US006865508B2
a2 United States Patent (10) Patent No.: US 6,865,508 B2
Ueki et al. 45) Date of Patent: Mar. 8, 2005
(54) LOG ANALYSIS METHOD AND TP 2002-259168 * 9/2002

RECORDING MEDIUM STORING LOG
ANALYSIS PROGRAM

(75) Inventors: Katsuhiko Ueki, Tokyo (JP);
Humitaka Tamura, Kanagawa (JP);
Wataru Okamoto, Kanagawa (JP);
Masayuki Hirayama, Kanagawa (JP)

(73) Assignee: Kabushiki Kaisha Toshiba, Tokyo (JP)

(*) Notice: Subject to any disclaimer, the term of this
patent 15 extended or adjusted under 35
U.S.C. 154(b) by 69 days.

(21) Appl. No.: 10/329,397

(22) Filed: Dec. 27, 2002

(65) Prior Publication Data

US 2003/0125904 Al Jul. 3, 2003
(30) Foreign Application Priority Data
Dec. 28, 2001 (JP) veiiiiiicereeeee 2001-401926
(51) Imt.CL7 ..o, GO6F 17/18; GO6F 19/00
(52) US.CL ..., 702/181; 703/22; 709/224

(58) Field of Search 702/127, 179,
702/181, 182, 186; 703/22; 370/241, 252;
700/91; 706/52; 709/224

(56) References Cited
U.S. PATENT DOCUMENTS
6,564,170 B2 * 5/2003 Halabieh 702/181
2002/0069044 Al * 6/2002 Bergetal. 703/22

FOREIGN PATENT DOCUMENTS

OTHER PUBLICAITONS

Translation of JP 2002-259168.*

William Daickinson, et al., “Finding Failures by Cluster
Analysis of Execution Profiles”, Proceedings of the 23"
International Conference on Software Engineering, ICSE,

2001, pp. 339-348.

K. Ueki, et al., The Institute of Electronics, Information and
Communication Engineers, vol. 100, No. 186, pp. 1-8, “A
Probe Debugging Method”, Jul. 2000 (with English
Abstract).

* cited by examiner

Primary Fxaminer—John Barlow
Assistant Fxaminer—John Le

(74) Attorney, Agent, or Firm—Oblon, Spivak, McCelland,
Maier & Neustadt, P.C.

(57) ABSTRACT

One of log analysis methods of the present invention
includes the step of executing a program a plurality of times;
executing a program a plurality of times; the step of gener-
ating a plurality of logs, each log being recorded a plurality
of events occurring upon the execution of the program
according to an occurrence order of each of the events 1n
cach of the logs; the step of performing a first calculation to
calculate an event occurrence probability, for the occurrence
order of each event, based on at least one from the program
description concerning each event recorded in the logs and
the data to be used upon the execution of the program
description; and the step of outputting information concern-
ing an event which corresponds to a characteristic included
in the logs, based on the event occurrence probability.

IP 10-320234 12/1998 16 Claims, 23 Drawing Sheets
4 i=3 1
=2 l
1=1 Y
EXECUTION LOG 1 LOG 2 LOG 3
O o - 2a EVENT
f(10) f20) f(30) d
% g10)] {10} | go)[~2b EVENT
é* - : :
s L
PROGRAM
PROGRAM DESCRIPTION
| DATA
/
LOG 1 f(10) | £(10)| b{1)
" L0G 2 £20) | g(-10) h(-2)
LOG 3 f(30) | £(20)| h(3)

OF EVENT

QUTPUT LGG2
OCCURRENCE ORDER

\.

OCCURRENCE I

PROBABILITY OCCURRENCE

PROBABILITY
OF EVENT

SECOND
OCCURRENCE PROBABILITY 33%

INFORMATION CONCERNING
>EVENT CORRESPONDING TO
THE LOG CHARACTERISTIC

U.S. Patent Mar. 8, 2005 Sheet 1 of 23 US 6,865,508 B2

FI1G. 1

4 -
=

i=2 .
=1 ¥ Y Y
EXECUTION LOG 1 LOG 2 LOG 3

ORDER
f(30) « 2a EVENT
Y[~ 2b EVENT

OCCURRENCE ORDER

la

PROGRAM

PROGRAM DESCRIPTION
DATA

ORDER , ;
/

LOG 3

OCCURRENCE

PROBABILITY OCCURRENCE
| OF EVENT PROBABILITY
OF EVENT

'\ﬂ

OUTPUT LOG | INFORMATION CONCERNING
OCCURRENCE ORDER SECOND L. EVENT CORRESPONDING TO

OCCURRENCE PROBABILITY 33% | THE LOG CHARACTERISTIC
\

U.S. Patent Mar. 8, 2005 Sheet 2 of 23 US 6,865,508 B2

FI1G. 2

. - 5 .
4 CEXECUTE § /7 MEMORY AREA

PROGRAM | LOG

OCCURRENCE ORDER |

CLASSIFIED CLASSIFIED CLASSIFIED
LOG | LOG 2 LOG 3

3a
| JVCONVERT ‘LCOIWERT J’CONVERT
A GVEN
< EVENT ROW 2
. [T
-
<
6 ~
ad
—
-
-’
-
"RAM N CONVERTED CONVERTED CONVERTED
PROG DESCRIPTIO — I CONV CONV.
| OCCURRENCE
ORDER
|
CONVERTED
LOG 1

] 2 3

\f g h
g —
LOG 2 5 h
A N N
LOG 3
OCCURRENCE PROBABILITY OF “f’
RARITY

INFORMATION

QUTPUT CONVERTED LOG 3 1
| CONCERNING EVENT
OCCURRENCE ORDER THIRD CORRESPONDING TO

_ OCCURRENCE PROBABILITY 3 3% ~ THE LOG CHARACTERISTIC

U.S. Patent Mar. 8, 2005 Sheet 3 of 23 US 6,865,508 B2

FI1G. 3

12 10

EVENT ROW <
GENERATOR m
LOG GENERATOR 11
3

LOG CONVERTER |1
14 18
)
EVENT OCCURRENCE
PROBABILITY le—— BSX‘E‘SY%%HE
CALCULATOR
15 16
RARITY
RARITY CALCULATOR R NIT
17

OUTPUT UNIT

U.S. Patent Mar. 8, 2005 Sheet 4 of 23 US 6,865,508 B2

FIG. 4

OPERATOR INPUTS A LOG S10
LOG GENERATOR GENERATES A PLURALITY OF LOGS |~ S15

EVENT ROW GENERATOR GENERATES AN EVENT ROW[~ 520

LOG CONVERTER CONVERTS RESPECTIVE LOGS
INTO CONVERTED LOGS

S30

EVENT OCCURRENCE PROBABILITY CALCULATOR
CALCULATES OCCURRENCE PROBABILITIES OF

RESPECTIVE EVENTS

S40

RARITY CALCULATOR CALCULATES RARITIES S50

SO0

RARITY JUDGING
UNIT JUDGES AS TO WHETHER
OR NOT LOG CHARACTERISTIC
EXISTS

YES

NO _ $120

DATA VALUE CLASSIFIER GENERATES CLASSIFICATION
INFORMATION AND GIVES CLASSIFICATION
INFORMATION TO RESPECTIVE EVENTS

570

EVENT OCCURRENCE PROBABILITY
CALCULATOR CALCULATES OCCURRENCE

PROBABILITIES BASED ON PROGRAM DESCRIPTION
AND CLASSIFICATION INFORMATION

S80

RARITY CALCULATOR CALCULATES RARITIES SO0

(N

US 6,365,508 B2
—

IILSTHHLOVAVHD D0OT dHIL OL
ONIANOISTII0D LNJAT ONINYIONOD
NOILVINHOANI S1O4dLNO LINN INdLNO

ol
L\ _
I DILSHALDVIVHD D071 40 071S
0 JONALSIXH-NON DONIIVOIANI
3 NOLLYWYOANI LNd1NO SHA
7 9
OLLS SISIXA JILSHALDVIVHD
e _ L TS 00T LON 40 YdHIAHM OL SV SIOANl LINN
= ONIOANL ALIEAVY
-
5 001S
>

S DId

U.S. Patent

U.S. Patent Mar. 8, 2005 Sheet 6 of 23 US 6,865,508 B2

FIG. 6

int f (int num);
int k(int num);
int g(int 1d);
int h(int cost);
int price [] = { 100, 50, 20, 10 Y
int fee[]l = {80, 20, -20 } ;
int main() {
int 1:
for (i=0;1<20;1 =i+4) {
it (f(1)!'=k@@)) |
printf (" error\n");
h
}

return 0O;

s

int f(int num); {
int 1;
int cost:
mt tax =0

for (i=num; i<num+4;i++)

cost = (1) ;
tax =tax + h{cost);

!

return tax .

}

int k(int num); 1{
int 1:
1Nt cost ;
int sum=0;
int tax = 0;

for (1=num; i<num+4;1++) |
cost = g(1);
if (cost>0) {
sum = sum + COSt .
j

tax = h(sum);

h

return tax

i

int g(int 1d); {
cost | e
cost = price [1d%4] + fee[1d73];
return cost ;

}

int h(int cost); {
int tax .
tax = cost/10;
retuim tax .

P

U.S. Patent Mar. 8, 2005 Sheet 7 of 23 US 6,865,508 B2

FIG. 7

OCCURRENCE ORDER

>

LOG 1:f(0) g(0) h(180) g(1) h(70) g(2) h(0) g(3) h(90) FIRST '

k(0) g(0) h(180) g(1) h(250)g(2) h(250)g(3) h(340) EXECUTION
LOG 2:f(4) g(4) h(120)g(5) h(30) g(6) h(100)g(7) h(30) |._, |SECOND
k(4) g(4) h(120) g(5) h(150)g(6) h(250)g(7) h(280) EXECUTION
1L0G 3:£8) 2(8) h(80) g(9) h(130)g(10)h(40) g(11) h(-10) THIRD

k(8) 2(8) h(80) £(9) h(210)g(10)h(250)g(11) h(250)|'~> |EXECUTION

LOG 4:£(12) g(12)h(180) g(13) h(70) g(14)h(0) g(15)h(90) |._,,|FOURIH
k(12)g(12) h(180) g(13) h(250) g(14) h(250) g(15) h(340) [2|EXECUTION

el

LOG 5:£(16) g(16)h(120) g(17) h(30) g(18) h(100)g(19) h(30) 16| FIFTH
k(16)g(16) h(120) g(17) h(150) g(18) h(250) g(19) h(280) EXECUTION

FIG. &

OCCURRENCE

ORDER

CONVERTED
LOG B
CONVERTED LOG 1I:
CONVERTED LOG 2:
CONVERTED LOG 3;
CONVERTED LOG 4:
CONVERTED LOG 35:

1 2 34 5 6 7 8 91011121314151617 18

g
&
2
&
&

QOCCURRENCE
CONVERTED 1 2 34 56 7 8 9101112131415161718
LOG _
CONVERTEDLOG1:|f ¢ h g h g h g h k g h g h g h g |
CONVERTEDLOG?2:/f ¢ h g h g h g h k g h g h g h gh
CONVERTEDLOG3:|f ¢ h ¢ h g h g h k g h g h ¢ h g h
CONVERTEDLOG4:/f g h g h g h g h k g h g h g h gh
CONVERTEDLOGSx:|f ¢ h ¢ h ¢ h ¢ h - g h g h g h g I

U.S. Patent Mar. 8, 2005 Sheet 8 of 23 US 6,865,508 B2

FIG. 10

QCCURRENCE! | > 3 4 5 6 7 8 9 10111213 14151617 18

EVENT f ¢ hghghghkghghghgh
1] 11 11 1 11 1111 1111/

OCCURRENCE
PROBABILITY}| |

FIG. 11

QCCURRENCE! | 2 3 4 5 6 7 8 9 101112131415161718]

EVENT f e hghghghkghghghaegh

OCCURRENCE
PROBABILITY] !

1011121314151617 18

OCCURRENCE
" ORDER|

CONVERTED LOG 1 {0

CONVERTED LOG 2|0
CONVERTED LOG 3 |0
CONVERTED LOG 4 {0

CONVERTED LOG 5 {0

o0 OO O
oo OO
oo O OO
e e R ate BN e B @
e e N eve N o N e
S O O OO
oo OO

S wie T e S s B e
s B e B s AN e BN e
o OO OO

U.S. Patent Mar. 8, 2005 Sheet 9 of 23 US 6,865,508 B2

FIG. 13

OCCURRENCE

1 2 3 45 6 7 8 91011121314151617 18

CONVERTED
LOG

CONVERTEDLOG1 [0 0 0 0 0 0 0 O 001 0 O O O O O O O

CONVERTEDLOG2]0 0 0 0 0 O 0 0 001 0 0 O O O O O O

CONVERTEDLOG3 |0 0 0 0 0 0 O O 001 0 O O O O O O O

CONVERTEDLOG4 |0 ¢ 0 0 0 0 0 0 001 0 O O O O O O O

CONVERTEDLOGS5x|0 ¢ 0 0 0 0 0 0 007 0 0 O O O 0 O O
FIG. 14

1 2 3 4 5 6 7 8 9101112131415 1617 18

f+ p+ h+ g+ ht gt ht gt ht k+ gt ht gt ht gt ht gt ht
fi g+ h+ gt ht gt ht g+ ht kt gt ht gt ht gt ht g+ ht
f+ g+ bt gt ht gt bt gt h- k+ gt ht gt ht gt ht gt bt
f+ gt ht gt ht g+ h+ gt ht k+ gt ht gt ht gt ht g+ bt
f+ o+ ht+ g+ h+ gt ht g+ ht k+ gt bt gt h+ gt ht gt ht

FIG. 15

OCCURRENCE
ORDER

EVENT

OCCURRENCE
PROBABILITY

] 23 45 6 7 8 9 1011121314151617 18

f+ g+ h+ g+ h+ g+ h+ g+ h+ k+ g+ h+ g+ ht g+ ht+ g+ ht

U.S. Patent Mar. 8, 2005 Sheet 10 of 23 US 6,865,508 B2

FIG. 17
)CCURRENCE '
ROERI1 2 3 4 56 7 8 91011121314151617 18| RCTERITIC
0.8
0.8
).
3
0.8
FIG. 18
LLLURKEN CHARACTERISTIC
LOI 2345067 8 91011121314151617 18 yAlLE
0000000001000006000 0F>01
000000000100000000 0}k>01
000000000700 000000 007
000000000100000000 0p>01
000000000100000000O0k01

US 6,365,508 B2

Sheet 11 of 23

Mar. 8, 2005

JOLVNDISdd
VAdV

U.S. Patent

JOIVINDTVO HI1'TVA
DILSTIALOVAVHO

LINM1 LOdLNO

LINIY DONIDANI

A ITIVY JOLVINDTVD ALLIdV Y

JOLVI[IDIVO
ALI'TIHVHOUd
AONATA(1D00 INITAH

JATIISSVIO
d1'IVA VIvd

vl
JOIVIANTD DOT)
A3141SSV D YA LYAANOD DO
_ A
CC €1
JAIAISSVIO %
3108
[T _ 01
61 ODIA

AOIVIANAD

U.S. Patent Mar. 8, 2005 Sheet 12 of 23 US 6,865,508 B2

FIG. 20

OPERATOR DESIGNATES A GIVEN ARRAY VARIABLE 5200

LOG CLASSIFIER PERFORMS CLASSIFYING PROCESSING 5210

CLASSIFIED LOG GENERATOR GENERATES A PLURALITY |._g971¢
OF CLASSIFIED LOGS

LOG CONVERTER CONVERTS RESPECTIVE CLASSIFIED <230
LOGS INTO CONVERTED LOGS

EVENT OCCURRENCE PROBABILITY CALCULATOR 9940
CALCULATES OCCURRENCE PROBABILITIES OF

RESPECTIVE EVENTS

RARITY CALCULATOR CALCULATES RARITIES 5250

S255

RARITY JUDGING
UNIT JUDGES AS TO WHETHER
OR NOT LOGE)((jllﬂslz%gACTERISTIC

YES .
]

NO

ICHARACTERISTIC
VALUE CALCULATOR
CALCULATES CHARACTERISTIC
VALUES OF RESPECTIVE
CONVERTED LOGS

S260
5257

INFORMATION
CONCERNING EVENT
INFORMATION CORR}%PI%JGDING
_ TO T
CONCERNING CONVERTED CHARACTERISTIC

5265~ LOG CORRESPONDING TO
LARGEST CHARACTERISTIC
VALUE IS OUTPUTTED

IS OUTPUTTED

END

U.S. Patent

Mar. 3, 2005

FIG. 21

int vals [13] ;

Sheet 13 of 23 US 6,865,508 B2

int main ()
i
mt 1;
for (1=1;i<=12;i+t) {
init (1) ;
}
for (i=1;i<=12;1+t) {
if (12%4=0) {
clean(1);
}
P .
for (i=1;i<=12;1*+%) {
if (1263==0) {
calc (1) ;
j
¥
return 0;

i

~void 1nit (int 1)

