US006868425B1
a2 United States Patent (10) Patent No.: US 6,868,425 Bl
Bergstraesser et al. 45) Date of Patent: Mar. 15, 2005
(54) VERSIONS AND WORKSPACES IN AN 5,613,101 A * 3/1997 Lillichooeenil. 709/230
OBJECT REPOSITORY 5,005,987 A * 5/1999 Shutt et al. 707/103 R
(75) Inventors: Thomas F. Bergstraesser, Kirkland, OTHER PUBLICATIONS
WA (US); Philip A. Bernstein, Thomas Bergstraesser et al.,, Versions and Workspaces 1n
Bellevue, WA (US); Shankar Pal, Microsoft Repository, 1999, ACM, 532-533.*
Redmond, WA (US); David R. Shutt, . ‘
Seattle, WA (US) cited by examiner
_ _ _ Primary Examiner—Shahid Alam
(73) Assignee: Microsoft Corporation, Redmond, WA A st aﬁr Fxaminer—ean Bolte Fleurantin
(US) (74) Attorney, Agent, or Firm—Woodcock Washburn LLP
(*) Notice: Subject to any disclaimer, the term of this (57) ABSTRACT
patent 1s extended or adjusted under 35
U.S.C. 154(b) by 0 days. Maintaining versions and workspaces in an object repository
1s disclosed. The system provides an efficient way to manage
(21) Appl. No.: 09/515,037 versions of objects by only copying objects when absolutely
necessary, 1.6. when a property value 1 a particular object
(22) Filed: Mar. 6, 2000 has changed. In addition, the system provides a mechanism
to control whether or not relationships are propagated to
Related U.S. Application Data successor versions of an object. A further aspect of the
(60) Provisional application No. 60/122,939, filed on Mar. 5, system 1s that resolution of objects during a relationship
1999. traversal can be customized depending on whether or not an
(51) Int. CL7 .. GO6k 17/30 application accessing the objects 1s version-aware. It the
(52) US.CL oo, 707/103 R; 707/203; 717/170 ~ application 1s not version aware, a means for resolving the
(58) Field of Search 707/1-10, 100-104.1, felationship to a particular object is provided. A still turther
707/200-206: 717/108. 170 aspect of the system 1s that merge behavior 1s parameterized.
’ ’ When two versions of an object are merged, flags control
(56) References Cited how contlicts 1n property values and relationship contents

U.S. PATENT DOCUMENTS

4,558,413 A * 12/1985 Schmidt et al. 707/203
5,440,730 A * 8/1995 Elmasri et al. 707/203
5,499.365 A * 3/1996 Anderson et al. 707/203

arc managed. Finally, the system provides a workspace that
acts as a virtual repository session and provides workspace
context and scope to repository objects.

27 Claims, 9 Drawing Sheets

- B

Recsive Update For At Least
One Object Property Vailue

602

Set End Version in Predecessor

Version Fieid 604
Create New Object Property
Data Structure 606
Set Start Version and End
Version Fields in New Object 608
Property Data Structure

Set Updated Property Values in
New Object Property Data
Structure

610

US 6,868,425 Bl

Sheet 1 of 9

Mar. 15, 2005

U.S. Patent

SWYHOOUd Iz \%nr\\mw
NOHLYOTddV viva |>3NAOW | qviioond | walsas
43.LNdNOD oF " Nveo0dd | TEEPEE |NOILYOIddY | ONILVM3HO
3L ON3
“ @ S8 9¢ se’ -7
\n_ M_ ~ -
v 62 e e
MHOMLIN A N) S SO L TS .
vINY S
JAIM ..l“ 0f m

JOVIHIINI | | 30VI¥4LNI

AOVIHILNI | | 3OVIHILNI

JOVIHILNI

MMOMLIN 140d JANTHC AARIA ASIA SAIRA0 SIATNAOW
AHOMLSN V43S IWII1dO0 N LIANSDOVYN ASIA AHYH WY HODOMd
Y4y H3H1O0
BL'700 8 oy 142 et CE
SNG WNA1SAS it
e o7 NOILVYOI IddV
0Z WILSAS
MOLdVQY LINA ONILVY3dO
LY O3aIA ONISS3004d
_ 3F
HOLINOW

_ LC
| A AHOWIW WILSAS

US 6,868,425 Bl

Gl
&N
i
-
@\
D ayoen abeso)g
7
L)
—
—
N Wa)sAg
nl obei01g |ea1sAyd
=
>

0LC

U.S. Patent

GGZ

ayoe”) JaAIDS

LUB)SAS

abei0)g ejeq
| Aoysoday

0S¢

0ce

OB Juald

Aeign

abeio)g
21eq Jual|)

] X4

uoneoijddy

W3l

GOC

U.S. Patent Mar. 15,2005 Sheet 3 of 9 US 6,868,425 Bl

<
)
()
Ty
o
o)
T
T
op
L
&
&
=
©
(b D < O
) o
O
O 5]
0
O ™
L)
N
e
f'ey
O
D,
o)
N
o

300
\

US 6,868,425 Bl

OLY P UOISIOA

ST A 4 144 %
m LOISIaASDIBIN UOISIOASIESID
-
3
7
I g
m I A 4
1 UOISIBA BB
- zzy
W UOISIOASIRAID

109[q0 201 L UOISIBA

cOv

U.S. Patent

Fs ot

omm 8CH 9¢S (4" 44*

UoISId uoISIa
N# Auadosd . 74 Apadoid | L#t Auadoiy l at Y m”._ . A Qi youeiq

US 6,868,425 Bl

a1 198lq0

025

Sheet 5 of 9

A% 01§ 809 90S 05 ¢0S

Mar. 15, 2005

al
}09Iq0 uoIsIBA

SNBSS (J] UCISIaA

SNJeIS uazoi4 | 2dA}L (]} UOISIBA

Moy abiayy | JoSSad3pald

00G

U.S. Patent

U.S. Patent Mar. 15,2005 Sheet 6 of 9 US 6,868,425 Bl

Receive Update For At Least

One Qbject Property Vaiue 602

Set eEnd Version in Predecessor
Version Field 604

Create New Object Property
Data Structure 606

Set Start Version and End
Version Fields in New Object

Property Data Structure 608

Set Updated Property Values in

New Object Property Data 610
Structure

US 6,868,425 Bl

Sheet 7 of 9

Mar. 15, 2005

U.S. Patent

r - ey |

A 393IQ0 UoISIS | UOISJd UOISJD
UONBUNSA(& UDISIOA ¢ TP S

901 _

p .

X
unbBuQ

14474

US 6,868,425 Bl

Sheet 8 of 9

Mar. 15, 2005

U.S. Patent

Pp3lqo
uoneunNsSa()

€ UOISIBA

Z UOISJaN

| UOISIBA

908

P18

§ b
OL8
uoIBUNSA(] ubuo
.diysuonejay| -diysuone|oy]
@ @

diysuone|ayPauoISIBA}

IODUDISIaA|

diysuoneey

asue)su|
AV

¢cl8

IO UOISIDA|

uolleunsag uibup

JOSUDISIBA JOSUOISIOA
diysuonejay .diysuone|oy

P3AUDISIOA| POUOISIBA|

1432

8(qo
uibuo

€ UQISIaA

y08

US 6,868,425 B1

AI0)IS0day)
IIIIIII uoneoiddy asemy
9 -UOISI9\-UON
%, ——— 0RASHIOA|
m ll 06
=
72 €A-X 190
L
=
M., cor Z# 90RASHIJOM
o
e LA-X [0
>
uoneo)ddy
edeona IEMY-LIOISIOA
Alojisoday L # 80edSHIOM SHOMI
062 06

U.S. Patent

US 6,368,425 Bl

1

VERSIONS AND WORKSPACES IN AN
OBJECT REPOSITORY

RELATED FILES

This application claims the benefit of U.S. Provisional
Application No. 60/122,939, filed Mar. 5, 1999, which 1s
hereby incorporated herein by reference.

