US006362693B2

US 6,862,693 B2
Mar. 1, 2005

(12) United States Patent
Chaudhry et al.

(10) Patent No.:
45) Date of Patent:

(54) PROVIDING FAULT-TOLERANCE BY 4,868,851 A * 9/1989 Trinidad et al. 375/267
COMPARING ADDRESSES AND DATA FROM 5,058,053 A * 10/1991 Gillettcccevvvvennn..... 710/317
REDUNDANT PROCESSORS RUNNING IN 5,226,152 A * 7/1993 Klug et al. 714/12
LOCK-STEP 5388242 A % 2/1995 JeWettoovovvevveeenn.. 711/113

5,623,449 A * 4/1997 Fischer et al. 315/200 R

(75) Inventors: Shailender Chaudhry, San Francisco, 5,001,281 A * 5/1999 Miyao et al. 714/11

CA (US); Marc Tremblay, Menlo Park, 5,903,717 A 5/1999 Wardropcce...... 395/182.1
CA (US) 2001/0034824 Al * 10/2001 Mukherjee et al. 712/215
(73) Assignee: (Sjt:l(ysi;:rosystems, Inc., Santa Clara, + cited by examiner
(*) Notice: Subject to any disclaimer, the term of this Primary Examiner—Robert Beausolic]
patent 1s extended or adjusted under 35 . .
U.S.C. 154(b) by 536 days. Assistant Examiner—Aaron D Matthew
(74) Attorney, Agent, or Firm—Park, Vaughan & Fleming

(21) Appl. No.: 10/061,522 LLE

(22) Filed: Jan. 31, 2002 (57) ABSTRACT

(65) Prior Publication Data One embodiment of the present invention provides a system

that facilitates fault-tolerance by using redundant proces-
US 200200152420 Al Oct. 17, 2002 sors. This system operates by receiving store operations
Related U.S. Application Data from a plurality of redundant processors running the same

(60) Provisional application No. 60/283,598, filed on Apr. 13, code 1n lo?kst';:::p. The system COIpares th(_?’ SIOI:G operations

2001. to determine if the store operations are identical, thereby
. indicating that the redundant processors are operating cor-
(gi) {}ltS %l """"""""""""""" 714/11714/ 130671i 1&1/2(:)0 rectly. If the store operations are 1dentical, the system
(52) US. Gl ’711/122’_ 711/14{‘ combines the store operations into a combined store
59) Field of S h 714/1 1’ 5 793 operation, and forwards the combined store operation to a
(58) Field o ear(7:) 4/797711/122140 141 "1 42’ 120f system memory that 1s shared between the redundant pro-
’ "‘ ’ 70";9 n 48’ 406 cessors. If the store operations are not identical, the system
’ indicates an error condition. In a variation on this
(56) References Cited eﬁmbodiment, the system similarly combines store opera-
tions.
U.S. PATENT DOCUMENTS
4,456,952 A 6/1984 Mohrman et al. 364/200 19 Claims, 9 Drawing Sheets
s
MULTIPROCESSOR
MEWORY eTen
102 100

PROCESSOR PROCESSOR PROCESSOR PROCESSOR
110 120 I 130 | 140

o oo e R W W W e ek --"--------------'__'-----'-_'----'--—----‘-------ﬂ------h_—--—-----_—----------‘——--——-

5 :
: ') i

: MEMORY CONTROLLER i

: 104 SEMI-CONDUCTOR CHIP :

E L 101 :

' —re—

: 106 | 150
E | i

’ — s

’ — :

} B ___l__ E

5 — |] — :

i L1 CACHE L1 CACHE | | L1 CACH 1 CACHE E

: | 112 , 122 132 142 :

: E

U.S. Patent Mar. 1, 2005 Sheet 1 of 9 US 6,862,693 B2

PROCESSOR

151

PROCESSOR PROCESSOR
193 154

L1 CACHE L1 CACHE L1 CACHE L1 CACHE
161 162 163 164

BUS
170
L2 CACHE MEMORY
180 183

FIG. 1A
(PRIOR ART)

US 6,862,693 B2

Sheet 2 of 9

Mar. 1, 2005

U.S. Patent

0G1
O/l

Orl Okl
405530044 d055300dd d0SS3004d | d0SS400dd
A4 cel ccl chl
JHOVO L] JHOVO L] JHOVO L | JHOVO 11

