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SYSTEM, METHOD AND ARTICLE OF
MANUFACTURE FOR ALLOWING DIRECT
MEMORY ACCESS TO GRAPHICS VERTEX

DATA WHILE BYPASSING A PROCESSOR

FIELD OF THE INVENTION

The present invention relates generally to computer
graphics and, more particularly, to a system and method for
accessing graphics vertex data.

BACKGROUND OF THE INVENTION

In graphics processing, much data 1s managed 1n order to
provide a resultant 1mage on a computer display. One form
of such data includes vertex data that comprises information
for displaying triangles, lines, points or any other type of
portions of an 1mage on the computer display. Prior Art
Table 1 includes an example of typical vertex data.

Prior Art Table 1

position(X Y Z W)
diffuse(R G B A)

specular(R G B F)
textureO(S T R Q)
texture1(S T R Q)

Together, multiple sets of such vertex data are used to
represent one of the portions of the mmage. In order to
accomplish this, each vertex, on average, requires 40 bytes
of memory storage space. During conventional system
operation, over 10 million vertexes are typically exchanged

every second during processing. This results in a data
transfer rate of 400 MB/s.

During the processing of vertex data, various components
of a system come into play. Prior Art FIG. 1 1illustrates an
example of a system 100 that processes vertex data. As
shown, 1included are a processor 102, system memory 104,
a graphics accelerator module 106, and a bus 108 for
allowing communication among the various components.

In use, the processor 102 locates the vertex data in the
system memory 104. The vertex data 1s then routed to the
processor 102, after which the vertex data 1s copied for later
use by the graphics accelerator module 106. The graphics
accelerator module 106 may perform various operations

such as transform and/or lighting operations on the vertex
data.

As mentioned earlier, a typical data transfer rate of 400
MB/s 1s required 1n current systems to process the vertex
data. During the transfer of such data in the system 100 of
Prior Art FIG. 1, the bus 108 connecting the processor 102
and the graphics accelerator module 106 1s required to
handle an input data transfer rate of 400 MB/s along with an
output data transfer rate of 400 MB/s.

As such, the foregoing bus 108 must accommodate a data
transfer rate of 800 MB/s while handling the vertex data.
Conventionally, such bus 108 1s 64 bits wide and the
processor 102 runs at about 100 MHz. Therefore, the bus
108 1s often strained during use 1n the system 100 of Prior
Art FIG. 1. Further, with data transfer rates constantly rising,
processors will soon not be able to be used to copy vertex
data.

There 1s therefore a need for a system that allows direct
memory access to vertex data while bypassing the processor
in order to avoid overloading the processor and associated
bus.
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2
DISCLOSURE OF THE INVENTION

A system, method, and article of manufacture are pro-
vided for allowing direct memory access to graphics vertex
data by a graphics accelerator module. First, vertex data 1s
stored 1n memory. Next, an index 1s received which 1is
representative of a portion of the vertex data in the memory.
A location 1s then determined 1n the memory in which the
portion of the vertex data 1s stored. Such portion of the
vertex data may thereafter be directly retrieved from the
determined location 1n the memory while bypassing a pro-
CESSOT.

In one aspect of the present invention, the memory 1n
which the vertex data 1s stored may include system memory
or graphics memory associated with the graphics accelerator
module. Further, the location in the memory may be deter-
mined by carrying out a calculation using the index. In one
embodiment, the calculation includes multiplying the index
by a stride value and adding an offset value thereto 1n order
to determine the location 1n the memory.

In another aspect of the present invention, the vertex data
includes a plurality of components. Each of such compo-
nents has an associated stride value and offset value that are
used 1n the foregoing calculation. By assigning each com-
ponent different values, the various components may be
stored 1n an 1nterleaved, independent, and/or mixed manner.

In addition to the stride and offset values, each of the
components of the vertex data may have an associated
format value indicative of a size of the corresponding
component of the vertex data. This enables the capability of
foregoing the retrieval of unwanted data. It should be noted
that various other types of flags may also be employed to
convey information other than the size of the components of
the vertex data.

In still yet another aspect of the present invention, the
method may include additional operations after retrieving
the portion of the vertex data. For example, the portion of the
vertex data may be stored in a cache memory. As such, upon
repeated receipt of the mndex representative of the portion of
the vertex data, such portion of the vertex data may be
ciiciently retrieved from the cache memory, as opposed to

repeated retrieval from the system memory.

