, and addi-
tional memory 274. SCSI host bus adapter 262 provides a
connection for hard disk drive 276, tape drive 278, and
CD-ROM 280 m the depicted example. Typical PCI local
bus implementations will support three or four PCI expan-
sion slots or add-in connectors.

An operating system runs on processor 252 and 1s used to
coordinate and provide control of various components
within data processing system 250 1in FIG. 2B. The operating
system may be a commercially available operating system
such as OS/2, which 1s available from International Business
Machines Corporation.

An object oriented programming system such as Java may
run 1n conjunction with the operating system and may
provide calls to the operating system from Java programs or
applications executing on data processing system 250,
Instructions for the operating system, the object oriented
operating system, and applications or programs are located
on storage devices, such as hard disk drive 276 and may be
loaded mmto main memory 254 for execution by processor
252. Hard disk drives are often absent and memory 1s
constrained when data processing system 250 1s used as a
network client.

Those of ordinary skill in the art will appreciate that the
hardware 1n FIG. 2B may vary depending on the implemen-
tation. For example, other peripheral devices, such as optical
disk drives and the like may be used 1n addition to or 1n place
of the hardware depicted in FIG. 2B. The depicted example
1s not meant to 1mply architectural limitations with respect
to the present mnvention. For example, the processes of the
present invention may be applied to a multiprocessor data
processing system.

US 6,536,094 Bl

S

The present invention provides an apparatus and method
for detecting and handling exceptions in a machine having
predication and explicit parallelism. Although the present
invention may operate on a variety of computer platforms
and operating systems, 1t may also operate within a Java
runtime environment. Hence, the present mvention may
operate in conjunction with a Java virtual machine (JVM)
yet within the boundaries of a JVM as defined by Java
standard specifications. In order to provide a context for the
present 1nvention, portions of the operation of a JVM
according to Java specifications are herein described.

With reference now to FIG. 3A, a block diagram 1llus-
trates the relationship of software components operating
within a computer system that may implement the present
ivention. Java-based system 300 contains platform specific
operating system 302 that provides hardware and system
support to software executing on a specific hardware plat-
form. JVM 304 1s one software application that may execute
in conjunction with the operating system. JVM 304 provides
a Java run-time environment with the ability to execute Java
application or applet 306, which 1s a program, servlet, or
software component written in the Java programming lan-
cguage. The computer system in which JVM 304 operates
may be similar to data processing system 200 or computer
100 described above. However, JVM 304 may be imple-
mented 1n dedicated hardware on a so-called Java chip,
Java-on-silicon, or Java processor with an embedded pico-
Java core. At the center of a Java run-time environment 1s the
JVM, which supports all aspects of Java’s environment,
including its architecture, security features, mobility across
networks, and platform mmdependence.

The JVM 1s a virtual computer, 1.. a computer that 1s
specified abstractly. The specification defines certain fea-
tures that every JVM must implement, with some range of
design choices that may depend upon the platform on which
the JVM 1s designed to execute. For example, all JIVMs must
execute Java bytecodes and may use a range of techniques
to execute the instructions represented by the bytecodes. A
JVM may be implemented completely 1n software or some-
what 1n hardware. This flexibility allows different JVMs to
be designed for mainframe computers and PDAs.

The JVM 1s the name of a virtual computer component
that actually executes Java programs. Java programs are not
run directly by the central processor but instead by the JVM,
which 1s 1tself a piece of software running on the processor.
The JVM allows Java programs to be executed on a different
platform as opposed to only the one platform for which the
code was compiled. Java programs are compiled for the
JVM. In this manner, Java 1s able to support applications for
many types of data processing systems, which may contain
a variety of central processing units and operating systems
architectures. To enable a Java application to execute on
different types of data processing systems, a compiler typi-
cally generates an architecture-neutral file format—the com-
piled code 1s executable on many processors, given the
presence of the Java run-time system.

The Java compiler generates bytecode instructions that
are nonspecilic to a particular computer architecture. A
bytecode 1s a machine mmdependent code generated by the
Java compiler and executed by a Java interpreter. A Java
interpreter 1s part of the JVM that alternately decodes and
interprets a bytecode or bytecodes. These bytecode imstruc-
tions are designed to be easy to mterpret on any computer
and easily translated on the fly into native machine code.