{ wvals[1] = 0;

void clean (int 1)
{ vals[1] =-1;

void calc (int 1)
{ vals[i1] t= 1; }

FI1G. 22

init : vals [1]
init : vals [2]
init : vals [3]
init : vals [4]
init : vals [5]
init : vals [6]
init : vals [7]
init : vals [&]
init : vals [9]
init : vals [10]
init : vals[11]
it : vals[12]
clean : vals [4]
clean : vals [8]
clean : vals [12]
calc : vals[3]
calc : vals [6]
calc : vals [9]
calc : vals[12]

b

}

OCCURRENCE ORDER

U.S. Patent Mar. 8, 2005

| OCCURRENCE
ORDER
CLASSIFIED LO

- CLASSIFIED LOG
CLASSIFIED LOG
CLASSIFIED LOG
CLASSIFIED LOG

CLASSIFIED LOG

CLASSIFIED LOG
CLASSIFIED LOG
CLASSIFIED LOG
CLASSIFIED LOG

CLASSIFIED LOG 10
CLASSIFIED LOG 11

CLASSIFIED LOG 12

\C GO =1 O\ W 2 b r—

CONVERTED LOG 1
CONVERTED LOG

CONVERTED LOG
CONVERTED LOG
CONVERTED LOG
CONVERTED LOG
CONVERTED LOG
CONVERTED LOG
CONVERTED LOG
CONVERTED LOG 10
CONVERTED LOG 11
CONVERTED LOG 12

O oo~ Lh Lo

OCCURRENCE
ORDER

OCCURRENCE
PROBABILITY

it : vals[11]

it - vals[10]

it : vals[12]

Sheet 14 of 23

calc : vals[3]
clean : vals[4]

calc : vals|[6]

clean : vals[&]
calc : vals[9]

0.33

US 6,365,508 B2

U.S. Patent Mar. 8, 2005 Sheet 15 of 23 US 6,865,508 B2

FIQG. 26
R [[
CONVERTED LO 3

CONVERTED LOG |
CONVERTED LOG 2

CONVERTED LOG 3

CONVERTED LOG
CONVERTED LOG
CONVERTED LOG
CONVERTED LOG
CONVERTED LOG
CONVERTED LOG

CONVERTED LOG
CONVERTED LOG

CONVERTED LOG

R,

N

R it bl
CORNNONNONINR
SOCCOOOO0000C
R N S N N
OO -3 ~JO0-J~100 Q100 ~1~)

N — O

ooocccmoooool

FI1G. 27

CONVERTED LOG
CONVERTED LOG
CONVERTED LOG

]
2
3
CONVERTED LOG 4
CONVERTED LOG g
7

3

CONVERTED. LOG
CONVERTED LOG
CONVERTED LOG
CONVERTED LOG
CONVERTED LOG 10
CONVERTED LOG 11

CONVERTED LOG 12

"D

GONO O O ~JI\O

FIG. 28

OCCURRENCE
R

CONVERTED LOG |
CONVERTED LOG 2
CONVERTED LOG 3
CONVERTED LOG 4
CONVERTED LOG 5
CONVERTED LOG 6
CONVERTED LOG 7
CONVERTED LOG 8
CONVERTED LOG 9
CONVERTED LOG 10
CONVERTED
CONVERTED

Y
o
I

H—‘H'_""_“""*F—“"-*F——*.I-—li——ln—_i
B9~ ~ 3~ B~~~ R~ <1~
Lh LA L n LA L LA L LA LA L U
SO OoDOoO0
Te V= NETe ¥o N Te No NI T e No
LR -Q-JUIDN QLR IOV~

COOOO00OODOD

U.S. Patent Mar. 8, 2005 Sheet 16 of 23 US 6,865,508 B2

FI1G. 29

class A

{

public :
int height ;
it width ;

|

void 1 ();
void g(A &a);

int main ()

d
A al;

al .height = 10;
al.width = 20;
g(al);

fQO;

A a3

a3. height = 30;

1INt area;

area = a3. height * a3. width;

}
void 1 ();

{
A az2;:
a2. height = 20;
a2. width = 20;
} g(a2);

voild g(A &a)
f

It area.
area = a. height * a. width;

h

US 6,365,508 B2

Sheet 17 of 23

Mar. 3, 2005

U.S. Patent

0 = 0Z101X(:BIR "FEOO [XO PP ER 0€00T1X0:YBIY R ‘0E001X0:€e

_ 0€001X0Y31Y €. ‘OE00 1 X0 ¢P

0€001x0:¢E

00 = 0T T101X0:B31e ‘pZOOIXOPPIMZE ‘OZO0IX0YS2Y ZR ‘0Z001X0:®
0Z001X0:ZkE

0Z=rT001X0:UIPIM TR ‘0Z001X0:T®

0C001X0-CE

00T = 0010 1XQ:B218 ‘P [QOTX0:YIPIM [B ‘Q1OQTX0:IYBIAY 1B ‘0100 1X0:®
| 01001X0:[®

0Z=F1001X0:PIM TR ‘01 001X0: T

01=01001X0:3Y31oY 1€ 01001 X0:1®

01001X0:1®

OCCURRENCE ORDER

Ot DId

0T = 0Z001X0: 818y e ‘0Z001X%0:22

IpIMUEe , JYSoy ge=eale

‘0€ = sy ¢e

ey

‘YIPIM'R 4 Y313 e=paIp
‘(7e)3

0T = Pppim-ze

‘07 = W3y ze

ey

03

yIipime , gy e=eaie
‘(1e)3

0T = Ipim° e

‘01 =3y e

[ev

(Jurew

US 6,365,508 B2

Sheet 18 of 23

Mar. 3, 2005

U.S. Patent

00 = 01101%0 : B2IR ‘bTOOIX0 © YPIA "8 ‘07T00TX0 - Y312y "Z- ‘07001 X0 : ©
02001 X0 : Ze

0Z= $TO0T1X0 © PPM "Ze ‘07001 X0 : Z®

0Z=0T001X0 : Y31y "Ze ‘07001 X0 - Z®

02001 X0 - T°®

00T =00101%0 : BaIE “HTQQTIX0 : YIPIM "1 ‘Q1001X0 : Y3Y "12 ‘Q100] X (O : ®
01001 X0 : [®

0Z=1001%0 : YIpIm (B ‘QT001 X0 : 1®

01=01001%0 : W31y "[e 01001 X0 : [®

01001 X0 : [©

te DId

: EEE B 4 JUBIAY ‘e = BaIe
¢ (7e)3
. 07 =Ypim "o
: 0T =319y "ze
A

¢ DOT AAI4ISSVIOD
 PpIM "B, Y319y B = eaIE

. ([»)d

L 0T =YIpim "[®
} 01 =14s1ay "1e
LAY

1 DOT dAIAISSVIOD

U.S. Patent Mar. 8, 2005 Sheet 19 of 23 US 6,865,508 B2

FI1G. 32

CLASSIFIED LOG 1I:

Aal ;
al. height =10 ;
al. width = 20 ;

g(al) ;
area = a. height * a. wadth ;

CLASSIFIED LOG 2: ,

A a2 ;

a2. height = 20 ;
a2. width = 20 ;
g(az) ;

area = a. height * a. width ;

US 6,365,508 B2

0 =0Z101X0 - B3R HEQOIX() WPIM €8 “0E001X0 : WB12Y "B 0001 X 0 : €8 ¢ yipim "ge , JyS1aY '¢e — vare

0£001X0 : Y313y "¢e ‘0E001 X 0 : ¢B L 0t =319y "ge
0£00] X 0 : €® “ cpy
€ DOT AALIISSYTD
- 00 = OT101X0 : Ba1e pZO0TX0 © YIPIM "Z8 ‘02001X0 : WSIay "Ze ‘07001 X0 : © L Ipm R, IS10Y e = RoIR
» 0T001 X0 : Ze : (z®)3
= 0= $T001X0 : PP T8 ‘GTO0] X 0 : Z® 107 =Yipim e
5 0T= 0T001X0 : WSIBY ‘7. ‘0Z00T X O : T® 07 =ysiay e
= . 0ZO0T X O : ge AR
2 DOT AALIISSVID
. 00T = 00101X0 © eI " 100TX0 : YIPIm TR ‘O[001X0 : WSL_Y " [BQOT00T X0 - ®© . Ipis B JYSISY B = eale
= 01001 X0 : T® < (12)3
o 0= #1001X0 : WPIM "Te Q1001 X0 : |® 0T =1IpIa e
> 01=01001X0 : W31Y ‘T ‘0100] X0 : [® L0 =13y "fe
> 0100T X0 : [8 . [BY

-1 O0T dAIJISSVID

et DId

U.S. Patent

U.S. Patent Mar. 8, 2005 Sheet 21 of 23 US 6,865,508 B2

FIG. 34

CLASSIFIED LOG 1:

A al ;

al. height=10 ;
al. width = 20 ;
g(al) ; -

area = a. height * a. width ;

CLASSIFIED LOG 2:

A a2 ;

a2. height = 20 ;
a?2. width = 20 ;
g(a2) ;

area = a. height * a. width ;

CLASSIFIED LOG 3:

A a3,
a3. height = 30 ;
area = a3. height * a3. width ;

US 6,365,508 B2

Sheet 22 of 23

Mar. 3, 2005

U.S. Patent

0T

el

HOET

30¢1

JOtl

[1dD

ddl4ISSVID
4[1'IVA VIvVd

dHIAISSYID
DO

J0LVINDTVD
INTYA || LIND ONIDANS
DILSALIVIVHD

JOLVYANAD DO
UHIAISSVID

JOLVIANHD
D01

0t

0Cl1

l

dOLVINDTVO
ALIEVY

JOLVINDTVD
ALI'TTHVHOYd
AINHYADD0
INHAA

A LIHIANOD
DO

JOLVHANHD
MOYd INHAH

AJONHW

33

0t]

POLI

0¢l

Q0t

0Ll

DI

vl

OlT

LIN{1 LOdLOO/LNdNI
JOLVNDISdd

001

¢ WVHEDOUd
SISATVNY DO

I INVHDOUd
SISATVNY D071

U.S. Patent Mar. 8, 2005 Sheet 23 of 23 US 6,865,508 B2

FIG. 36

US 6,565,508 B2

1

LOG ANALYSIS METHOD AND
RECORDING MEDIUM STORING LOG
ANALYSIS PROGRAM

CROSS REFERENCE TO RELATED
APPLICATTIONS

This application 1s based upon and claims the benefit of
priority from the prior Japanese Patent Application No.
p2001-401926, filed on Dec. 28, 2001; the entire contents of

which are incorporated herein by reference.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention 1s related to a method of analyzing
log obtained by execution of program and a computer
readable recording medium storing a log analysis program.

2. Description of the Related Art

In the field of software development 1n recent years, logs
obtained by execution of a subject program are utilized 1n a
debugging operation as to whether or not there are bugs
within the subject program. To be more precise, the follow-
ing debugging method using logs 1s widely used.
Specifically, a predetermined viewer displays at least one log
which includes one or a plurality of items of event infor-
mation. Then, a debugging operator performs a debugging
operation based on the display.

For example, one or more logs displayed by the prede-
termined viewer indicate a history of a series of system calls
executed by an operating system (OS), or a history of a
serics of 1nstances of memory access caused by operation of
hardware (or an emulator). Here, an event means a change
of state such as system call and memory access. The
following two methods are known for the case when the
debugging operator performs debugging operation based on
one or more logs obtained by execution of the subject
program.

(1) A debugging operator carefully investigates one log
checked abnormal. Then, the debugging operator seeks a
source of a bug based on the mvestigation.

(2) The debugging operator compares “at least one log
obtained by the normal execution of a subject program”
and “at least one log obtained by the abnormal execution
ol a subject program™ and seeks a difference between “at
least one log obtained by the normal execution of a
subject program” and “at least one log obtained by the
abnormal execution of a subject program”. Then, the
debugeing operator investigates the difference inten-
sively.

In the case (1), there is no guideline showing as to which
part of the log the debugging operator should investigate
intensively. Accordingly, the debugging operation becomes
complex as the amount of log 1s increases. As a result, 1t 1s
difficult for an unskilled debugging operator to perform the
debugging operation when the amount of the log 1s large.

In the case (2), the debugging operator might pay atten-
tion to a simple difference between “at least one log obtained
by the normal execution of a subject program™ and “at least
one log obtained by the abnormal execution of a subject
program”. Since there are so many points to be paid atten-
fion 1n such a case, the debugging operator cannot perform
the debugging operation efficiently.

Accordingly, the following method which achieves
enhancement of debugging efficiency, (Japanese Patent
Application No. 2001-060699; Wataru Okamoto, Katsuhiko

Ueki et al., “Proposal for a probe debugging method”,

10

15

20

25

30

35

40

45

50

55

60

65

2

Technical Report of the Institute of Electronics, Information
and Communication Engineers, Vol. 100, No. 186, pp 1-8
(2000-7); Wataru Okamoto et al., “Realization of a probe
debugging method (1) Outlines and Evaluations”, The 62nd
National Conference of Information Processing Society of
Japan, 2Z-2 (2001-03); and Fumitaka Tamura et al., “Real-
ization of a probe debugging method (2) Algorithms™),is
proposed.

Specifically, for example, a log characteristic extracting
device extracts a characteristic log from among a plurality of
logs recording a series of events (a series of events occurring
upon execution of a subject program). Then, a debugging
operator preferentially investigates program codes concern-
ing the characteristic log. In this proposal, the log charac-
teristic extracting device extracts a log characteristic by
calculating occurrence probability of each event. In this
case, the log characteristic extracting device extracts the log
characteristic by considering each description within the
subject program and by considering an execution order of
cach description within the subject program.

Thereafter, the debugging operator closely investigates
information concerning the event corresponding to the log
characteristic. As a result, the debugging operator can per-
form the debugging operation of the subject program effi-
ciently.

Meanwhile, when a given device executes the subject
program, various data 1s read from a memory for the given
device to perform a given processing. Moreover, for
example, the given device can also record the various data
into a built-in register as “log”. Furthermore, the given
device outputs the log after execution of the subject pro-
gram.

For this reason, 1f the log characteristic extracting device
can extract a log characteristic further by considering data to
be used upon execution of the subject program, then the
debugging operation will become convenient in the follow-
ing point. Specifically, even when the log characteristic
extracting device cannot extract the log characteristic only
considering “each description within the subject program”™
and “an execution order of each description within the
subject program”, there are cases where the log character-
1stic extracting device 1s able to extract the log characteristic
by considering data to be used upon execution of the subject
program.

Upon extracting the log characteristic, what 1s important
1s how the log characteristic extracting device considers data
to be used upon execution of the subject program. Following
1s a specific example. For example, code 1, code g and code
hare functions described within the subject program. A
series ol events occur as a result of execution of the subject
program by the given device. Moreover, the given device
records the series of events as “log”, according to an
occurrence order of each event. Furthermore, for, example,
the given device outputs a plurality of logs, in which the
series of events are recorded according to the occurrence
order, after execution of the subject program. The respective
outputted logs are, for example, the following logs 1, 2 and
3:

Log 1: f(-2) g(10) h(14)

Log 2: {(11) g(15) h(18)

Log 3: {(12) g(16) h(19)

Here, each parenthesized numeral, for example, means
parameter (data). In the above-described example, when the
log characteristic extracting device extracts the log charac-
teristic by considering data (parameter), the following prob-
lem exists. Specifically, even 1f the log characteristic extract-
ing device calculates the occurrence probability of each

US 6,565,508 B2

3

event by simply comparing the logs with one another, the
occurrence probabilities of the respective events become
equal or close to one another. For this reason, even if the log
characteristic extracting device performs an extraction
operation by considering data used upon execution of the
subject program, there are cases where 1t 1s difficult for the
log characteristic extracting device to extract the log char-
acteristic.

On the other hand, when the log characteristic extracting
device does not perform the extraction operation by consid-
ering data used upon execution of the subject program, the
following problem exists. Specifically, as in the above-
described example, 1f the occurrence order of the respective
events in each log are identical to each other(f, g, h), it is
difficult for the log characteristic extracting device to extract
the log characteristic. Therefore, the log characteristic
extracting device needs to extract the log characteristic in
appropriate consideration of data used upon execution of the
subject program.

Meanwhile, the given device accesses to memory area, by
executing the function described within the subject program.
For this reason, if the log characteristic extracting device can
extract log characteristic further by considering access to the
memory area, then the debugging operation will become
convenient in the following point. Specifically, even when
the log characteristic extracting device cannot extract the log
characteristic by considering “cach description within the
subject program” and “an execution order of each descrip-
tion within the subject program”™, there are cases where the
log characteristic extracting device can extract the log
characteristic by appropriately considering access to the
MmMemory area.

BRIEF SUMMARY OF THE INVENTION

An object of the present invention 1s to provide a log
analysis method capable of providing information useful for
program debugging by appropriately considering items
other than “each description within a program and an
execution order of each description”, and to provide a
computer readable recording medium storing a log analysis
program.

To achieve the object, one of log analysis methods of the
present invention comprises the step of executing a program
a plurality of times; the step of generating a plurality of logs,
cach log being recorded a plurality of events occurring upon
the execution of the program according to an occurrence
order of each of the events in each of the logs; the step of
performing a first calculation to calculate an event occur-
rence probability, for the occurrence order of each event,
based on at least one from the program description concern-
ing each event recorded 1n the logs and the data to be used
upon the execution of the program description; and the step
of outputting information concerning an event which corre-
sponds to a characteristic included in the logs, based on the
event occurrence probability.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

FIG. 1 1s a view describing a first concept of the present
invention.

FIG. 2 1s a view describing a second concept of the
present mvention.

FIG. 3 1s a view showing a configuration of a log analysis
device according to Embodiment 1.

FIG. 4 1s a flowchart describing a log analysis method of
Embodiment 1.

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 5 1s another flowchart describing the log analysis
method of Embodiment 1.

FIG. 6 1s a view showing one example of a subject
program for describing the log analysis method of Embodi-
ment 1.

