(12) United States Patent

Takeuchi et al.

US006879528B2

US 6,879,528 B2
Apr. 12, 2005

(10) Patent No.:
45) Date of Patent:

(54) CONTROL METHOD OF NONVOLATILE
MEMORY

(75) Inventors: AKio Takeuchi, Takatsuki (JP);
Shigekazu Kogita, Ibaraki (JP);
Kazuya Iwata, Katano (JP)

(73) Assignee: Matsushita Electric Industrial Co.,
Ltd., Osaka (JP)
*3) Notice: Subject to any disclaimer, the term of this
] y
patent 15 extended or adjusted under 35

U.S.C. 154(b) by 90 days.

(21) Appl. No.: 10/362,846
(22) PCT Filed: Jun. 24, 2002
(86) PCT No.: PCT/JP02/06313

§ 371 (c)(1),
(2), (4) Date: Feb. 27, 2003

(87) PCT Pub. No.: WO03/003219
PCT Pub. Date: Jan. 9, 2003

(65) Prior Publication Data
US 2003/0189860 Al Oct. 9, 2003

(30) Foreign Application Priority Data
Jun. 28, 2001 (JP) .vriiiiiiiieeiee e, 2001-197388

(51) INte CL7 oo G11C 7/00

(52) US.CL ... 365/200; 365/185.09; 365/185.29;
365/185.33

(58) Field of Search 365/200, 185.09,
365/185.29, 185.33

PHYSICAL
BLOCK 1

PHYSICAL

BLOCK
4096

DATA AREA
(512 BYTES)

(56) References Cited

U.S. PATENT DOCUMENTS

5,978,273 A * 11/1999 Shigemura 365/185.29
6,421,279 B1 * 7/2002 Tobita et al. 365/189.01

FOREIGN PATENT DOCUMENTS

IP 5-216780 A 3/1993
IP 11282765 A 10/1999
IP 2000-330850 A 11,2000

* cited by examiner

Primary Examiner—Vu A. Le

Assistant Examiner—Pho M. Luu

(74) Attorney, Agent, or Firm—Akin Gump Strauss Hauer
& Feld, L.L.P.

(57) ABSTRACT

A control method of nonvolatile memory 1s provided,
wherein 1t does not happen that data which ought to have
been erased are not erased, or data which ought to have been
written are lost even 1f a forced interruption takes place due
to shutdown of a power source for a memory device, a reset
command, or the like occurs when data are written 1n a last
page of a block, the block 1s validated by setting the block
data validation flag provided in the redundant area of the last
page of block 0 (valid). Furthermore, a counter judges
whether the data 1s new or old, and data can be protected
even 1L the above-mentioned solution cannot be i1mple-
mented.

6 Claims, 13 Drawing Sheets

REDUNDANT AREA
(16 BYTES)

US 6,879,528 B2

Sheet 1 of 13

Apr. 12, 2005

U.S. Patent

|

RO -

(OY14 NOILYAIYA

vV1iva 100719}
¢ OV 14 $01

(DY 14 NOILYQITY AN
V1iva Y0079)

(S3LA9 C16)

V3dV V.IV(

OV 14 INOQ ONILIMM @ 01

U.S. Patent Apr. 12, 2005 Sheet 2 of 13 US 6,879,528 B2

F] G. 2
| DATA AREA . |REDUNDANT AREA
BLOCK ~ g
sook | eace | QATASREA REDANT
PAGET |
Tl e RN NN 5173
CK 1 R
PAGE 32 | |
_ _PAGETY T
PHYSICAL L. PAGE 2 | T
slock 2 |+ | v
PAGE3Z | [
PAGEYT |
PHYSICAL TPAGE [— —
CK
D Go¢ N R
PAGE32 | 0O

US 6,879,528 B2

Sheet 3 of 13

Apr. 12, 2005

U.S. Patent

(OV14 NOILVANVANI
v1vd ¥0079)

| OV 4 - E0I
5544dadv 1VOID0 |
_ - ¢01

OV 14 INOQ ONILIIM O

(S3LAG C1G)
vddv V.1V(Q

US 6,879,528 B2

Sheet 4 of 13

Apr. 12, 2005

U.S. Patent

ﬁ-
o
L

sS34dQy
1V OIS AHd

$53ddaV
_1IVOID0]

JOIA3Q JFOVHOLS AHOWIN ¥OLONANODINIS ULV IOANON

U.S. Patent Apr. 12, 2005 Sheet 5 of 13 US 6,879,528 B2

| G. 5

PHYSICAL
ADDRESS

U.S. Patent Apr. 12, 2005 Sheet 6 of 13 US 6,879,528 B2

F 1 G. ©

601

SEARCHING ERASED BLOCK
_ 602
UPDATING ENTRY TABLE

WRITING DATA IN 003
NEW BLOCK

604
IS THERE NO
OLD BLOCK ?

INVALIDATING OLD BLOCK

' . 606
JUPDATING LOGICAL-PHYSICAL
ADDRESS CONVERSION TABLE

END

U.S. Patent Apr. 12, 2005 Sheet 7 of 13 US 6,879,528 B2

FI1G. 7
START
' 701
PAGE COUNTER = 1
702

PAGE TO BE™ NO
WRITTEN BY

HOST 2

YES _
E 703 704

INPUTTING DATA BY READING OUT DATA BY '
ONe PAGE FROM HOST| |[ONE PAGE FROM OLD BLOCK

SETTING DATA IN DATA AREA 193

106

| SETTING DATA IN REDUNDANT AREA

07

7
WRITING BY ONE PAGE

708
ADDING ONE TO PAGE COUNTER

709

NO _—~FAGE COUNTER

233 ?
YES

END

U.S. Patent Apr. 12, 2005 Sheet 8 of 13 US 6,879,528 B2

F 1 G. 8

801

TOP PAGE ? 'ES
. ' 802
NO '
SETTING O (ALREADY WRITTEN)
N WRITING DONE FLAG
303

SETTING LOGICAL ADDRESS

804

SETTING 1 (NOT INVALID)
N FLAG 1 _

END

U.S. Patent Apr. 12, 2005 Sheet 9 of 13 US 6,879,528 B2

F I G. 9

START

901
YES

?
TOP PAGE 007

Ol ISETTING O (ALREADY WRITTEN)
N WRITING DONE FLAG
903

SETTING -LOGICAL ADDRESS

904

SETTING 1 (NOT INVALID)
N FLAG 1

 wy @ B cws g W owp s e R R W S B W A W A W B w o s S S S A W R A E EE S -

SETTING 0 (VALID)
~IN FLAG 2

cND

U.S. Patent Apr. 12, 2005 Sheet 10 of 13

INITIALIZING LOGICAL-PHYSICAL
ADDRESS CONVERSION TABLE

1001

1002
NITIALIZING ENTRY TABLE

1003
INITTALIZING INVALID TABLE

BLOCK COUNTER = 0

1005

1004

WR\TING DONE FLAG

NO 006
ad

TURNING THE RESPONDING BIT OF
ENTRY TABLE-TO ALREADY USED

4 7

(INVALID) N 100
' YES

(NOT '