In still yet another aspect of the present invention, the
retrieved portion of the vertex data may be processed in
various ways. For example, such processing may include
reformatting, transformation, and lighting. Further, the pro-
cessed vertex data may be stored 1n a vertex file. This allows
retrieval of the processed vertex data from the vertex file
upon repeated receipt of an index representative of the
portion of the vertex data, without need for time consuming
reprocessing. Therefore, the efficiency 1n which the vertex
data 1s retrieved and processed 1s improved.

In order to further facilitate the foregoing process, the
vertex data may be parsed into vertex data sets which each
represent a part, or a triangle, of an image. Such vertex data
sets may be organized 1n a mesh configuration. As such, a
first group of vertex data sets may be processed for display-
ing a first portion of the image. Thereafter, the first group of
processed vertex data sets 1s stored 1 a vertex file 1n
memory. Next, after a second group of vertex data sets 1s
processed, the first group of processed vertex data sets may
be retrieved from the vertex file in memory for use with the
second group of processed vertex data sets for displaying a
second portion of the image. It should be noted that 1in one
embodiment the storage and retrieval of the vertex data sets
to and from the vertex file may be carried out 1n a {irst 1n,
first out (FIFO) format. Accordingly, the efficiency in which
the vertex data 1s retrieved and processed is still further
improved.
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BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing aspects are better understood from the
following detailed description of one embodiment of the
invention with reference to the drawings, 1n which:

FIG. 1 1s a block diagram illustrating the flow of vertex
data 1n a system of the prior art;

FIG. 2 1s an illustration of vertex data stored in memory
in accordance with one embodiment of the present inven-
tion;

FIG. 3 1s an 1llustration of possible configurations in
which various components of the vertex data may be stored
in accordance with one embodiment of the present 1nven-
tion;

FIG. 4 1s a block diagram 1illustrating the flow of the

vertex data 1n accordance with one embodiment of the
present invention;

FIG. 5 1s a flowchart showing a process of managing the
vertex data 1 accordance with one embodiment of the
present invention;

FIG. 6 1s a flowchart showing a process of managing the
vertex data m accordance with one embodiment of the
present mnvention; and

FIG. 7 1s an 1llustration of a plurality of sets of the vertex
data adapted for representing a plurality of portions of an
image 1n a mesh configuration.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

FIG. 1 illustrates a prior art system for retrieving graphics
vertex data from memory via a processor. With reference
now to FIGS. 1 through 7, the present invention includes a
system for allowing direct memory access to graphics vertex
data by a graphics accelerator module.

As shown 1n FIG. 2, in one embodiment, the vertex data

1s stored 1n an array 200 including a plurality of components
such as position (X Y Z W), diffuse(R G B A), specular(R

G B F), textureO (S T R Q), texturel (S T R Q), fog (F),
and/or any other components. For reasons that will soon
become apparent, multiple additional components of the
vertex data are provided including normal (Nx Ny Nz) and
weight (W). It should be noted that the vertex data may
include any type of components representative of various
aspects of an 1mage. An example of the various components
of the vertex data of one embodiment of the present inven-
fion 1s shown 1n Table 2.

TABLE 2

position(X Y Z W)
diffuse(R G B A)

specular(R G B F)
textureO(S T R Q)
texture1(S T R Q)

[stride0, offsetO, formatO]
[stridel, offsetl, formatl]
[stride2, offset2, format2 ]
[stride3, offset3, format3]
|stride4, offset4, format4 ]

fog(F) [stride5, offset5, format5 |
normal(Nx Ny Nz) |stride6, offset6, format6 |
welght(W) |stride7, offset7, format7]

In use, the foregoing vertex data may be employed to
display portions, or triangles, of an image. Accordingly,
different portions of the vertex data represent different
portions of the image.

In order to identify a location 1n memory 1n which the
vertex data 1s stored, a calculation 1s executed. Such calcu-

lation 1s carried out using an index 201 1n addition to a stride
value 202 and an offset value 204. With reference to FIG. 2,
the calculation includes multiplying the mdex 201 by a

10

15

20

25

30

35

40

45

50

55

60

65

4

stride value 202 and adding an offset value 204 thereto 1n
order to determine the appropriate location in memory. It
should be noted that the foregoing values are stored in
assoclated registers.