A JVM must load class files and execute the bytecodes
within them. The JVM contains a class loader, which loads

10

15

20

25

30

35

40

45

50

55

60

65

6

class files from an application and the class files from the
Java application programming interfaces (APIs) which are
nceded by the application. The execution engine that
executes the bytecodes may vary across platforms and
implementations.

One type of software-based execution engine 1s a Just-
In-Time (JIT) compiler. With this type of execution, the
bytecodes of a method are compiled to native machine code
upon successiul fulfillment of some type of criteria for
“jitting” a method. The native machine code for the method
1s then cached and reused upon the next mvocation of the
method. The execution engine may also be implemented 1n
hardware and embedded on a chip so that the Java bytecodes
are executed natively. JVMs may interpret bytecodes or use
other techniques, such as Just-In-Time compiling, to execute
bytecodes. It 1s not uncommon for a JVM to interpret some
methods and Just-In-Time compile others.

When an application 1s executed on a JVM that 1s imple-
mented 1n software on a platform-specific operating system,
a Java application may interact with the host operating
system by 1nvoking native methods. A Java method 1is
written 1n the Java language, compiled to bytecodes, and
stored 1n class files. A native method 1s written 1n some other
language and compiled to the native machine code of a
particular processor. Native methods are stored 1n a dynami-
cally liked library whose exact form 1s platform speciiic.

With reference now to FIG. 3B, a block diagram of a JVM
1s depicted 1n accordance with a preferred embodiment of
the present mvention. JVM 350 includes a class loader
subsystem 352, which 1s a mechanmism for loading types,
such as classes and interfaces, given fully qualified names.
JVM 350 also contains runtime data areas 354, execution
engine 356, native method interface 358, and memory
management 374. Execution engine 356 1s a mechanism for
executing instructions contained in the methods of classes
loaded by class loader subsystem 352. Execution engine 356
may be, for example, Java interpreter 362 or just-in-time
compiler 360. Native method interface 358 allows access to
resources 1n the underlying operating system. Native method
interface 358 may be, for example, a Java native interface.

Runtime data areas 354 contain native method stacks 364,
Java frames 366, PC registers 368, method area 370, and
heap 372. These different data areas represent the organiza-
tion of memory needed by JVM 350 to execute a program.

Java frames 366 are used to store the state of Java method
mvocations. When a new thread 1s launched, the JVM
creates a new Java stack from which the thread will allocate
Java Frames. A thread 1s a part of a program, 1.€. a trans-
action or message, that can execute mndependently of other
parts. In a multithreaded environment, multiple streams of
execution may take place concurrently within the same
program, each stream processing a different transaction or
message.

A Java frame contains all the information pertaining to a
single method 1nvocation and 1s commonly partitioned 1nto
three regions. The first region holds all local variables
including the mnput parameters. The second region 1s typi-
cally fixed 1n size and contains various pointers used by the
interpreter including a pointer to the previous frame. The
third region 1s the Java operand stack which 1s a FIFO stack
that holds operands and results of bytecode operations. The
operand stack 1s also used to pass parameters during invo-
cation. The JVM performs only two operations directly on
Java operand stacks: 1t pushes and pops stack items. These
items may be object references or primitives such as integers
or floating point values.

US 6,536,094 Bl

7

When the interpreter 362 ivokes a Java method, the
interpreter 362 saves the return PC, 1.e. a bytecode pointer,
in the current frame and makes an indirect call via a JVM
mvoker field im a method block of the Java method, as
described 1 greater detail hereafter. Upon return from the
JVM 1nvoker, the interpreter fetches the current frame and
resumes execution starting with the bytecode specified in the
returnPC field. When an interpreted method completes, the
current frame 1s discarded and the previous frame i1s made
current.

PC registers 368 arc used to indicate the next instruction
to be executed. Each instantiated thread gets its own pc
register (program counter) and Java stack. If the thread is
executing a JVM method, the value of the pc register
indicates the next instruction to execute. If the thread is
executing a native method, then the contents of the pc
register are undefined.