901
dHOVO €1

LOL
diHO JO1ONANOD-INIS POl
dd7T104.1LNOO AHOWIN
001
NJ1SAS
30554004ddLL NN

US 6,862,693 B2

Sheet 3 of 9

Mar. 1, 2005

U.S. Patent

¢ Old
25l ¥
o HOLIMS

- ——— e e e e W EE BN OV W O R WD O TR A W . - N u N N 2 ¥ N N 3 _N 1 N N N ¥ X B N _§N_ §_ N B N § ¥ §N W | e B O A S W S

£0c
ANVY ¢

c0cC
ANVA 21

T T I Rt B e Eaa e TERIRSR/RRRRUNRSS SSRNAISRUSS M S SR
JHOVD 21 —

051 GLZ

O/} HOLIMS

chl ctl
JHOVO L7 dHOVO |1

ccl chi
dHOVO L1 JHOVYO L1

Ovi Otl
d40554004d 4085400dd

0cl 0Ll
H0SS300Hd d05534004d

---------—‘“--J

U.S. Patent Mar. 1, 2005 Sheet 4 of 9 US 6,862,693 B2

304

314

303

——
I
=
313

FIG. 3

302
-
I U
-l
— —
— CMP
—1 w1 T
341

_-.
312

311

301
IS b D
— ==

U.S. Patent

PROCESSOR
110

'
)
I
]
|
I
'
)
'
!
§

Mar. 1, 2005 Sheet 5 of 9
PROCESSOR PROCESSOR
120 130

US 6,862,693 B2

PROCESSOR
140

--

-----ﬁ

| PROCESSOR

110

- S B S S o R G O R S T A P S S SR olh ok G B A o g

PROCESSOR PROCESSOR
120 110
VOTE

PROCESSOR
(SPARE)

140

--—_------------------_--ﬁ--_-_ﬂ'-—----- L % N N N

FIG. 4B

U.S. Patent Mar. 1, 2005 Sheet 6 of 9 US 6,862,693 B2

VOTING
OPTION

RECEIVE STORE
OPERATIONS
502

COMBINE MAJORITY INTO
COMBINED STORE
OPERATION
514

MAJORITY YES
IDENTICAL?
512

COMPARE STORE : NO
OPERATIONS
504

SET ERROR FLAG IN DATA
WORD
508

IDENTICAL?
506

FORWARD STORE
OPERATION TO MEMORY
510

COMBINE STORE
OPERATIONS
507

FORWARD COMBINED
STORE OPERATION TO
MEMORY
609

END
518

FIG. §

U.S. Patent Mar. 1, 2005 Sheet 7 of 9 US 6,862,693 B2

i VOTING

RECEIVE LOAD : OPTION

OPERATIONS
602

COMBINE MAJORITY INTO
COMBINED STORE

OPERATION
514

MAJORITY YES

IDENTICAL?
612

COMPARE LOAD : NO
OPERATIONS
604

GENERATE ERROR
CONDITION
608

IDENTICAL?
606

COMBINE LOAD
OPERATIONS
607

FORWARD COMBINED
LOAD OPERATION TO
MEMORY
609

RECEIVE RETURN VALUE

FROM MEMORY
618

BROADCAST RETURN
VALUE TO PROCESSORS
620

END
622

U.S. Patent Mar. 1, 2005 Sheet 8 of 9 US 6,862,693 B2
START
700

RECEIVE INVALIDATION MESSAGES
FROM REDUNDANT PROCESSOR

702

COMBINE INVALIDATION MESSAGES
704

COMMUNICATE COMBINED
INVALIDATION MESSAGE TO OTHER

PROCESSORS
706

END
708

FIG. 7

U.S. Patent

Mar. 1, 2005 Sheet 9 of 9

START
800

RECEIVE INVALIDATION
MESSAGE CAUSED BY
-~ OTHER PROCESSOR

802

BROADCAST INVALIDATION
MESSAGE TO REDUNDANT

PROCESSORS
804

END
806

FIG. 8

RECEIVE LOAD VALUE AT

PROCESSOR
902

YES

TRAP TO ERROR HANDING

HANDLE LOAD NORMALLY
ROUTINE 908
906

FIG. 9

US 6,862,693 B2

US 6,362,693 B2

1

PROVIDING FAULIT-TOLERANCE BY
COMPARING ADDRESSES AND DATA FROM
REDUNDANT PROCESSORS RUNNING IN
LOCK-STEP

RELATED APPLICATTONS

This application hereby claims priority under 35 U.S.C.
§119 to U.S. Provisional Patent Application No. 60/283,598,
filed on Apr. 13, 2001, enfitled “Providing Fault-Tolerance
by Comparing Stores from Redundant Processors Running,
In Lock-Step”, by imnventors Shailender Chaudhry and Marc
Tremblay.