As mentioned earlier, the vertex data includes a plurality

of components. In one embodiment, each of such compo-
nents has an associated stride value 202 and offset value 204
that are used 1n the foregoing calculation. Note Table 2. By
assigning each component of the vertex data different index,
stride and offset values, such components may be stored in
different configurations.

FIG. 3 shows various examples of configurations in which
the components of the vertex data may be organized. For
example, the components of the vertex data may take on an
interleaved configuration 300 with the components alter-
nately situated 1n an array. In another example, the compo-
nents of the vertex data may be independently separated 1n
a second configuration 302. Still yet, the components of the
vertex data may be mixed randomly 1n a third configuration
304. In various other embodiments, the components may be
coniigured 1in any other way that results 1n the data being
separated. The various components of the vertex data may
thus be retrieved independently from different locations in
memory.

In addition to the stride and offset values, each of the
components of the vertex data may have an associated
format value. See Table 2. In one embodiment, the format
value of each component of the vertex data may include a
size parameter, type parameter, and/or flag parameter.

The size parameter of the format value 1s indicative of a
size of the corresponding component of the vertex data. 1, 2,
3, etc. are each acceptable values of the size parameter. It
should be noted that a 0 value of size indicates a disabling
function. Further, the type parameter of the format value
represents an amount of memory required by an associated
component of the vertex data. The type parameter may
include values of “byte”, “short”, and “float” which indicate
1 byte, 2 bytes, and 4 bytes of memory, respectively. Finally,
other types of flags may be employed to convey information
other than the size and amount of memory represented by the

components of the vertex data.

By way of example, in the case of the position (XY Z W)
value, 1f size=2 and type=tloat, it 1s known that only two
parameters, i.e. XY, etc., each of 4 bytes (1 float) in length
exist 1n memory. This facilitates etficient retrieval of the
vertex data and further allows data compression by remov-
ing unwanted data. Unwanted data, for example, may
include the W parameter of the position (X Y Z W) value
during a transform and lighting operation. For the above
example, 1t should be noted that internally appropriate
defaults are supplied for unspecified elements, 1.e. Z=0 and
Ww=1.

FIG. 4 shows the flow of the vertex data during use of a
system 400 1 accordance with one embodiment of the
present invention. As shown, a processor 402, system
memory 404, and a graphics accelerator module 406 are
interconnected via a bus 408. Further, the graphics accel-
erator module 406 1s equipped with graphics memory 410.

In operation, the vertex data 1s stored or loaded 1n
memory. It should be noted that the memory in which the
vertex data 1s stored may include the system memory 404 or
the graphics memory 410 associated with the graphics
accelerator module 406. Next, an index 1s received by the
graphics accelerator module 406 which is representative of
a portion of the vertex data in the memory. Note data flow
path for index 412. From this a location 1s then determined
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in the memory 1 which the portion of the vertex data is
stored. Such portion of the vertex data may thereafter be
directly retrieved from the determined location in memory
while bypassing the processor 402, as shown 1n data flow
path 414. It should be noted that during such direct memory
access (DMA), memory must be locked down in a manner
that 1s well known to those of ordinary skill in the art.

The present invention thus considerably relieves the pro-
cessor bus 408. The indices 201 typically consist of 16 bits
of information and may be increased up to 32 bits or more.
Further, the system 400 1s typically required to handle
approximately 10 million vertices per second, or more 1n
future 1mplementations. Accordingly, 1n the case where the
vertices each consist of 16 bits, data enters the processor 402
via the processor bus 408 at 20 MB/s while data exits the
processor 402 via the processor bus 408 at a similar rate of
20 MB/s. This results 1s 1n a total of 40 MB/s of data being
handled by the processor bus 408 which 1s a considerable
reduction with respect to the 800 MB/s required in prior art
systems. Further, the processor cache 1s maintained by not
passing large amounts of vertex data through it.

FIG. 5 1s a detailed flowchart showing the foregoing
process of managing vertex data. It should be noted that the
process of FIG. 5 may be implemented by either software or
hardware logic. The process begins 1n operation 500. Next,
processor 402 1n the system memory 404 or graphics
memory 410 1n operation 502 stores the vertex data. It 1s
then determined whether indices have been received 1n
decision 504 and whether the vertex data i1s currently stored
in a vertex file 1n decision 506. Upon receipt of at least one
index and the absence of the vertex data 1n the vertex file, the
aforementioned calculation 1s carried out 1 order to locate
the associated portion of the vertex data 1n memory. See
operation 508.