VALID):NO @

REGISTERING 1T IN LOGICAL-PHYSICAL}~ 008
ADDRESS CONVERSION TABLE

1010

1008

wnf dek 45 PR P A s 4 .

TURNING THE RESPONDING BIT OF
"INVALID TABLE TO VALID

ADDING ONE TO BLOCK COUNTER

1012

1011
NG

LAST BLOCK 7

YES

US 6,879,528 B2

F I G.

YES (NOT WRITTEN YET)

10

U.S. Patent Apr. 12, 2005 Sheet 11 of 13 US 6,879,528 B2

F G, 11
START
1101
| SEARCHING ERASED BLOCKS
1102
UPDATING ENTRY TABLE
5 S 1103 5
5 CONFIRMATION 5
; NECESSARY :
: AFTER :
: WRITING ? |
5 1105
E VALIDITY CONFIRMATION] [VALDITY CONFIRMATION E
: FLAG = 1 FLAG = O :
1106
WRITING DATA IN NEW BLOCKS
- YT 107
| CONFIRMATION NO :
; FLAG = 1 7 , _
1108 |
CONFIRMATION OF DATA CORRECTNESS .
; 1109 |
: IS DATA
! VALID ?
E 1110 |
; VALIDATING NEW BLOCKS] L
""""" 111
IS THERE "NO

OLD BLOCKS 7

INVALIDATING OLD BLOCKS

1113

UPDATING LOGICAL-PHYSICAL
ADDRESS CONVERSION TABLE

END

U.S. Patent Apr. 12, 2005 Sheet 12 of 13 US 6,879,528 B2

FI1G. 12
START
1201
YES
" TOP PAGE 7 -
NO _ 1202

SETTING O (ALREADY WRITTEN)
~IN WRITING DONE FLAG

1203

SETTING LOGICAL ADDRESS

| 1204

SETTING 1 (NOT INVALID)
IN FLAG 1

- 1205

YES ' N
, LAST PAGE ?

/A Y /2 -.---'-;-----,_ NO

VALIDITY
CONFIRMATION
FLAG = 1 2

,
i R B Y T W I A a G e A B e g

 [SETTNG 1 (NOT |[SETTING 0 (VALD)
' IVALID) IN FLAG 2|l N FLAG 2

- O EE e E R T DR e W R g R G . S E ok G I B wle wl e o me e w W W B W O A A e B i B a E aE e B

END

US 6,879,528 B2

Sheet 13 of 13

Apr. 12, 2005

U.S. Patent

c Ll "9 4

YIINNOD ININIDAN" 10 HO M3N
50|

(9Y714 NOILYQIYA -
v1vQ %0078) """"".
2 OY4: +0) 2o

S0
0305930%
Pe%e% %N

o vowvany

v1ivd M0018)
| OY4 : €01

$S3YAAY VIID0T
, 201

OV14 INOQ ONILIIM 101

(S31A8 ¢1G)
V44V V1V(Q

US 6,579,528 B2

1

CONTROL METHOD OF NONVOLATILE
MEMORY

CROSS-REFERENCE TO RELATED
APPLICATION

This application 1s a Section 371 of International Appli-
cation No. PCT/JPO 2/06313, filed Jun. 24, 2002, the dis-
closure of which 1s incorporated herein by reference.

TECHNICAL FIELD

The present invention relates to nonvolatile semiconduc-
tor memory and control method of nonvolatile semiconduc-
tor memory.

BACKGROUND ART

In recent years, storage devices using nonvolatile memo-
ries such as flash memories receive much attention as
memory devices of portable apparatus handling music or
video 1mage data.

On the structure of the flash memory, explanation 1s given
by taking the case of a 512M bits NAND type flash memory
as an example.

FIG. 2 1s a structural example of physical blockof a 512M
bits flash memory. One flash memory consists of 4096
blocks. This block forms a basic unit of erasing. One block
1s further divided 1nto 32 pages. One page forms a basic unit
of readout and writing. Capacity of one page 1s 528 bytes,
among which 512 bytes are for a data area and remaining 16
bytes are for a redundant area. The data area 1s an area to be
used by the user, the redundant area 1s an area to be used by
the system control part of a nonvolatile flash memory
storage device.

Each data of a flash memory of an embodiment 1s 1 at an
erased state (where it is erased and is not recorded).
Therefore, to write 1 1n a flash memory may be replaced by
writing nothing.

FIG. 3 1s an example of a structural drawing of a physical
block of a prior art flash memory. FIG. 3 represents main
data written 1 a redundant area of one physical block. In a
redundant area of an 1nitial page, three, which are a writing
done flag 101, a logical address 102 and a flag 1 103 that 1s
an block data invalidation flag, are placed. On these indi-
vidual data, explanation 1s given later.

FIG. 4 1s a drawing showing a relationship between the
logical address and the physical address. In a nonvolatile
memory storage device using flash memories, a logical
address specified from outside and a physical address placed
in a flash memory are not same 1n general. This 1s because
such inconvenience happens as that, if making those
addresses same, addresses of blocks at which malfunction
occurs 1n the flash memory cannot be used, applications are
made to bear load or, the block corresponding to that address
casily exceeds a guaranteed number of rewriting times 1n a
short time period, resulting 1n a short life time 1n such a
system 1n which writing occurs frequently 1n a particular
address.