BACKGROUND

1. Field of the Invention

The present invention relates to the design of multipro-
cessor systems. More specifically, the present invention
relates to a method and an apparatus for facilitating fault-
tolerance by comparing addresses and data from redundant
processors running in lock-step.

2. Related Art

As microprocessor systems become increasingly faster
and more complex, larger numbers of circuit elements are
being pushed to run at faster and faster clock rates. This
increases the likelithood that transient errors will occur
during program execution, and thereby reduces the reliabil-
ity of microprocessor systems.

Error-correcting codes can be employed to correct tran-
sient errors that occur when data 1s stored mto memory.
However, such error-correcting codes cannot correct all
types of errors, and furthermore, the associated circuitry to
detect and correct errors 1s i1mpractical to deploy 1n
extremely time-critical computational circuitry within a
MI1CrOProcessor.

Transient errors can also be detected and/or corrected by
replicating a computer system so that there exist two or more
copies of the computer system concurrently executing the
same code. This allows transient errors to be detected by
periodically comparing results produced by these replicated
computer systems.

Transient errors can be corrected 1n a replicated computer
system by voting. If there are three or more replicated
computer systems and an error 1s detected, the computer
systems can vote to determine which result 1s correct. For
example, 1n a three-computer system, 1f two of the three
computers produce the same result, this result 1s presumed
to be the correct answer 1f the other computer system
produces a different result.

However, replicating enfire computer systems can be
expensive, especially 1f the entire system memory has to be
replicated.

What 1s needed 1s a method and an apparatus for provid-
ing fault-tolerance without replicating entire computer sys-
tems.

Another problem with using replicated (redundant) com-
puter systems to provide fault-tolerance 1s that existing
cache-coherence mechanisms can interfere with the task of
keeping all of the replicated processors 1n the same state.

For example, a common multiprocessor design includes a
number of processors 151-154 with a number of level one
(L1) caches, 161-164, that share a single level two (L.2)
cache 180 and a memory 183 (see FIG. 1). During operation,
if a processor 151 accesses a data item that 1s not present in
its local L1 cache 161, the system attempts to retrieve the

10

15

20

25

30

35

40

45

50

55

60

65

2

data 1tem from L2 cache 180. If the data item 1s not present
in L2 cache 180, the system first retrieves the data item from
memory 183 mto L2 cache 180, and then from L2 cache 180
into L1 cache 161.

Note that coherence problems can arise if a copy of the
same data item exists 1n more than one L1 cache. In this
case, modifications to a first version of a data item 1n L1
cache 161 may cause the first version to be different than a
second version of the data item 1n L1 cache 162.

In order to prevent such coherency problems, these com-
puter systems typically provide a coherency protocol that
operates across bus 170. A coherency protocol typically
ensures that 1if one copy of a data item 1s modified 1n L1
cache 161, other copies of the same data 1item 1n L1 caches
162—-164, in L2 cache 180 and in memory 183 are updated
or invalidated to reflect the modification. This 1s accom-
plished by broadcasting an invalidation message across bus

170.

However, note that this type of coherency mechanism can
cause replicated processors to have different states 1n their
local L1 caches. For example, 1f a first replicated processor
updates a data 1item 1n L1 cache, 1t may cause the same data
item to be mvalidated 1n the L1 cache of second replicated
processor. In this case, the L1 cache of the first replicated
processor ends up 1n a different state than the L1 cache of the
second replicated processor.

What 1s needed 1s a method and an apparatus for provid-
ing fault-tolerance through replicated processors, without
the side-effects caused by a cache-coherence mechanism.

SUMMARY

One embodiment of the present invention provides a
system that facilitates fault-tolerance by using redundant
processors. This system operates by receiving store opera-
fions from a plurality of redundant processors running the
same code 1n lockstep. The system compares the store
operations to determine if the store operations are i1dentical,
thereby indicating that the redundant processors are operat-
ing correctly. If the store operations are 1dentical, the system
combines the store operations 1mnto a combined store
operation, and forwards the combined store operation to a
system memory that 1s shared between the redundant pro-
cessors. I the store operations are not 1dentical, the system
indicates an error condition.

In one embodiment of the present invention, handling the
error condition mvolves setting an error flag 1n a data word
for the combined store operation, and forwarding the com-
bined store operation to the system memory.

In one embodiment of the present invention, in handling
the error condition, the system determines whether a major-
ity of store operations are 1dentical. If so, the system
combines the majority into a combined store operation, and
forwards the combined store operation to the system
memory. If no majority exists, the system sets an error flag
in a data word for the combined store operation, and
forwards the combined store operation to the system
memory.