Native method stacks 364 store the state of invocations of
native methods. The state of native method invocations 1is
stored 1n an 1mplementation-dependent way 1n native
method stacks, registers, or other implementation-dependent
memory areas. In some JVM implementations, native
method stacks 364 and Java frames 366 arc combined.

Method area 370 contains class data while heap 372
contains all instantiated objects. The JVM specification
strictly defines data types and operations. Most JVMs
choose to have one method area and one heap, each of which
are shared by all threads running inside the JVM. When the
JVM loads a class file, 1t parses information about a type
from the binary data contained in the class file. It places this
type information into the method area. Each time a class
instance or array 1s created, the memory for the new object
1s allocated from heap 372. JVM 350 includes an instruction
that allocates memory space within the memory for heap
372 but includes no instruction for freeing that space within
the memory.

Memory management 374 in the depicted example man-
ages memory space within the memory allocated to heap
370. Memory management 374 may include a garbage
collector which automatically reclaims memory used by
objects that are no longer referenced. Additionally, a garbage
collector also may move objects to reduce heap fragmenta-
tion.

The present mvention 1s equally applicable to either a
platform specific environment, 1.e. a traditional computer
application environment loading modules or native methods,
or a platform 1independent environment, such as an 1nterpre-
five environment, €.g., a Java environment loading classes,
methods and the like. For purposes of explanation of the
features and advantages of the present invention, examples
of the operation of the present invention will assume a Java
environment.

The present mvention provides a mechanism by which
exceptions 1 a machine having predication and explicit
parallelism are detected and handled. In particular, the
present 1nvention may operate 1n a non-Mixed-Mode-
Interpretation (non-MMI) Just-In-Time (JIT) compiler run-
ning in a Java Virtual Machine (JVM) on an [A64 platform.
MMI describes an environment where methods are initially
interpreted until they pass some threshold, such as a fre-
quency of mvocation or time consumed, at which time they
are compiled. In a non-MMI environment, all methods are
compiled. It should be appreciated, however, that the present
invention 1s not limited to a non-MMI environment and may
be implemented 1n MMI environments without departing,
from the spirit and scope of the present 1nvention.

10

15

20

25

30

35

40

45

50

55

60

65

3

The IA64 platform 1s described 1n the Intel IA-64 Archi-
tecture Software Developer’s Manual, available for down-
load at http://developer.intel.com/design/1a-64/downloads/
24531702s.htm, which 1s hereby incorporated by reference
in 1ts entirety. Briefly, IA64 allows a compiler or program-
mer to explicitly group instructions to be executed concur-
rently. IA64 also provides a set of 64 single bit predicate
registers which can be used to control 1nstruction execution.
A predicated register can be associated with an mstruction as
a “qualitying predicate.” When the qualifying predicate 1s
true, the mstruction executes normally. When the qualifying
predicate 1s false, the 1nstruction will not modity architec-

tural state thereby acting essentially as a no-operation (a
NOP).

With the present invention, a pair of predicate registers P1
and P2 1s utilized to determine if an exception 1s pending or
not. In the case of the present invention, P1 is true when an
exception 1s pending and 1s false otherwise. P2 is true when
no exception 1s pending and false otherwise. The values of
predicate registers are set by the results of 1nstructions, such
as compare (cmp) and test bit (tbit).

The present invention provides methods for using these
predicate registers to detect and handle exceptions. In
particular, the present invention provides a method for
initializing the predicate register pair when crossing a
boundary from non-JITted code to JITted code, a method for
setting the predicate pair to indicate the presence of a
pending exception, a method for running exception detect-
ing 1nstructions concurrently with instructions that are only
allowed to complete 1f no exception 1s present, and a method
to pass control to the appropriate exception handler when an
exception occurs.

As mentioned above, the present invention includes a
method for initializing a predicate register pair for use in
exception detecting and handling when crossing a boundary
from non-JITted code to JITted code. With the method of the
present 1nvention, when ivoking a JI'Tted method from
non-JI'Tted code, €.g., a native method or the JVM 1tself, a
“olue” routine 1s used to set up the required environment,
such as setting up input registers and various flags. A “glue”
routine 1s a routine that 1s used to perform some conversion,
translation or other process that makes one system work
with another. In this case, the glue routine operates to allow
a Java Virtual Machine and a Just-In-Time compiler to work
together.