Before performing a direct memory access read of the
vertex data 1n the system or graphics memory 410 in
operation 512, it first determined 1n decision 510 whether the
vertex data 1s currently stored 1n cache memory as a result
of a previous execution of operation 512. It should be noted
that the cache memory stores the vertex data in terms of

™

addresses similar to those employed by processor caches. It
such vertex data 1s stored 1n cache memory, the retrieval of
the vertex data from the system or graphics memory 1s not
necessary and operation 512 1s skipped. As such, upon
repeated receipt of an index representative of the portion of
the vertex data, such portion of the vertex data may be
ciiciently retrieved from the cache memory, as opposed to

repeated retrieval from the system or graphics memory.

With continuing reference to FIG. 5, the format of the
retrieved portion of the vertex data may be converted 1n
operation 514. Such an operation 1s a conventional step 1n
the processing of vertex data and 1s well known to those
skilled in the art. Next, in operation 516, a transform and
lighting operation 1s carried out. Similar to the format
conversion operation, the transtform and lighting operation 1s
a conventional step 1n the processing of vertex data and 1s
well known to those skilled 1n the art. It should be noted that
the normal (Nx Ny Nz) and weight (W) values of the vertex
data are important during the current transform and lighting
operation for an on-chip transform operation on the accel-
erator module 406 which converts the data into a standard
4-clement float format.

After the transform and lighting operation 1s executed, the

processed vertex data 1s stored 1n a vertex {ile 1n operation
518. It should be noted that the processed vertex data is
stored 1n the vertex file 1n terms of the associated index.
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Thereafter, a conventional raster operation 1s executed 1n
operation 520, after which the loop 1s continued with deci-

sion 504.

With reference again to decision 506, it 1s determined
whether the vertex data 1s present 1n the vertex file. If the
vertex data 1s currently stored 1n the vertex file as a result of
a previously executed operation 518, such processed vertex
data may be retrieved immediately in operation 522. This
allows retrieval of the processed vertex data from the vertex
file upon repeated receipt of an index representative of the
portion of the vertex data. Therefore, the efficiency with
which the vertex data 1s retrieved and processed 1s improved.

FIG. 6 shows a more detailed view of a data flow for
replacing vertices 1n the vertex file for maximized reuse of
mesh vertices. As shown, a file slot select command of reuse
(see operation 522 of FIG. §) or replace (see operation 508
of FIG. 5) 1s sent to a first in, first out (FIFO) queue buffer
600 to hide the latency of direct memory access (DMA) and
the transform and lighting operations.

In order to maintain synchronicity during the management
of the vertex data in the vertex file, the transform and
lighting operation 1s stalled until a file replace command 1s
received. Upon receipt of the file replace command, the
transform and lighting operation resumes during which the
current file slot 1s invalidated. Only after the vertex data has
been processed 1s the file slot validated. When the file
replace command arrives, such command 1s converted to a
reuse command that, upon receipt, requires a wait for a valid
file slot. Thereafter, the vertex data in the {file slot 1s copied
to the render pipeline. During the foregoing process, the
preservation of order allows the vertex file state to match a
prediction.

Turning now to FIG. 7, in order to further facilitate the
foregoing process, the vertex data may be strategically
parsed 1nto vertex data sets which each represent a part of an
image 700. Such vertex data sets may be organized as a
mesh of individual triangles 701. As such, a first group of
vertex data sets (0-9) may be processed for displaying a first
portion 702 of the image. Thereafter, the first group of
processed vertex data sets 1s stored 1 a vertex file 1n
memory. Next, after a second group of vertex data sets
(10-14) 1s processed, at least part of the first group of
processed vertex data sets (5, 6, 7, 8, 9, etc.) may be
retrieved from the memory 1n order to use with the second
ogroup ol processed vertex data sets for displaying a second
portion 704 of the image. In one embodiment, the foregoing
technique may effect an efliciency that approaches 2
triangles/vertex.

The present invention thus permits extremely high vertex
processing rates via OpenGL vertex arrays or D3D vertex
buffers even when the processor lacks the necessary data
movement bandwidth. By passing indices in lieu of the
vertex data, the processor 1s capable of keeping up with the
rate at which a vertex engine of the graphics accelerator
module can consume vertices. In operation, the processor
passes vertex idices to the hardware and lets the hardware
“pull” the actual vertex data via direct memory access
(DMA). It should be noted that the current OpenGL 1.1
vertex array functionality has semantic constraints that com-
plicate the foregoing process. Thus, in one embodiment of
the present invention, a vertex array range extension may be
employed.