In one embodiment of the present invention, the system
additionally receives load operations from the redundant
processors. The system compares the load operations to
determine 1f the load operations are i1dentical, thereby indi-
cating that the redundant processors are operating correctly.
If the load operations are identical, the system combines the
load operations mto a combined load operation, and for-
wards the combined load operation to the system memory
that 1s shared between the redundant processors. Next, the

US 6,362,693 B2

3

system receives a return data value from the system memory,
and broadcasts the return data value to the redundant pro-
cessors. If the load operations are not 1dentical, the system
indicates an error condition.

In a variation on this embodiment, the system receives the
return data value at one of the redundant processors. This
redundant processor examines an error flag 1n the return data
value. If the error flag 1s set, the processor traps to an error
handling routine.

In one embodiment of the present invention, system
memory includes a lower-level cache memory.

In one embodiment of the present invention, the system
additionally receives invalidation messages from the plural-
ity of redundant processors. These 1nvalidation messages
indicate that a specific cache line should be mvalidated. The
system combines these 1nvalidation messages 1into a com-
bined invalidation message, and communicates the com-
bined mvalidation message to other processors in the com-
puter system.

In one embodiment of the present 1invention, the system
additionally receives an mvalidation message indicating that
a specific cache line should be invalidated. This invalidation
message 15 generated as a result of actions of another
processor that 1s not one of the redundant processors. The
system broadcasts this invalidation message to the redundant
ProCessors.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1A 1illustrates a multiprocessor system.

FIG. 1B 1llustrates a multiprocessor system 1n accordance
with an embodiment of the present invention.

FIG. 2 illustrates in more detail the multiprocessor system
illustrated 1n FIG. 1B 1n accordance with an embodiment of
the present imvention.

FIG. 3 illustrates the structure of a switch 1n accordance
with an embodiment of the present invention.

FIG. 4A 1llustrates a duplex configuration of a multipro-
cessor system 1n accordance with an embodiment of the
present mvention.

FIG. 4B illustrates a triple modular redundancy (TMR)
conilguration of a multiprocessor system 1n accordance with
an embodiment of the present invention.

FIG. § 1s a flow chart 1llustrating a store operation in
accordance with an embodiment of the present invention.

FIG. 6 1s a flow chart illustrating a load operation in
accordance with an embodiment of the present invention.

FIG. 7 1s a flow chart 1llustrating the process of sending
an invalidation operation 1n accordance with an embodiment
of the present invention.

FIG. 8 1s a flow chart illustrating the process of receiving,
an invalidation operation 1n accordance with an embodiment
of the present invention.

FIG. 9 1s a flow chart 1llustrating the process of handling
a load value with an error set 1 accordance with an
embodiment of the present invention.

DETAILED DESCRIPTION

The following description 1s presented to enable any
person skilled in the art to make and use the invention, and
1s provided 1n the context of a particular application and its
requirements. Various modifications to the disclosed
embodiments will be readily apparent to those skilled 1n the
art, and the general principles defined herein may be applied
to other embodiments and applications without departing

10

15

20

25

30

35

40

45

50

55

60

65

4

from the spirit and scope of the present invention. Thus, the
present invention 1s not mtended to be limited to the embodi-
ments shown, but 1s to be accorded the widest scope
consistent with the principles and features disclosed herein.

Multiprocessor Systems

FIG. 1B illustrates a multiprocessor system 100 1n accor-
dance with an embodiment of the present invention. Note
that most of multiprocessor system 100 1s located within a
single semiconductor chip 101. More specifically, semicon-
ductor chip 101 includes a number of processors 110, 120,

130 and 140, which contain level one (IL1) caches 112, 122,
132 and 142, respectively. Note that L1 caches 112, 122, 132
and 142 may be separate instruction and data caches, or
alternatively, unified instruction/data caches. L1 caches 112,
122, 132 and 142 are coupled to level two (L.2) cache 106.
[.2 cache 106 1s coupled to off-chip memory 102 through
memory controller 104.

In one embodiment of the present invention, L1 caches

112, 122, 132 and 142 are write-through caches, which
means that all updates to L1 caches 112, 122, 132 and 142
are automatically propagated to L2 cache 106. This simpli-
fies the coherence protocol, because 1f processor 110
requires a data item that 1s present mn L1 cache 112,
processor 110 can receive the data item from L2 cache 106
without having to wait for L1 cache 112 to source the data
item. Moreover, no forwarding network 1s needed to allow
.1 cache 112 to source the data. Note that 1n one embodi-
ment of the present invention, .2 cache 106 1s an “inclusive
cache”, which means that all items 1n L1 caches 112, 122,

132 and 142 are included in L2 cache 106.