The glue routine of the present invention also sets the
predicate register pair by examining an exception flag main-
tained by the JVM. If the exception flag 1n the JVM indicates
that an exception occurred, the predicate registers are set to
indicate an exception. In other words, P1 is set to true and
P2 1s set to false.

In addition, when returning to JITted code from non-
JITted code, e.g., returning from a call into the JVM, small
“olue” routines are executed to restore the state required by
the JITted environment. If the call could have caused an
exception to be thrown, the predicate register pair 1s set
again, via examination of the exception flag, before return-
ing to JITted code. When JITted code throws an exception,
a routine 1s called which sets up storage locations to indicate
the pending exception and additionally sets the predicate

register pair to indicate the presence of the exception, 1.e. P1
1s set to true and P2 1s set to false.

When the JIT compiler generates instructions following a
method mvocation, 1t 1s free to combine, 1n a single 1nstruc-
tion group, 1nstructions that must only execute 1n the pres-
ence of an exception with those which must only execute in

US 6,536,094 Bl

9

the absence of an exception. Those instructions that must
execute only when no exception 1s pending are qualified by
predicate register P2 while the instructions that must execute
when an exception 1s pending are qualified by predicate
register P1. By “qualified” what 1s meant 1s that the predicate
register 1s a qualifying predicate, 1.e. the predicate register 1s
one whose value determines whether the processor commits
the results computed by the instruction.

In a preferred embodiment, only a single branch instruc-
fion 1s used to handle the exception so that the code might
appear as:

(P2) Id r14=]r35]

(P2) mov r37=r8

(P2) adds r9=8, r8

(P1) br.cond.spnt handleException

For each method that handles exceptions, an exception table
indicates all try and catch blocks. Each entry of the table
identifies a range of bytecodes that represents the try phase
and a bytecode oflset that represents the start of the excep-
tion handler. Each entry also includes an identification of
what type of exception 1s handled and provides an auxiliary
pointer field available for JIT compiler use. This auxiliary
pointer field, in the present mvention, 1s used to point to the
compiled code representing the exception handler. For
example, an entry 1n an exception table may take the form

of:

StartPC EndPC HandlerPC ExceptionType wordForlJit

If an 1nvoke 1s not 1 a try range, the JIT compiler will
ogenerate the predicate register P1 qualified branch to go to
an appropriate return stub. The collection of return stubs 1s
placed so that they can be reached by a relative branch from
any JI'Tted method and are replicated if required.

FIG. 4 1s an exemplary block diagram of a method block
in accordance with the present invention. The method block
400 1s a control block data structure used to represent control
parameters of a Java method. The method block 400 has a
number of fields including fields 410 for storing the address
of return stubs for the method associated with the method
block. The return stubs are pieces of code that perform a type
of return to an 1nvoking, or calling, routine. Such returns
may 1nclude, for example, standard returns, synchronized
returns, returns for saving floating point registers, and the
like, as 1s generally known 1n the art. An example of a
standard return stub may be:

mov ar.pls = 135
mov 1p =130
brret 1p

An example of a synchronized return stub may be:

mov ar.pts = r35
mov 1p =136
brcond MonitorExit

When a method 1s JITted, the results of the JIT compiler
are stored 1n a JIT code bufler for use. FIG. 5 1s an exemplary
block diagram 1illustrating a JIT code buffer in accordance
with the present invention. As shown in FIG. 5, the JI'T code
buffer 500 stores the return stubs for the methods, the lookup

10

15

20

25

30

35

40

45

50

55

60

65

10

handler and compiled methods. The JIT code buffer 500 may
be of various sizes but 1s typically 16 MB 1n size. Of these

16 MB, less than 4 k 1s used to store the returns stubs and
lookup handler. The remainder of the JIT code butfer S00 1s

used to store the compiled methods.

The compiled JI'Tted methods may make use of the return
stubs stored in the JIT code buffer 500 during exception
handling. Exception handling is performed using the lookup
handler which either mvokes the compiled method excep-
tion handler or passes control to the return stubs in the JIT

code buffer 500.