FIG. 7 1s a view showing one example of a plurality of
logs generated by a log generator of Embodiment 1.

FIG. 8 1s a view showing one example of a plurality of
converted logs converted by a log converter of Embodiment

1.

FIG. 9 15 a view showing another example of the plurality
of converted logs converted by a log converter of Embodi-
ment 1.

FIG. 10 1s a view showing the event occurrence prob-
abilities calculated by an event occurrence probability cal-
culator of Embodiment 1.

FIG. 11 is another view showing the occurrence prob-
abilities calculated by the event occurrence probability cal-
culator of Embodiment 1.

FIG. 12 1s a view showing rarities calculated by a rarity
calculator of Embodiment 1.

FIG. 13 1s another view showing the rarities calculated by
the rarity calculator of Embodiment 1.

FIG. 14 1s a view showing recorded contents of the
respective logs with classification information given by a
data value classifier of Embodiment 1.

FIG. 15 1s another view showing event occurrence prob-
abilities calculated by the event occurrence probability cal-
culator of Embodiment 1.

FIG. 16 1s another view showing the rarities calculated by
the rarity calculator of Embodiment 1.

FIG. 17 1s a supplementary view describing calculation
processing by a characteristic value calculator according to

Modified Example 2 of Embodiment 1.

FIG. 18 1s another supplementary view describing calcu-
lation processing by the characteristic value calculator
according to Modified Example 2 of Embodiment 1.

FIG. 19 1s a view showing a configuration of a log
analysis device according to Embodiment 2.

FI1G. 20 1s a flowchart describing a log analysis method of
Embodiment 2.

FIG. 21 1s a view showing one example of a subject
program for describing the log analysis method of Embodi-
ment 2.

FIG. 22 1s a view showing recorded contents of logs

obtained as a result of executing the subject program of
Embodiment 2.

FIG. 23 1s a view showing a plurality of classified logs
generated by a classified log generator of Embodiment 2.

FIG. 24 1s a view showing a plurality of converted logs
converted by a log converter of Embodiment 2.

FIG. 25 1s a view showing event occurrence probabilities
calculated by an event occurrence probability calculator of
Embodiment 2.

FIG. 26 1s a view showing rarities calculated by a rarity
calculator of Embodiment 2.

FIG. 27 1s a view showing characteristic values of the
respective converted logs calculated by a characteristic
value calculator of Embodiment 2.

FIG. 28 1s a supplementary view describing calculation
processing by the characteristic value calculator of Embodi-
ment 2.

FIG. 29 1s a view showing one example of a subject
program 1n order to describe a log analysis method accord-
ing to Application Example 1 of Embodiment 2.

US 6,565,508 B2

S

FIG. 30 1s a view showing the recorded contents of logs
obtained as a result of executing the subject program of
Application Example 1 of Embodiment 2.

FIG. 31 1s a view showing a plurality of classified logs
ogenerated by a classified log generator according to Appli-
cation Example 1 of Embodiment 2.

FIG. 32 1s another view showing the plurality of classified
logs generated by the classified log generator according to
Application Example 1 of Embodiment 2.

FIG. 33 1s a view showing a plurality of classified logs
generated by a classified log generator according to Appli-
cation Example 2 of Embodiment 2.

FIG. 34 1s another view showing the plurality of classified
logs generated by the classified log generator according to
Application Example 2 of Embodiment 2.

FIG. 35 1s a view showing a configuration of a computer
which stores a log analysis program of Embodiment 1, 2.

FIG. 36 1s a view showing recording media storing the log,
analysis program of Embodiment 1, 2.

DETAILED DESCRIPTION OF THE
INVENTION

Various embodiments of the present invention will be
described with reference to the accompanying drawings. It
1s to be noted that the same or similar reference numerals are
applied to the same or stmilar parts and elements throughout
the drawings, and the description of the same or similar parts
and elements will be omitted or simplified.

Generally and as it 1s conventional 1n the representation of
devices, 1t will be appreciated that the various drawings are
not drawn to scale from one figure to another nor 1nside a
ogrven figure.

In the following descriptions, numerous specific details
are set forth such as specific signal values, etc. to provide a
thorough understanding of the present invention. However,
it will be obvious to those skilled in the art that the present
invention may be practiced without such specific details. In
other 1nstances, well-known circuits have been shown 1n
block diagram forms i1n order not to obscure the present
invention 1n unnecessary detail.

FIG. 1 1s a view for describing a first concept of the
present invention. The first concept of the present invention
will be described below.

A log analysis method of the first concept includes the
following steps. The log analysis method includes the step of
executing a program (such as a program la) a plurality of
times(such as three times). In the step, events (such as event
2a and event 2b) occur upon execution of the program. The
log analysis method includes the step of generating a plu-
rality of logs(such as logl, log2, log3),cach log being
recorded a plurality of events occurring upon the execution
of the program according to an occurrence order(such as
first, second) of each of the events in each of the logs. Each
log is generated for each execution (i=1 to 3) in this step.

The log analysis method includes the step of calculating
an event occurrence probability, for the occurrence order of
cach event, based on at least one from the program descrip-
tion concerning cach event recorded in the logs and the
data(such as parameter of “f” and parameter of “g”, namely,
(10) and (20)) to be used upon the execution of the program
description.

The log analysis method includes the step of outputting
information(such as the log 2, the event of occurrence order
(second), event occurrence probability 33%) concerning an
event which corresponds to a characteristic included 1n the
logs(log 1~3), based on the event occurrence probability.

10

15

20

25

30

35

40

45

50

55

60

65

6

Description of embodiment 1 will be carried out based on
the above-mentioned concept. Similarly, description of
embodiment of a log analysis program 1 will be carried out
based on the above-mentioned concept.

Meanwhile, FIG. 2 1s a view for describing a second
concept of the present invention. A log analysis method of
the second concept 1s a log analysis method for analyzing a
log(such as log 5) in which a series of events(such as event
4a, event 4b, event 4¢) occurring upon execution of a
program(such as program 3a) are recorded according to an
occurrence order of each of the events,

A log analysis method of the second concept includes the
following steps. The log analysis method includes the step of
classifying each event based on a reference to a memory
area(such as memory area al memory area a2, memory area

a3) being performed upon execution of a program descrip-
fion corresponding to the each event.

The log analysis method 1ncludes the step of generating a
classified log(such as classified log 1),in each of which one
or more events classified as event concerning the reference
to the memory area(such as memory areas al, are recorded
according to the occurrence order of each event, for each
memory area(such as memory areas al, memory areas a2,
memory areas a3). The respective classified logs (the clas-
sified logs 1~3) are generated in this step.

The log analysis method includes the step of generating
an event row (such as an event row 6) in which a plurality
of events are recorded according to the occurrence order of
each of the plurality of events, based on events (such as
f(al), g(al), h(al), f(a2), g(a2), h(a2), f(a3), g(a3)) recorded
in each of the plurality of classified logs(classified logl~3).

The log analysis method includes the step of comparing,
each event recorded in the event row(such as an event row
6) with each event recorded in each of the classified logs
(classified log1~3) respectively.

The log analysis method includes the step of converting,
each of the classified logs(classified logl~3) into converted
log(converted logl~3) respectively, based on result of the
comparison.

The log analysis method includes the step of calculating
an event occurrence probability for the occurrence order of
cach event, based on each program description(such as “f”
“o”) concerning e¢ach event recorded in each of the con-
verted logs.

The log analysis method includes the step of calculating
rarity, indicating a level of an occurrence frequency of each
event, for the occurrence order of each event, based on each
calculated event occurrence probability.

The log analysis method includes the step of outputting,
information (the log 3, the event of occurrence order (third),
event occurrence probability 33%) concerning the event
which corresponds to a characteristic included 1n the con-
verted logs, based on each calculated rarity. Description of
embodiment 2 will be carried out based on the above-
mentioned concept. Similarly, description of embodiment of
a log analysis program 2 will be carried out based on the
above-mentioned concept.

Embodiment 1
(Configuration of Log Analysis Device)

FIG. 3 1s a block diagram showing a configuration of a log
analysis device of Embodiment 1. When at least one log 1s
inputted, the log analysis device analyzes the log and outputs
information concerning log characteristic, based on various
information specified by a debugging operator (hereinafter
simply referred to as an operator).

A given debugger (not shown) executes a subject program
(hereinafter simply referred to as a program). Then, the

US 6,565,508 B2

7

debugger has a function of collecting events occurring upon
execution of the program, and a function of recording the
events. However, a tracer which 1s a different device from
the debugger may have the function of collecting the events
and the function of recording the events. The tracer
exchanges various data with the debugger when the tracer
performs event-collecting processing and/or event-
recording processing. Moreover, the tracer traces an execu-
tion process of the program. In addition, the tracer records
a series of occurring events as “log” according to the
occurrence order of each event, for each unit (sequence) of
the execution process of the program. Thereafter, the tracer
outputs the log 1n which “the series of events occurring upon
execution of the program” are recorded.

In embodiment 1 or 1n the after-mentioned embodiment 2,
description will be made regarding an example 1n which the
debugger has the function of collecting the events, the
function of recording the events and the function of output-
ting the log.

Thereafter, the operator mputs at least one outputted log
into the log analysis device. In this embodiment, the type of
program(such as the programming language), the amount of
the program and the environment upon execution of the
program are not particularly limited.

The log analysis device includes an 1nput unit 10 with
which the operator inputs a log, a log generator 11 config-
ured to generate a plurality of logs, an event row generator
12, a log converter 13, an event occurrence probability
calculator 14, a rarity calculator 15, a rarity judging unit 16,
and an output unit 17.

The operator 1inputs a log through the mput unit 10. The
log 1s mnformation 1n which “a series of events occurring
upon execution of the program” are recorded according to
the occurrence order of each of the events.

The log generator 11 generates a plurality of logs based on
the log mputted by the operator. Concrete description 1s as
follows. For example, the debugger records, as “log”, the
events which occur as a result of the execution of the same
program a plurality of times, according to the occurrence
order of each of the events.

Then, the debugger outputs the log in which the events are
recorded according to the occurrence order of each event.
The operator mputs the log by using the 1nput unit 10. The
log generator 11 generates a log for each execution of the
program, based on the log inputted to the input unit 10. Each
log 1s an 1nformation 1in which a plurality of events are
recorded according to the occurrence order of each of the
plurality of events.

The event row generator 12 generates an event row, in
which a plurality of events are recorded according to the
occurrence order of each of the plurality of events, based on
the pattern of the events recorded 1n each log generated by
the log generator 11.

The log converter 13 converts each of the plurality of logs
generated by the log generator 11 1nto each of a plurality of
converted logs respectively, by use of the event row gener-
ated by the event row generator 12. Concrete processing
thereof will be described later.

The event occurrence probability calculator 14 calculates
occurrence probability of an event(hereinafter referred to as
event occurrence probability) for the occurrence order of
cach event, based on each program description concerning
cach event recorded 1n each of the converted logs. Here,
program description 1s description 1n the subject program.
For example, program description includes program code
such as a main function or subroutine function.

The rarity calculator 15 calculates a plurality of rarities
based on a plurality of event occurrence probabilities which

10

15

20

25

30

35

40

45

50

55

60

65

3

are calculated by the event occurrence probability calculator
14. The rarity 1s a degree indicating how rare the occurrence
or non-occurrence of an event 1s. For example, as a value of
rarity of a certain event becomes larger, 1t 1s possible to say
that the occurrence (or non-occurrence) of the event is rarer.
To be more precise, the rarity, for example, 1s a degree
indicating a level of the occurrence frequency of each event.
The log characteristic 1 this embodiment 1s determined
based on the rarity value, for example.

The rarity judging unit 16 judges as to whether or not a
characteristic (hereinafter is referred to as log characteristic)
1s 1included 1n the plurality of converted logs, based on the
rarities calculated by the rarity calculator 15. Concrete
processing thereof will be described later.

When the rarity judging umit 16 judges that the log
characteristic 1s included 1 the plurality of converted logs,
the output unit 17 outputs information concerning an event
which corresponds to the log characteristic included 1n the
plurality of converted logs.

The information concerning event includes a name of a
converted log, contents of the converted log, the occurrence
order of event corresponding to the log characteristic, the
event occurrence probability of the event, the rarity of the
event, and the like.

The log analysis device also includes a data value clas-
sifier 18. The data value classifier 18 performs the following
process 1n the case where the rarity judging unit 16 judges
that the log characteristic 1s not included 1n the plurality of
converted logs. Here, the case where the rarity judging unit
16 judges that the log characteristic 1s not included in the
plurality of converted logs 1s a case where all program
descriptions corresponding to all the occurrence orders(the
occurrence orders of all events recorded in each log) are
identical across the plurality of logs, for example. Here, each
program description 1s associated with each event recorded
in each converted log.

The data value classifier 18 generates classification infor-
mation to classify each event according to a given standard,
based on data to be used upon execution of program descrip-
tion corresponding to the event. Then, the data value clas-
sifier 18 gives generated classification information to each
event. In this embodiment 1, “a log 1n which a plurality of
events with classification mnformation are recorded” will be
simply referred to as “a log”.

Thereafter, the event occurrence probability calculator 14
calculates an event occurrence probability for the occurrence
order of each event(hereinafter “occurrence order of each
event” 1s referred to as “each event occurrence order”),
based on the program description concerning event and
classification information. Concrete processing thereof will
be described later.

Then, the rarity calculator 15 calculates the rarity, which
indicates a level of the occurrence frequency (or non-
occurrence frequency) of each event, for each event occur-
rence order, based on the event occurrence probability
calculated by the event occurrence probability calculator 14.
The rarity judging unit 16 judges as to whether or not log
characteristic 1s mcluded 1n the plurality of logs, based on
the rarities calculated by the rarity calculator 15.

When the rarity judging umit 16 judges that the log
characteristic 1s included 1n the plurality of logs, the output
unit 17 outputs information concerning event which corre-
sponds to the log characteristic included 1n the plurality of
logs.

(Log Analysis Method)

FIG. 4 1s a flowchart describing a log analysis method for

use with the log analysis device having the above-described

US 6,565,508 B2

9

confliguration. In this embodiment, as one example, descrip-
tion will be made regarding a method of analyzing a log
obtained by execution of a program written 1n the C lan-
guage as shown in FIG. 6.

In the program shown 1n FIG. 6, a function “main” calls
a function “f” and a function “k”. Parameters for the
function “f” and the function “k” are 0, 4, 8, 12 and 16. Both
of the function “1” and the function “k” calculate tax values
by substituting respective data in a table “price” and respec-
five data 1n a table “fee” for the function “f”” and the function
“k” respectively. For example, the debugger executes the
same program a plurality of times (five times in the case of
the parameters 0, 4, 8, 12 and 16, for example).

Here, code 1, code g, code h and code k are program
descriptions (such as, function “k™). Meanwhile, an event
means an 1denfifiable action which 1s pre-defined in the
entire debugging environment. The identifiable action may
be an action of pressing a mouse or an action of operating,
a key, for example. Then, upon occurrence of an event, a
program description(such as function, subroutine function,)
corresponding to the event 1s executed. Thereafter, for
example, when a given function 1s executed, a given param-
eter 1s substituted for the given function.

In this specification, the expression “information (such as,
program description, parameter) concerning event is
recorded” 1s deemed equivalent to the expression “an event
1s recorded”. Here, there are various methods for recording
an event, and the above-mentioned recording methods are
just examples. Meanwhile, the expression “an event 1s
recorded” 1s deemed equivalent to the expression “an event
occurs”.

Firstly, in step S10, for example, the operator 1nputs using
the mput unit 10, a log outputted from the debugger. The
debugger, for example, executes the program shown 1n FIG.
6 a plurality of times (for example, five times concerning to
number of parameters (0, 4, 8, 12 and 16) of function
“main”). Then, the debugger records, as log, a plurality of
events occurring upon the execution of the program accord-
ing to the occurrence order of each of the plurality of events.
Thereafter, the debugger outputs the log. The operator inputs
the log using the 1nput unit 10.

In step S135, the log generator 11 generates a plurality of
logs based on the inputted log. Concrete processing by the
log generator 11 1s described below. When the log 1s mnputted
by the operator, the log 1s transmitted to the log generator 11.
The log generator 11 generates plural logs, each log being
recorded a plurality of events according to the occurrence
order of each of the plurality of events 1n each of the logs,
for each execution of the program (i=0, 4, 8, 12 and 16).

In particular, for example, the debugger also records as
log, each event occurring upon execution of the program,
and 1nformation indicating the execution order of the pro-
gram (hereinafter information indicating the execution order
of the program 1s referred to as “execution order
information”) corresponding to each event, and outputs the
log. Then, the log generator 11 generates the plurality of
logs, based on each execution order information.

FIG. 7 1s a view showing one example of the plurality of
logs generated by the log generator 11. In FIG. 7, each
log(log 1~5) 1is associated with each execution of the
program(from the first execution of the program to the fifth
execution of the program), respectively.

In step S20, the event row generator 12 generates an event
row, in which a plurality of events(or a plurality of items of
information concerning an event) are recorded according to
the occurrence order of each of the plurality of events, based
on the pattern of the events(or the items of information

10

15

20

25

30

35

40

45

50

55

60

65

10

concerning the events) recorded in each log generated by the
log generator 11.

One example of concrete processing by the event row
generator 12 will be described below. As shown 1n FIG. 7,
a plurality of events are recorded according to the occur-
rence order of each of the plurality of events, in each of the
logs 1 to 5. Moreover, the log generator 11 transmits the
generated logs 1 to 5 to the output unit 17. The output unit
17 outputs the respective logs 1 to 5. The operator can know
the pattern of the events recorded 1n each log generated by
the log generator 11, by referring to information outputted.