FI1G. 2 illustrates 1n more detail the multiprocessor system
illustrated 1n FIG. 1B 1n accordance with an embodiment of

the present invention. In this embodiment, L2 cache 106 is
implemented with four banks 202-205, which can be
accessed 1n parallel by processors 110, 120, 130 and 140
through switches 215 and 216. Switch 215 handles commu-
nications that feed from processors 110, 120, 130 and 140
mto L2 banks 202205, while switch 216 handles commu-
nications 1n the reverse direction from L2 banks 202—-205 to

processors 110, 120, 130 and 140.

Note that only two bits of the address are required to
determine which of the four banks 202-205 a memory
request 1s directed to. Also note that switch 215 additionally
includes an I/O port 150 for recerving communications from
I/0 devices, and switch 216 includes an I/O port 152 for

sending communications to I/O devices.

Note that by using this “banked” architecture, 1t 1s pos-
sible to concurrently connect each L1 cache to 1ts own bank
of L2 cache, thereby increasing the bandwidth of L2 cache
106.

Switch

FIG. 3 illustrates the structure of a switch 215 1n accor-
dance with an embodiment of the present invention. Switch
215 includes a number of mputs 301-304, which are coupled
to processors 110, 120, 130 and 140, respectively. Switch
215 also includes a number of outputs 311-314, which are
coupled to L2 banks 2022035, respectively. Note that each
of these mputs 301-304 and outputs 311-314 represents
multiple data lines.

Within switch 215 there are a number of multiplexers
321-324. Each of these multiplexers 321-324 has an input
queue for each of the mputs 301-304. For example, multi-
plexer 321 1s coupled to four queues, each one of which 1s
coupled to one of the mputs 301-304. Comparator 331
performs comparison operations between values stored in

US 6,362,693 B2

S

the mput queues to facilitate fault tolerance. In the system
configuration illustrated m FIG. 4A, comparator 331 com-
pares pairs of imnputs 301-302 and 303-304. In another
configuration 1llustrated in FIG. 4B, comparator circuit
facilitates voting between three or more 1nputs 301-304 to
determine if a majority of the mputs match.

The output of comparator 331 feeds 1nto arbitration circuit
341. Arbitration circuit 341 causes an entry from one of the
input queues to be routed to output 311 through multiplexer
321.

The outputs of multiplexers 321-324 pass into broadcast
switch 350. Broadcast switch 350 includes a number of pass
cgates 351-354, which can selectively couple an output of a
multiplexer to a neighboring output. For example, if pass
cgate 352 1s transparent and the output of multiplexer 322 1s
disabled, the output of multiplexer 321 1s broadcast onto
outputs 311 and 312. Note that in general there are many
possible ways to implement broadcast switch 350. The only
requirement 1s that broadcast switch 350 should be able to
broadcast the output of any one of multiplexers 321-324 to
multiple outputs 311-314.

Note that the structure of switch 216 1s 1dentical to the
structure of switch 215 except that mnputs 301-304 are
coupled to L2 banks 2022035, respectively, and the outputs
311-314 are coupled to processors 110, 120, 130 and 140,
respectively.

Configurations

FIG. 4A 1llustrates a duplex configuration of a multipro-
cessor system 1n accordance with an embodiment of the
present invention. In this configuration, processors 110 and
120 form a pair of redundant processors that execute the
same code 1n lockstep. Store operations through switch 215
are compared to ensure that data values and store addresses
from processors 110 and 120 agree. Load operations through
switch 215 are similarly compared to ensure that the load
addresses agree. If not, an error 1s indicated. Similarly,
processors 130 and 140 form another pair of redundant
processors, and switch 215 compares store operations from
these processors.

The configuration illustrated in FIG. 4A 1s achieved by
initializing processors 110 and 120 to run the same code 1n
lockstep, and by 1nitializing processors 130 and 140 to run
the same code 1n lockstep. Within combining switch 2135,
comparators 331-334 are configured so that inputs 301 and
302 are always compared against each other and inputs
303-304 are always compared against each other.

Within broadcast switch 216, the output of comparators
332 and 334 are disabled and pass gates 352 and 354 arc
made transparent. This ensures that the output of multiplexer
321 1s broadcast to outputs 311 and 312, which are coupled
to processors 110 and 120. It also ensures that the output of
multiplexer 323 1s broadcast to outputs 313 and 314, which
are coupled to processors 130 and 140.