The stubs perform whatever return function 1s required of
the method, mcluding monitor release for synchronized
methods. The return stubs perform a “pure” return as 1s
required for exception handling. This provides complete
freedom to the JIT compiler when creating standard return
sequences that will be used for non-exception returns. For
example, a standard return could contain conditional storage
modifications that would not be allowed when an exception
was present.

With the present invention, if an exception 1s encountered,
and the exception 1s within a try block of the method, the JIT
compiler creates a branch to a “snippet,” which 1s code
ogenerated specifically for that method. The snippet 1dentifies
a known register with the bytecode offset of an 1mnvoke that
branches to a lookup handler. An example snippet 1s:

mov 18 = pc
mov]l 19 = currentMethodBlock
br.cond LookupHandler

The lookup handler searches the method’s exception table
to see 1f the bytecode offset 1s within the range of a try block
which handles the current mstructions. If 1t 1s, the predicates
are reset to mdicate no pending exception and control 1s
passed to the compiled exception handler for the method.
Otherwise, a branch 1s made to the return stub appropriate
for this method with the predicate registers indicating a
pending exception.

In this way, methods that do not handle the current
exception return to the calling routine with Pl=true and
P2=false. The post invoke code for that call 1s executed and
the appropriate return stub or snippet 1s invoked until the
exception 1s handled. If the exception 1s not handled by any
method 1n the call chain, the JVM terminates the thread and
prints a stack trace i1dentifying the exception.

FIG. 6 1s a flowchart outlining an exemplary operation of
the present invention. As shown 1n FIG. 6, the operation
starts with an invoke instruction for invoking a method
being generated by the compiler (step 610). A determination
1s made as to whether there are instructions before the
exception branch (step 620).

If there are instructions before the exception branch, the
predicate register P2 predicated instructions are generated
(step 630). Thereafter, or if there are no instructions before
the exception branch, a determination 1s made as to whether
or not the 1instruction 1s 1n a try block, or range, of the
method (step 640). If not, the predicate register P1 predi-
cated 1nstructions to branch to a return stub for the method
is generated (step 650). If the instruction is in a try block, the
predicate register P1 predicated instruction to branch to a
snippet associated with the method is generated (step 660).
The snippet 1s then generated (step 670).

FIG. 7 1s a flowchart outlining an exemplary operation of
the lookup handler of the present invention. As shown in
FIG. 7, the operation involves determining if the pc, 1.e.

US 6,536,094 Bl

11

bytecode pointer, for a current exception 1s within a try block
(step 710). This operation may involve using the exception

table for the method to determine 1f the exception 1s handled
by the method exception handler. If so, the lookup handler
invokes the compiled method exception handler (step 720).
If not, the lookup handler invokes an appropriate return stub
for the method (step 730).

Thus, the present invention provides methods for using
predicate registers to detect and handle exceptions. In
particular, the present invention provides a method for
initializing the predicate register pair when crossing a
boundary from non-JI'Tted code to JITted code, a method for
setting the predicate pair to indicate the presence of a
pending exception, a method for running exception detect-
ing 1nstructions concurrently with instructions that are only
allowed to complete 1f no exception 1s present, and a method
to pass control to the appropriate exception handler when an
exception occurs.

It 1s important to note that while the present invention has
been described 1n the context of a fully functioning data
processing system, those of ordinary skill in the art waill
appreciate that the processes of the present invention are
capable of being distributed 1n the form of a computer
readable medium of instructions and a variety of forms and
that the present invention applies equally regardless of the
particular type of signal bearing media actually used to carry
out the distribution. Examples of computer readable media
include recordable-type media such a floppy disc, a hard
disk drive, a RAM, and CD-ROMs and transmission-type

media such as digital and analog communications links.

The description of the present mvention has been pre-
sented for purposes of illustration and description, but 1s not
intended to be exhaustive or limited to the invention in the
form disclosed. Many modifications and varnations will be
apparent to those of ordinary skill 1in the art. The embodi-
ment was chosen and described 1n order to best explain the
principles of the invention, the practical application, and to
enable others of ordinary skill 1in the art to understand the
invention for various embodiments with various modifica-
fions as are suited to the particular use contemplated.