The vertex array range extension provides a mechanism
for deferring the pulling of vertex array components to
facilitate DMA pulling of vertices for fast, efficient vertex
array transfers. The OpenGL client need only pass vertex
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indices to the hardware which can DMA the actual vertex
data directly out of the client address space.

The OpenGL 1.1 vertex array functionality specifies a
fairly strict coherency model for when OpenGL extracts
vertex data from a vertex array and when the application can
update the 1n memory vertex array data. The OpenGL 1.1
specification says “Changes made to array data between the
execution of Begin and the corresponding execution of End
may affect calls to ArrayElement that are made within the
same Begin/End period in non-sequential ways. That 1s, a
call to ArrayElement that precedes a change to array data
may access the changed data, and a call that follows a
change to array data may access the original data.”

This means that by the time End returns (and DrawArrays
and DrawElements return since they have implicit Ends), the
actual vertex array data must be transterred to OpenGL. This
strict coherency model prevents one from simply passing
vertex element indices to the hardware and having the
hardware “pull” the vertex data out (which is often after the
End for the primitive has returned to the application).

Relaxing this coherency model and bounding the range
from which vertex array data can be pulled 1s important to
making OpenGL vertex array transiers faster and more
eihicient.

The first task of the vertex array range extension 1s to
relax the coherency model so that hardware can indeed
“pull” vertex data from the OpenGL client’s address space
long after the application has completed sending the geom-
etry primitives requiring the vertex data.

A second complication with the OpenGL 1.1 vertex array
functionality 1s the lack of any guidance from the API about
what region of memory vertices can be pulled from. There
1s no size limit for OpenGL 1.1 vertex arrays. Any vertex
index that points to valid data 1n all enabled arrays 1is
available. This makes 1t hard for a vertex DMA engine to
pull vertices since they can be potentially pulled from
anywhere 1n the OpenGL client address space.

The vertex array range specifies a range of the OpenGL
client’s address space where vertices can be pulled. Vertex
indices that access any array elements outside the vertex
array range are specified to be undefined, possibly without
warning. This permits hardware to DMA from finite regions
of OpenGL client address space, making DMA engine
implementation far more tractable.

The extension is specified such that an (error free)
OpenGL client using the vertex array range functionality
could no-op 1ts vertex array range commands and operate
equivalently to (if slower than) using the vertex array range
functionality.

If one falls back to software transformation, there 1s no
need to abide by 1gnoring vertices outside the vertex array
range.

In use, a programmer need not be given a sense of how big
a vertex array range he or she can specity. It should be
merely documented 1f there are limitations.

It should be noted that the concepts relating to ArrayEle-
ment also applies to DrawArrays and DrawElements. The
OpenGL 1.1 specification 1s clear that DrawArrays and
DrawElements are defined in terms of ArrayElement.

A plurality of new procedures and functions are as fol-
lows:

void VertexArrayRangeNV(sizei length, void*pointer)

void FlushVertexArrayRangeNV(void)
A plurality of new tokens are as follows:

Accepted by the <cap> parameter of EnableClientState,
DisableClientState, and IsEnabled:

VERTEX__ARRAY__RANGE__NV 0x851d
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Accepted by the <pname> parameter of GetBooleanv,
Getlntegerv, GetFloatv, and GetDoublev:
VERTEX ARRAY__RANGE__LENGTH_NV
Ox851¢
VERTEX__ARRAY__RANGE__VALID_NV 0x851f
MAX_VERTEX_ARRAY__RANGE__ELEMENT _
NV 0x8520

Accepted by the <pname> parameter of GetPointerv:
VERTEX_ _ARRAY_RANGE__POINTER_NYV
0x8521

Additional information that supplements Chapter 2 of the
1.1 Specification (OpenGL Operation) will now be set forth.
After the discussion of vertex arrays (Section 2.8), descrip-
tion of the vertex array range may be necessary. VertexAr-
rayRangeNV specifies the current vertex array range. When
the vertex array range 1s enabled, vertex array vertex trans-
fers from within the vertex array range are potentially faster.
The vertex array range 1s a contiguous region of address
space for placing vertex arrays. The vertex array range
address space region extends from “pointer” to “pointer+
length—1" 1nclusive. When specified and enabled, vertex
array vertex transfers from within the vertex array range are
potentially faster.