FIG. 4B illustrates a triple modular redundancy (TMR)
conflguration of a multiprocessor system 1n accordance with
an embodiment of the present i1nvention. In this
confliguration, processors 110, 120 and 130 execute the same
code m lockstep, and processor 140 1s a spare processor
(which may also be executing the same code in lockstep to
facilitate rapid replacement).

Store operations generated by processors 110, 120 and
130 are compared at switch 215. If they do not agree, the
system performs a voting operation to determine if two of
the three store operations agree. If so, the store operations
that agree are taken to be the correct store operation, and the
other store operation 1s presumed to be erroncous and 1is
ignored.

10

15

20

25

30

35

40

45

50

55

60

65

6

The configuration illustrated 1n FIG. 4B 1s achieved by
initializing processors 110, 120 and 130 to run the same code
in lockstep. Within combining switch 215, comparators
331-334 are configured so that mputs 301-303 are always
compared against each other, and so that the majority wins.
Within broadcast switch 216, the output of comparators

332-334 are disabled and pass gates 352 and 353 are made
transparent. This ensures that the output of multiplexer 321
1s broadcast to outputs 311-313, which are coupled to
processors 110, 120 and 130, respectively.

Note that one embodiment of the present invention can be
selectively reconfigured between the configuration illus-
trated in FIG. 4A and the configuration illustrated in FIG. 4B
during a system boot operation.

Store Operation

FIG. § 1s a flow chart illustrating a store operation in
accordance with an embodiment of the present invention.
The system starts when switch 215 receives store operations
from redundant processors running in lock step (step 502).
The system compares these store operations by using one of
comparators 331-334 (step 504). If these store operations
are 1dentical, the processors are presumably operating prop-
erly. In this case, the system combines the store operations
into a single store operation (step 507), and forwards the
combined store operation to system memory (or L.2 cache)
(step 509). Note that combining store operations involves
passing only one instance of the store operation to switch
215 and 1gnoring the other instances.

If the store operations are not 1dentical, the system sets an
error flag in the data word for the store operation (step 508),
and forwards the store operation to system memory (step
510). Note that if there is an error, it does not matter what
the data value of the store operation 1s set to. The system
only has to ensure that the error flag 1s set.

If the store operations are not identical and the system 1s
configured for the voting option, such as 1 the TMR
configuration 1llustrated 1n FIG. 4B, the system determines
whether a majority of the store operations are identical (step
512). If not, the system sets an error flag in the data word for
the store operation (step 508), and forwards the store opera-
tion to memory (step 510).

If a majority if the store operations are i1dentical, the
system combines the majority into a combined store opera-
tion (by ignoring all but one instance of the identical store
operations) (step 514), and forwards the combined store
operation to memory (step 509).

Load Operation

FIG. 6 1s a flow chart 1llustrating a load operation 1n
accordance with an embodiment of the present invention.
The system starts when switch 2135 receives load operations
from redundant processors running in lock step (step 602).
The system compares these load operations by using one of
comparators 331-334 (step 604). If these load operations are
identical, the processors are presumably operating properly.
In this case, the system combines the load operations into a
single load operation (step 607), and forwards the combined
load operation to system memory (or L2 cache) (step 609).
Note that combining load operations involves passing only
one 1nstance of the load operation to switch 215 and 1gnoring
the other 1nstances.

If the load operations are not identical and the system 1s
configured for the voting option, such as 1 the TMR
confliguration 1llustrated 1n FIG. 4B, the system determines
whether a majority of the load operations are identical (step
612). If not, the system sets generates an error condition
(step 608).

If a majority 1f the load operations are identical, the
system combines the majority into a combined load opera-

US 6,362,693 B2

7

tion (by 1gnoring all but one instance of the identical load
operations) (step 614), and forwards the combined load
operation to memory (step 609).

Next, switch 216 receives a return value for the load
operation from system memory (step 618). Switch 216 uses
pass gates 351-354 to broadcast the return value to the
redundant processors (step 620).

Referring to FIG. 9, when a load operation is received at
one of the redundant processors (step 902), the processor
checks the error flag (step 904). If the error flag is set, the
processor traps to an error handling routine (step 906).
Otherwise, the processor handles the load normally (step
908).

Invalidation Operations

Note that the system illustrated in FIG. 3 applies cache
coherency memory references after stores are combined
within switch 215, and up to the pont that return values from
loads are broadcast by switch 216. Cache coherency does
not apply prior to the stores being combined or after the
return values are broadcast.