What 1s claimed 1s:
1. A process of handling exceptions 1n a device having
predication, comprising;

determining if an exception 1s pending based on values of
a predicate register pair, wherein the predicate register
pair includes two single bit predicate registers; and

handling the exception when 1t 1s determined that an
exception 1s pending, wherein handling the exception
includes determining if an instruction 1n a method that
threw the exception 1s in a try block and invoking a
snippet associlated with the method.

2. The process of claim 1, wherein determining i1f an
exception 1s pending 1includes determining 1f a value of a first
predicate register 1s true and a second predicate register 1s
false.

3. The process of claim 1, wheremn 1f the address of the
instruction 1s not 1n the try block, handling the exception
includes mvoking a return associated with the method.

4. The process of claim 3, wherein 1f the exception 1s in
the try block, using an associated exception handler for the
method.

5. The process of claim 1, wherein the device has an IA64
architecture.

6. The process of claim 1, wherein the snippet 1nvokes a
lookup handler for determining if the exception 1s within the
try block of the method.

12

7. The process of claim 6, wherein the lookup handler
determines 1f the exception 1s within the try block of the
method by searching an exception table associated with the
method and determining if an address of the instruction 1is

> within the exception table.

10

15

20

25

30

35

40

45

50

55

60

65

8. An apparatus for handling exceptions 1 a device
having predication, comprising;:
means for determining 1f an exception 1s pending based on
values of a predicate register pair, wherein the predicate
register pair includes two single bit predicate registers;
and

means for handling the exception when 1t 1s determined
that an exception 1s pending, wherein the means for
handling the exception determines 1f an instruction in a
method that threw the exception 1s 1n a try block and
invokes a snippet associated with the method.

9. The apparatus of claim 8, wherein the means for
determining 1f an exception 1s pending determines if a value
of a first predicate register 1s true and a second predicate
register 1s false.

10. The apparatus of claim 8, wherein if the address of the
instruction 1s not 1n the try block, the means for handling the
exception mvokes a return associated with the method.

11. The apparatus of claim 10, wherein if the exception 1s

in the try bock, the means for handling the exception uses an
assoclated exception handler for the method.

12. The apparatus of claim 8, wherein the apparatus has
an IA64 architecture.

13. The apparatus of claim 8, wherein the snippet invokes
a lookup handler for determining if the exception 1s within
the try block of the method.

14. The apparatus of claim 13, wherein the lookup handler
determines 1f the exception 1s within the try block of the
method by searching an exception table associated with the
method and determining if an address of the instruction is
within the exception table.

15. A computer program product 1n a computer readable
medium for handling exceptions 1n a device having
predication, comprising:

first mstructions for determining 1f an exception 1s pend-

ing based on values of a predicate register pair, wherein
the predicate register pair includes two single bit predi-
cate registers; and

second 1nstructions for handling the exception when it 1s
determined that the exception i1s pending, wherein the
second 1nstructions for handling the exception include
instructions for determining if an instruction 1n a
method that threw the exception 1s 1n a try block and
instructions for invoking a snippet associated with the
method.

16. The computer program product of claim 15, wherein
the first instructions for determinming i1if an exception 1s
pending include mstructions for determining 1f a value of a
first predicate register 1s true and a second predicate register
1s false.

17. The computer program product of claim 15, wherein
the second instructions for handling the exception include
instructions for invoking a return associated with the method
if the address of the instruction is not 1n the try block.

18. The computer program product of claim 17, wherein
the second 1nstructions further include 1nstructions for using
an assoclated exception handler for the method if the excep-
fion 1s 1n the try block.

19. The computer program product of claim 15, wherein
the device has an 1A64 architecture.

US 6,536,094 Bl
13 14

20. The computer program product of claim 15, wherein try block of the method by searching an exception table
the snippet invokes a lookup handler for determining it the associated with the method and determining if an address of
exception 1s within the try block of the method. the 1nstruction i1s within the exception table.

21. The computer program product of claim 20, wherein
the lookup handler determines 1f the exception 1s within the %k % k%

	Front Page
	Drawings
	Specification
	Claims