FIELD OF THE INVENTION

This invention relates generally to object repositories, and
more particularly to maintaining versions and workspaces 1n
an object repository.

COPYRIGHT NOTICE/PERMISSION

A portion of the disclosure of this patent document
contains material which 1s subject to copyright protection.
The copyright owner has no objection to the facsimile
reproduction by anyone of the patent document or the patent
disclosure as 1t appears 1n the Patent and Trademark Office
patent file or records, but otherwise reserves all copyright
rights whatsoever. The following notice applies to the soft-
ware and data as described below and 1n the drawing hereto:
Copyright® 1999, 2000, Microsoit Corporation, All Rights

Reserved.

BACKGROUND

The number of applications that use object-oriented tech-
niques and languages continues to 1ncrease at a rapid pace.
This growth 1n object-oriented applications has resulted in a
corresponding growth 1n the use of object databases and
repositories. Object databases and repositories provide for
the persistent storage of object data 1n the same way that a
conventional database provides for the storage of tables
containing data. Object repositories and object-oriented
databases are similar 1n that they both store data in an object
format, however repositories 1n addition typically provide
for the storage of metadata, that 1s, data about the object
data, along with the object data. This metadata typically
comprises information such as object formats and interfaces,
object versions, check-in/check-out dates and personnel,
database schemas, etc.

An object, as 1s known 1n the art, 1s a data structure that
has a persistent state. The persistent state consists of
attributes, which comprise scalar values and object refer-
ences. A scalar value 1s a value such as a string, integer or
boolean. An object reference specifies one side of a binary
relationship between two objects that refer to each other. In
other words, the reference 1s to another object, which 1n turn
refers back to the referring object. Each attribute 1s identified
by a name, and each attribute has a data type. The data type
for an attribute 1dentifies either the type of scalar value for
the attribute or the type of relationship defined by the
attribute.

In addition to attributes, the state of an object includes
structures. A structure contains a group of attributes that are
organized according to a particular data structure. This data
structure can be a collection (also referred to as a set),
sequence, array, table, or record structure. Each structure
conforms to a named structure type, which defines the
particular data structure (collection, sequence, array, etc.)
and the types of attributes the structure can contain. Like any
attribute, an attribute 1n a structure can be a scalar value or
object reference. A structure that contains object references
1s called an object structure.

Each object conforms to one or more types, where each
type 1s 1dentified by a name. An object type defines a set of

5

10

15

20

25

30

35

40

45

50

55

60

65

2

attribute types and/or structure types that an object of the
grven type can contain.

An object 1s typically an instance of a class. A class 1s a
body of code that implements one or more object types. The
class includes code to produce new objects of each type that
it implements and code to perform various operations on
objects of types that 1t implements and on attributes and
structures of such objects. The types of operations per-
formed vary depending on the class, and generally include
read and write operations for the attributes and structures of
an object.

The life cycle of a software development project typically
includes multiple design changes, both before and after
release of the software. These design changes include
changes 1n the definition and relationships between objects.
As a result 1t 1s desirable for object oriented environments to
provide the ability to version objects and relationships
between objects 1n the repository.

Previous systems have provided rudimentary versioning
capability. In these systems, when a new version of an object
1s created, a copy of the old version 1s made, and changes are
applied to the copy, which becomes the new version. While
this mechanism does provide versioning ability, 1t has sig-
nificant disadvantages. First, copying objects 1s very ineili-
cient 1n terms of both time and computer resources. Each
copy consumes memory, which can be costly given that a
typical project will have many different objects, with each
object having multiple versions.

A second drawback relates to the versioning interface. It
1s generally the case that multiple software applications will
require access to an object repository. These applications
may or may not be “version-aware.” In other words, some
applications may recognize that various versions of objects
exist 1n the repository, and have interfaces designed to work
with the various versions. These applications are known as
version-aware applications. Other applications may be
designed assuming that one, and only one version of an
object exists. These applications are therefore not version-
aware. Object repositories implemented by previous systems
either provide a version-aware interface or an interface that
1S not a version-aware mnterface, but not both.

A third drawback relates to management of relationships
between versions of objects. Previous systems apply an all
or none approach to relationships between versions of
objects. In other words, either all of the relationships from
a previous version are included in the new version, or none
of the relationships are included. This 1s undesirable,
because 1t results 1in the need for a manual fixup of the
relationships whenever a new version 1s created.

Therefore, there 1s a need 1n the art for a system to provide
ciicient versioning for objects 1n a repository. The system
should only copy object properties and relationships when
necessary. Furthermore, the system should provide a mecha-
nism to control whether or not relationships are copied when
a new version 1s created. In addition, the system should
provide imterfaces to applications that are version-aware,
and those that are not version-aware.

SUMMARY

The above-mentioned shortcomings, disadvantages and
problems are addressed by the present invention, which will
be understood by reading and studying the following speci-
fication.

The systems and methods presented maintain versions
and workspaces 1n an object repository. One aspect of the
system 1s that objects and properties are only copied when

US 6,368,425 Bl

3

absolutely necessary, 1.e. when a property value 1n a par-
ticular object has changed. In lieu of copying objects, a
property table maintains a range of versions for which the
property value 1s the same.

A further aspect of the system 1s that the propagation of
relationships to a new version 1s controlled by the data
model. A flag on the relationship 1s used to determine
whether or not the particular relationship should be copied.

A still further aspect of the system 1s that resolution of
objects during a relationship traversal can be customized
depending on whether or not an application accessing the
objects 1s version-aware. If the application 1s version aware,
the traversal resolves to a collection of objects versions
related to the origin object. If the application 1s not version
aware, a means for resolving the relationship to a particular
object 1s provided.

A still further aspect of the system 1s that merge behavior
1s parameterized. When two versions of an object are
merged, flags control how conilicts 1n property values and
relationship contents are managed.

Finally, the system provides a workspace that acts as a
virtual repository session and provides workspace context
and scope to repository objects.

The present mnvention describes systems, clients, servers,
methods, and computer-readable media of varying scope. In
addition to the aspects and advantages of the present mven-
tion described m this summary, further aspects and advan-
tages of the invention will become apparent by reference to
the drawings and by reading the detailed description that
follows.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a diagram of the hardware and operating
environment 1 conjunction with which embodiments of the
invention may be practiced;

FIG. 2 1s a diagram 1llustrating a system-level overview of
an exemplary embodiment of the mvention;

FIG. 3 1s an exemplary object hierarchy demonstrating,
various object and attribute relationships operated on by an
exemplary embodiment of the mnvention;

FIG. 4 1s a diagram 1llustrating an exemplary sequence of
version creation and version merging;

FIGS. 5A and 5B are diagrams illustrating data structures
supporting object versioning according to an embodiment of
the 1nvention;

FIG. 6 1s a flowchart 1llustrating a method for updating a
property 1n a versioned object according to an embodiment
of the 1nvention;

FIG. 7 1s a diagram 1illustrating an exemplary object
relationship;

FIG. 8 1s a diagram 1llustrating interfaces for traversing,
relationships 1n version-aware and non-version-aware appli-
cations according to an embodiment of the invention; and

FIG. 9 1s a system level overview of an exemplary system
according to an embodiment of the invention that provides
workspaces 1n an object repository.

DETAILED DESCRIPTION OF THE
INVENTION

In the following detailed description of exemplary
embodiments of the invention, reference 1s made to the
accompanying drawings which form a part hereof, and 1n
which 1s shown by way of illustration specific exemplary
embodiments in which the invention may be practiced.