FIG. 7 1s a flow chart 1llustrating the process of sending
an 1nvalidation operation to support cache coherence in
accordance with an embodiment of the present invention. In
this case, switch 215 receives multiple invalidation mes-
sages from redundant processors executing the same code
(step 702). These invalidation messages are identical, and
they indicate that a data item 1s updated 1n the local caches
of the redundant processors. Switch 215 combines these
invalidation messages 1nto a combined 1invalidation message
(step 704), which can be accomplished by ignoring all but
one of the invalidation messages. This combined 1nvalida-
tion message 1s then sent to other processors 1n the computer
system, but not to any of the redundant processors that sent
the invalidation message (step 706).

For example, 1n FIG. 4A, if processors 110 and 120
concurrently generate invalidation messages, these invali-
dation messages are combined into a single invalidation
message 1n switch 215. This single 1nvalidation message 1s
then sent to processors 130 and 140 through switch 216.

FIG. 8 1s a flow chart illustrating the process of receiving,
an invalidation operation 1n accordance with an embodiment
of the present invention. In this case, switch 216 receives an
invalidation message caused by a processor that is not part
of the set of redundant processors (step 802). Switch 216
then broadcasts the invalidation message to the set of
redundant processors (step 804).

For example, in FIG. 4A, when switch 216 receives a
single 1nvalidation message generated by redundant proces-
sors 110 and 120. Switch 216 broadcasts this mvalidation
message to processors 130 and 140. In this case, the same
cache line 1s mnvalidated 1n both processor caches, thereby
keeping the state within processors 130 and 140 identical.

The foregoing descriptions of embodiments of the present
invention have been presented for purposes of illustration
and description only. They are not intended to be exhaustive
or to limit the present invention to the forms disclosed.
Accordingly, many modifications and variations will be
apparent to practitioners skilled in the art. Additionally, the
above disclosure 1s not intended to limit the present mven-
tion. The scope of the present 1invention 1s defined by the
appended claims.

What 1s claimed 1s:

1. A method for providing fault-tolerance by using redun-
dant processors, comprising:

receiving a plurality of store operations from a plurality of
redundant processors running the same code 1n lock-
step;

10

15

20

25

30

35

40

45

50

55

60

65

3

comparing the plurality of store operations to determine 1f
the plurality of store operations are i1dentical, thereby
indicating that the plurality of redundant processors are
operating correctly;

if the plurality of store operations are not 1dentical,
indicating an error condifion;

if the plurality of store operations are identical,
combining the plurality of store operations into a
combined store operation, and
forwarding the combined store operation to a system
memory that 1s shared between the plurality of
redundant processors;

receiving a plurality of invalidation messages from the
plurality of redundant processors;

wherein the plurality of mnvalidation messages indicate
that a specific cache line should be invalidated 1n other
caches 1n the computer system;

combining the plurality of invalidation messages 1nto a
combined mvalidation message; and

communicating the combined mnvalidation message to the
other processors 1n the computer system, but not to the
plurality of redundant processors.
2. The method of claim 1, wherein handling the error
condition 1nvolves:

setting an error tlag 1n a data word for the combined store
operation; and
forwarding the combined store operation to the system
memory.
3. The method of claim 1, wherein handling the error
condition 1nvolves:

determining whether a majority of the plurality of store
operations are 1dentical;

if the majority of the plurality of store operations are
1dentical,
combining the majority 1nto the combined store
operation, and
forwarding the combined store operation to the system
memory; and
1f no majority exists,
setting an error flag 1n a data word for the combined
store operation, and
forwarding the combined store operation to the system
memory.
4. The method of claim 1, further comprising;:

receving a plurality of load operations from the plurality
of redundant processors;

comparing the plurality of load operations to determine 1f
the plurality of load operations are identical, thereby
indicating that the plurality of redundant processors are
operating correctly;

if the plurality of load operations are not i1dentical, 1ndi-
cating an error condition; and

if the plurality of load operations are identical,
combining the plurality of load operations 1nto a com-
bined load operation;
sending the combined load operation to the system
MeEmory;
receiving a return data value from the system memory;
and
broadcasting the return data value to the plurality of
redundant processors.
5. The method of claim 4, further comprising:

receiving the return data value at one of the plurality of
redundant processors;

US 6,362,693 B2

9

examining an error flag 1n the return data value; and

if the error flag 1s set, trapping to an error handling
routine.