Therefore, as 1s shown 1n FIG. 3, the physical block
memorizes which logical address this physical block 1s
assigned within the redundant area. In general the system
control part of the nonvolatile memory storage device reads
out the logical address information written in the redundant
arcas of all the flash memories at the starting time of power
source and then generates a logical-physical address con-
version table for converting logical addresses and physical
addresses on a RAM as shown 1n FIG. 5. The system control

10

15

20

25

30

35

40

45

50

55

60

65

2

part 1dentifies a physical address with respect to a logical
address specified from outside using the logical-physical
address conversion table at the time of command process,
and then makes access to the physical address.

Usmg FIG. 6 to FIG. 8, explanation will be given on a
prior art general writing process. FIG. 6 1s a one-block
writing process schematic flowchart. FIG. 7 1s a detailed
flowchart of a new data writing process part 1n a step 603 of

FIG. 6. FIG. 8 1s a detailed flowchart of a redundant arca
data generating process part 1n a step 706 of FIG. 7.

In FIG. 6, at a step 601 erased blocks are searched from
the entry table. The entry table 1s a lookup table of blocks
which are already erased and not yet written. The entry table
1s a table generated on a RAM by reading out the writing
done flags 1n the redundant areas of all of the flash memories
at the starting time of the power-source, similar to the
above-mentioned logical-physical address conversion table.
Updating the entry table at a step 602, thereby erased blocks
are acquired. Data are written 1n the acquired block at a step
603 (details are shown in FIGS. 7 and 8). At a step 604 it is
judged from the logical-physical address conversion table
whether there 1s an old block or not. In case where there 1s
an old block, process proceeds to a step 6035. At the step 603,
0 (invalid) is overwritten on the flag 1 located in the
redundant area of the top page of the old block, thus
invalidating the old block. In case where there 1s not an old
block, process proceeds to a step 606 skipping the step 605.
At the step 606, the physical address of the old block of the
logical-physical address conversion table 1s rewritten to the
physical address of the new block, and this flowchart 1s
terminated.

Now, there are two methods 1n the erasing process of the
old data; a method 1n which data are erased physically and
a method 1n which an apparent erasing 1s done by marking
the flag representing that data are invalid and then physical
erasing 1s done at a different timing. The latter 1s employed
ogenerally and the flowchart of FIG. 6 has also been
explained 1n this method. This 1s because the overwriting of
flags 1s faster than the physical erasing in the flash memory.
And 1t 1s because the writing speed can be made faster as the
whole by an amount of time during which writing and
erasing are simultaneously done by erasing invalid-marked
blocks physically simultaneously while writing 1s done 1n
other flash memory chip in a nonvolatile memory device
comprised of a plural number of flash memory chips.

In FIG. 7, at a step 701 a page counter provided in the
RAM is set the initial value (1). At a step 702, it is judged
whether 1t 1s the page 1n which the data given from the host
1s to be written or not. If it 1s the page 1n which the data given
from the host 1s to be written, process proceeds to a step 703
and data are mputted by an amount of one page from the
host. If 1t 1s not the page in which the data given from the
host 1s to be written, process proceeds to a step 704 and data
are read out by an amount of one page from the old block.
At a step 705 data are set in the data area, and at a step 706
data are set in the redundant area (details are shown in FIG.
8). At a step 707, one page is written. At a step 708, 1 is
added to the page counter. At a step 709, 1t 1s judged whether
the page counter 1s equal to or more than 33 or not. Process
from step 702 to step 709 1s repeated during a time period
that the page counter 1s less than 33. When the page counter
becomes 33, this flowchart 1s terminated.

The above-mentioned process from the step 702 to the
step 704 1n FIG. 7 1s a process necessary because a unit of
writing 1s a page while a unit of erasing 1s a block, and it 1s
called as a wrap up process. Namely, since previous data

US 6,579,528 B2

3

should be retained as they were 1n the pages except the
writing page when writing data are given 1n a page unit from
outside, the data from an old block which are to be changed
are read out, these data are combined, and writing of an
amount of one block 1s done. Depending on whether 1t 15 a
starting page or a terminating page ol writing, there are a
first-half wrap up process and a second-half wrap up pro-
CESS.

In FIG. 8, at a step 801, whether 1t 1s the top page or not
1s judged. In the case of the top page, process proceeds to a
step 802 and the writing done flag 101 is set O (Writing was
done.). At a step 803, a logical address assigned from the
host 1s set 1n the logical address 102. At a step 804, the flag
1 103 is set 1 (not invalid), and then this flowchart is
terminated. At the step 801, in the case where 1t 1s not the top
page, this flowchart 1s terminated.

In such a system, 1n a case where a forced interruption 1s
caused by shutdown of a power supply for the memory
device, a reset command to the memory device or the like
during overwriting of the blocks, it results in two physical
addresses existing for one 1dentical logical address. This
phenomenon takes place in such a case where the interrup-
tion takes place during writing of new block data (step 603),
or after the new block data writing process (step 603) has
been completed and before the old block data (step 604)
ought to have been imvalidated in the above-mentioned
Process.

Let us consider a method of registering the physical
address of either block 1n the logical-physical address con-
version table and leaving the other block in which block data
and a logical address are written as they are 1n the process
of generating an 1nitial logical-physical address conversion
table after this phenomenon took place. In this case, when
the power supply 1s turned on again after erasing the block
that was registered in the above-mentioned state, the physi-
cal address of the other block (block left as it is), which
ought to have been erased, 1s registered for the logical
address 1n a logical-physical address conversion table which
1s newly generated in a RAM. As a result, such a phenom-
enon that the address which ought to have been erased 1s not
actually erased happens.

And 1n the case where the interruption takes place under
the state 1n which the same logical address 1s written 1n a
block 1n which old block data are written and 1 a block in
which new block data are written, and then the power supply
1s turned on again, there 1s a possibility that the physical
address of the block in which old block data are written 1s
registered 1n the logical-physical address conversion table.
In this case, new block data result 1in being lost. A phenom-
enon crucial to the system takes place after all.

Therefore conventionally, a process of invalidating one
block and dissolving duplication has been conducted 1n the
case where duplication of physical addresses for the same
logical address 1s found at the time of generating a logical-
physical conversion table at the beginning. As for the
selecting method of these two blocks, such a method has
been employed wherein two block data were both read out
and block without error was selected by confirming the error
correction code provided on each page, or a block 1n which
data ware written up to the last page was selected.