Thereafter, the operator mputs to the input unit 10, the
designation of an event row (such as
“fghghghghkghghghgh™), in which a plurality of program
descriptions are recorded according to the occurrence order
of an event corresponding to each program description. The
“occurrence order of an event corresponding to each pro-
oram description” 1s associated with “execution order of the
program description”. In this specification, “an occurrence
order of an event” means “an execution order of the program
description concerning the event”.

Moreover, the operator also inputs a request to generate
the event row. Here, the event row 1s information corre-
sponding to a standard for converting the logs into the
converted logs (to be described later). In this embodiment,
a method of designation of the event row 1s not particularly
limited.

Thereafter, upon receipt of the designation of the event
row and the request to generate the event row, the event row
ogenerator 12 generates the event row based on the designa-
tion of the event row and the request to generate the event
row. Then, the event row generator 12 transmits the event
row to the log converter 13. Meanwhile, the log generator 11
transmits the plurality of generated logs to the log converter
13.

In step S30, the log converter 13 compares each event (all
information concerning an event) recorded in the event row
generated by the event row generator 12 with each event (all
information concerning an event) recorded in each log.
Then, the log converter 13 converts the respective logs nto
the respective converted logs respectively, based on a result
of the comparison. One example of concrete processing by
the log converter 13 will be described below.

The log converter 13 compares each program description
recorded 1n the event row with each program description
recorded in each log, for each event occurrence order(the
execution order of each program description). If a “program
description corresponding to a certain event occurrence
order recorded 1n the event row” coincides with a “program
description corresponding to the event occurrence order
recorded 1n each log, the log converter 13 records, 1n each
converted log, the program description 1n association with
the event occurrence order.

If a program description corresponding to a certain event
occurrence order 1s not recorded 1n each log, the log con-
verter 13 records, 1n each converted log, information “indi-
cating that a program description 1s not recorded” 1n asso-
ciation with the event occurrence order.

Hereinafter “event occurrence order is Nth(such as first,
second, fifth) order” is referred to as “event occurrence order
“Nth 7. For example, as shown 1n FIG. 7, program descrip-
fion corresponding to event occurrence order “second”
recorded 1n log 1, 1s function “g”. Meanwhile, as described
above, program description corresponding to event occur-
rence order “second” recorded 1n the event row, 1s function

o”. Accordingly, the log converter 13 records, 1n a con-
verted log, program description “g” 1

In association with the

US 6,565,508 B2

11

event occurrence order “second”. Meanwhile, 1f a program
description corresponding to event occurrence order “nth” 1s
not recorded 1n a certain log, the log converter 13 records,
in a certain converted log, information indicating “— mark”
in assoclation with the event occurrence order “nth”.

The log converter 13 performs the above-described pro-
cessing on the respective logs. In this way, the log converter
13 converts the respective logs 1nto the respective converted
logs respectively. In each of the converted logs, a plurality
of program descriptions are recorded according to the occur-
rence order of events corresponding to each program
description.

Here, “occurrence order of each event corresponding to
cach program description” means above-described “the
occurrence order of each event”.

FIG. 8 1s a view showing the converted logs 1 to 5 which
are converted from the logs 1 to 5 shown 1 FIG. 7 by the
log converter 13. Since all the program descriptions
recorded 1n the event row are recorded 1n each of the logs 1
to 5, the log converter 13 converts the respective logs 1 to
5 into the respective converted logs 1 to 5 (such as
“fghghghghkghghghgh™).

On the contrary, if there is a log 5x (such as “fghghghgh()
ghghghgh™), in which the program description “k” corre-
sponding to the event occurrence order “tenth” 1s not
recorded, the log converter 13 converts the respective logs
1 to 4 and the log 5x into the converted logs 1 to 4 and
converted log 5x, as shown 1n FIG. 9.

There are various other methods that may be used as the
converting method by the log converter 13, and the above-
described method 1s one example of such methods.
Thereafter, the log converter 13 transmits the respective
converted logs to the event occurrence probability calculator
14. Meanwhile, for example, the log converter 13 stores the
contents of the respective logs in a register(not shown) built
in the log converter 13.

In step S440, the event occurrence probability calculator 14
calculates an event occurrence probability, for each event
occurrence order, based on program description concerning
cach event recorded 1n each converted log. Here the each
event 1s equivalent to each event recorded 1n the event row.
One example of concrete processing by the event occurrence
probability calculator 14 will be described below.

The event occurrence probability calculator 14 references
all the program descriptions recorded in each converted log.
Then, the event occurrence probability calculator 14 inves-
tfigates as to whether or not a program description 1is
recorded, for each event occurrence order and for each
converted log.

Then, the event occurrence probability calculator 14 cal-
culates an event occurrence probability for each event
occurrence order. Each event occurrence probability indi-
cates probability of occurrence of event corresponding to
cach event occurrence order. In this way, when “an event
occurrence probability corresponding to a certain event
occurrence order” 1s outputted to the output unit 17, based
on the event occurrence probability, the operator can judge
whether or not the occurrence of event 1s rare for each event
occurrence order.

As shown 1n FIG. 8, a number of converted logs, in each
of which program description “f” corresponding to the event
occurrence order “first” 1s recorded, 1s five. Accordingly, it
1s possible to say that a number of converted logs in each of
which event “I”” corresponding to the event occurrence order
“first” 1s recorded, 1s five. Here, event “f” means an event
assoclated with program description “f”. Heremnafter, for,
example, an event “f’(or, “g”, “k” and the like) means an

10

15

20

25

30

35

40

45

50

55

60

65

12

event associated with the program description “f(or,
“k” and the like).

In this case, the event occurrence probability calculator 14
calculates an event occurrence probability as 5/5 (the num-
ber of the converted logs including the event “f”” correspond-
ing to the event occurrence order “first”)/(the total number
of the converted logs). Accordingly, in the case of the
converted logs shown in FIG. 8, the event occurrence
probability calculator 14 calculates occurrence probability
corresponding to each event occurrence order, as “1”. FIG.
10 1s a view showing one example of the results of a
calculation calculated by the event occurrence probability
calculator 14, 1n the case of the converted logs shown 1n
FIG. 8. Here, as shown 1n FIG. 9, a number of converted logs
in each of which event “k” corresponding to the event
occurrence order “tenth” 1s recorded, 1s four, 1n the case
where there 1s the converted log 5x. In this case, the event
occurrence probability calculator 14 calculates event occur-
rence probability as 4/5 (the number of the converted logs
including the event “k™ corresponding to the event occur-
rence order “tenth”)/(the total number of the converted logs).
FIG. 11 1s a view showing one example of the results of a
calculation calculated by the event occurrence probability
calculator 14, 1n the case of the converted logs shown in
FIG. 9.

Thereafter, the event occurrence probability calculator 14
transmits each event occurrence probability to the rarity
calculator 15. Meanwhile, the event occurrence probability
calculator 14 stores each event occurrence probability 1n a
register(not shown) built in the calculator 14.

In step S50, the rarity calculator 15 calculates a rarity,
which indicates a level of an occurrence frequency (or a
non-occurrence frequency) of each event, for each event
occurrence order, based on the event occurrence probability
calculated by the event occurrence probability calculator 14.
Here, rarity 1s a degree of indicating how rare the occurrence
of event (or non-occurrence of event) is. There are various
methods for the definition of rarity. In this embodiment, the
rarity will be defined by the following formula as an
example. The rarity defined 1n the following formula indi-
cates that occurrence of event (or non-occurrence of event)
1s rarer, as the value thereof becomes larger.

Assuming that the “event occurrence probability corre-
sponding to a certain event occurrence order’” 1s p, the rarity
R1 (lowness of the occurrence frequency of event), which is
the degree 1indicating how rare the occurrence of an event 1s,
will be given by the following formula, for example:

(.

g s

R1=-LOGARITHM(p)

here, the code “LOGARITHM” denotes the natural loga-
rithm.

Meanwhile, assuming that the “event occurrence prob-
ability corresponding to a certain event occurrence order” 1s
p, the rarity R2 (a level of the non-occurrence frequency of
each event), which is the degree indicating how rare the
non-occurrence of event 1s, will be given by the following
formula, for example:

R2=—LOGARITHM(1-p)

The rarity calculator 15 calculates the rarity R1 1n the case
where event corresponding to a certain event occurrence
order 1s recorded 1n a certain log, and associates the rarity R1
with the event occurrence order and the log. The rarity
calculator 15 calculates the rarity R2 1n the case where event
corresponding to a certain event occurrence order 1s not
recorded 1n a certain log, and associates the rarity R2 with
the event occurrence order and the log.

US 6,565,508 B2

13

The rarity calculator 15 calculates the rarity R1 or R2 for
cach converted log and for each event occurrence order. The
rarity calculator 15 associates the calculated rarity R1 or R2
with the converted log and event occurrence order.

FIG. 12 1s a view showing the results of a calculation
calculated by the rarity calculator 15 in the case of the
plurality of converted logs shown in FIG. 8. Since events
corresponding to all the event occurrence order(from event
occurrence order “first” to event occurrence order
“eighteenth™) are recorded in each of the five converted logs,
cach rarity corresponding to “each event occurrence order
and each converted log” 1s 0.

FIG. 13 1s a view showing the results of a calculation
calculated by the rarity calculator 15 1n the case of the
plurality of converted logs shown 1n FIG. 9. As shown 1n
FIG. 13, although the rarity “corresponding to event occur-
rence order “tenth” and each of the converted logs 1~4” 1s
0.1, the rarity “corresponding to event occurrence order
“tenth” and the converted logs 5x” 1s 0.7.

The rarity calculator 15 associates each calculated rarity
with converted log and event occurrence order, and trans-
mits the rarity to the rarity judging unit 16.

In step S60, the rarity judeing unit 16 judges as to whether
or not a log characteristic 1s 1ncluded in the plurality of
converted logs, based on the rarities transmitted from the
rarity calculator 15. If 1t 1s judged that the log characteristic
1s included 1n the plurality of converted logs, the processing
of step S120 1s performed. If 1t 1s judged that the log
characteristic 1s not included in the plurality of converted
logs, then the rarity judging unit 16 transmits information
indicating “that the log characteristic 1s not included 1n the
plurality of converted logs” to the data value classifier 18.
Thereafter, the processing of step S70 1s performed.

One example of concrete processing by the rarity judging
unit 16 will be described below. In the case where calcula-
tion of each rarity as shown i1n FIG. 12 1s performed, the
occurrence frequency of each event 1s high. Therefore, 1t 1s
possible to say that the occurrence of each event 1s not rare.
In this case, the rarity judging unit 16 judges that the log
characteristic 1s not included 1n the plurality of converted
logs.

On the contrary, as shown 1n FIG. 13, although the rarity
“corresponding to event occurrence order “tenth” and each
of the converted logs 1~4” 1s 0.1, the rarity “corresponding
to event occurrence order “tenth” and the converted logs 5x”
1s 0.7. In this case, since there 1s a rarity indicating a high
value (0.7), the rarity judging unit 16 judges that the log
characteristic 1s included 1n the plurality of converted logs.
In other words, the rarity judging unmit 16 judges the log
characteristic indicating that the event “k” corresponding to
event occurrence order “tenth” 1s not recorded 1n the con-
verted log 5x.

The following processing will take place when the rarity
judging unit 16 judges that the log characteristic 1s included
in the plurality of converted logs. The rarity judeing unit 16
transmits information concerning the log characteristic(such
as 1nformation indicating the event “k” corresponding to
event occurrence order “tenth” 1s not recorded 1n the con-
verted log 5x) to the output unit 17.

Meanwhile, the rarity judging unit 16 reads the contents
of the converted log 5x from the log converter 13, and
fransmits the contents to the output unit 17. Moreover, the
rarity judging unit 16 reads the event occurrence probability
corresponding to event occurrence order “tenth” and the
converted log (5x), from the event occurrence probability
calculator 14, and transmits the occurrence probability to the
output unit 17. Furthermore, the rarity judging unit 16 also

10

15

20

25

30

35

40

45

50

55

60

65

14

transmits the rarity corresponding to event occurrence order
“tenth” and the converted log (5x), to the output unit 17.

In step S120, the output unit 17 outputs information
concerning an event which corresponds to the log charac-
teristic included 1n the plurality of converted logs, based on
the transmitted information such as the rarity. The informa-
fion concerning event includes a name of a converted log
concerning the log characteristic, contents of the converted
log, the event occurrence order concerning the log
characteristic, the event occurrence probability(or the event
non-occurrence probability) concerning the log
characteristic, the rarity concerning the log characteristic,
and the like.

One example of concrete processing by the output unit 17
will be described below. The output unit 17 outputs infor-
mation which 1s transmitted from the rarity judging unit 16.
For example, the output unit 17 outputs information indi-
cating the event “k” corresponding to event occurrence order
“tenth” 1s not recorded in the converted log 5x, the contents
of the converted log (5x), the event occurrence order
“tenth”, the event occurrence probability corresponding to
event occurrence order “tenth” and the converted log (5x),
the rarity corresponding to event occurrence order “tenth”
and the converted log (5x).

In step S70, the data value classifier 18 receives from the
rarity judging unit 16, information that the log characteristic
1s not included in the plurality of converted logs, and
performs the following processing. The data value classifier
18 generates classification information, based on data to be
used upon execution of program description concerning an
event. Then, the data value classifier 18 gives generated
classification information to each event.

One example of concrete processing by the data value
classifier 18 will be described below. The data value clas-
sifier 18 generates the classification information for classi-
fying each event according to a given standard, based on an
parameter of each function described in the program, for
example. The given standard 1s a standard as to whether or
not data value of an parameter(hereinafter data value of
parameter 1s referred to as parameter value)of each function
1s equal to or larger than O, for example.

For example, as shown in FIG. 7, the parameter value (70)
of the function “h” corresponding to event occurrence order
“fifth” and the log 1, 1s larger than 0. Accordingly, the data
value classifier 18 generates classification information(such
as a “+” mark) which indicates that the parameter value is
equal to or larger than 0. Then, the data value classifier 18
orves the classification information to the function “h”.

Meanwhile, as shown in FIG. 7, the parameter value (-10)
of the function “h” corresponding to event occurrence order
“mnth” and the log 3, 1s less than 0. Accordingly, the data
value classifier 18 generates the classification information
(such as a “-” mark) which indicates that the parameter
value 1s less than 0. Then, the data value classifier 18 gives
the classification information to the function “h”. FIG. 14 1s
a view showing one example of each program description
with each classification information.

Moreover, the given standard 1s determined so as to
satisly the following condition. The condition 1s that, based
on each program description with each classification
information, the rarity judging unit 16 can judge as to
whether or not log characteristic 1s included 1n a plurality of
logs. The given standard described above 1s one example
that may be used as a given standard determined to satisly
the condition.

For example, a given device can compute the following

orven standard. The given device can compute the given

US 6,565,508 B2

15

standard based on a result of statistical processing of the data
values. Alternatively, for example, the given device can also
compute the given standard by performing a boundary value
analysis using a program source code. Here, there may be a
plurality of given standards instead of one given standard.

Thereafter, the data value classifier 18 transmits each log
with each classification information to the event occurrence
probability calculator 14. Meanwhile, the data value classi-
fier 18 stores respective logs with classification information
in a register (not shown) built in the data value classifier 18.

In step S80, the event occurrence probability calculator 14
calculates event occurrence probability for each event occur-
rence order, based on program descriptions (f, g, h and k)
concerning an event and data to be used upon the execution
of the program descriptions.

Here, “data to be used upon the execution of the program
descriptions” includes parameter of function, for example.
Then, the data value classifier 18 generates the classification
information based on parameter value of each function. The
data value classifier 18 gives classification information to
cach function. For this reason, it may be said that the data to
be used upon execution of program description 1s associated
with classification information.

Therefore, to be more precise, the event occurrence
probability calculator 14 calculates event occurrence prob-
ability for each event occurrence order, based on program
descriptions (f, g, h and k) concerning event and classifica-
tion information (such as, “+” marks, “-” marks).

One example of concrete processing by the event occur-
rence probability calculator 14 will be described below. The
event occurrence probability calculator 14 calculates event
occurrence probability corresponding to event occurrence
order “first” as follows. Specifically, as shown i FIG. 14, 1f
a number of logs, 1n each of which program description “h”
with classification mmformation “+” corresponding to the
event occurrence order “first” 1s recorded, 1s five, then the
event occurrence probability calculator 14 calculates the
event occurrence probability as 5/5 (the number of logs
including the event “h” with classification information “+”
corresponding to the event occurrence order “first”)/(the
total number of logs). Heremafter event “h, f, g” with

Ge 4 2 2

classification information “+7 1s referred to as event “h+, I+,

22

o+,

Meanwhile, the event occurrence probability calculator
14 calculates an event occurrence probability corresponding
to event occurrence order “ninth” as follows. Specifically, as
shown 1n FIG. 14, if a number of logs, 1n each of which
program description “h” with classification information “+”
corresponding to the event occurrence order “ninth” 1
recorded, 1s four, then the event occurrence probability
calculator 14 calculates the event occurrence probability as
4/5 (the number of logs including the event “h” with
classification information “+” corresponding to the event
occurrence order “ninth”)/(the total number of logs).

FIG. 15 1s a view showing the results of a calculation
calculated by the event occurrence probability calculator 14,
in the case of the logs shown m FIG. 14. The event
occurrence probability calculator 14 transmits each event
occurrence probability to the rarity calculator 185.
Meanwhile, the event occurrence probability calculator 14
stores each event occurrence probability in a register(not
shown) built in the calculator 14.