If, for operating system dependent reasons, the vertex
array range cannot be set up, the OUT_OF__MEMORY
error occurs and the vertex array range valid bit 1s cleared
and the vertex array range pointer and length are not
updated. If the vertex array range can be set up, the vertex
array range valid bit 1s set and the vertex array range and
pointer are updated.

The vertex array range 1s enabled or disabled by calling
Enable or Disable with the symbolic constant VERTEX__
ARRAY__RANGE__NV. If the vertex array range valid bit
1s not set, an Enable for the vertex array range 1s ignored.

When the vertex array range 1s enabled, ArrayElement
commands are permitted (but not required) to ignore any
indexed elements of the enabled arrays are not within the
vertex array range. If an index element 1s ignored, the
resulting vertex 1s undefined. When the vertex array range 1s
enabled, ArrayElement commands are permitted (but not
required) to ignore any array element indices less than zero
or greater than the value of MAX_ VERTEX ARRAY_
RANGE_ELEMENT_NV, an implementation defined
limit. If an 1mndex element 1s undefined, no warning may be
gIvVen.

Enabling the vertex array range relaxes the vertex array
coherency model that specifies how vertex data can be
extracted from the vertex array memory after the Begin/End
transferring the vertices.

When the vertex array range 1s enabled, changes made to
array data until the next “vertex array range flush” may
affect calls to ArrayElement in non-sequential ways. That 1s
a call to ArrayElement that precedes a change to array data
(without an intervening “vertex array range flush™) may
access the changed data, and a call that follows a change
(without an intervening “vertex array range flush”) to array
data may access original data.

A “vertex array range flush” occurs when one of the
following operations occur:

Finish returns.
FlushVertexArrayRangeNV returns.

VertexArrayRangeNV returns.

ClhientStateDisable of VERTEX ARRAY RANGE
NV returns.

ClientStateEnable of VETEX ARRAY RANGE NV
refurns.
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The client state required to 1implement the vertex array
range consists of an enable bit, a memory pointer, an 1integer
size, and a valid bat.

Addition information that supplements Chapter 5 of the
1.1 Specification (Special Functions) will now be set forth.
VertexArrayRangeNV and FlushVertexArrayRangeNV are
not complied 1nto display lists but are executed immediately.

Additional information that supplements the GLX Speci-
fication will now be set forth. OpenGL 1mplementations
using GLX should fail to set up the vertex array range
(failing to set the vertex array valid bit so the vertex array
range functionality 1s not usable).

An example of an error 1s as follows:

OUT_OF_MEMORY i1s generated 1f VertexArrayRange
cannot 1nitialize the vertex array range for operating system
dependent reasons.

A plurality of new states 1s set forth 1n Table 3.

TABLE 3
Get Value Get Command Type
VERTEX__ARRAY__RANGE_NV [sEnabled B
VERTEX ARRAY_RANGE_POINTER_ NV  GetPointerv 7+
VERTEX _ARRAY__RANGE_LENGTH_NV  Getlntegerv 7+
VERTEX_ _ARRAY__RANGE__VALID_NV GetBooleanv B

A new implementation dependent state 1s forth 1n Table 4.

TABLE 4

Get Value

MAX_VERTEX ARRAY_RANGE_ELEMENT__NV Getlntegerv

While various embodiments have been described above,
it should be understood that they have been presented by
way of example only, and not limitation. Thus, the breadth
and scope of a preferred embodiment should not be limited
by any of the above-described exemplary embodiments, but

should be defined only in accordance with the following
claims and their equivalents.

What 1s claimed 1s:

1. A method for allowing direct memory access to graph-
ics vertex data by a graphics accelerator module, compris-
ng:

storing vertex data 1n memorys;

receiving an 1ndex representative of a portion of the

vertex data in the memory;

determining a location 1n the memory in which the portion
of the vertex data 1s stored; and

retrieving the portion of the vertex data directly from the
determined location in the memory;

wherein the location 1n the memory 1s determined by
carrying out a calculation using the mdex;

wherein the calculation includes multiplying the index by
a stride value and adding an offset value thereto 1n order
to determine the location in the memory;

wherein the vertex data includes a plurality of compo-
nents each of which has a separate associated stride
value and offset value;

wherein each of the components of the vertex data
includes at least one associated format value imndicative
of a size and type of the corresponding component of
the vertex data;
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wherein the vertex data 1s situated in an interleaved

conilguration;

wherein the vertex data includes normal data, texture data,

color data, and weight data.