However, necessity of executing a generation process of
the logical-physical address conversion table at high speed
1s emerging 1n connection with the increase of the capacity
of flash memories and nonvolatile memory storage devices,
and the above-mentioned duplication resolving process 1s
now becoming an large obstacle against realizing the high-

10

15

20

25

30

35

40

45

50

55

60

65

4

speed process. Although 1t 1s commonly employed to gen-
erate a logical-physical address conversion table by
hardware, a method, 1n which process of the address dupli-
cation information are taken over by the software, largely
lowers the speed of generating the logical-physical address
conversion table. Even 1f all the processes are done by
hardware, if a conventional complicated decision process 1s
employed, area size occupied by the hardware increases,
eventually introducing a cost increase. Furthermore, even in
such a state in which duplicated blocks are both written
correctly up to the last page physically, there 1s a case where
a correct block should be selected depending on the contents
of the data area. For example, it 1s a case where process of
invalidating the old data only after confirming that they are
correct by confirming the error correction codes included 1n
those data or by judging whether those data values are
abnormal values or not 1n an overwriting process and after
new data are written 1s necessary for data. In such a case, the
problem cannot be solved by such a method as simply
selecting the data having a later writing time. For example,
although there 1s necessity of executing processes of scan-
ning up to the data area depending upon individual situation
of data, then determining and selecting a correct block, it 1s
difficult to realize all of these processes by hardware.

The present invention has been done 1n consideration of
such problems. It purports to offer a memory device wherein
the logical-physical address conversion table can be gener-
ated at high speed along with ensuring the reliability with
addition of a simple configuration.

DISCLOSURE OF INVENTION

The present invention has the following configuration 1n
order to solve the above-mentioned problems.

A control method of a nonvolatile memory from an aspect
of the present invention 1s the control method of a nonvola-
tile memory having a plural number of blocks, wherein the
block has a plural number of pages, the page has data area
for writing data and redundant area, the redundant area of
the mitial page of the block has a block data invalidation flag
indicating whether the data written 1n the block are 1nvalid
or not and indicating that the data are not invalid at the state
that the nonvolatile memory 1s erased, and the redundant
arca of the last page of the block has a block data validation
flag indicating whether the data written 1n the block are valid
or not and indicating that the data are not valid at the state
that the nonvolatile memory 1s erased, having: a data writing
step of writing data 1n the data area; and a validation step of
making the block data validation flag of the block having the
data area 1n which the data are written to indicate that the
data are valid.

The above-mentioned control method of a nonvolatile
memory from other aspect of the present invention has
further a selecting step of selecting, by hardware or
software, a method 1n which the validation step 1s executed
simultaneously with or succeeding the data writing step or a
method 1n which a data correctness check 1s executed, after
the data writing step and then the validation step 1s executed.

The above-mentioned control method of a nonvolatile
memory from another aspect of the present invention, in the
case where original data are updated to new data, executes
simultaneously the validation step on the block 1n which the
new data are written and the invalidation step of making the
block data invalidation flag of the block 1n which the original
data are written to indicate that the original data are invalid.

In the above-mentioned control method of a nonvolatile
memory from further another aspect of the present

US 6,579,528 B2

S

invention, the redundant area further has logical addresses
and history information of the data written 1n the block; and
in the case where there are a plural number of blocks having
the same logical address, 1t has further a judgment step of
judeing the data of which block 1s valid at present, based on
the history imnformation.

“History information” 1s information that makes clear
whether data are new or old. For example, it 1s a counter
value or the time and date.

A nonvolatile memory from further another aspect of the
present invention has a plural number of blocks, wherein the
block has a plural number of pages; the page has data area
for writing data and redundant area; the redundant area of
the mitial page of the block has a block data invalidation flag
indicating whether the data written in the block are 1nvalid
or not and 1ndicating that the data are not invalid at the state
that the nonvolatile memory is erased; the redundant area of
the last page of the block has a block data invalidation flag
indicating whether the data written 1n the block are valid or
not and 1ndicating that the data are not valid at the state that
the nonvolatile memory 1s erased; and the block data vali-
dation flag of at least one block indicates that the data are
valid.

In the above-mentioned nonvolatile memory from further
another aspect of the present invention, the redundant area
further has logical addresses and history information of the
data written 1n the block.

By the present invention, it 1s possible to realize the
control of a memory device that reduces largely the risk of
duplicating physical addresses for the same logical address
due to interruption during overwriting action, ensures
reliability, and 1s capable of high speed operation.

The novel features of the invention will be hereinafter
fully described and particularly pointed out in the appended
claims, and the construction and details of the invention,
together with other objects and features thereof, will become
better understood and appreciated by reference to the fol-
lowing detailed description when considered 1n conjunction
with the accompanying drawings.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 1s an example of a drawing showing a configura-
fion 1n a flash memory physical block of an embodiment 1
of the present invention.

FIG. 2 1s an example of configuration of a prior art tlash
memory physical block.

FIG. 3 1s an example of a drawing showing a configura-
fion 1n a prior art flash memory physical block.

FIG. 4 1s a drawing showing the relationship between the
logical address and the physical address.

FIG. 5 1s an example of a logical-physical address con-
version table.

FIG. 6 1s a schematic flowchart of a writing process of one

block.

FIG. 7 1s a detailed flowchart of a new data writing
process section 1n FIG. 6.

FIG. 8 1s a detailed flowchart of a redundant area data
generation process section 1n FIG. 7 of a prior art.

FIG. 9 1s a detailed flowchart of a redundant area data
generation process section 1n FIG. 7 of the embodiment 1 of
the present invention.

FIG. 10 1s a schematic flowchart of a logical-physical
address conversion table generation process of the present
invention at the time of turning a power supply on.

5

10

15

20

25

30

35

40

45

50

55

60

65

6

FIG. 11 1s a schematic flowchart of a writing process of
one block of an embodiment 2 of the present 1nvention.

FIG. 12 1s a detailed flowchart of a redundant area data
generation process section 1n FIG. 7 of the embodiment 2 of
the present mvention.

FIG. 13 1s an example of a drawing showing a configu-
ration 1n a flash memory physical block of an embodiment

4 of the present 1nvention.

It will be appreciated that all or part of the drawings are
purely diagrammatic for illustrative purposes and do not
necessarily present faithful depictions of the actual relative
sizes and positions of the illustrated elements.