In step S90, the rarity calculator 15 calculates rarity,
which indicates a level of an occurrence frequency (or a
non-occurrence frequency) of each event, for each event
occurrence order, based on the event occurrence probability

calculated by the event occurrence probability calculator 14.

10

15

20

25

30

35

40

45

50

55

60

65

16

The rarity R1 and rarity R2, for example can be represented
by the formulae shown 1n step S50.

One example of concrete processing by the rarity calcu-
lator 15 will be described below. For example, the rarity
calculator 15 calculates rarity RI for each event occurrence
order(from first to eighteenth) as follows. The rarity calcu-
lator 15 calculates the rarity R1 in the case where function

g6 , 22 2

with classification information “+” 1s recorded 1n a certain
log. Then, the rarity calculator 15 calculates rarity RI for
cach event occurrence order and for each log.

For example, the rarity calculator 15 calculates rarity R2
for each event occurrence order(from first to eighteenth) as

follows. The rarity calculator 15 calculates the rarity R2 1n
the case where function with classification information “-"
1s recorded 1n a certain log. Then, the rarity calculator 15
calculates rarity R2 for each event occurrence order and for
cach log.

FIG. 16 1s a view showing the results of a calculation
calculated by the rarity calculator 15, based on the plurality
of logs shown 1n FIG. 14 and each event occurrence prob-
ability shown 1 FIG. 15. As shown in FIG. 16, the rarity
“corresponding to event occurrence order “ninth” and each
of the log 1, log2, log4, log5” 1s 0.1, the rarity “correspond-
ing to event occurrence order “ninth” and the log 3” 15 0.7.
The rarity calculator 15 associates each calculated rarity
with log and event occurrence order, and transmits each
rarity to the rarity judging unit 16.

In step S100, the rarity judging unit 16 judges as to
whether or not log characteristic 1s included in the plurality
of logs, based on the rarities transmitted from the rarity
calculator 15. If 1t 1s judged that the log characteristic 1s
included 1 a plurality of the logs, the processing of step
S120 1s performed. If it 1s judged that the log characteristic
1s not included in the plurality of the logs, the processing of
step S110 1s performed.

One example of concrete processing by the rarity judging
unit 16 will be described below. As shown 1n FIG. 16,

although the rarity “corresponding to event occurrence order
“mnth” and log 3 1s 0.7, the rarity “corresponding to event
occurrence order “ninth” and each of logs 1, 2, 4, 57 15 0.7,
all the remaining rarities are O.

In this case, since the rarity corresponding to the log3 and
event occurrence order “ninth” has a high value, the rarity
judging unit 16 judges that the characteristic 1s included 1n
the plurality of logs. Then, the rarity judging unit 16 judges
the log characteristic (hereinafter “log characteristic” 1is
simply referred to as “characteristic”) indicating that the
event “h+” corresponding to event occurrence order “ninth”
1s not recorded 1n the log 3.

Thereafter, the rarity judging unit 16 transmits 1nforma-
tion (such as information indicating that the event “h+”
corresponding to event occurrence order “ninth” 1s not
recorded in the log 3) concerning the characteristic to the
output unit 17. Meanwhile, the rarity judging unit 16 reads
the contents of the log 3 from the data value classifier 18,
and transmits the contents to the output unit 17. Moreover,
the rarity judging unit 16 reads the event occurrence
probability(occurrence probability of event “h+”)
corresponding to event occurrence order “ninth” and the
log3, from the event occurrence probability calculator 14,
and transmits the event occurrence probability to the output
unit 17. Furthermore, the rarity judging unit 16 also trans-
mits the rarity corresponding to event occurrence order
“minth” and the log 3, to the output unit 17. If 1t 1s judged that
the characteristic 1s not included 1n the plurality of logs, the
rarity judging unit 16 transmits information indicating that
the characteristic 1s not included in the plurality of logs to
the output unit 17.

US 6,565,508 B2

17

In step S110, the output unit 17 outputs information
indicating that the characteristic 1s not included in the
plurality of logs. In this way, the operator can input an other
log 1nto the input unit 10, or mput information indicating
change of the given standard into the mnput unit 10.

In step S120, the output umit 17 outputs information
concerning event which corresponds to the characteristic
included in the plurality of logs, based on the transmitted
information. For example, the “information concerning
event” 1ncludes information indicating that the event “h+”
corresponding to event occurrence order “ninth” 1s not
recorded in the log 3, contents of the log 3, the event
occurrence order “ninth”, the event occurrence probability
of event “h+”, the rarity and the like.

For this reason, 1n the case where the operator debugs the
program by examining log, the information outputted from
the output unit 17 1s useful information for the operator. The
operator can examine the log by considering above the
characteristic. Accordingly, 1t 1s possible for the operator to
perform a debugging operation efficiently. For example, the
operator can perform a debugging operation concerning the
program description (that is, description indicating that a
data value less than O is used as parameter of function “h”),
which 1s related to event occurrence order “ninth”, based on
the information indicating that the event “h+” corresponding
to event occurrence order “ninth” 1s not recorded 1n the log
3.

It 1s deemed rare that the event “h+” corresponding to
event occurrence order “ninth” 1s not recorded 1n the log 3.
Accordingly, 1t 1s likely that the fact “the event “h+”
corresponding to event occurrence order “ninth” 1s not
recorded 1n the log 3” may be associated with a program
bug. As a consequence, the operator can efficiently perform
the debugging operation.

In the processing from step S10 to step S60, log analysis
processing 1s performed without considering data value
(parameter value). The reason is as follows. In order that the
log analysis device extracts the log characteristic accurately,
the log analysis device needs to place priority on considering
“function (program description)” and “execution order of
function(event occurrence order)” over “data value”. As a
consequence, 1 this embodiment, log analysis device can
extract the log characteristic by appropriately considering
data to be used upon the execution of the program.
(Operation and Effect)

In this embodiment, the event occurrence probability
calculator 14 calculates an event occurrence probability, for
cach event occurrence order, based on each program
description concerning each event recorded 1n each of the
converted logs. Moreover, the rarity calculator 15 calculates
a rarity for each event occurrence order, based on the event
occurrence probability calculated by the event occurrence
probability calculator 14. The rarity judging unit 16 judges
as to whether or not occurrence or non-occurrence of the
event 1s rare, for each event occurrence order, and judges as
to whether or not log characteristic 1s included m the
plurality of converted logs. When 1t 1s judged that log
characteristic 1s included 1n the plurality of converted logs,
the output unit 17 outputs the information concerning the log
characteristic.

In this way, based on the rarity, the log analysis device of
this embodiment firstly judges as to whether or not the log
characteristic 1s included 1n the plurality of converted logs,
without considering data to be used upon execution of
program description. Then, even when 1t 1s judged that the
log characteristic 1s not included 1n the plurality of converted
logs, the log analysis device efficiently performs a log
analysis processing 1n the following manner.

10

15

20

25

30

35

40

45

50

55

60

65

138

The event occurrence probability calculator 14 calculates
an event occurrence probability for each event occurrence
order, based on program descriptions concerning an event
and data to be used upon the execution of the program
descriptions. The rarity calculator 15 calculates a rarity for
cach event occurrence order, based on the event occurrence
probability calculated by the event occurrence probability
calculator 14. The output unit 17 outputs the information
concerning the log characteristic, based on the event occur-
rence probability or the rarity.

Accordingly, the log analysis device of this embodiment
calculates the event occurrence probability and/or the rarity
by appropriately considering data 1n addition to the program
description and event occurrence order (execution order of
program description). Then, the log analysis device can
extract the log characteristic based on the event occurrence
probability or the rarity.

As a consequence, even 1f the log characteristic 1s not
extracted 1n spite of considering the program description and
the event occurrence order, the operator does not have to
examine another log for input and does not have to examine
another log analysis method again. In this way, by using the
log analysis device of this embodiment the operator can
obtain the log characteristic promptly.

Therefore, the log analysis device and the log analysis
method of this embodiment can provide the operator with
more useful information for the debugging operation, as
compared to the prior art.

(Modified Example 1 of Embodiment 1)

Incidentally, the log analysis device may include a judg-
ing unit (not shown) configured to judge as to whether or not
all program descriptions corresponding to all event occur-
rence order are identical across a plurality of logs.

After step S15, the judging unit performs the above
judgment regarding the plurality of logs. Then, when the
judging unit judges that all program descriptions corre-
sponding to all event occurrence order are identical across
the plurality of logs, the log analysis device may perform the
processing from step S70 to step S120 mstead of performing
the processing from step S20 to step S60. To be more
precise, the judging unit judges as to whether each program
description (such as f and g) corresponding to each event
occurrence order(from first to eighteenth) is identical across
the plurality of logs(logl~log5) shown in FIG. 7, for
example. Here, 1t can be said that the log characteristic will
not be extracted if the log analysis device performs the log
analysis by considering only program descriptions.

For this reason, the above-described judgment 1s per-
formed by the judging unit. Meanwhile, when the judging
unit judges that each program descriptions corresponding to
cach event occurrence order 1s 1dentical across the plurality
of logs, the log analysis device performs the processing from
step S20 to step S60.

(Modified Example 2 of Embodiment 1)

The log analysis device may include a characteristic value
calculator (not shown). The characteristic value calculator
can calculate a characteristic value of a log, for each log
(such as, each converted log), based on the event occurrence
probability calculated by the event occurrence probability
calculator 14.

Here, for example, the characteristic value of a log
indicates the degree, from among a plurality of logs, the log
may contain a distinguishing characteristic. Hereinafter
“characteristic value of log” 1s referred to as simply “char-
acteristic value”.

For example, the following processing may take place
after each event occurrence probability 1s calculated in step

US 6,565,508 B2

19

S80. Specifically, the event occurrence probability calcula-
tor 14 transmits each occurrence probability to the charac-
teristic value calculator. When an event corresponding to a
certain event occurrence order 1s recorded 1n a certain log,
the characteristic value calculator associated the event
occurrence probability with the event occurrence order and
the log. When an event corresponding to a certain event
occurrence order 1s not recorded in a certain log, the
characteristic value calculator associates event non-
occurrence probability with the event occurrence order and
the log. Here, for, example, “event non-occurrence prob-
ability” T 1s defined as the following expression.

I=1-p

- B

Here, “p” 1s event occurrence probability.

In this way, the characteristic value calculator generates a
matrix. In the matrix, as shown i FIG. 17, each event
occurrence probability 1s associated with event occurrence
order and log, or each event non-occurrence probability 1s
associated with event occurrence order and log.

Then, the characteristic value calculator calculates a char-
acteristic value for each log in the following manner.
Specifically, as shown 1n FIG. 17, the characteristic value
calculator calculates the characteristic value by multiplying
from “event occurrence probability” or “event non-
occurrence probability” corresponding to event occurrence
order “first” to event occurrence probability” or “event
non-occurrence probability” corresponding to event occur-
rence order “18th”, for example,

For example, 1n the case of each event occurrence prob-
ability in FIG. 15, the characteristic value of each of logs 1,
2,4 and 5 1s 0.8, but the characteristic value of the log 3 1s
0.2 as shown m FIG. 17. When these characteristic values
are outputted by the output unit 17, the operator can judge
that the log 3 1s a log concerning “characteristic”. Similarly,
processing ol calculating the characteristic values of the
respective converted logs, and processing of outputting the
characteristic values of the respective converted logs may
take place after each event occurrence probability are cal-
culated 1n step S40, for example.

Moreover, the characteristic value calculator can also
calculate the characteristic value for each log, based on each
rarity calculated by the rarnty calculator 15. For example, the
following processing may take place after the respective
rarities are calculated in step S90.

The rarity calculator 15 transmits the rarities to the
characteristic value calculator. The characteristic value cal-
culator calculates a characteristic value for each log 1n the
following manner. Specifically, as shown 1n FIG. 18, the
characteristic value calculator calculates the characteristic
value by adding from a rarity corresponding to event occur-
rence order “first” to a rarity corresponding to event occur-
rence order “18th”. For example, in the case of each rarity
shown m FIG. 16, the characteristic value of each of logs 1,
2,4 and 5 1s 0.1 but the characteristic value of the log 3 1s
0.7, as shown 1n FIG. 18. When these characteristic values
are outputted by the output unit 17, the operator can judge
that the log 3 1s a log concerning “characteristic”. Similarly,
after the respective rarities are calculated 1n step S50, for
example, processing of calculating the characteristic values
of the respective converted logs, and processing of output-
ting the characteristic values of the respective converted logs
may take place. In this way, if the characteristic values of the
respective converted logs (or the characteristic values of the
respective logs) are outputted to the operator, then the
operator can know the log characteristic promptly.

10

15

20

25

30

35

40

45

50

55

60

65

20

Embodiment 2

A log analysis device of Embodiment 2 performs a log
analysis by considering a reference to a memory area being
performed when each event occurs, and extracts log char-
acteristic.

FIG. 19 1s a view showing a configuration of the log
analysis device of Embodiment 2. In FIG. 19, the same
constituents as those in Embodiment 1 are denoted with the
same reference numerals. Moreover, in FIG. 19, description
of substantially the same constituents as those in Embodi-
ment 1 will be omitted. The log analysis device of Embodi-
ment 2 1s different from the log analysis device of Embodi-
ment 1 1n the following points.

The log analysis device mcludes an area designator 20, a
log classifier 21, a classified log generator 22, and a char-
acteristic value calculator 19. The log analysis device of this
Embodiment 2 does not include a log generator 11 of
Embodiment 1.

An operator designates a memory area to be referenced
upon execution of a program description concerning an
event, by use of the area designator 20. For example, the
operator designates an array variable described in the pro-
oram by use of the area designator 20.

For example, when a debugger executes respective
functions, the debugger records information (such as
addresses of the memory areas and variables) concerning
memory areas referenced upon execution of the respective
functions as a “log”. For this reason, when the operator
recognizes 1n advance of a bug within a description con-
cerning a certain array variable, the operator designates the
array variable, by use of the area designator 20. The reason
for such designation is to 1ncrease the possibility of extrac-
tion of log characteristic.

“Data 1s substituted for a variable (such as an array
variable) in program” means “data is stored in a given area
in a memory”’. For this reason, designation of a variable
(such as an array variable) means designation of a memory
arca 1n this embodiment. In the following description, a
variable such as an array variable will be regarded as similar
o memory area.

The log classifier 21 classifies each event based on a
reference to a memory area designated by the area desig-
nator 20, bemg performed upon the occurrence of each
event. The classified log generator 22 generates a classified
log for each memory area. In this case, the classified log 1s
a log 1 which one or more events that are “classified as
events concerning the reference to the memory areca, are
recorded according to the occurrence order of each of the
events. The characteristic calculator calculates a character-
istic value for each converted log, based on rarities calcu-
lated by a rarity calculator 15.

Here, the characteristic value means a characteristic value
of modified example 1 of embodiment 1. Meanwhile, an
event row generator 12 generates an event row based on the
pattern of events recorded 1n each classified log generated by
the classified log generator 22. Moreover, a log converter 13
converts the respective classified logs 1nto the respective
converted logs.

(Log Analysis Method)

FIG. 20 1s a flowchart showing a log analysis method
using the above-described log analysis device. In this
embodiment, as one example, description will be made
regarding method of analyzing a log obtained by execution
of a program written 1n the C language as shown in FIG. 21.

In the program, a function “main” calls a function “init”
twelve times (i=1 to 12), a function “clean” three times (1=4,

8 and 12), and a function “calc” four times (i=3, 6, 9 and 12).

US 6,565,508 B2

21

Hereinafter, “a memory area 1s referenced upon the
execution of a function (program description)” is referred to
as “a function references a memory area”.

In the program, if the function “clean” has referenced a
grven memory area, then the function “calc” 1s not allowed
to reference the given memory area. To be more precise, 1n
the program, the function “calc” 1s not allowed to reference
the memory area corresponding to “vals (12)”. However, in
FIG. 21, there 1s description indicating that the function
“calc” references the memory area corresponding to “vals
(12)”. The description is associated with program bug. In the
following manner, it 1s possible to output information con-
cerning the program bug as log characteristic.

Firstly, in step S10 as shown in Embodiment 1, the
operator 1nput a log, which 1s outputted from a debugger, for
example, by using the input unit 10. FIG. 22 1s a view
showing a log obtained as a result of execution of the
program (the program shown in FIG. 21) by the debugger,
for example. In the log, a plurality of events occurring upon
execution of the program are recorded.

Moreover, for example, if the operator could only obtain
a log such as that shown 1n FIG. 22, or if the operator thinks
that there may be a program bug concerning reference to a
grven array variable, then the operator inputs, using input
unit 10, information “indicating that the operator could only
obtain a log such as that shown m FIG. 22”7 or information
“indicating that there may be a program bug concerning
reference to a given array variable”. The mputted 1nforma-
tion 1s transmitted to the respective units. The respective
units perform the following processing instead of the pro-
cessing in Embodiment 1.

In step S200, the operator designates a given array vari-
able described 1n the program, by use of the area designator
20. Here, the operator may designate a memory area corre-
sponding to the given array variable, by use of the areca
designator 20. In this case, for example, an output unit 17
may output an instruction to designate a given array vari-
able. Moreover, the operator may designate the given array
variable, by use of the area designator 20 based on the
instruction.