10

15

20

25

30

35

40

45

50

55

60

65

4

These embodiments are described in sufficient detail to
enable those skilled 1n the art to practice the invention, and
it 15 to be understood that other embodiments may be utilized
and that logical, mechanical, electrical and other changes
may be made without departing from the spirit or scope of
the present invention. The following detailed description 1s,
therefore, not to be taken 1n a limiting sense.

The detailed description 1s divided into multiple sections.
In the first section, the hardware and the operating environ-
ment 1n conjunction with which embodiments of the inven-
fion may be practiced are described. In the second section,
a system level overview of an embodiment of the imnvention
1s presented. In the third section, systems, methods and data
structures according to embodiments of the invention are
described that support versioning of objects in a repository.
In the fourth section, system and methods of various
embodiments of the invention that provide workspaces 1n a
repository are presented. The fifth section 1s a conclusion of
the specification.

Definitions

Throughout this application, reference will be made to
objects that are created or instantiated by computer software.
Such objects will have a data portion associated therewith
for storing information, and have methods or functionality
associated therewith to provide desired functionality to a
client accessing the object. Typically, the methods of the
object will be directed 1n part to manipulating the object’s
data. Such an abstract object has an associated state that 1s
the cumulative effect of methods operating on the data. It 1s
this state that will be stored by the mnovative object state
repository as explained in this application.

As used herein, the term “objects,” refers to software
objects pertaining to a binary object model and that have
binary extensibility through wrapping. Furthermore, such
objects are interface-based meaning that an object can be
used or operated through specific “interfaces” as defined
hereafter and an interface-based binary object model will
entail objects having multiple mterfaces. In this sense, an
object 1s exposed through its interface.

An object may be active or loaded meaning that it 1s a
functional part of a software program or system. An object
1s said to be persisted when the data portion or properties are
stored, though 1t 1s more accurate to refer to the state of an
object as being persisted. At a later time, an object of the
same class may be instantiated and restored to the same state
as the original object using the previously persisted object
state.

One implementation of a binary object model and system
that follows the characteristics of objects used throughout
this application and as described above i1s the Component
Object Model or COM as provided by Microsoft— Corpo-
ration as part of their Object Linking and Embedding (OLE)
and ActiveX™ software technology. Reference to COM
objects will be made as part of a specific and exemplary
embodiment of the present i1nvention. The invention,
however, would fit any object model having the relevant
characteristics of COM, namely, being an interface-based,
binary object model supporting binary extensibility. As an
example, the systems and methods detailed below and their
equivalents could be adapted for use in a CORBA (Common
Object Request Broker Architecture) environment.

As used herein, the term “interface” refers to a specifi-
cation for a particular and related subgroup of behavior and
properties. Behavior or methods are typically a set of
software subroutines, with each subroutine having a signa-

US 6,368,425 Bl

S

ture made up of the passed subroutine arguments, their
order, and their data type. Further, each interface will have
data associated therewith 1n the form of properties that are
only accessible through a subroutine of the interface.
Finally, an object may support multiple interfaces to thereby
allow an object’s characteristics to be defined by the inter-
faces that it supports and allow many classes to share
behavior by supporting some of the same interfaces.

An 1nterface, as part of the binary object system, also
specifles a binary convention for accessing the software
subroutines that support or implement the interface. Know-
ing the binary convention, the subroutine signatures that are
defined by the interface, and a functional specification of
how the subroutines are to behave, an object implementing
a particular interface may be created using virtually any
source code. Each such independently created object would
be wholly unique and may represent internal data in a variety
of different structures but from a binary standpoint would
appear the same to an mmvoking client. Likewise, once an
interface has been implemented and reduced to 1ts binary
form, any client may access the methods through the binary
convention.

As used herein, the term “class” refers to a definition for
directing a CPU to create an instance of an object. A class,
therefore, will implement the interfaces that make up a given
object and therefore 1s a template for creating objects. A
class may be a source code definition that 1s compiled into
executable code that will create run-time storage for the
properties of an object and executable code to support the
interface methods.

As used herein, the term “property” refers to a piece of
data associated with an object. Further, the property may
only be accessed through the appropriate interface method
(¢.g., subroutine). For example, a “get” property subroutine
and “put” property subroutine are implemented for retriev-
ing and storing values for a particular property, respectively.

As used herein, the term “collection” refers to a special
variant for a kind of property. More specifically, it 1s a
set-valued property meaning that multiple 1tems are formed
imnto a collection. An item 1ncludes, but 1s not limited to,
scalar values, such as integers, strings, etc., or may be an
object (e.g., a handle to an interface of an object). Each
collection will support methods for adding or removing an
item as well as finding a particular item within the set and
returning a count of how many 1tems are 1n a set.

Hardware and Operating Environment

FIG. 1 1s a diagram of the hardware and operating
environment 1n conjunction with which embodiments of the
invention may be practiced. The description of FIG. 1 1s
intended to provide a brief, general description of suitable
computer hardware and a suitable computing environment in
conjunction with which the invention may be implemented.
Although not required, the invention 1s described in the
general context of computer-executable mstructions, such as
program modules, being executed by a computer, such as a
personal computer. Generally, program modules include
routines, programs, objects, components, data structures,
ctc., that perform particular tasks or implement particular
abstract data types.

Moreover, those skilled in the art will appreciate that the
invention may be practiced with other computer system
conilgurations, including hand-held devices, multiprocessor
systems, microprocessor-based or programmable consumer
clectronics, network PCS, minicomputers, mainirame
computers, and the like. The invention may also be practiced

10

15

20

25

30

35

40

45

50

55

60

65

6

in distributed computing environments where tasks are
performed by remote processing devices that are linked
through a communications network. In a distributed com-
puting environment, program modules may be located 1n
both local and remote memory storage devices.

The exemplary hardware and operating environment of
FIG. 1 for implementing the 1nvention includes a general
purpose computing device in the form of a computer 20,
including a processing unit 21, a system memory 22, and a
system bus 23 that operatively couples various system
components including the system memory to the processing

unit 21. There may be only one or there may be more than
one processing unit 21, such that the processor of computer
20 comprises a single central-processing unit (CPU), or a
plurality of processing units, commonly referred to as a
parallel processing environment. The computer 20 may be a
conventional computer, a distributed computer, or any other
type of computer; the mvention 1s not so limited.

The system bus 23 may be any of several types of bus
structures mcluding a memory bus or memory controller, a
peripheral bus, and a local bus using any of a variety of bus
architectures. The system memory may also be referred to as
simply the memory, and includes read only memory (ROM)
24 and random access memory (RAM) 25. A basic input/
output system (BIOS) 26, containing the basic routines that
help to transfer information between elements within the
computer 20, such as during start-up, 1s stored in ROM 24.
The computer 20 further includes a hard disk drive 27 for
reading from and writing to a hard disk, not shown, a
magnetic disk drive 28 for reading from or writing to a
removable magnetic disk 29, and an optical disk drive 30 for
reading from or writing to a removable optical disk 31 such
as a CD ROM or other optical media.

The hard disk drive 27, magnetic disk drive 28, and

optical disk drive 30 are connected to the system bus 23 by
a hard disk drive interface 32, a magnetic disk drive inter-
face 33, and an optical disk drive interface 34, respectively.
The drives and their associated computer-readable media
provide nonvolatile storage of computer-readable
instructions, data structures, program modules and other
data for the computer 20. It should be appreciated by those
skilled 1n the art that any type of computer-readable media
which can store data that 1s accessible by a computer, such
as magnetic cassettes, flash memory cards, digital video
disks, Bernoulli cartridges, random access memories
(RAMs), read only memories (ROMs), and the like, may be

used 1n the exemplary operating environment.