BEST MODE FOR CARRYING OUT THE
INVENTION

Embodiments 1illustrating the best mode for carrying out
the mvention will be described below by way of example
with reference to the accompanying drawings.
<<Embodiment 1>>

Using FIGS. 1, 6, 7 and 9, a memory device of an
embodiment 1 of the present invention will be explained.

FIG. 1 1s an example of a drawing showing a configura-
tion 1n a physical block of a flash memory of an embodiment
1 of the present invention. FIG. 1 shows main data written
in a redundant area of one physical block. In a redundant
arca of a top page, three of a writing done flag 101, a logical
address 102 and a flag 1 103, which 1s a block data
invalidation flag, are located. In a redundant area of a last
page, a flag 2 104, which 1s a block data validation flag, 1s
located. Difference from a prior art example (FIG. 3) is that
the flag 2 104 1s added.

The writing done flag 101 1s a flag representing that
writing was done 1n this block. The writing done flag 101
represents that its block 1s not written yet when it 1s 1,
whereas 1t represents that its block 1s written when 1t 1s O.
The block can be made to be already written by writing a
fixed value O in the writing done flag 101 when writing 1s
done 1n the top page. Considering an interruption during the
writing process of one block data, 1t 1s a necessary condition
that the writing done flag 101 1s 1 the top page where
writing 1s done.

The logical address 102 represents a logical address to
which 1ts physical address 1s assigned at present. Although
this 1s not necessarily to be located on the top page, it
becomes necessary to locate 1t on the top page if the logical
address 102 1s used as the above-mentioned writing done
flag 101 at the same time. For example, in the case where a
logical address 1s expressed by 16 baits, the logical address
102 1s assigned for being not yet written when a value of the
logical address 102 1s Ox{iif which 1s an erased state, and 1t
1s determined that writing has been done when the value of
the logical address 102 1s other than Oxfiiff. In an actual
logical address the logical address 102 can be used as the
above-mentioned writing done flag at the same time by
determining the rule that the logical address take value other
than that value.

The flag 1 103 1s the block data invalidation flag. The tlag
1 103 represents that 1ts physical block 1s not mmvalid when
it 1s 1 and 1t represents that 1ts physical block 1s invalid when
0 1s written. This flag 1s kept to be 1 when new data are
written, and it can be 1nvalidated afterward by overwriting
only this flag to be 0 when overwriting takes place on these
data (when the data written in this block become old data).
The overwriting of a flash memory 1s to do overwriting
directly without erasing data.

The flag 2 104 1s the block data validation flag. The flag

2 104 represents that 1ts physical block 1s not valid when 1t

US 6,579,528 B2

7

1s 1, and 1t represents that its physical block 1s valid when O
1s written. At the time when writing 1s done on the last page,
this block can be made validated by writing O 1n the flag 2
104 at the same time. Considering interruption during the
writing process of one block data, 1t 1s a necessary condition
that the flag 2 1s 1n the last page 1n which the writing 1s done.

As has been described above, since it 1s necessary to
assign the writing done flag to the top page and the flag 2 to
the last page, respectively, 1t 1s efficient to assign the logical
address and the flag 1 also to either of those pages. That 1s,
it 1s because that the table generation time can be shortened,
as the lesser the number of scanned pages are, the shorter the
readout time becomes at the generation of the initial logical-
physical address conversion table.

Using FIGS. 6, 7 and 9, writing process of the memory
system of the embodiment 1 of the present invention 1is
described. FIG. 6 1s a schematic flowchart of writing process
of one block of the embodiment 1 of the present invention.
FIG. 7 1s a detailed flowchart of a new data writing process
section 1n a step 603 of FIG. 6 of the embodiment 1 of the
present invention. FIG. 9 1s a detailed flowchart of a redun-
dant area data generation processing section 1n a step 706 of
FIG. 7 of the embodiment 1 of the present invention.

In FIG. 6, erased blocks are searched from an entry table
at a step 601. At a step 602, the entry table 1s updated, and
the erased blocks are secured. At a step 603 data are written
in the secured blocks (details are shown in FIGS. 7 and 9).
At a step 604, 1t 1s judged from the logical-physical address
conversion table whether there are old blocks or not. In a
case where there are old blocks, process proceeds to a step
605. At a step 605, 0 (invalid) 1s overwritten in the flag 1 in
the redundant areca of the top page of an old block, and
thereby the old block 1s invalidated. In a case where there 1s
no old block, process proceeds to a step 606, skipping the
step 605. At the step 606, a physical address of the old block
of the logical-physical address conversion table 1s rewritten
to a physical address of a new block, and this flowchart is
terminated.

Now, there are two different methods to erase old data; a
method of erasing data physically; and a method of erasing
data apparently by marking a flag indicating that the data are
invalid and of erasing data physically at a different timing.
The latter 1s implemented more generally, and the flowchart
of FIG. 6 was also explained in this method. This 1s because
overwriting of the flag 1s faster than the physical erasing in
the flash memory. Furthermore, in a nonvolatile memory
storage device comprised of a plural number of flash
memory chips, writing speed as a whole becomes higher
with an amount of time of writing and erasing being done
simultaneously by erasing blocks which were marked to be
invalid physically at the same time while writing 1s done 1n
other flash memory chip.

In FIG. 7, a page counter provided in a RAM 1s set the
initial value (1) at a step 701. At a step 702, it 1s judged
whether the page 1s a page 1n which data given from a host
are to be written or not. If the page 1s a page 1n which data
ogrven from the host are to be written, process proceeds to a
step 703 and data are mputted by an amount of 1 page from
the host. If the page 1s not a page in which data given from
the host are to be written, process proceeds to a step 704 and
data are read out by an amount of 1 page from the old block.
At a step 705, data are set 1n the data area and at a step 706
data are set in the redundant area (details are shown in FIG.
9). At a step 707, an amount of 1 page is written. At a step
708 one 1s added to the page counter. At a page 709 1t 1s
judged whether the page counter i1s equal to or more than 33
or not. Steps from 702 to 709 are repeated while the page

10

15

20

25

30

35

40

45

50

55

60

65

3

counter 1s less than 33. When the page counter becomes 33,
this flowchart 1s terminated.

A process called wrap up takes place 1n a process of
writing data which will not fill a block since a unit of writing
1s a page while a unit of erasing 1s a block. Namely, when
data for writing are given 1n a page unit from outside, as for
pages other than that page, data are read out from an old
block which are to be changed, those data are combined
together, and writing with an amount equal to a block 1s done
since previous data should be retained as they are. These are
steps from 702 to 704. There are a first-half wrap up process
and a second-half wrap up process depending on the writing,
starting page or the terminating page.