2. The method as recited 1n claim 1, wherein the memory
includes system memory.

3. The method as recited 1n claim 1, wherein the memory
includes memory of the graphics accelerator module.

4. The method as recited 1n claim 1, wherein after
retrieving the portion of the vertex data, the method further
includes the operations of: caching the portion of the vertex
data 1n a cache memory; and retrieving the portion of the
vertex data from the cache memory upon repeated receipt of
an 1ndex representative of the portion of the vertex data.

S. The method as recited 1n claim 1, wherein after
retrieving the portion of the vertex data, processing the
portion of the vertex data.

Attrib

vertex-array
vertex-array
vertex-array
vertex-array

Minimum Value

65535

6. The method as recited 1n claim §, wherein the process-
ing includes reformatting and transformation.

7. The method as recited 1n claim 5, wherein after
processing of the vertex data, the method further includes
the operations of storing the processed vertex data 1n a
vertex file; and retrieving the processed vertex data from the
vertex file upon repeated receipt of the index representative
of the portion of the vertex data.

8. A system for allowing direct memory access to graphics
vertex data, comprising:

memory for storing vertex data;

a graphics accelerator module for receiving an index
representative of a portion of the vertex data in the
memory; and

a processor for determining a location 1n the memory in
which the portion of the vertex data 1s stored;

wherein the graphics accelerator module 1s adapted for
retrieving the portion of the vertex data directly from

the determined location in the memory;

wherein the location in the memory 1s determined by
carrying out a calculation using the index;

wherein the calculation includes multiplying the index by
a stride value and adding an offset value thereto 1 order
to determine the location in the memory;

wheremn the vertex data includes a plurality of compo-
nents each of which has a separate associated stride
value and offset value;

wherein each of the components of the vertex data
includes at least one associated format value indicative
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of a size and type of the corresponding component of
the vertex data;

wherein the vertex data 1s situated 1n an interleaved
configuration;

wherein the vertex data includes normal data, texture data,

color data, and weight data.

9. The system as recited 1n claim 8, wherein the memory
includes system memory.

10. The system as recited in claim 8, wherein the memory
includes memory of the graphics accelerator module.

11. The system as recited in claim 8, wherein after
retrieving the portion of the vertex data, the system further
includes: means for caching the portion of the vertex data in
a cache memory; and means for retrieving the portion of the
vertex data from the cache memory upon repeated receipt of
an 1index representative of the portion of the vertex data.

12. The system as recited 1n claim 8, wherein after
retrieving the portion of the vertex data, the portion of the
vertex data 1s processed.

13. The system as recited mn claim 12, wherein the
processing includes reformatting and transformation.

14. The system as recited in claim 12, wherein after
processing of the vertex data, the system further mcludes
logic for storing the processed vertex data 1 a vertex file;
and logic for retrieving the processed vertex data from the
vertex file upon repeated receipt of the index representative
of the portion of the vertex data.

15. A computer program embodied on a computer read-
able medium for allowing direct memory access to graphics
vertex data by a graphics accelerator module, comprising:

a code segment for storing vertex data in memory;

a code segment for receiving an index representative of a
portion of the vertex data in the memory;

a code segment for determining a location 1in the memory
in which the portion of the vertex data 1s stored; and

a code segment for retrieving the portion of the vertex
data directly from the determined location 1n the
memorys;

wherein the location 1n the memory 1s determined by
carrying out a calculation using the index;

wherein the calculation includes multiplying the index by
a stride value and adding an offset value thereto 1n order
to determine the location in the memory;

wherein the vertex data includes a plurality of compo-
nents each of which has a separate associated stride
value and offset value;

wherein each of the components of the vertex data
includes at least one associated format value imndicative
of a size and type of the corresponding component of
the vertex data;

wherein the vertex data 1s situated 1n an interleaved
conilguration;

wherein the vertex data includes normal data, texture data,

color data, and weight data.

16. The computer program as recited in claim 15, wherein
the computer program 1s suitable for storing the vertex data
In system memory.

17. The computer program as recited 1n claim 15, wherein
the computer program 1s suitable for storing the vertex data
in graphics accelerator module memory.