A number of program modules may be stored on the hard
disk, magnetic disk 29, optical disk 31, ROM 24, or RAM
25, including an operating system 35, one or more applica-
fion programs 36, other program modules 37, and program
data 38. A user may enter commands and information into
the personal computer 20 through mnput devices such as a
keyboard 40 and pointing device 42. Other input devices
(not shown) may include a microphone, joystick, game pad,
satellite dish, scanner, or the like. These and other input
devices are often connected to the processing unit 21
through a serial port intertace 46 that 1s coupled to the
system bus, but may be connected by other interfaces, such
as a parallel port, game port, or a universal serial bus (USB).
A monitor 47 or other type of display device 1s also
connected to the system bus 23 via an interface, such as a
video adapter 48. In addition to the monitor, computers
typically include other peripheral output devices (not
shown), such as speakers and printers.

The computer 20 may operate in a networked environ-
ment using logical connections to one or more remote

US 6,368,425 Bl

7

computers, such as a remote computer 49. These logical
connections are achieved by a communication device
coupled to or a part of the computer 20; the 1nvention is not
limited to a particular type of communications device. The
remote computer 49 may be another computer, a server, a
router, a network PC, a client, a peer device or other
common network node, and typically includes many or all of
the elements described above relative to the computer 20,
although only a memory storage device 50 has been 1llus-
trated 1 FIG. 1. The logical connections depicted in FIG. 1
include a local-area network (LLAN) 51 and a wide-area
network (WAN) 52. Such networking environments are
commonplace 1n offices, enterprise-wide computer
networks, intranets and the Internet.

When used in a LAN-networking environment, the com-
puter 20 1s connected to the local network 51 through a
network interface or adapter 53, which 1s one type of
communications device. When used in a WAN-networking
environment, the computer 20 typically includes a modem
54, a type of communications device, or any other type of
communications device for establishing communications
over the wide area network 52, such as the Internet. The
modem 54, which may be internal or external, 1s connected
to the system bus 23 via the serial port interface 46. In a
networked environment, program modules depicted relative
to the personal computer 20, or portions thereof, may be
stored 1in the remote memory storage device. It 1s appreciated
that the network connections shown are exemplary and other
means of and communications devices for establishing a
communications link between the computers may be used.

The hardware and operating environment in conjunction
with which embodiments of the invention may be practiced
has been described. The computer 1n conjunction with which
embodiments of the invention may be practiced may be a
conventional computer, a distributed computer, or any other
type of computer; the invention i1s not so limited. Such a
computer typically includes one or more processing units as
its processor, and a computer-readable medium such as a
memory. The computer may also include a communications
device such as a network adapter or a modem, so that it 1s
able to communicatively couple other computers.

System Level Overview

A system level overview of the operation of an exemplary
embodiment of the invention i1s described by reference to
FIG. 2. The concepts of the invention are described as
operating 1n a multiprocessing, multithreaded wvirtual
memory operating environment on a computer, such as
computer 20 1n FIG. 1. The exemplary operating environ-
ment comprises what 1s known 1n the art as a three-tier
system. In this environment client application 203 interfaces
with a data storage system 250, which interfaces with a
physical storage system 270.

In one exemplary embodiment of the invention, data
storage system 250 1s an object-oriented database providing
persistent storage of objects of various types and classes.
The system provides interfaces to a variety of services that
perform various operations such as reading objects from a
persistent storage medium, writing objects to the medium,
and maintaining indexes for objects in the database.

In an alternative exemplary embodiment of the invention,
data storage system 250 1s a repository-based system such as
Microsoft Repository, available from Microsoft Corpora-
tion. In this embodiment, the repository provides much of
the same capability as the object-oriented database described
above, and 1n addition adds a layer to manage metadata that

10

15

20

25

30

35

40

45

50

55

60

65

3

describes objects that may reside inside or outside the
repository. The metadata includes information such as data
types of attributes, descriptions of object types, and descrip-
tions of data structures, such as collections.

The 1nvention 1s not limited to object-oriented databases
and repositories, and 1n further alternative embodiments,
data storage system 2350 can be based on an enftity-
relationship model, a semantic data model, and a network
data model, all of which are known 1n the art.

While the data storage system 250 has been described 1n
terms of object databases, the underlying physical storage
system 270 supporting the object database may be a different
type of database. For example, in one embodiment of the
invention, a repository database uses as its physical storage
system 270 a conventional relational database having tables,
and wherein the tables have rows and columns describing
and defining the object data. In an alternative embodiment of
the mvention, physical storage system 270 1s a mass storage
device such as a disk.

Application 205 1s an application that manipulates objects
stored 1n data storage system 250. In one embodiment of the
invention, application 205 1s an object-oriented application
operating as a client, and data storage system 250 1s a server.
Application 205 communicates and interfaces with data
storage system 250 using software routines defined 1n client
data storage library 2135.

In FIG. 3, an exemplary object hierarchy 300 1s presented.
The object hierarchy 300 includes a base object 305, a
related object 315, and an object structure 310 containing a
set of objects 320, 325, 330 and 335. Each of the objects 3035,
315, 320, 325, 330 and 335 has a particular set of attributes
determined by the object’s type, with base object 305 having
attributes P, Q, R and S. Attribute R of base object 3035
specifles a relationship to related object 315, and attribute S
of base object 305 speciiies a relationship to object set 310.
The object hierarchy 300 1s presented to 1llustrate how the
components and methods of various embodiments of the
mmvention interact, however the invention 1s not limited to
any particular object hierarchy or relationship structure. In
particular, the relationship structure need not be hierarchical
but rather may include network structures with multiple
paths between objects or cyclic paths from an object back to
itself. Those skilled in the art will appreciate that variations
in the attributes and relationships are possible and within the
scope of the 1nvention.

Typically the objects maintained by the data storage
system 250, such as objects 305, 315, 320, 325, 330 and 335,

have an object 1dentifier associated with them. The object
identifier unmiquely 1dentifies the object. Several types of
identifiers are possible. For example, in one embodiment of
the mvention, the i1dentifier 1s a globally unique identifier.
This type of identifier can be used to reference an object
anywhere 1n a distributed computer system, mcluding sys-
tems such as the three-tier environment shown 1n FIG. 2. In
an alternative embodiment of the invention, a locally unique
identifier 1s associated with each object. This type of 1den-
fifier can be used to reference objects 1n a particular database
or data storage system. The idenfifier 1s guaranteed to be
unique only within the particular database. In yet another
alternative embodiment, each object has an identifier com-
prising an execution-speciiic pointer that references the
object. The pointer 1s unique to the program while 1t is
running, and cannot be used after the program terminates.

The system shown in reference to FIG. 2 has been
described 1n terms of a three-tier architecture operating 1n a
virtual memory environment, as 15 common and known in

US 6,368,425 Bl

9

the art. However, the mmvention 1s not limited to three-tier
architectures. For example, the above-described components
could also be implemented 1n a client-server architecture
where a data storage engine 1s provided as a component of
an application and accesses a remote physical storage sys-
tem. Also, the invention can be implemented 1n a multiple
tier architecture having more than three tiers. Additionally,
the invention 1s not limited to virtual memory environments.
The terminology used 1n this application 1s meant to include
all of these environments.

Versioning 1n an Object Repository

The various embodiments of the invention provide the
ability to version objects in an object repository. Versioning
captures changes 1n the state of an object, and enables a user
to reconstruct previous, or old, states of an object. In one
embodiment of the invention, there are four principle ver-
sioning operations that are mvoked over the life cycle of an
object: CreateObject, FreezeVersion, CreateVersion and
Merge Version. In one embodiment of the invention, these
operations are 1implemented as methods on the object.

The CreateObject operation creates the first version of an
object 1 a repository, and initializes the state of the object.
In one embodiment of the invention, the state of the object
1s “unfrozen.” In other words, the properties and relation-
ships defined by the object can be updated.