In FIG. 9, at a step 901 1t 1s judged whether 1t 1s a top page
or not. In a case of a top page, process proceeds to a step 902
and a writing done flag 101 is set 0 (already written). At a

step 903 a logical address assigned from the host 1s set in the
logical address 102. At a step 904, the flag 1 103 is set 1 (not
invalid), and then this flowchart is terminated. At the step

901, when 1t 1s not a top page, process proceeds to the step
905 and 1t 1s judged whether it 1s a last page or not. In the
case where 1t 1s a last page, process proceeds to a step 906,
the flag 2 104 is set 0 (valid), and then this flowchart is
terminated. In the case where 1t 1s not a last page, this
flowchart 1s terminated.

Hereupon, although only the above-mentioned flag and
logical address data are explained 1 the present description,
it 1s generally done to write some other data such as data
error correction codes and the like besides those data are
written in actual systems. However, they are omitted since
these data have no relationship with the present imvention.

The difference from FIGS. 6 to 8 of the prior art 1s a point
that a process of writing 0 (valid) in the flag 2 104 was added
to the process of generating data for the redundant area as
shown 1in FIG. 9. Although the data generation time 1is
different somewhat, time necessary for writing data physi-
cally 1n the flash memory is the same.

Next, a judging method of block data using flags 1 and 2
1s explained. Conventionally only flag 1 was used, but the
following judgement becomes possible by using a combi-
nation of flags 1 and 2.

In the case where the block 1s already written, first, 1t 1s
judged to be a valid block only when the flag 1=1 (not
invalid) and the flag 2=0 (valid).

In the case where the flag 1=1 (not invalid) and the flag
2=1 (not valid), it is regarded as an invalid block where
writing was interrupted and writing up to the last page could
not be done. In this case, since 1t 1s before invalidating the
old block when 1t 1s explained according to the above-
mentioned process, the old block 1s selected and an action of
writing new data itself 1s considered not to take place 1n the
case where the power supply 1s turned on again.

In the case where the flag 1=0 (invalid) and the flag 2=0
(valid), it represents an invalidated block made by overwrit-
Ing.

In the case where the flag 1=0 (invalid) and the flag 2=1
(not valid), it is regarded as an invalid block even though it
cannot take place 1n the normal process.

As has been described above, it can be judged whether
those block data are valid or invalid by using two flags even
if 1nterruption takes place at the time of a writing process.

Using FIG. 10, a table generation process at the time of
turning on the power supply in the first embodiment of the
present mnvention 1s explained. FIG. 10 1s a flowchart of a
logical-physical address conversion table generation pro-
CESS.

In FIG. 10, a table area for generating the table 1s
initialized at first. At a step 1001 the logical-physical address

US 6,579,528 B2

9

conversion table 1s inmitialized. All logical blocks on the
logical-physical address conversion table are set 1n a state of
being not assigned. At a step 1002 an entry table 1s 1nitial-
1zed. All physical blocks on the entry table are set in an
erased out state. At a step 1003, an invalid table 1s 1nitialized.
All physical blocks on the 1nvalid table are set to be mnvalid.
The nvalid table 1s a table that indicates blocks, the data
written 1n which are 1nvalid and which are not yet erased,

and that 1s provided in a RAM.

At a step 1004, a block counter provided on the RAM 1s
initialized (block counter=0). At a step 1005, it is judged
whether the writing done flag 101=1 (not yet written) or not.
In the case where the writing done flag 101=1 (not yet
written), a corresponding bit of the entry table is made to be
as being already erased. In the present flowchart, this
process 1s not needed since the entry table i1s entirely
initialized (already erased) at the beginning. Process pro-
ceeds to a step 1010, and corresponding bit of the 1nvalid
table 1s validated. Terminating the process of this block,
process proceeds to a step 1011. In the judgment at the step
1005, process 1s the same 1n the case where the logical
address data 1s used as the writing done flag at the same time.
Hereupon, it 1s not necessary to read out the last page 1n the
case where 1t 1s not yet written.

At the step 1005, 1n the case where the writing done
flag=0 (already written), process proceeds to a step 1006,
and corresponding bit of the entry table are turned to be as
being already used.

At a step 1007, it is judged whether the flag 1=1 (not
invalid) or not. In the case where the flag 1=0 (invalid), the
process of the block 1s terminated, and process proceeds to
a step 1011. In the case where the flag 1=1 (not invalid),
process proceeds to a step 1008, and 1t 1s judged whether the
flag 2=0 (valid) or not. In the case where the flag 2=1 (not
valid), the process of the block is terminated and process
proceeds to a step 1011. In the case where the flag 2=0
(valid), the block is regarded as valid, process proceeds to a
step 1009, and it 1s registered 1n the logical-physical address
conversion table. At a step 1010, corresponding bit of the
invalid table 1s validated. At the step 1011, one 1s added to
the block counter. At a step 1012, 1t 1s judged whether 1t 1s
the last block or not. In the case where 1t 1s not the last block,
process returns to the step 10035, and the process of the next
block 1s executed. In the case where 1t 1s the last block, this
flowchart 1s terminated.

As has been described above, the process of FIG. 10
comprises processes of reading out the redundant areas of
the top page and the last page successively up to the last
block according to the physical addresses and of generating,
the logical-physical address conversion table, the entry table
and the i1nvalid table, and 1t has such a configuration that
only the judgement of the step 1008 1s added to the prior art
Process.

Hereupon, as shown 1n the present flowchart, a system
provided with a table for memorizing blocks 1 which
writing has been done and which are invalid (invalid table)
1s general 1n actual control. This 1s a kind of list of blocks to
be erased and 1t 1s necessary to execute the erasing process
of the mmvalidated blocks 1n parallel, utilizing the time for the
process of writing data 1n other blocks 1 a system 1n which
physical erasing 1s not executed at the time of overwriting,
and 1nvalidation marking 1s done by the aforementioned flag
1. In this case, the table 1s used in the case of searching
blocks to be erased. Therefore, data on this table are updated
according to invalidation of old blocks not only at the initial
time but also at the time of overwriting.