To be more precise, when the operator obtains the log
shown 1n FIG. 22, the operator designates each array vari-
able “vals (1)”~“vals(12)”) by use of the area designator 20,
for example. Each array variable may be a global array
variable which can be referenced by all the functions
described 1n the program. The designator 20 transmits all the
designated array variables to the log classifier 21.
Meanwhile, the log mputted by the imnput unit 10 1s trans-
mitted to the log classifier 21.

In step S210, the log classifier 21 classifies each event for
cach designated array variable, based on a reference to an
array variable designated by the area designator 20, being
performed upon the occurrence of above each event. One
example of concrete processing by the log classifier 21 will
be described below.

For example, a program description referencing to the
array variable “vals (1) is “init:vals (1)”. A program
description referencing to the array variable “vals (2)” is
“init:vals (2)”. Program descriptions referencing to the array
variable “vals (3)” are “mit:vals (1)” and “calc:vals (3)”.

Here, classification of an event will be deemed equivalent
to classification of a program description concerning an
event.

The log classifier 21 classifies each program description,
based on a reference to each of the designated variables vals
1], being performed upon execution of each program
description “init:vals (i) (i=1 to 12)”. Results of classifica-

10

15

20

25

30

35

40

45

50

55

60

65

22

tion by the log classifier 21 are transmitted to the classified
log generator 22.

In step S220, the classified log generator 22 generates a
classified log for each designated array variable. In this case,
the classified log 1s a log 1n which one or more events that
are “classified as events concerning the reference to the
memory area, are recorded according to the occurrence order
of each of the events.

Concrete processing by the classified log generator 22
will be described below. As shown 1n FIG. 23, the classified
log generator 22 generates a classified log 1, based on the
results of classification transmitted from the log classifier
21.

For example, the classified log 1 1s a log 1n which program
description(“init:vals (1)) classified as having reference to
the designated array variable (“vals (1)) performed, is
recorded according to the event occurrence order(first). In
this way, the classified log generator 22 generates a plurality
of classified logs(classified log 1 to 12). Thereafter, the
classified log generator 22 transmits the plurality of classi-
fied logs to the log converter 13.

In step S230, the log converter 13 converts the respective
classified logs into the converted logs. One example of
concrete processing by the log converter 13 will be
described below. Based on the plurality of transmitted
classified logs, the log converter 13 mstructs the event row
generator 12 to generate a given event row.

The event row generator 12 generates the event row based
on the pattern of events recorded in each classified log
ogenerated by the classified log generator 22. For example,
when the plurality of classified logs shown 1 FIG. 23 are
transmitted, the event row generator 12 generates an event
row (init:vals, clean:vals, calc:vals), in which “program
descriptions recorded 1n each classified log” are recorded
according to each event occurrence order (for example,
occurrence order of event “init:vals” 1s first, occurrence
order of event “clean:vals” is second).

The log converter 13 performs the following processing,
for each event occurrence order. The log converter 13
compares each program description (program description
concerning event) which is recorded in the event row, with
cach program description which 1s recorded 1n each classi-
fied log. Then, it a “program description corresponding to a
certain event occurrence order recorded 1n the event row”
coincides with a “program description corresponding to the
event occurrence order recorded 1n each log, the log con-
verter 13 records, in each converted log, the program
description 1n association with the event occurrence order.

If a program description corresponding to a certain event
occurrence order 1s not recorded 1n each log, the log con-
verter 13 records, in each converted log, information (such
as “— mark™) “indicating that a program description is not
recorded” 1n association with the event occurrence order.

For example, 1n a classified log 1, program description
corresponding to event occurrence order “first” 1s “int; vals”
(an element number is omitted). In the event row, program
description corresponding to event occurrence order “first”
1s “int; vals”. Therefore, the log converter 13 records, 1n a
converted log 1, program description “int; vals” 1n associa-
tion with the event occurrence order “first”.

Meanwhile, when a program description corresponding to
event occurrence order “second” 1s not recorded 1n classified
log 1, the log converter 13 records, in a converted log 1,
information indicating “— mark™ 1n association with the
event occurrence order “second”.

Moreover, the log converter 13 judges that a “program
description (calc:vals) corresponding to event occurrence

US 6,565,508 B2

23

order “second” recorded 1n classified log 3 does not coincide
with a “program description (clean:vals) corresponding to
the event occurrence order “second” recorded in the event
row. Then, the log converter 13 judges that a “program
description(calc:vals) corresponding to event occurrence
order “second” recorded 1n classified log 3 coincides with a
“program description (calc:vals) corresponding to the event
occurrence order “third” recorded 1n the event row. Then, the
log converter 13 records, in a converted log 3, the program
description (calc:vals) in association with the event occur-
rence order “third”. In this case, the log converter 13
records, 1n a converted log 3, information indicating
“—mark” 1n association with the event occurrence order
“second”.

According to the above-described conversion rules, the
log converter 13 converts the classified logs (classified logl
to 5) as shown 1n FIG. 23 into the converted logs(converted
log 1 to 5) as shown in FIG. 24 respectively, for example. In
this embodiment, it 1s to be noted that the converting method
by the log converter 13 1s not particularly limited to the
above-described method. The log converter 13 transmits the
respective converted logs to the event occurrence probability
calculator 14. Moreover, the log converter 13 stores the
contents of the respective converted logs in a register(not
shown) built in the converter 13.

In step S240, the event occurrence probability calculator
14 calculates an event occurrence probability, for each event
occurrence order, based on the program description con-
cerning cach event recorded 1n each of the converted logs.
One example of concrete processing by the event occurrence
probability calculator 14 will be described below.

As shown 1n FIG. 24, a number of converted logs, 1in each
of which program description “init;vals” corresponding to
the event occurrence order “first” 1s recorded, 1s twelve.
Accordingly, it 1s possible to say that a number of converted
logs 1n each of which event “init;vals” corresponding to the
event occurrence order “first” 1s recorded, 1s twelve.
Heremnafter, event corresponding to program description

“mit;vals”, “clean:vals”, “calc:vals” 1s referred to as event

“mt”, event “clean”, event “calc”.

In this case, the event occurrence probability calculator 14
calculates event occurrence probability as 12/12 (the number
of the converted logs including the event “init” correspond-
ing to the event occurrence order “first”)/(the total number
of the converted logs). Similarly, the event occurrence
probability calculator 14 calculates event occurrence prob-
ability of event “clean” as 3/12 (the number of the converted
logs 1ncluding the event clean corresponding to the event
occurrence order “second”)/(the total number of the con-
verted logs).

Similarly, the event occurrence probability calculator 14
calculates event occurrence probability of event “calc” as
4/12 (the number of the converted logs including the event
“calc” corresponding to the event occurrence order “third”)/
(the total number of the converted logs). FIG. 25 1s a view
showing one example of the results of a calculation calcu-
lated by the event occurrence probability calculator 14, 1n
the case of the converted logs shown 1n FIG. 24. Thereafter,
the event occurrence probability calculator 14 transmits each
event occurrence probability to the rarity calculator 185.
Meanwhile, the event occurrence probability calculator 14
stores each event occurrence probability in a register(not
shown) built in the calculator 14.

In step S250, the rarity calculator 15 calculates a rarity,
which indicates a level of the occurrence frequency (or a
non-occurrence frequency) of each event, for each event

occurrence order, based on the event occurrence probability

10

15

20

25

30

35

40

45

50

55

60

65

24

calculated by the event occurrence probability calculator 14.
To be more precise, the rarity calculator 15 calculates rarity
R1 or rarity R2 in a similar manner to Embodiment 1.

FI1G. 26 1s a view showing results of the rarities calculated
by the rarity calculator 15 based on the converted logs(log
1 to 12) as shown in FIG. 24, for example. The rarity
calculator 15 associates each calculated rarity with con-
verted log and event occurrence order, and transmits each
rarity to the rarity judging unit 16.

In step S255, the rarity judging unit 16 judges as to
whether or not log characteristic 1s included 1n the plurality
of converted logs, based on the rarities transmitted from the
rarity calculator 15. If 1t 1s judged that the log characteristic
1s 1ncluded in the plurality of converted logs, the rarity
judging unmit 16 obtains information concerning the log
characteristic from respective units, as similar to embodi-
ment 1. Then, the rarity judging unit 16 transmits a variety
of 1tems of information to the output unit 17. Thereafter, the
processing of step S257 1s performed.

In step S257, the output unit 17 outputs the information
concerning the log characteristic. If 1t 1s judged that the log
characteristic 1s not included in the plurality of converted
logs, the processing of step S260 1s performed. For example,
as shown 1 FIG. 26, when there are many rarities which
have large value(such as 0.6), the rarity judging unit 16
judges that the log characteristic 1s not included in the
plurality of converted logs. Then rarity judeing unit 16
transmits information indicating the judgment and each
rarity corresponding to “converted log and event occurrence
order”, to the characteristic value calculator 19.

In step S260, the characteristic value calculator 19 cal-
culates the characteristic values of the respective converted
logs, based on the respective transmitted rarities. One
example of concrete processing by the characteristic value
calculator 19 will be described below. Meanwhile, the
contents of all the converted logs are transmitted from the
log converter 13 to the characteristic value calculator 19.
Moreover, the each event occurrence probability 1s trans-
mitted from the event occurrence probability calculator 14 to
the characteristic value calculator 19.

The characteristic value calculator 19 calculates a char-
acteristic value for each converted log in the following
manner. Specifically, the characteristic calculator 19 calcu-
lates a characteristic value by finding a sum of the rarity
corresponding to each event occurrence order.

For example, 1n the case of the rarities shown 1n FIG. 26,
the characteristic value calculator 19 calculates a character-
istic value of the converted log 1, as 0 (the rarity corre-
sponding to event occurrence order “first”)+0.12 (the rarity
corresponding to event occurrence order “second”) +0.17
(the rarity corresponding to event occurrence order “third”)=
0.29, as shown 1n FIG. 27. FIG. 27 1s a view showing results
of characteristic values of the converted logs 1 to 12, which
are calculated by the characteristic value calculator 19 1n the
above-described manner.

The characteristic value calculator 19 transmits the infor-
mation concerning the largest characteristic value among the
calculated characteristic values. For example, the character-
istic value calculator 19 to the output unit 174, name of the
converted log corresponding to the largest characteristic
value, the contents of the converted log, the rarity corre-
sponding to each event occurrence order and the converted
log, and the largest characteristic value. For example, if the
log 12 has a higher characteristic value of 1.08, 1n compari-
son with other converted logs as shown i FIG. 27, the
characteristic value calculator 19 transmits the information
concerning the converted log 12 (such as the name of the
converted log 12) to the output unit 17.

US 6,565,508 B2

25

In step S265, the output unit 17 outputs the information
concerning the converted log corresponding to the largest
characteristic value (such as, the name of the converted log,
the characteristic value of the converted log, the contents of
the converted log, and the rarity corresponding to each event
occurrence order and the converted log, for example). In the
case when the converted log corresponding to the largest
characteristic value does not exist (such as the case when all
the characteristic values of the converted logs are 0), then
the following processing may take place. Specifically, infor-
mation concerning each of the converted logs 1s transmitted
from the characteristic value calculator 19 to the output unit
17. Then, the output unit 17 outputs the mmformation con-
cerning each of the converted logs.

The i1nformation outputted from the output unit 17 1s
useful information for the operator. The operator can exam-
ine a certain converted log by considering the above log
characteristic. Accordingly, it 1s possible for the operator to
perform a debugging operation efficiently.

By using the area designator 20, instead of designating the
array variables “vals (1)” to “vals (1)”, the operator can
designate the array variables vals (1) (such as “vals (3)”,
“vals (6)”, “vals (9)” and “vals (12)) which are referenced by
the function “calc”.

For example, if the converted log corresponding to the
largest characteristic value 1s not be outputted 1n step S2635,
the operator can also designate other array variables ditfer-
ent from the array variables that have been designated
already, by use of the area designator 20. Then, the process-
ing may be started again from step S210 and so forth.

The characteristic value calculator 19 can also calculate
the characteristic value for each converted log based on the
event occurrence probability, which 1s calculated by the
event occurrence probability calculator 14, as similar to
Modified Example 2 of Embodiment 1. In addition, the
output unit 17 may output the calculated characteristic
values of the respective converted logs. For example, as
shown 1n FIG. 28, the characteristic value calculator 19 may
generate a matrix in which each event occurrence probabil-
ity or each event non-occurrence probability are associated
with log and event occurrence order, as similar to Modified
Example 2 of Embodiment 1.

Moreover, the characteristic value calculator 19 calculates
a characteristic value for each converted log, as similar to
Modified Example 2 of Embodiment 1 as follows.
Specifically, the characteristic value calculator 19 calculates
a characteristic value by multiplying event occurrence prob-
ability or event non-occurrence probability corresponding to
each event occurrence order, with each other. In addition, the
output unit 17 may output information concerning the con-
verted log corresponding to the smallest characteristic value
among the calculated characteristic values.

Furthermore, the log analysis device of Embodiment 2
may 1nclude a judging unit having a function described
below. The judging unit judges as to whether or not all
program descriptions corresponding to all event occurrence
order are 1dentical across a plurality of classified logs.

Then, when the judging unit judges that all program
descriptions corresponding to all event occurrence order are
identical across the plurality of classified logs, the log
analysis device may perform the following processing. The
log analysis device may perform the processing from step
S70 to step S120, while considering data stored in a memory
arcas corresponding to an array variable.

(Operation and Effect)

According to this embodiment, the operator designates

memory area(array variable) to be referenced upon execu-

5

10

15

20

25

30

35

40

45

50

55

60

65

26

tion of program description concerning event, by using the
arca designator 20. Moreover, the classified log generator 22
generates a classified log for each memory area (designated
array variable). In this case, the classified log is a log in
which one or more events that are classified as events
concerning the reference to the designated memory area, are
recorded according to event occurrence order of each of the
cvents.

Then, the log converter 13 converts the classified logs into
the converted logs. Thereafter, based on program description
concerning an event, the event occurrence probability cal-
culator 14 calculates an event occurrence probability for
cach event occurrence order. Then, the rarity calculator 15
calculates a rarity for each event occurrence order, based on
the event occurrence probability calculated by the event
occurrence probability calculator 14. Thereafter, the output
unit 17 outputs the information concerning the log
characteristic, based on the event occurrence probability or
rarity.

For this reason, the log analysis device of this embodi-
ment calculates the event occurrence probability and/or
rarity by appropriately considering instances of reference to
memory area 1n addition to program description and event
occurrence order (execution order of program description).
Then, the log analysis device can extract the log character-
istic based on the event occurrence probability or rarity.

As a consequence, even 1f the log characteristic 1s not
extracted 1n spite of considering the program description and
the event occurrence order, the operator does not have to
examine another log for mnput or does not have to examine
another log analysis method again. In this way, by using the
log analysis device of this embodiment the operator can
obtain the log characteristic promptly.

Therefore, the log analysis device and the log analysis
method of this embodiment can provide the operator with
more useful information for a debugging operation, as
compared to the prior art.

(Application Example 1 of Embodiment 2)

In Application Example 1, the operator designates a
memory arca to be referenced upon execution of a given
program description concerning an event, by use of the area
designator 20. For example, the operator designates a given
array variable corresponding to a given function described 1n
the program, by use of the area designator 20.

The reason for this designation 1s as follows. Specifically,
information (such as an address or a variable) concerning
memory arca, which 1s referenced by each function, is
recorded 1n a log. For this reason, when the operator
recognizes 1n advance of a bug within a description con-
cerning a certain array variable(a variable corresponding to
the parameter of the given function), the operator designates
the array variable, by use of the area designator 20. The
reason for such designation 1s to increase the possibility of
extraction of log characteristic.

(Log Analysis Method)

A log analysis method using the above-described log
analysis device of Application Example 1 can be carried out
in the following processing. Firstly, for example, the opera-
tor obtains the log outputted from a debugger. For example,
the debugger executes the program shown in FIG. 29, for
example. As shown 1n FIG. 29, in the program, a function
“main” and a function “g” reference a variable al (variable
of class A type); the function “main” references a variable
“ad” (variable of class Atype); and a function f and a
function g reference a variable “a2 “(variable of class A
type).

For example, FIG. 30 1s a view showing a log outputted
from the debugger (or a tracer). In the log, a program

US 6,565,508 B2

27

description concerning each event; information (addresses)
indicating memory areas which are referenced upon execu-
fion of respective program descriptions; and data value
stored 1n each memory area, are recorded according to an
occurrence order of the events.

For example, in the log, mmformation corresponding to
event occurrence order “third” 1s “al.height=10;
al:0x10010, al.height:0x10010=10". In other words, in the
log, information indicating that the program description
“al.he1ght=10" was carried out upon occurrence of the third
event, information indicating that the variable “al” corre-
sponding to top address (0x10010) of memory area was
referenced upon occurrence of the third event; and informa-
tion indicating that the data value “10” was stored 1n
memory area(top address of memory area is 0x10010)
corresponding to “al:height”.

The log analysis method of Application Example 1 can be
carried out 1n the following processing. Description will be
made below by use of FIG. 20. In step S200, the operator
designates a given variable described in the program (the
variable corresponding to a memory area to be referenced
upon execution of a given program description), by use of
the area designator 20).

For example, the operator who obtains the log shown in
FIG. 30, designates variables of class A type “&a”
(specifically, for example, “al” and “a2”) which are param-

eters of the function “g”. To be more precise, as shown 1n

FIG. 30, based on the content of the log (“g(al);
al:0x10010” and “g(a2); a2:0x100207), the operator judges
that variables of class A type are variable “al” and variable
“al2”.