The FreezeVersion operation places a version 1n a “fro-
zen” state. When a version 1s 1n a frozen state, the objects 1n
the version and the object’s properties and states cannot be
updated.

The Create Version operation creates a new version of an
existing object. The newly created object 1s referred to as the
successor. In one embodiment of the invention, an existing
object must be 1n a frozen state before the CreateVersion
operation can be invoked on it. Requiring the existing object
fo be 1n a frozen state before allowing a new version to be
created 1s desirable, because it allows the repository to use
delta storage to store the new version. Delta storage, as 1s
known 1n the art, 1s the storage of only those values that
differ between an existing object and a successor object.

Multiple invocations of the Create Version operation can
result 1n multiple versions of an object existing at the same
time. Each of the multiple versions can have changes 1n one
or more of the properties 1n the object. The Merge Version
operation merges the changes 1n the multiple versions mto a
single version of the object. The MergeVersion operation
applies various rules to resolve conflicts that can arise as a
result of changes to the same property or state in two of the
versions to be merged.

A version graph 1illustrating the above-described concepts
1s shown 1n FIG. 4. The version graph illustrates an exem-
plary life cycle of an object 402 as represented by the
various versions of the object. Object 402 1s created when
the CreateObject operation 1s 1mnvoked to create the first
version 404 for the object. In one embodiment of the
invention, the Freeze Version operation 1s invoked on object
402. Next, the CreateVersion operation 420 1s mvoked to
create a second version 406 of the object. This 1s followed
by a second invocation 422 of the CreateVersion operation,
resulting 1 a third version 408 of the object 402.

Then, 1n an embodiment of the invention supporting the
Freeze Version operation, the second version 406 of the
object 1s placed 1n a frozen state. Next, a CreateVersion
operation 424 1s invoked to create a fourth version 410 of the
object 402. This 1s followed by imnvoking the Freeze Version
operation to place the third version 408 1n a frozen state.

5

10

15

20

25

30

35

40

45

50

55

60

65

10

Finally, the Merge Version operation 426 1s invoked. This
operation merges the changes from the third version 408 and
its predecessors 1nto the fourth version 410.

In general, the Merge Version operation merges two ver-
sions of an object O. In one embodiment of the 1invention,
the merge takes place between two versions, a version that
1s frozen FV, and a version V that 1s not necessarily frozen.
The MergeVersion operation takes two parameters: the
frozen version FV of an object 0 and a flag that identifies
cither V or FV as primary. The system makes FV a prede-
cessor of V and merges the state of FV into V as follows:
first, the system finds a least common ancestor of V and FV,
called the basis version, BV, and compares V and FV to BV.
The comparison 1s performed on a property by property and
relationship by relationship basis.

In general, contlicts 1n property values between versions
are resolved as follows. For each property P of O, if only one
of V or FV has updated P since BV, then the updated value
1s assigned to P in V. If both V and FV updated P, then the
value of the primary 1s assigned to P in V. Table 3 below
provides further details on the property and relationship
comparison.

TABLE 3
Primary Secondary Version
Version No change Inserted Deleted Updated
No change No change Insert the Delete the Use the
secondary item secondary
item item
[nserted [nsert the [nsert the [nsert the [nsert the
primary primary primary item primary item
item item
Deleted Delete the Delete the Delete the Delete the
item item item item
Updated Use the Use the Use the Use the
primary primary primary item primary item
item item

The above described merge process can also be applied to
collections. In this case, the rule 1s applied to the whole
collection or to each relationship within the collection. A flag
on cach collection’s type definition drives this choice. For
example, 1f a collection has maximum cardinality 1, then
merging the whole collection would be more appropriate. In
onc embodiment of the invention, if the relationship 1s a
destination relationship collection, no merging 1s performed.
This 1s desirable because collections are an object-set valued
property of the origin object. Elements 1n such a collection
are therefore properties of other objects, 1.€. the objects
whose origin collection they belong to and not of the current
object.

In addition, merges of collections within an object can be
performed by picking one entire collection over the other.
One case where this 1s useful 1s when the two versions to be
merged 1nclude updates that cannot coexist. For example,
suppose there should be only one data type object i the
collection, but the two collections to be merged have each
inserted a different data type object. In this case, merging
item by item would result 1n the collection having two data
type objects, which 1s nonsense. Instead, only the primary
version’s collection should be used as the value of the
collection. Another example where picking an entire collec-
tion 1s desirable 1s where the collection cardinality 1s fixed
(e.g. at one), such that merging the collections would violate
the cardinality constraints. Flags are provided in order to
control the behavior of the merge 1n these cases.

US 6,368,425 Bl

11

Although the above semantics of MergeVersion cover
many common cases, some applications may prefer another
algorithm for merging state. In one embodiment of the
invention, where the repository 1s Microsoft® Repository™,
a user can override the merge algorithm for a class 1n a

wrapper, using COM aggregation. COM aggregation 1s
known 1n the art. In order to support customization of the

Merge Version operation, 1t 1s desirable that the merged
object be left in an unirozen state. This allows tools to
interact with users to customize the merge algorithm results
on an object by object basis.

As described above, the merge process merges two ver-
sions of an object at a time. Multi-way merges are accom-
plished by repeatedly merging two versions at a time.

In one embodiment of the invention, two tables, a version
table and a properties table are included in the data structures

that support the versioning operations described above.
FIGS. 5A and 5B provide a description of these tables. In

FIG. 5A, the fields imncluded 1in an exemplary version table
500 are described. The fields include a version object 1d 502,

a version 1d 504, a type 1d 506, a frozen status 508, a
predecessor version 1d 510, and a merge row status 512.

The version object 1d 502 1s a unmique 1identifier that
identifies the set of rows 1n the version table that represent
all the versions of the object.

The version ID 504 1s a unique identifier that identifies the
row 1n the table that represents a particular version of the
object.

The type ID 506 1dentifies the class corresponding to the
Version.

The frozen status field 508 indicates whether the version
1S 1n a frozen state or not. As noted above, a version that 1s
frozen cannot have its properties and states updated, while
a version that 1s not frozen can be updated.

The predecessor version ID 510 1dentifies the version that
1s the 1mmediate predecessor version of the version repre-
sented by the row 1n the version table. The predecessor
version will be the version that serves as the source for
property and state values for the current version.

In one embodiment of the invention, the version table
includes a merge row status field 512. This field 1s used to
indicate that the version 1s a predecessor version that exists
due to the execution of a Merge Version operation.

A diagram of an exemplary property table data structure
according to an embodiment of the invention is shown 1n
FIG. 5B. The exemplary property includes an object ID field
522, a branch ID field 524, a start version ID 526, an end

version ID 528, and at least one property 530.

The object ID field 522 1s a unique 1dentifier for the row
in the property table.

The branch ID field 524 i1s an 1dentifier that uniquely

identifies a branch within a particular version. A branch 1is
formed when a new successor object 1s created from a
predecessor object that already has at least one other suc-
Cessor object.

Start version ID 526 and end version ID 528 define a

range of versions for which the properties 530 of the object
defined by row 520 have the same values.

A method 600 for maintaining multiple versions of an
object 1s shown 1n FIG. 6. The method begins when a
program executing the method, such as a repository server,
receives an update for at least one property value 1n a
versioned object (block 602). Upon receiving the property
update, the program sets an end version field in an object
property data structure to a value representing an immediate

5

10

15

20

25

30

35

40

45

50

55

60

65

12

predecessor version (block 604). In one embodiment of the
invention, the data structure 1s a row of a property table 1n
a database. The data structure now represents the predeces-
sor version of the object.

Next, the program creates a new object property data
structure to represent the successor version of the object
(block 606). After creating the new object data structure, the
program sets the start version field and the end version field
in the object property data structure representing the suc-
cessor object (block 608). The start version field is set to a
version 1dentifier representing the successor version, and the
end version identifier 1s set to infinity. However, 1n alterna-
tive embodiments of the invention, a value other than
infinity can be used. For example, the end version identifier
can be the version 1dentifier for the most current version.