As has been described above, the risk of duplicating
physical addresses for the same logical address caused by

10

15

20

25

30

35

40

45

50

55

60

65

10

interruption during overwriting can be largely reduced with-
out making big change from or big addition to the writing
process and the logical-physical address conversion table
generation process 1n the prior art.

<<Embodiment 2 >>

Using FIGS. 7, 11 and 12, the writing process 1n the
memory system of an embodiment 2 of the present invention
will be explained. FIG. 11 1s a schematic flowchart of the
writing process of one block of the embodiment 2 of the
present 1nvention. The difference from the embodiment 1
(FIG. 6) 1s a point that judgment of data kind (from step 1103
to step 1105) and validation of new blocks (from step 1107
to 1110) are added. FIG. 12 is a detailed flowchart of a
redundant area data generation processing part at the step
706 of FIG. 7 of the embodiment 2 of the present invention.
The difference from the embodiment 1 (FIG. 9) is a point
that a flag 2 1s set by the validation confirmation flag (from
step 1206 to step 1207).

In FIG. 11, at a step 1101, erased blocks are searched from
the entry table. At a step 1102, the entry table 1s updated and
the erased blocks are secured. At a step 1103, a kind of data,
whether correctness confirmation 1s needed or not, 1s judged
after executing the writing operation. When 1t 1s needed,
process proceeds to a step 1104 and the validation confir-
mation flag provided in the RAM 1is set 1. When 1t 1s not
needed, process proceeds to a step 1105 and the validation
confirmation flag 1s set 0. The validation confirmation flag is
a flag which 1s tentatively set for implementing program, and
the flag 1s not to be written in the flash memory. Data are
written in the blocks secured at the step 1106 (detail is
shown in FIGS. 7 and 12).

At a step 1107, whether the validity confirmation flag 1s
1 (required) or not is judged. In the case where the validity
confirmation flag is 1 (required), process proceeds to a step
1108 and the correctness of data received from the host 1s
checked. For example, the data correction code and whether
the value of data 1s normal or not are checked. At a step
1109, process braches according to the correctness check. In
the case where the data are valid, process proceeds to a step
1110, O (valid) 1s overwritten in the flag 2 of the last page of
a new block, and thereby the new block 1s validated. In the
case where the validity confirmation flag=0 (not required) at
the step 1107, process proceeds to a step 1111 since valida-
tion of a new block has already been done at the time of
writing data at the step 1106 (refer to the explanation of FIG.
12 which will be described later). Since steps from 1111 to
1113 are the same as steps from 604 to 606 of FIG. 6,
explanation thereof 1s omitted. In the case where the data are
not valid in the step 1109, this flowchart 1s terminated.

At a step 1106 (FIG. 11), process shown in FIG. 7 1s done.
In FIG. 7, since the steps are the same as those of the
embodiment 1, explanation thereof 1s omitted.

At a step 706 (FIG. 7) of the embodiment 2, process
shown 1n FIG. 12 1s done. In FIG. 12, since steps from 1201
to 1205 are the same as steps from 901 to 905 of the
embodiment 1 (FIG. 9), explanation thereof is omitted. At a
step 1205, 1n the case where it 1s the last page, process
proceeds to 1206 and 1t 1s judged whether the validity
confirmation flag is 1 (required) or not. In the case where the
validity confirmation flag is 1 (required), process proceeds
to a step 1207, the flag 2 1s set 1 (not valid), and then this
flowchart 1s terminated. In the case where the wvalidity
confirmation flag is 0 (not required), process proceeds to a
step 1208, the flag 2 is set 0 (valid), and then this flowchart
1s terminated.

In the embodiment 2, writing processes take place more
times by the process of judging data, the confirmation

US 6,579,528 B2

11

process and the overwriting 1n the flag 2, compared with the
embodiment 1. Due to this, in the embodiment 2, the speed
drops down from the viewpoint of the whole writing pro-
cess. It 1s necessary to select speed or reliability on which the
priority 1s to be placed, depending on the kind of data.

As has been described above, data necessary to be vali-
dated after judging their correctness can be responded to
with a simple operation by applying the method of embodi-
ment 1.
<<Embodiment 3>>

A memory device of embodiment 3 of the present inven-
tion will be explained. The embodiment 3 concerns valida-
tion of blocks in which new data have been written and
invalidation of blocks in which old data are stored.

In the embodiment 2 of the present invention, new blocks
are validated at the step 1110 of FIG. 11, and old blocks are
invalidated at the step 1112. At this time, strictly speaking,
there 1s a time momentarily in which both blocks are valid.
Since both new and old blocks become valid 1n the rare case
where interruption takes place after the step 1110 having
been finished and just before the step 1112 ought to have
been executed 1n the writing operation, a system control
method by which writing operation in new and old blocks
are done at the same time 1s proposed.

Namely, there are often the cases where the nonvolatile
memory device 1s comprised of a plural number of flash
memory chips. In the overwriting process of the same
logical address, a rule that a new block 1s selected 1n the chip
different from the chip of old block 1s provided, and vali-
dation of a new block and mvalidation of an old block are
executed at the same time. There 1s a premise that the
structure 1s composed by a plural number of flash memory
chips and furthermore the process of the plural number of
flash memory chips can be executed simultaneously, but the
parallel processing becomes more general 1n the structure in
accordance with the recent high speed and large capacity
processing.

The risk that old and new blocks are assigned to the same
logical address can be further reduced by this process.
<<Embodiment 4>>

A memory device of embodiment 4 of the present mven-
tion will be explained. The embodiments 1 to 3 aimed for
reducing largely the risk that physical addresses were dupli-
cated for the same logical address with simple scheme, and
the embodiment 4 1s concerned with the protection process
for the case where the duplication takes place nevertheless.

Using FIG. 13, the memory device of the embodiment 4
of the present invention will be explained.

FIG. 13 1s an example of a drawing showing a configu-
ration 1n a physical block of a flash memory of the embodi-
ment 4 of the present invention. It illustrates main data
written 1n a redundant areca of one physical block. Three, a
writing done flag 101, a logical address 102 and a flag 1 103
that 1s a block data imvalidation flag, are placed i1n the
redundant area of the initial page. Atlag 2 104 that 1s a block
data validation flag and a counter 105 for judging the block
new or old are placed 1n a redundant area of a last page. The
difference from FIG. 3 of the prior art 1s that the flag 2 104
and the counter 105 are added. This explanation 1s described
it as an 8-bit counter.