18. The computer program as recited 1n claim 15, wherein
after retrieving the portion of the vertex data, the computer
program further mcludes: a code segment for caching the
portion of the vertex data in a cache memory; and a code
segment for retrieving the portion of the vertex data from the
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cache memory upon repeated receipt of an index represen-
tative of the portion of the vertex data.

19. The computer program as recited in claim 15, wherein
after retrieving the portion of the vertex data, the portion of
the vertex data 1s processed.

20. The computer program as recited in claam 19, wherein
the processing includes reformatting and transformation.

21. The computer program as recited in claam 19, wherein
after processing of the vertex data, the computer program
further includes a code segment for storing the processed
vertex data 1n a vertex file; and a code segment for retrieving
the processed vertex data from the vertex file upon repeated
receipt of the index representative of the portion of the
vertex data.

22. A method for allowing direct memory access to

ographics data by a graphics accelerator module, comprising:

(a) identifying a stride value and an offset value associated
with graphics data;

(b) determining a range in memory in which the graphics
data 1s stored based at least 1n part on the stride value
and the offset value; and

(¢) directly accessing the graphics data in the range in the
MEMOry;

wherein the range in memory 1n which the graphics data
1s stored 1s determined based on a calculation including,
at least in part multiplying an index by a stride value
and adding an offset value thereto;

wherein the graphics data includes a plurality of compo-
nents each of which has a separate associated stride
value and offset value;

wheremn each of the components of the graphics data
includes at least one associated format value indicative
of a size and type of the corresponding component of
the graphics data;

wherein the graphics data i1s situated 1n an interleaved
conilguration;

wherein the graphics data includes normal data, texture
data, color data, and weight data.
23. A method as recited in claim 22, wherein the graphics
data 1s retrieved when accessed.
24. A method for allowing direct memory access to
ographics data by a graphics accelerator module, comprising:

(a) identifying a stride, an offset, and a format associated
with graphics data;

(b) locating graphics data stored in memory based at least
in part on the stride, the offset, and the format; and

(c) directly accessing the graphics data in the memory;

wherein the graphics data includes a plurality of compo-
nents each of which has a separate associated stride
value and offset value;

wherein each of the components of the graphics data
includes at least one associated format value indicative
of a size and type of the corresponding component of
the graphics data;

wheremn the graphics data 1s situated 1n an interleaved
conilguration;

wherein the graphics data includes normal data, texture

data, color data, and weight data.

25. A data structure stored in memory for allowing direct
memory access to graphics data by a graphics accelerator
module, comprising:

(a) parameter objects identifying a stride, an offset, and a

format associated with graphics data;

wherein the graphics data i1s stored in memory, and 1is
directly accessed based at least in part on the stride, the

[

offset, and the format;
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wherein the graphics data includes a plurality of compo-
nents each of which has a separate associated stride
value and offset value;

wherein each of the components of the graphics data
includes at least one associated format value indicative
of a size and type of the corresponding component of
the graphics data;

wherein the graphics data is situated 1n an interleaved
conilguration;

wherein the graphics data includes normal data, texture
data, color data, and weight data.
26. A data structure stored 1n memory for allowing direct

memory access to graphics data by a graphics accelerator
module, comprising;

(a) parameter objects identifying a size and a type asso-
clated with graphics data;

wherein the graphics data 1s stored in memory, and 1s
directly accessed based at least in part on the size and
the type;

wherein the graphics data includes a plurality of compo-
nents each of which has a separate associated stride
value and offset value;
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wheremn each of the components of the graphics data
includes at least one associated format value indicative
of the size and type of the corresponding component of
the graphics data;

wheremn the graphics data 1s situated 1n an interleaved
conilguration;

wherein the graphics data includes normal data, texture
data, color data, and weight data.

27. A data structure as recited in claim 25, wherein the
ographics data includes:

position (XY Z W) [stride0, offset0, format0|;
diffuse(R G B A) [stridel, offsetl, format1];
specular(R G B F) [stride2, offset2, format2];
textureO (S T R Q)
texturel (S T R Q) [stride4, offset4, format4|;
fog(F) [stride5, offset5, format5];

normal (Nx Ny Nz) [stride6, offset6, format6]; and
welght (W) [stride7, offset7, format 7].

stride3, offset3, format3];

¥ ¥ H ¥ oH
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