Finally, the program sets the property value fields in the
successor object to the updated value (block 610).

The operation of method 600 1s further 1llustrated using,
Table 1 and Table 2 below. The tables represent an exem-
plary object property table of an object repository. The
objects represented in the tables have two properties, P and
Q. Table 1 represents the state of the system before any
values of P or Q have been updated. In this state, the values
for P and Q are the same as when the object represented by
the row 1n the table was first created. In this state, P has a
value of “A”, and Q has a value of 1 (one). By way of
example and not of limitation, assume that the current
version of the object is [17,0,3] as indicated by the key
formed by the Object ID, Branch ID and Version ID, and that
the predecessor version is [17,0,2]. Thus, in the exemplary
state represented 1n Table 1, P and Q have had the same
values from the initial creation of the object (version [17,

0,0]) through the creation of three successor versions (|17,
0,1],[17,0,2] and [17,0,3]).

TABLE 1

Object ID Branch ID Start-Version ID

End-Version ID P Q

17 0 0 e “A” 1

Table 2 below represents the state of the versions of the
exemplary object after the operation of the method 1llus-
trated in FIG. 6 has been applied to the object. In the
example, the value for property P has been updated to “B”.
As a result of the update, the property table 1s split 1nto two
rows. The first row represents the versions of the object prior
to the update, that is versions [17, 0, O] through versions [17,
0, 2]. The second row represents versions of the object after
the update, that is versions [17, 0, 3] and above.

TABLE 2

Object ID Branch ID Start-Version ID

End-Version ID P Q

17 0 0 2
17 0 3 e

iiA?? 1
iGB?? 1

It should be noted that in one embodiment of the
invention, predecessor versions of the updated object must
be frozen before the application of method 600. In this
embodiment, version |17, 0, 2] from the example illustrated
above would have to be frozen, while version [17, 0, 3]
would have to be unfrozen.

In addition to having properties, objects can be part of a
relationship. A diagrammatic representation of a relationship
according to an embodiment of the invention is shown 1n

US 6,368,425 Bl

13

FIG. 7. As shown, the relationship 702 1s a bi-directional
connection between two repository objects, an origin object
704 and a destination object 706. Each relationship has a
type, which 1n turn identifies the type of origin and desti-
nation objects on each side of the relationship.

The act of navigating from an object on one side of a
relationship to an object on the other side of a relationship
1s known 1n the art as traversing. When traversing a
relationship, one starts at a known object referred to as the
source object, and traverses to an object referred to as a
target object. Whether an object 1s a source or a target object
depends on the direction of the traversal. Since connections
are bi-directional, an object can be both a source and a target
object at different times, depending on the direction of the
traversal.

Like properties, relationships can also be versioned. Usu-
ally a new object version will want to participate in the same
origin relationships as its predecessor. In this case, a rela-
tionship 1s ‘propagated’ to the 1immediate successors of a
origin version, just as a property value 1s ‘propagated’ to a
version’s 1mmediate successors. Just as with properties,
those successors are free to make whatever changes they
want.

For some relationship types, propagating relationships 1s
inappropriate. For example, consider an object model 1n
which object types represent relationships between com-
puter program source code files and executable files. In this
model, there are relationships between a source code file and
“include” files, and also relationships between the source
code and the executable produced as a result of compiling
the source code. In this case, creating a new version of the
source code should preserve the relationship with the
include files, as 1t 1s likely that the new version of the source
code will still need the definitions provided by the include
file. However, 1t 1s unlikely that the new version of the
source code should have a relationship with the previous
version of the executable file, because the source code needs
to be recompiled to produce a new executable. In this case,
the relationship should not be propagated.

In one embodiment of the invention, all relationships are
stored 1n a single relationship table. The table definition is
similar to the property table 1llustrated in FIG. SB. The main
columns of the relationship table are an origin version range
(i.e. [Object id, Branch id, Start-version id, End-version id]),
a destination version, and a relationship type.

When executing CreateVersion on version V of an object,
thereby creating version V', the repository engine ordinarily
copies V’s origin relationships to V'. However, the copying
can be turned off by setting a flag on each relationship type
definition. If V and V' are on the same branch and if the
end-version 1d 1s infinity for V’s origin relationships, as 1s
usually the case, then the relationship table need not be
updated to cause the relationship to be copied. A new row of
the relationship table must be 1nserted when a new branch 1s
created. A new row 1s also needed when, for a given origin
version, V, a new destination version DV 1s added. In an
alternative embodiment of the invention, the destination
version 1dentification field is stored as a range similar to the
origin range. In this embodiment, when DV 1s on the same
branch as other destinations of V, no additional row 1n the
relationship table 1s required, rather the destination version
range 1s updated.

As noted above, whether or not to propagate a relationship
1s controlled by flags on the relationship object. In one
embodiment of the invention, a collection definition flag
controls relationship copy on the origin side. That 1s, the flag

10

15

20

25

30

35

40

45

50

55

60

65

14

controls whether the new version ‘copies’ relationships from
its predecessor. The default 1s that the relationships are
inherited. In an alternative embodiment of the invention
where COM objects are stored 1n the repository, the reposi-
tory data model provides a definition-time option on the

flags ICollectionDetf::Flags::COLLECTION__
NEWVERSIONSPARTICIPATE to allow information

model designers to choose the appropriate propagation
behavior for each relationship type. The default behavior 1s
that origin relationships are inherited.

A further aspect of the invention 1s the ability to support
relationships between versioned objects for both version-
aware applications, and applications that are not version-
aware. FIG. 8 1llustrates an exemplary embodiment of the
invention that supports multiple interfaces. One set of inter-
faces provides the ability for version-aware applications to
access multiple versions of an object, while a second set of
interfaces provides the ability for applications that are not
version-aware to access objects, even though the objects
themselves are versioned. As shown 1 FIG. 8, origin object
804 has a relationship with destination object 806 as defined
by relationship object 802. In addition, there are three
versions of origin object 804: versions 3, 4 and 5, and three
versions ol destination object 806: versions 1, 2 and 3. As
illustrated by the shading of the objects, the current state of
the relationship 1s that version 5 of origin object 804 is
related to version 2 of destination object 806.

Relationship object 802 provides two sets of interfaces to
access the origin and destination objects, a version-aware
interface set 812 and a non-version-aware interface set 810.
In an embodiment of the mmvention 1n which the repository
1s the Microsoft Repository, the version-aware interface set
812 i1s the I'VersionedRelationship interface, and the non-
version-aware interface set 1s the IRelationship interface.

When a version-aware application uses the version-aware
interface set 812, collection objects 814 comprise the set of
versioned objects returned by the interface in the origin and
destination objects. In the exemplary scenario illustrated in
FIG. 8, when a version-aware application retrieves the origin
object 804, versions 4 and 5 are returned in a version
collection 814. Similarly, when a version-aware application
retrieves the destination object 806, versions 1 and 2 are
returned 1 a version collection 814. The version-aware
application can then programmatically determine the actions
to be performed related to the versioned objects.

When an application that is not version-aware uses the
non-version-aware interface set 810, objects must be
resolved to a particular version and only single versions of
origin and destination objects are returned. In the exemplary
scenario 1llustrated 1 FIG. 8, invoking the wversion-
independent i1nterface 810 returns version 5 of object 804,
and version 2 of destination object 806. The choice of a
particular version of an object to return can be determined by
several factors. In one embodiment of the invention, the
non-version-aware interface returns the version of an object
that currently exists in a workspace allocated by an appli-
cation. The operation and effect of workspaces 1in a ver-
sioned object environment 1s described i1n detail in the
following section.