At first, a counter value 1s read out from the redundant
arca of old block at a time when new block 1s written. And,
a value that 1s made by adding 1 to the counter value 1s
written at a time when new data are written. For example,
when the counter value of the old block 1s 4, the counter
value of the new block becomes 5. Therefore, if both of

duplicated new and old blocks have flags 101, 103 and 104

10

15

20

25

30

35

40

45

50

55

60

65

12

in a valid state and the correctness of both data 1s confirmed,
it 1s possible to make it clear which 1s new and which 1s old
by using this counter value, and to use it as a judging
material for selecting either of the blocks according to the
use of data. In general, 1f the writing operation of new data
1s completed, 1t 1s judged that an interruption took place just
before the old data ought to have been erased, and new data
are selected.

Hereupon, the counter processing coping with the over-
flow 1s executed as a matter of course. Explaining with the
aforementioned example, a block whose counter value 1s
larger 1s regarded as valid, but when the counter values are
values of Ox{f and 0x00, the block of 0x00 1s selected.

And, 1t 1s explamned that, as for this counter value, a
counter value of the new block 1s written by adding 1 to the
counter value. But this 1s only an example, and 1t 1s also
possible to subtract one from the counter value. And 1t 1s also
possible to write the time and date instead of the counter
value, and assignment of any numerical value 1s applicable
as far as 1t becomes clear whether 1t 1s new or old.

As has been described above, in accordance with the
invention of embodiments 1 to 3, the risk that the physical
addresses are duplicated for assignment to the same logical
address can be largely reduced, and in the case where the
duplication takes place nevertheless, the protection process
of the embodiment 4 can cope with 1t. The initial table
generation process 1s realized by hardware, and software
executes the process when the address duplication 1s found.
By sharing roles like this, it 1s possible to construct a system
that can operate at high speed keeping the reliability and 1s
realizable.

The present invention is not limited to the embodiments
described above. Changes are possible as far as not depart-
ing from the purpose of the invention.

In the above-mentioned embodiments, the flags are
expressed by 1 or 0 of 1 bit, but the polarity can be changed
depending on the erasing level of the flash and 1t 1s also
possible to employ a means of making judgement by execut-
ing a majority decision process using a plural number of bits.

And, the explanation was given with a block as a unit of
writing data, but the case where a multiple number of blocks
are treated as a unit of writing 1s also applicable.
Furthermore, the description has been done with the
example 1n which writing 1n the flash 1s done 1n a page each
fime, but simultaneous writing 1n multiple pages 1s possible
depending on the flash memory. And 1n such a multiple-page
writing scheme, 1t 1s also possible to exchange any one of
pages which were initially written and any one of pages
which were last written since such simultaneous writing in
multiple flash memory chips 1s possible.

And the explanation of the validation flag and invalidation
flag has been given as being concerned with data, but they
are not limited to the data. It 1s also applicable to other data
in the redundant area which are different from intrinsic
user’s data and are used m the system and 1 which valida-
tion of new data and invalidation of old data are necessary
because overwriting 1s done. According to the present
invention, 1t 1s possible to reduce largely the risk that
duplication of physical addresses for the same logical
address 1s caused by mterruption during overwriting, and to
construct a system that can operate at high speed keeping
reliability, without making any big change from or any big
addition to the writing process and the generation process of
the logical-physical address conversion table of the prior art.

Although the mvention has been described 1n some detail
dealing with the preferred embodiments, the configuration
details of any of the preferred embodiments disclosed herein

US 6,579,528 B2

13

may be changed or modified, and any changes i1n the
combination or order of elements thereof can be accom-
plished without departing from the spirit and scope of the
invention as set forth 1 the appended claims.

INDUSTRIAL APPLICABILITY

As has been described above, the control method of a
nonvolatile memory in accordance with the present 1nven-
tion 1s useful for the control method of a nonvolatile memory
that executes readout and writing of data.

What 1s claimed 1s:

1. A control method of a nonvolatile memory having a
plural number of blocks, wherein

said block has a plural number of pages,

said page has data area for writing data and redundant
area,

said redundant area of initial said page of said block has
a block data invalidation flag indicating whether said
data written 1n the block are invalid or not and indi-
cating that said data are not invalid at the state that the
nonvolatile memory 1s erased, and

salid redundant area of last said page of said block has a
block data validation flag indicating whether said data
written 1n the block are valid or not and indicating that
said data are not valid at the state that the nonvolatile
memory 1s erased,

having:

a data writing step of writing data 1n said data area; and
a validation step of making said block data validation
flag of said block having said data area in which said
data are written to 1ndicate that said data are valid.
2. A control method of a nonvolatile memory according,

to claim 1 characterized in further having a selecting step
of selecting, by hardware or software, a method 1n
which said validation step 1s executed simultaneously
with or succeeding said data writing step or a method
in which a data correctness check 1s executed after said
data writing step and then said validation step i1s
executed.

10

15

20

25

30

35

14

3. A control method of a nonvolatile memory according

to claim 1 characterized 1n, 1in the case where original data
are updated to new data, executing simultaneously the
validation step on said block in which said new data are
written and the mvalidation step of making said block
data 1nvalidation flag of said block in which said
original data are written to indicate that said original
data are mnvalid.

4. A control method of a nonvolatile memory according

to claim 1 characterized 1n that said redundant area further
has logical addresses and history imnformation of said
data written 1n said block; and 1n the case where there
are a plural number of blocks having the same said
logical address, 1t has further a judgment step of
judging the data of which block 1s valid at present,
based on said history information.
5. A nonvolatile memory characterized 1n having a plural
number of blocks, wherein

said block has a plural number of pages;

said page has data area for writing data and redundant
area;

said redundant area of 1nitial said page of said block has
a block data invalidation flag indicating whether said
data written 1n the block are invalid or not and 1ndi-
cating that said data are not invalid at the state that the
nonvolatile memory 1s erased;

said redundant area of last said page of said block has a
block data invalidation flag indicating whether said
data written 1n the block are valid or not and 1indicating
that said data are not valid at the state that the non-
volatile memory 1s erased; and

the block data validation flag of at least one said block
indicates that said data are valid.

6. A nonvolatile memory according to claim 5 character-

1zed 1n that said redundant area further has logical addresses

and history mmformation of said data written 1n said block.

	Front Page
	Drawings
	Specification
	Claims