In this case, for example, the operator designates infor-
mation (al:0x10010) indicating variable “al” and address
0x10010” and information (a2:0x10020) indicating variable
“a2” and address “0x10020”, by use of the arca designator
20. Here, the operator may designate only the variables

“al” and “a2”), by use of the area designator 20. The
contents of the log inputted by the operator are transmitted
to the area designator 20. Then, the area designator 20 can
obtain a correlation between each variable and each address
of memory area, based on the contents of the inputted log.
In this manner, the areca designator 20 may designate an
address corresponding to each variable designated by the
operator.

Meanwhile, the operator can also designate a variable
(g¢&(a)) instead of the variables (al and a2) by use of the area
designator 20. In this way, the variable “al” and variable
“a2” may be automatically designated. Specifically, the
contents of the inputted log are transmitted to the area
designator 20. Then, the area designator 20 searches the
contents of the log based on the designation of “g(&a)”.
Thereafter, the area designator 20 may designate informa-
tion (al:0x10010) indicating variable “al” and address
“0x10010” and mformation (a2:0x10020) indicating vari-
able “a2” and address “0x10020”

The area designator 20 transmits all the designated vari-
ables to the log classifier 21. Meanwhile, the inputted log 1s
transmitted to the log classifier 21.

In step S210, the log classifier 21 classifies each event for
cach designated variable, based on a reference to a variable
designated by the area designator 20, being performed upon
the occurrence of above each event. One example of con-
crete processing by the log classifier 21 will be described
below.

For example, as shown 1n FIG. 30, program descriptions
referencing to variable “al” are “A al”, “al.height”,

“al.width”, “g(al)”, and “area=al.height*al.width”.

10

15

20

25

30

35

40

45

50

55

60

65

23

Meanwhile, program descriptions referencing to variable
“a2” are “A a2”, “a2.height”, “a2.width”, “g(a2)”, and
“arca=a2.height*a2.width”. Then, the log classifier 21 clas-
sifies each event (program description concerning each
event) based on a reference to each variable(“al”, “a2”)
being performed upon the occurrence of each event.

In step S220, the classified log generator 22 generates a
classified log for each designated variable. As shown 1n FIG.
30, the classified log generator 22 generates the classified
log 1, in which a plurality of events that are classified as
events concerning the reference to the variable “al”, are
recorded according to the occurrence order of each of the
plurality of events. Similarly, the classified log generator 22
ogenerates the classified log 2. FIG. 31 and FIG. 32 are views
collectively showing one example of a plurality of classified
logs generated by the classified log generator 22. Here, a
mode of the classified log 1s not particularly limaited.
Thereafter, the classified log generator 22 transmits the
plurality of classified logs to the log converter 13.

Then, the log analysis device performs the processing
from step S230 and so forth, which are described 1n Embodi-
ment 2. The log analysis device of this application example
performs a log analysis without considering data value.

In the case of the classified logs shown 1n FIG. 32, 1n step
S230, the event row generator 12 may generate an event row
which 1s “A a, a.height, a.width, g, arca=a.height*a.width”.
Then, the log converter 13 may convert the classified logs
into the converted logs based on the event row. Thereatter,
the event occurrence probability calculator 14, to which the
converted logs are transmitted, calculates an event occur-
rence probability for each event. Meanwhile, the rarity
calculator 15 calculates a rarity according to the method of
the Embodiment 2. Moreover, the output unit 17 may output
information concerning log characteristic.

In the case of FIG. 32, all the occurrence probabilities are
1. Accordingly, 1n step S260, a characteristic value of each
converted log 1s calculated as O.

For this reason, when the information concerning each of
the converted logs 1s outputted from the output unit 17, the
operator can judge that there 1s no log characteristic 1n the
converted logs. Thereafter, as described in Embodiment 1,
the log analysis device may perform the processing of step
S70 and so forth, while considering data value of each
parameter (al and a2).

The output unit 17 may output the contents of the respec-
five classified logs after step S220. The operator can obtain
information as to whether or not a log characteristic exists,
based on the contents of the respective classiiied logs.
(Application Example 2 of Embodiment 2)

In Application Example 2, the operator designates a
plurality of memory areas. In this case, area size of each of
the memory areas 1s equal to each other. For example, the
operator designates a plurality of variables (such as variables
of integer type, variables of character type), by use of the
arca designator 20. This designation of the plurality of
variables 1s equivalent to designation of the plurality of
MEemOory areas.

(Log Analysis Method)

A log analysis method using the above-described log
analysis device of Application Example 2 can be carried out
in the following processing. For example, 1f variables of
class A type are designated, then the log analysis method can
be carried out in the following processing.

Firstly, for example, the operator obtains the log outputted
from a debugger. For example, the debugger executes the
program shown 1n FIG. 29, for example. For example, FIG.
30 1s a view showing a log outputted from the debugger.

US 6,565,508 B2

29

The log analysis method of Application Example 2 can be
carried out 1n the following processing. Description will be
made below by use of FIG. 20. In step S200, the operator
designates a plurality of variables described 1n the program,
by use of the arca designator 20.

For example, the operator who obtains the log shown in
FIG. 30 designates variables of class A type (specifically, for
example, “al”, “a2”, “a3”). To be more precise, as shown in
FIG. 30, based on the part of content of the log (“A al;”,
“al:0x100107”, “A a2;”, “a2:0x100207, “A a3;”, and
“a3:0x10030”), the operator judges that variables of class A
type are variable “al” variable “a2” and variable “a3”. In

this case, for example, the operator designates mnformation
(al:0x10010) indicating variable “al” and address

“0x10010”; information (a2:0x10020) indicating variable”
a2 and address 0x10020 and information (a3:0x10030)
indicating variable “a3” and address 0x10030”, by use of the
arca designator 20. Here, as similar to Application Example
1, the operator can designate only the plurality of variables,
by use of the area designator 20.

Meanwhile, the operator can also designate a variable
(class A) instead of the variables (al, a2, a3), by use of the
arca designator 20. In this way, the variable “al” variable
“a2” and variable “a3” may be automatically designated.
Specifically, the contents of the inputted log are transmitted
to the arca designator 20. Then, the areca designator 20
scarches the contents of the log based on the designation of

“class A”. Thereafter, the area designator 20 may designate
the information (al:0x10010), the information (a2:0x10020)

and the information (a3:0x10030).

The areca designator 20 transmits all the designated vari-
ables to the log classifier 21. Meanwhile, the mputted log 1s
transmitted to the log classifier 21.

In step S210, the log classifier 21 classifies each event for
cach designated variable, based on a reference to a variable
designated by the area designator 20, being performed upon
the occurrence of above each event. One example of con-
crete processing by the log classifier 21 will be described
below.

For example, as shown 1n FIG. 30, program descriptions
referencing to variable “al” are “A al”, “al.height”,
“al.width”, “g(al)”, and “area=al.height*al.width”.
Meanwhile, program descriptions referencing to variable
“a2” are “A a2”, “a2.height”, “a2.width”, “g(a2)”, and
“arca=a2.height*a2.width”. Meanwhile, program descrip-
tfions referencing to variable “ad” are “A a3”, “ad.height”,
and “arca=a3.height*a3.width”.

Then, the log classifier 21 classifies each event (program
description concerning each event) based on a reference to
each variable (“al”, “a2”, “a3”)being performed upon the
occurrence of each event.

In step S220, the classified log generator 22 generates a
classified log for each designated variable. As shown 1n FIG.
30, the classified log generator 22 generates the classified
log 1, mn which a plurality of events that are classified as
events concerning the reference to the variable “al”, are
recorded according to the occurrence order of each of the
plurality of events. Similarly, the classified log generator 22
generates the classified log 2. FIG. 33 and FIG. 34 are views
collectively showing one example of a plurality of classified
logs generated by the classified log generator 22. Here, a
mode of the classified log 1s not particularly limited.
Thereafter, the classified log generator 22 transmits the
plurality of classified logs to the log converter 13.

Then, the log analysis device performs the processing
from step S230 and so forth, which are described 1n Embodi-
ment 2. The log analysis device of this application example
performs a log analysis without considering data value.

5

10

15

20

25

30

35

40

45

50

55

60

65

30

In the case of the classified logs shown 1n FIG. 34, m step
S230, the event row generator 12 may generate an event row
which 1s “A a, a.height, a.width, g, arca=a.height*a.width”.
Then, the log converter 13 may convert the classified logs
into the converted logs based on the event row. Thereatter,
the event occurrence probability calculator 14, to which the
converted logs are transmitted, calculates an event occur-
rence probability for each event. Meanwhile, the rarity
calculator 15 calculates a rarity according to the method of
the Embodiment 2. Moreover, the output unit 17 may output
information concerning log characteristic.

In the case of FIG. 34, the rarity judging unit 16 judges
that the a log characteristic 1s included 1n the converted logs.
Meanwhile, the output unit 17 outputs information indicat-
ing that the characteristic value(degree) of converted log 3
1s the largest value. In this way, the operator can judge that
it is rare that an event concerning the program description (a.
width) is not recorded in the converted log 3. Moreover, the
operator can judge that it 1s rare that an event concerning the

A -

program description “g” 1s not recorded 1n the converted log

3.
Furthermore, by referencing to the contents of the con-
verted log 3, the operator can judge that non-occurrence of

S -

the event concerning “g” 1s due to the following reason. The
reason 15 because a call for the function “g” 1s not necessary
for calculation of a function “area” (a function referencing
the variable “a3”) in the program. Accordingly, the operator
can judge that non-existence of a record of the event (the
event concerning “g”) in the converted log 3 is not related
to program bug.

On the other hand, by referencing to the contents of the
converted log 3, the operator can judge that non-occurrence
of the event concerning “a.width” 1s due to the following
reason. The reason 1s because a value of “a3.width” 1s not
described 1n the program, even though the value of
“ad.width” 1s necessary for calculation of the function
“arca”. Accordingly, the operator can judge that non-
existence of a record of the event (the event concerning
“a.width™) in the converted log 3 is related to program bug.

The output unit 17 may output the contents of the respec-
tive classified logs after step S220. The operator can obtain
information as to whether or not a log characteristic exists,
based on the contents of the respective classified logs.
(Modified Example of Embodiment 2)

Incidentally, the rarity judging unit 16 can also judge as
to whether or not log characteristic exists based on a given
standard value. The operator can mput the given standard
value by use of the mput unit 10. Then, the given standard
value 1s transmitted to the rarity judging unit 16 and stored
therein.

For example, 1n step S255, 1f there 1s a converted log
corresponding to a rarity equal to or larger than 0.6 (the
given standard value), then the rarity judging unit 16 can
also judge that log characteristic 1s included 1n the plurality
of converted logs.

Meanwhile, the log analysis device may also include a
sorter (not shown). Specifically, if there are a plurality of
rarities which exceed the given standard value, the sorter
sorts the respective rarities calculated by the rarity calculator
15 in order of high rareness. Then, the sorter allows the
output unit 17 to output the items of information concerning
log corresponding to the respective rarities, in order of high
rareness. As a consequence, according to the order, the
operator can perform the debugging operation based on the
items of information concerning log. In this way, the opera-
tor can perform a debugging operation efficiently.

Meanwhile, the operator can also 1nput a given standard

value (a given standard value concerning characteristic

US 6,565,508 B2

31

value) by use of the input unit 10. If there are a plurality of
characteristic values which exceed the given standard value,
the sorter sorts the respective characteristic values calculated
by the characteristic value calculator, in order of high
characteristic values. Then, the sorter allows the output unit
17 to output the items of information concerning logs
corresponding to respective characteristic values, 1n order of
high characteristic values.

(Embodiment of Log Analysis Program)

Incidentally, a computer can perform the processing of the
above-described log analysis method by executing a log
analysis program to be described later. FIG. 35 1s a view
showing a configuration of the computer. The computer
includes a hard disk 100 configured to store (record) a log
analysis program 1, a log analysis program 2 and various
data; memory 120 configured to temporarily store data read
from the hard disk 100 and results of operation by a CPU
130; the CPU 130 configured to perform various operation
processing; an mmput/output unit 110; and a bus 140 config-
ured to mutually connect the foregoing devices. An embodi-
ment of the log analysis program 1 (100a) will be described
first and an embodiment of the log analysis program 2

(100b) will be described thereafter.
(Log Analysis Program 1)

The mput unit 110 with which the operator inputs various
types of data. The output unit 110 outputs various types of
data. The mput/output unit 110 concludes, for example, a
display device configured to display the contents of data, a
keyboard (or a mouse) configured to input various data by
key operation; and a printer device configured to print data.

The 1nput/output unit 110 has a function of the mput unit
110a and a function of the output unit 105. The operator
inputs a log outputted from a debugger, for example, by use
of the mput unit 110a. The output unmt 1105 outputs 1nfor-
mation concerning an event, as already explained in the
embodiment 1.

The CPU 130 has functions of various processing units by
executing the log analysis program 1 (100a) which is stored
in the hard disk 100. To be more precise, the CPU 130 has
a function of the log generator 130¢ which has the function
of the log generator 11 1n the embodiment 1. The CPU 130
generates a plurality of logs according to the method
explained 1n the embodiment 1. Moreover, the CPU 130 has
a function of the event row generator 130a which has the
function of the event row generator 12 in the embodiment 1.
The CPU 130 generates an event row according to the
method explained 1 the embodiment 1.

Moreover, the CPU 130 has a function of the log con-
verter 1305 which has the function of the log converter 13
in the embodiment 1. The CPU 130 converts each log into
cach converted log according to the method explained 1n the
embodiment 1. Furthermore, the CPU 130 has a function of
the event occurrence probability calculator 130¢ which has
the function of the event occurrence probability calculator
14 1n the embodiment 1. The CPU 130 calculates event
occurrence probability for each event occurrence order,
according to the method explained in the embodiment 1. In
addition, the CPU 130 has a function of the rarity calculator
130d which has the function of the rarity calculator 15 1n the
embodiment 1. The CPU calculates a rarity for each event
occurrence order, according to the method explained in the
embodiment 1. The CPU 130 has a function of the rarity
judging unit 130e which has the function of the rarity
judging unit 16 1n the embodiment 1. The CPU 130 also has
a function of the data value classifier 130: which has the
function of the data value classifier 18 1n the embodiment 1.
The CPU 130 generates classification information according

10

15

20

25

30

35

40

45

50

55

60

65

32

to the method explained 1n the embodiment 1, and gives the
generated classification information to the respective events
according to the method explained 1n the embodiment 1.
Moreover, the above-described event occurrence prob-
ability calculator 130c¢ also has a function of calculating an
event occurrence probability for each event occurrence
order, based on the program descriptions concerning an
event and data to be used upon the execution of the program
descriptions. Furthermore, the above-described rarity calcu-
lator 1304 also has a function of calculating a rarity, for each
event occurrence order, based on the calculated event occur-
rence probability. The above-described rarity judging unit
130¢ also has a function of judging as to whether or not a log,
characteristic exists based on calculated rarity by the rarity

calculator 130d.
The log analysis program 1 (100a), which is stored in

hardware of the computer having the above-described
conilguration, 1s executed by the computer according to the
following procedures.

Firstly, the operator inputs the log outputted from a
debugger, by use of the mput unit 110a. Then, the 1nputted
information 1s transmitted to the CPU 130 via the bus 140
(the description “via the bus” will be hereinafter omitted).
The CPU 130 reads the log analysis program 1 from the hard
disk 100 and decrypts the log analysis program 1 so as to
have each unit be able to execute a functions of each unait.

Next, the CPU 130 (the log generator 130g) generates a
plurality of logs based on the inputted log. To be more
precise, the iputted log 1s transmitted to the CPU 130.
Based on the inputted log, the CPU 130 (the log generator
130g) generates the plurality of logs, each log being
recorded a plurality of events according to each event
occurrence order in each of the logs. Next, the CPU 130 (the
event row generator 130a) generates an event row in which
a plurality of events are recorded according to each event
occurrence order, based on the pattern of the events recorded
in each log generated by the log generator 130g.

Next, the CPU 130 (the log converter 1305) compares
cach event recorded in the generated event row with each
event recorded 1n each log, and then converts each log into
cach converted log based on results of the comparison. Next,
the CPU 130 (the event occurrence probability calculator
130c) calculates an event occurrence probability for each
event occurrence order, based on program descriptions con-
cerning each event. Next, the CPU 130 (the rarity calculator
130¢) calculates a rarity, for each event occurrence order
based on the event occurrence probability calculated by the
event occurrence probability calculator 130c.

Next, the CPU 130 (the rarity judging unit 130¢) judges
as to whether or not a log characteristic 1s mncluded in the
converted logs based on the rarities calculated by the rarity
calculator 130d. If 1t 1s judged that the log characteristic is
included 1in the converted logs, information concerning the
characteristic 1s transmitted to the output unit 1105. The
output unit 1105 outputs the information concerning the
characteristic. If 1t 1s judged that the log characteristic 1s not
included in the converted logs, the CPU 130 (the data value
classifier 130:) generates the above-described classification
information based on data to be used upon execution of
program description concerning an event. Then, the data
value classifier 130 gives the generated classification infor-
mation to the respective events.

Next, the CPU 130 (the event occurrence probability
calculator 130c¢) calculates an event occurrence probability
for each event occurrence order, based on the program
descriptions concerning event and classification information

Next, the CPU 130 (the rarity calculator 130d) calculates

a rarity, for each event occurrence order, based on the event

US 6,565,508 B2

33

occurrence probability calculated by the event occurrence
probability calculator 130c. Next, the CPU 130 (the rarity
judging unit 130¢) judges as to whether or not the log
characteristic exist based on each calculated rarity.