In an alternative embodiment of the invention, the latest
version of a target object that 1s related to a source object 1s
returned. In this embodiment, the resolution 1s to the most
recently created version of the target object that participates
in the relationship. Other newer versions might also exist
that do not participate 1n the relationship, for example
version 3 of destination object 806.

US 6,368,425 Bl

15

In a further alternative embodiment of the invention, a
pinned version of a target object that 1s related to a source
object 1s returned. A pinned object 1s a particular version of
an object that has been specified as the default destination
object 1n a relationship.

Workspaces 1n an Object Repository

The previous section described versioning of objects 1n an
object repository. This section will describe embodiments of
the mvention that support workspaces within a repository
that can be used to support working with versioned objects.

A system level overview of an embodiment of the inven-
tion supporting repository workspaces 1s shown 1n FIG. 9.
The system 1ncludes a repository 250, one or more work-
spaces 908, a version aware application 902, and a non-
version-aware application 904. Repository 250 1s described
in detail above with reference to FIG. 2, and by way of
example 1ncludes repository objects 906. The objects 906

are versions 1-3 of an object X, and version 1 of an object
Y.

Each of workspaces 908 1s a logical repository session.
However, unlike an ordinary repository session, a work-
space 1s persistent. In other words, workspaces exist across
repository sessions.

Versions of repository objects can be explicitly added to
a workspace, thereby making them visible in the workspace.
In the exemplary system shown, workspace #1 contains
version 1 of object X, workspace #2 also contains versions
1 of object X, and workspace #3 contains version 3 of object
X and version 1 of object Y. Objects can also be explicitly
removed from the workspace. A version can be added to
many workspaces. However, there can be at most one
version of an object 1n each workspace. Thus, a workspace
1s a single-version view of a subset of the repository data-
base.

Version-aware application 902 1s an application that has
been designed to take advantage of the versioning capability
provided by repository 250. Version-aware application 902
establishes a session S with repository 250. In one embodi-
ment of the invention where the repository is Microsoft
Repository, application 902 accesses the repository via an
IRepository2 interface. The IRepository2 interface supports
versioning. After a session S has been opened, the applica-
tion’s context includes the entire repository. The application
can then access a workspace W 1n S. In the example shown,
application 902 has established a connection with workspace
#1, using an IWorkSpace interface. Workspaces 908 support
the session 1nterfaces, so a client can use a workspace as a
logical, or virtual, repository session. Thus, a workspace can
be viewed as a wrapper for the base repository which
provides a context and filter mechanism. Operations on
workspaces are delegated to the base repository object, with
appropriate filtering applied to a subset of the object and
relationship versions present in the workspace 908.

By executing operations 1n the context of a workspace
instead of S, the client only sees objects that are in (i.e. were
added to) the workspace, relationships on such objects, and
those relationships’ target objects that are also in the work-
space. However, if required, the application can use S
instead of W to access the entire repository.

An object (i.e., version) in a workspace can be updated
only after 1t 1s checked out. It can be checked out to at most
one workspace at a time. The checkout/checkin methods
amount to long-term locks that are stored in the repository
database and are used to implement long transactions. A
typical long transaction would add some versions to a

10

15

20

25

30

35

40

45

50

55

60

65

16

workspace, check out the ones to modify, perform updates
(under short transaction control), check them back in, and
optionally freeze them. This has the benefit of controlling
and managing changes to objects 1n the repository.

Non-version-aware application 904 i1s an application that
has been designed such that 1t 1s not capable of recognizing
multiple versions of an object. The application 904 may be
one that was designed to access a repository before version-
ing capability was added, or 1t can be an application that
does not require versioning, but wants to access objects 1n a
repository containing versioned objects. In an embodiment
of the invention where the repository 1s Microsoft
Repository, the non-version-aware application 1s designed to
use the IRepository interface. This interface does not support
versioning in the repository.

In the example shown, non-version-aware application 904
has established a connection to workspace #3. The non-
version-aware application 904 accesses (non-versioned)
objects using a repository session as its context. The appli-
cation 904 can still use session interfaces on those work-
space objects, so no other changes to the application 904 are
required. The resulting application only accesses those
objects that are 1n the workspace.

Thus, the workspace’s support of session 1nterfaces pro-
vides the backwards compatibility necessary for non-
version-aware applications such as application 904. This
provides a way for non-version-aware applications to gain
the benefits of long term locking provided by workspaces by
opening a workspace. In addition, the workspace interface
can be modified to add major new functionality (workspace
scoping) while avoiding the major change in the program-
ming model that would otherwise be necessary to set and
reset scope.

After establishing a workspace connection, applications
such as applications 902 and 904 can add versions to a
workspace. In an embodiment of the invention where the
repository 1s the Microsoft Repository, versions are added to
a workspace using the IWorkspace.Contents.Add method.
As noted above, a workspace includes a single version of
cach object. If a version of an object already present is
included 1 the workspace, the newly included version
replaces the previously included version in the workspace.

In addition, object versions can be removed from a
workspace. In an embodiment of the invention where the
repository 1s Microsoft Repository, objects are removed
using the IWorkspace.Contents.Remove method. It 1s desir-
able that a version cannot be removed from a workspace
while 1t 1s checked out to that workspace.

Each version 1n a repository maintains a context pointer.
This context pointer indicates whether or not the version
object 1s associated with a workspace or workspaces, and 1f
so, which workspaces. The context pointer simplifies the
addition of objects to a workspace, and also allows an
application to copy or compare an object between
workspaces, or between a workspace and the repository. The
first advantage of an 1mplicit context pointer 1s the simpli-
fication of the API (Application Programming Interface) for
programs that manipulate versions vs. requiring the program
had to explicitly specily workspace context on every object
reference. The ability to add objects to workspaces, compare
objects 1n workspaces and/or the repository, copy objects
between workspaces and/or the repository etc. 1s more 1n the
nature of a requirement for the API. By having separate
ruining object instances, each with its own context, the
system disambiguates cases where the same version of an
object must be manipulated in multiple contexts simulta-

US 6,368,425 Bl

17

ncously. As with other functionality, while 1t would be
possible to design an API with explicit context; 1t would be
less convenient to use. Further, by having workspaces sup-
port most of the same interfaces as the repository session
object, programs written to the non-versioned API will work
against workspaces with no code changes.

CONCLUSION

Maintaining versions and workspaces 1 an object has
been described. As those of skill 1n the art will appreciate,
the embodiments of the invention provide advantages not
found 1n previous systems. For example, there 1s no need to
copy objects as new versions of an object are created. The
new versions are 1ncluded in the range defined by the start
version and end version identifiers. It 1s only when a
property 1s actually updated that the property table repre-
senting the objects must be updated. Thus the embodiments
of the invention make more efficient use of both memory and
processor resources than previous systems.

Furthermore, the embodiments of the invention operate
with both version-aware and non-version-aware applica-
tions.

Although specific embodiments have been 1llustrated and
described herein, 1t will be appreciated by those of ordinary
skill in the art that any arrangement which 1s calculated to
achieve the same purpose may be substituted for the specific
embodiments shown. This application 1s 1intended to cover
any adaptations or variations of the present invention.

For example, those of ordinary skill within the art waill
appreciate that while maintaining versions and workspaces
has been described 1n terms of an object database or
repository, other means of storing persistent objects can be
readily substituted. In addition, the embodiments of the
invention have been described in terms of maintaining
versions and workspaces associated with objects. However,
the systems and methods described can be applied to any
data entity serving a similar purpose to objects 1n an object-
oriented environment. The terminology used i1n this appli-
cation 15 meant to include all of these environments.
Theretfore, 1t 1s manifestly intended that this invention be
limited only by the following claims and equivalents
thereof.