If the log characteristic does not exist, then information
indicating that the log characteristic does not exist is trans-
mitted to the output unit 1105. The output unit 105 outputs
the information. Meanwhile, 1f the log characteristic exists,
then the CPU 130 transmits the information concerning the
log characteristic to the output unit lob. The output unit 1105
outputs the transmitted information.

Here, the CPU 130 may also have a function of the
judging unit 1n modified example 1 of the embodiment 1.

Moreover, after the operator inputs the log, the following,
processing is performed. When the CPU 130 (the judging
unit) judges that all program descriptions are identical across
the plurality of logs, then the CPU (the data value classifier
1307) may perform the processing of generating the classi-
fication information and so forth. Meanwhile, when the CPU
130 (the judging unit) judges that all program descriptions
are not 1dentical across the plurality of logs, CPU 130 may
perform the steps from the processing performed by the log
ogenerator 130g to the judging processing performed by the
rarity judging unit 130e (from step S15 to step S60 in FIG.
4).

Moreover, the CPU 130 may also have a function of the
characteristic value calculator 130j which has the function of
the characteristic value calculator 1n modified example 2 of
the embodiment 1. The CPU 130 (the characteristic value
calculator 130y) calculates a characteristic value of each log
(or each converted log) based on the event occurrence
probability. The CPU 130 (the characteristic value calculator
130j) transmits each characteristic value to the output unit
110b. The output unit 1105 outputs each characteristic value.

According to the log analysis program of this
embodiment, the computer has the function of the log
analysis device of embodiment 1 (or modified example 1 of
the embodiment 1, modified example 2 of the embodiment
1). For this reason, by use of the computer, the operation and
effect of embodiment 1 (or modified example 1 of the
embodiment 1, modified example 2 of the embodiment 1) is
achieved.

(Log Analysis Program 2)

The input/output unit 110 has a function of the mput unit
110 and a function of the output umit 110b. Here, the
mnput/output unit 110 has a function of an area designator
110c¢ which has the function of the area designator 20 1n the
embodiment 2.

The operator can designate an areca of the memory 120 to
be referenced upon execution of a program description
concerning an event, by use of the input/output unit 110 (the
area designator 110c). Moreover, the operator can designate
a plurality of areas of the memory 120, by use of the
input/output unit 110 (the area designator 110c¢), according
to the method explained 1n the application example 2 of the
embodiment 2. Hereinafter area of the memory 120 1is
referred to as memory area. In this case, an instruction to
designate memory area 1s outputted to the output unit 1105.
Based on the instruction, the operator designates a plurality
of memory areas by use of the area designator 110c¢ The
output 1105 outputs the information concerning an event, as
already explained 1 the embodiment 2. Moreover, the
output unit 105 outputs a characteristic value of each con-
verted log calculated by the characteristic value calculator
130;.

The CPU 130 has a function of a log classifier 130/ which
has the function of the log classifier 21 in the embodiment

10

15

20

25

30

35

40

45

50

55

60

65

34

2. The CPU 130 has a function of a classified log generator
130/: which has the function of the classified log generator
22 1n the embodiment 2.

The CPU 130 has a function of an event row generator
130a which has the function of the event row generator 12
in the embodiment 2. The CPU 130 has a function of a log
converter 130b which has the function of the log converter
13 1in the embodiment 2. Furthermore, the CPU 130 has a

function of an event occurrence probability calculator 130c
which has the function of the event occurrence probability
calculator 14 1n the embodiment 2. The CPU 130 has a
function of a rarity calculator 130d which has the function

of the rarity calculator 15 1n the embodiment 2. Moreover,
the CPU 130 has a function of a characteristic value calcu-

lator 1307 which has the function of the characteristic value
calculator 19 1n the embodiment 2.

The log analysis program 2 (1005), which is stored in the
hard disk 100 of the computer having the above-described
conilguration, 1s executed by the computer according to the
following procedures.

Firstly, the operator inputs the log outputted from a
debugger, by use of the mput unit 110a. Then, the 1nputted
information 1s transmitted to the CPU 130. The CPU 130
reads the log analysis program 2 from the hard disk 100 and
decrypts the log analysis program 2 so as to have each unit
be able to execute a functions of each unit.

For example, the CPU 130 has the output unit 1105 output
an 1nstruction to designate memory area. Based on the
instruction, the operator inputs (designates) a given memory

area by use of the input/output unit 110 (the area designator

110c¢).

The CPU 130 (the log classifier 130f) classifies each event
for each designated array variable, based on a reference to
an array variable designated by the area designator 20, being
performed upon the occurrence of above each event. Next,
the CPU 130 (the classified log generator 130/) generates a
classified log for each designated array variable. In this case,
the classified log 1s a log 1n which one or more events that
are “classified as events concerning the reference to the
memory area, are recorded according to the occurrence order
of each of the events.

Next, the CPU 130 (log converter 130b) converts the
respective classified logs into the converted logs. One
example of concrete processing by the log converter 1305
will be described below. The log converter 1305 instructs the
event row generator 130a to generate a given event row. The
event row generator 130a generates the event row based on
the pattern of events recorded 1n each classified log.

The log converter 1305 performs the following processing
for each event occurrence order. The log converter 1305
compares each program description which 1s recorded 1n the
event row, with each program description which 1s recorded
in each classified log. Then, if “a program description
corresponding to a certain event occurrence order recorded
in the event row” coincides with a “program description
corresponding to the event occurrence order recorded 1in
cach log, the log converter 1305 records, 1n each converted
log, the program description in association with the event
occurrence order. If a program description corresponding to
a certain event occurrence order 1s not recorded 1n each log,
the log converter 13 records, 1n each converted log, 1nfor-
mation “indicating that a program description 1s not
recorded” 1n association with the event occurrence order.

Next the CPU 130 (the event occurrence probability
calculator 130c) calculates an event occurrence probability,
for each event occurrence order, based on the program
description concerning each event recorded 1n each of the
converted logs.

US 6,565,508 B2

35

Next the CPU 130 (the rarity calculator 130d) calculates
a rarity, for each event occurrence order, based on the event

occurrence probability calculated by the event occurrence
probability calculator 130c. Next the CPU 130 (the rarity
judging unit 130¢) judges as to whether or not log charac-

teristic 1s 1ncluded 1n the plurality of converted logs, based
on the each calculated rarity.

If 1t 1s judged that the log characteristic 1s included 1n the
plurality of converted logs, the CPU 130 transmits the
information concerning the log characteristic to output unit
110b. The output unit 1105 outputs the information. If it 1s
judged that the log characteristic 1s not included in the
plurality of converted logs, the CPU 130 (the characteristic
value calculator 130)) calculates a characteristic value of
cach log, based on each calculated rarity. Each characteristic
value 1s transmitted to the output unit 110b. The output unit
10b6 outputs each characteristic value.

Here, the CPU 130 (the characteristic value calculator
130j) can also calculate a characteristic value of each log,
based on each calculated event occurrence probability.

According to the log analysis program of this
embodiment, the computer has the function of the log
analysis device of embodiment 2 (or Application example 1,
2 of the embodiment 2, modified example of the embodi-
ment 2). For this reason, by use of the computer, the
operation and effect of embodiment 2 (or Application
example 1, 2 of the embodiment 2, modified example of the
embodiment 2)is achieved.

Although the log analysis program 1 (110a) and the log
analysis program 2 (1005) are constituted separately in the
foregoing description, the modes of the log analysis pro-
orams are not limited to such the constitution. For example,
the contents of the log analysis program 1 and the contents
of the log analysis program 2 may be recorded m one
program.

Moreover, the log analysis program 1 and/or the log
analysis program 2 may be recorded 1n a computer-readable
recording medium. As shown 1n FIG. 36, for example, a
recording medium may be a hard disk 100, a flexible disk
400, a compact disk 500, an IC chip 600, or a cassette tape
700. By use of the computer readable recording medium
storing the log analysis program 1 and/or the log analysis
program 2, the operator can easily keep, carry or sell the log,
analysis program 1 and/or the log analysis program?2, for
example.

Various modifications will become possible for those
skilled 1n the art after receiving the teachings of the present
disclosure without departing from the scope thereof.

What 1s claimed 1s:

1. A log analysis method comprising:

executing a program a plurality of times;

generating a plurality of logs, each log being recorded a
plurality of events occurring upon the execution of the
program according to an occurrence order of each of
the events 1n each of the logs;

performing a first calculation to calculate an event occur-
rence probability, for the occurrence order of each
event, based on at least one from the program descrip-
tion concerning each event recorded 1n the logs and the
data to be used upon the execution of the program
description; and

outputting information concerning an event which corre-
sponds to a characteristic included 1n the logs, based on
the event occurrence probability.

2. The log analysis method of claim 1 further comprising;:

calculating rarity, indicating a level of an occurrence
frequency of each event, for the occurrence order of

10

15

20

25

30

35

40

45

50

55

60

65

36

cach event, based on each calculated event occurrence
probability; and

outputting information concerning an event which corre-
sponds to a characteristic included 1n the logs, based on

the calculated rarity.
3. The log analysis method of claim 2 further comprising:

generating an event row 1n which a plurality of events are
recorded according to the occurrence order of each of
the plurality of events, based on events recorded 1n each
of the plurality of logs;

comparing each event recorded 1n the event row with each
event recorded 1n each of the logs respectively;

converting each of the logs into converted log
respectively, based on result of the comparison;

calculating an event occurrence probability for the occur-
rence order of each event, based on each program
description concerning each event recorded 1n each of
the converted logs;

calculating rarity, indicating a level of an occurrence
frequency of each event, for the occurrence order of
each event, based on each calculated event occurrence
probability; and

performing a first judgment to judge as to whether or not
a characteristic 1s included 1n the converted logs, based
on each calculated rarity;

wherein the first calculation 1s performed based on a
judgment result of the first judgment.
4. The log analysis method of claim 3 further comprising;:

calculating a characteristic value of a converted log
indicating the degree, from among a plurality of con-
verted logs, the converted log may contain a distin-
ouishing characteristic, for each converted log; and

outputting the characteristic value of each converted log.
5. The log analysis method of claim 1 further comprising;:

generating an event row 1 which a plurality of events are
recorded according to the occurrence order of each of
the plurality of events, based on events recorded 1n each
of the plurality of logs;

comparing each event recorded 1n the event row with each
event recorded 1n each of the logs respectively;

converting each of the logs into converted log
respectively, based on result of the comparison;

calculating an event occurrence probability for the occur-
rence order of each event, based on each program
description concerning each event recorded 1n each of
the converted logs;

calculating rarity, indicating a level of an occurrence
frequency of each event, for the occurrence order of
cach event, based on each calculated event occurrence
probability; and

performing a first judgment to judge as to whether or not
a characteristic 1s included 1n the converted logs, based
on each calculated rarity;

wheremn the first calculation 1s performed based on a
judgment result of the first judgment.
6. The log analysis method of claim 5 further comprising:

calculating a characteristic value of a converted log
indicating the degree, from among a plurality of con-
verted logs, the converted log may contain a distin-
cguishing characteristic, for each converted log; and

outputting the characteristic value of each converted log.
7. A log analysis method configured to analyze a log 1n
which a series of events occurring upon execution of a

US 6,565,508 B2

37

program are recorded according to an occurrence order of
cach of the events, the log analysis method comprising:

classifying each event based on a reference to a memory
arca bemng performed upon execution of a program
description corresponding to the each event;

generating a classified log, in each of which one or more
events classified as event concerning the reference to
the memory area, are recorded according to the occur-
rence order of each event, for each memory area;

generating an event row 1n which a plurality of events are
recorded according to the occurrence order of each of
the plurality of events, based on events recorded 1n each
of the plurality of classified logs;

comparing each event recorded 1n the event row with each
event recorded 1n each of the classified logs respec-

fively;
converting each of the classified logs into converted log
respectively, based on result of the comparison;

calculating an event occurrence probability for the occur-
rence order of each event, based on each program
description concerning each event recorded 1n each of
the converted logs;

calculating rarity, indicating a level of an occurrence
frequency of each event, for the occurrence order of
ecach event, based on each calculated event occurrence
probability; and

outputting mnformation concerning the event which cor-
responds to a characteristic included 1n the converted
logs, based on each calculated rarity.

8. The log analysis method of claim 7 further comprising:

calculating a characteristic value of a converted log
indicating the degree, from the plurality of converted
logs, the converted log may contain a distinguishing
characteristic, for each converted log; and

outputting the characteristic value of each converted log.

9. A computer-readable recording medium storing a log
analysis program configured to analyze a log by controlling
a computer, the log analysis program causing a computer to
execute a process comprising:

executing a program a plurality of times;

generating a plurality of logs, each log being recorded a
plurality of events occurring upon the execution of the
program according to an occurrence order of each of
the events 1n each of the logs;

performing a first calculation to calculate an event occur-
rence probability, for the occurrence order of each
event, based on at least one from the program descrip-
tion concerning each event recorded 1n the logs and the
data to be used upon the execution of the program
description; and

outputting information concerning an event which corre-
sponds to a characteristic included 1n the logs, based on
the event occurrence probability.

10. The computer-readable recording medium of claim 9
storing the log analysis program, the log analysis program
further causing the computer to execute a process compris-
Ing:

calculating rarity, indicating a level of an occurrence

frequency of each event, for the occurrence order of
each event, based on each calculated event occurrence
probability; and

outputting information concerning an event which corre-
sponds to a characteristic included 1n the logs, based on
the calculated rarity.

10

15

20

25

30

35

40

45

50

55

60

65

33

11. The computer-readable recording medium of claim 10
storing the log analysis program, the log analysis program
further causing the computer to execute a process compris-
Ing:

generating an event row 1n which a plurality of events are

recorded according to the occurrence order of each of
the plurality of events, based on events recorded 1n each
of the plurality of logs;

comparing each event recorded 1n the event row with each
event recorded 1n each of the logs respectively;

converting each of the logs into converted log
respectively, based on result of the comparison;

calculating an event occurrence probability for the occur-
rence order of each event, based on each program
description concerning each event recorded 1n each of
the converted logs;

calculating rarity, indicating a level of an occurrence
frequency of each event, for the occurrence order of
cach event, based on each calculated event occurrence
probability; and

performing a first judgment to judge as to whether or not
a characteristic 1s included 1n the converted logs, based
on each calculated rarity;

wherein the first calculation 1s performed based on a

judgment result of the first judgment.

12. The computer-readable recording medium of claim 11
storing the log analysis program, the log analysis program
further causing the computer to execute a process compris-
Ing:

calculating a characteristic value of a converted log

indicating the degree, from among a plurality of con-
verted logs, the converted log may contain a distin-
ouishing characteristic, for each converted log; and

outputting the characteristic value of each converted log.
13. The computer-readable recording medium of claim 9
storing the log analysis program, the log analysis program
further causing the computer to execute a process compris-
Ing:
generating an event row 1n which a plurality of events are
recorded according to the occurrence order of each of
the plurality of events, based on events recorded 1n each
of the plurality of logs;

comparing each event recorded 1n the event row with each
event recorded 1n each of the logs respectively;

converting each of the logs into converted log
respectively, based on result of the comparison;

calculating an event occurrence probability for the occur-
rence order of each event, based on each program
description concerning each event recorded 1n each of
the converted logs;

calculating rarity, indicating a level of an occurrence
frequency of each event, for the occurrence order of
each event, based on each calculated event occurrence
probability; and

performing a first judgment to judge as to whether or not
a characteristic 1s included 1n the converted logs, based
on each calculated rarity;

wheremn the first calculation 1s performed based on a

judgment result of the first judgment.

14. The computer-readable recording medium of claim 13
storing the log analysis program, the log analysis program
further causing the computer to execute a process compris-
Ing:

calculating a characteristic value of a converted log

indicating the degree, from among a plurality of con-

US 6,565,508 B2

39

verted logs, the converted log may contain a distin-
cguishing characteristic, for each converted log; and

outputting the characteristic value of each converted log.

15. A computer-readable recording medium storing a log
analysis program configured to analyze a log by controlling
a computer, the log 1n which a series of events occurring
upon execution of a program are recorded according to an
occurrence order of each of the events, the log analysis
program causing a computer to execute a process compris-
Ing:

classifying each event based on a reference to a memory

arca being performed upon execution of a program
description corresponding to the each event;

generating a classified log, in each of which one or more
events classified as event concerning the reference to
the memory area, are recorded according to the occur-

rence order of each event, for each memory area;

generating an event row 1n which a plurality of events are

recorded according to the occurrence order of each of 5,

the plurality of events, based on events recorded 1n each
of the plurality of classified logs;

comparing each event recorded 1n the event row with each
event recorded 1n each of the classified logs respec-
tively;

10

15

40

converting each of the classified logs into converted log
respectively, based on result of the comparison;

calculating an event occurrence probability for the occur-
rence order of each event, based on each program
description concerning each event recorded 1n each of

the converted logs;

calculating rarity, indicating a level of an occurrence
frequency of each event, for the occurrence order of
each event, based on each calculated event occurrence

probability; and

outputting information concerning the event which cor-
responds to a characteristic included 1n the converted
logs, based on each calculated rarity.

16. The computer-readable recording medium of claim 15

storing the log analysis program, the log analysis program
further causing the computer to execute a process compris-
Ing:

calculating a characteristic value of a converted log
indicating the degree, from the a plurality of converted
logs, the converted log may contain a distinguishing,
characteristic, for each converted log; and

outputting the characteristic value of each converted log.

	Front Page
	Drawings
	Specification
	Claims