We claim:

1. A computerized method for updating a version of an
object having a property, the method comprising:

receiving an updated value for the property;

setting an end version field 1n a first data structure to a
value representing a predecessor version of the object;
and

creating a second data structure by:

setting a start version field in the second data structure
to a value representing the successor version of the
object;

setting an end version field 1n the second data structure
object table to a value representing a most recent
version of the object; and

setting a property value field in the second data struc-
ture to the updated value for the property, wherein
the start version field and the end version field 1n the
second data structure define a range ol versions
including the updated value for the property;

wherein version and property value fields of the data
structures record properties of the object and associated
versions of the object facilitating a recalling and gen-
erating of the object without requiring a copying of the
object.

10

15

20

25

30

35

40

45

50

55

60

65

138

2. The computerized method of claim 1, wherein the value
representing the most recent version 1s infinity.

3. The computerized method of claim 1, wherein the data
structure 1s a row 1n a database.

4. The computerized method of claim 1, wherein the
object is a COM (Component Object Model) object.

5. The method of claim 1, wherein a version of an object
having a property 1s updated and recorded without copying
the updated object.

6. The method of claim 1, wherein a version of an object
having a property 1s updated by copying only updated
properties and associated version identifiers and not the
updated object.

7. The method of claim 1, wherein the property i1s a
name-value pair and wherein the name refers to and per-
forms operations on the value.

8. The method of claim 1, wherein the method creates data
structure only for properties that have changed value and
does not copy the updated object.

9. The method of claim 1, wherein the method creates or
modifies property value fields only for properties that have
changed value and creates or modifies version fields for only

the versions including the properties that have changed
value.

10. A computer-readable medium having computer-
executable instructions for updating a version of an object
having a property, the method comprising;:

recewving an updated value for the property;

setting an end version field in a first data structure to a
value representing a predecessor version of the object;
and

creating a second data structure by:

setting a start version field 1n the second data structure
to a value representing the successor version of the
object;

setting an end version field 1n the second data structure
to a value representing a most recent version of the
object; and

setting a property value field in the second data struc-
ture to the updated value for the property, wherein
the start version field and the end version field 1n the
seccond data structure define a range of versions
including the updated value for the property;

wheremn version and property value fields of the data
structures record properties of the object and associated
versions of the object facilitating a recalling and gen-
crating of the object without requiring a copying of the
object.
11. The computer-readable medium of claim 10, wherein
the value representing the most recent value 1s 1nfinity.
12. The computer-readable medium of claim 10, wherein
the object 1s a COM (Component Object Model) object.
13. A method for propagating a relationship of a prede-
cessor object to a successor object, said relationship having
an origin object and a destination object, the method com-
Prising;:
reading a propagation flag on the relationship; and

if the propagation flag 1s set then performing the tasks of:
determining 1f a previously added version of the des-
tination object has been added;
upon determining the previously added version has
been added:
setting an end version field 1n a first data structure
with a value representing a predecessor version of
the object;

US 6,368,425 Bl

19

creating a second data structure to represent a suc-

cessor version of the object by:

setting a start version 1n the second data structure
to a value representing the successor version;

setting an end version field in the second data
structure to a value representing a most recent
version of the object; and

setting a property value field in the second data
structure to the updated value for the property,
wherein the start version field and the end
version field m the second data structure define
a range of versions including the updated value
for the property;

wherein version and property value fields of the data
structures record properties of the object and associated
versions of the object facilitating a recalling and gen-
erating of the object without requiring a copying of the
object.

14. The method of claim 13, wherein, 1f the propagation

flag 1s set, the relationship 1s not copied to the previously
added version.

15. The method of claim 13, wherein reading a propaga-
tion flag on the relationship involves reading a relationship
type field of a relationship table, the relationship table
including an object identifier, a branch identifier, a start-
version 1dentifier, and an end-version 1dentifier.

16. The method of claim 15, wherein, when creating the
previously added version, if the previously added version
and a predecessor version are on the same branch, as
indicated by the branch identifier, and the end-version
identifier 1s infinity, the relationship 1s copied without updat-
ing the relationship table.

17. The method of claim 15, wherein a previously added
row of the relationship table 1s created when a previously
added branch 1s created, as indicated by the branch identifier.

18. A computer-readable medium having computer
executable 1nstructions for performing a method for propa-
gating a relationship of a predecessor object to a successor
object, said relationship having an origin object and a
destination object, the method comprising:

reading a propagation flag on the relationship; and

if the propagation flag 1s set then performing the tasks of:
determining 1f a previously added version of the des-
tination object has been added;
upon determining the previously added version has
been added:
setting an end version field 1n a first data structure an
object table of an object repository or database
with a value representing a predecessor version of
the object;
creating a second data structure by:
setting a start version in the second data structure
object table to a value representing the succes-
SOI Version;
setting an end version field in the second data
structure to a value representing a most recent
version of the object; and
setting a property value field in the second data
structure to the updated value for the property,
wherein the start version field and the end
version field m the second data structure define
a range of versions including the updated value
for the property;

wherein version and property value fields of the data
structures record properties of the object and associated
versions of the object facilitating a recalling and gen-
erating of the object without requiring a copying of the
object.
19. The computer-readable medium of claim 18, wherein,
if the propagation flag 1s set, the relationship 1s not copied
to the previously added version.

10

15

20

25

30

35

40

45

50

55

60

65

20

20. The computer-readable medium of claim 18, wherein
reading a propagation flag on the relationship i1nvolves
reading a relationship type field of a relationship table, the
relationship table including an object identifier, a branch
identifier, a start-version identifier, and an end-version i1den-
tifier.

21. The computer-readable medium of claim 20, wherein,
when creating a previously added version, if the previously
added version and a predecessor version are on the same
branch, as indicated by the branch identifier, and the end-
version 1denfifier 1s 1infinity, a relationship 1s copied without
updating the relationship table.

22. The computer-readable medium of claim 20, wherein
a previously added row of the relationship table 1s created
when a previously added branch 1s created, as indicated by
the branch identifier.

23. A method for changing a value of a property of an
object, the method comprising:

receiving a value for a property of an object;

setting a first end version to a first end value representing
a version of the object, wherein a first start version and
the first end version are associated with a predecessor
value of the property, wherein the first start version has
a first start value, wherein the first start value of the first
start version and the first end value of the first end
version define a first range of versions of the object for
which the property has the predecessor value;

setting the property to the value for the property received;

setting a second start version to a second start value
representing a version of the object, wherein the second
start version 1s associated with the value for the prop-
erty received, wherein the second start value of the
second start version defines a start of a second range of
versions of the object for which the property has the
value for the property received; and

setting a second end version to a second end value
representing a version of the object, wherein the second
end version 1s associated with the value for the property
received, wherein the second end value of the second
end version defines an end of the second range of
versions of the object for which the property has the
value for the property received;

wherein the object including the value of the property
received can be generated without copying the object
including the value of the property received.

24. The method of claim 23, wherein the object can be
used or operated through one or more interfaces, wherein
cach of the one or more interfaces refers to a speciiication
for any number of properties or any number of methods or
any number of behaviors.

25. The method of claim 23, wherein the value of the
property received 1s stored 1mn an object repository or a
database, wherein the object repository or database uses any
number of data structures to define the object but does not
store the object.

26. The method of claim 23, wherein the first start version
1s a first start version field of a first data structure, wherein
the first end version 1s a first end version field of the first data
structure, wherein the first data structure 1s associated with
the predecessor value of the property.

27. The method of claim 26, wherein the first data
structure 1s represented by one or more rows of one or more
tables, wherein the first start version field 1s a first field of the
one or more rows, wherein the first end version field 1s a
second field of the one or more rows, wherein the prede-
cessor value of the property 1s a third field of the one or more
TOWS.

	Front Page
	Drawings
	Specification
	Claims