6. The method of claim 1, wherein the system memory
includes a lower-level cache memory.

7. The method of claim 1, further comprising:

receiving an invalidation message indicating that a spe-
cific cache line should be mvalidated;

wherein the invalidation message 1s generated as a result
of actions of another processor that 1s not one of the
plurality of redundant processors; and

broadcasting the invalidation message to all of the plu-
rality of redundant processors.
8. An apparatus for providing fault-tolerance by using
redundant processors, comprising:

a plurality of redundant processors that are configured to
run the same code 1n lockstep;

a system memory that i1s shared between the plurality of
redundant processors;

a switch that couples the plurality of redundant processors
to the system memory, wherein the switch 1s configured
to receive a plurality of store operations from the
plurality of redundant processors;

a comparison mechanism within the switch that 1s con-
figured to compare the plurality of store operations to
determine 1f the plurality of store operations are
identical, thereby indicating that the plurality of redun-
dant processors are operating correctly;

a forwarding mechanism coupled to the comparison
mechanism, wherein 1f the plurality of store operations
are 1dentical, the forwarding mechanism 1s configured
to,
combine the plurality of store operations into a com-

bined store operation, and to
forward the combined store operation to the system
memory; and

an error handling mechanism that 1s configured to indicate
an error condition 1if the plurality of store operations are
not 1dentical;

wherein the switch 1s additionally configured to:

receive a plurality of invalidation messages from the
plurality of redundant processors, wherein the plu-
rality of mvalidation messages indicate that a spe-
cific cache line should be 1nvalidated in other pro-
Cessors 1n a computer system containing the plurality
of redundant processors;

combine the plurality of invalidation messages 1nto a
combined 1nvalidation message, and to

communicate the combined invalidation message to the
other processors 1n the computer system, but not to
the plurality of redundant processors.

9. The apparatus of claim 8, wherein the error handling
mechanism 1s configured to:

set an error flag 1n a data word for the combined store
operation; and to

forward the combined store operation to the system
memory.
10. The apparatus of claim 8, wherein the error handling
mechanism 1s configured to:

determine whether a majority of the plurality of store
operations are 1dentical;

wherein 1f the majority of the plurality of store operations
are 1dentical, the error handling mechanism 1s config-
ured to,

10

15

20

25

30

35

40

45

50

55

60

65

10

combine the majority into the combined store
operation, and to

forward the combined store operation to the system
memory; and

wherein 1f no majority exists, the error handling mecha-
nism 1s conflgured to,
set an error flag 1n a data word for the combined store
operation, and to
forward the combined store operation to the system
memory.
11. The apparatus of claim 8, wherein the switch 1s
additionally configured to:

receive a plurality of load operations from the plurality of
redundant processors;

compare the plurality of load operations to determine 1f
the plurality of load operations are identical, thereby
indicating that the plurality of redundant processors are
operating correctly;

if the plurality of load operations are not identical, to
indicate an error condition; and

if the plurality of load operations are identical, to
combine the plurality of load operations into a com-
bined load operation;
send the combined load operation to the system
MeEmory;
receive a return data value from the system memory;
and to
broadcast the return data value to the plurality of
redundant processors.
12. The apparatus of claim 11, wheremn each of the
plurality of redundant processors 1s configured to:

receive the return data value;

examine an error flag 1n the return data value; and to

trap to an error handling routine if the error flag 1s set.

13. The apparatus of claim 8, wherein the system memory
includes a lower-level cache memory.

14. The apparatus of claim 8, wherein the switch 1s
additionally configured to:

receive an invalidation message indicating that a specific
cache line should be 1nvalidated, wherein the invalida-
tion message 1s generated as a result of actions of
another processor that 1s not one of the plurality of
redundant processors; and to

broadcast the invalidation message to all of the plurality
ol redundant processors.
15. The apparatus of claim 8, wherein the switch includes:

a first uni-directional switch for communicating from the
plurality of redundant processors to the system
memory; and

a second uni-directional switch for communicating from
the system memory to the plurality of redundant pro-
CESSOTS.

16. An apparatus for providing fault-tolerance by using

redundant processors, comprising:

a plurality of redundant processors that are configured to
run the same code 1n lockstep;

a system memory that 1s shared between the plurality of
redundant processors, wherein the system memory
includes a lower-level cache memory;

a switch that couples the plurality of redundant processors
to the system memory, wherein the switch 1s configured
to recerve a plurality of store operations from the
plurality of redundant processors;

a comparison mechanism within the switch that 1s con-
figured to compare the plurality of store operations to

US 6,362,693 B2

11

determine 1f the plurality of store operations are
identical, thereby indicating that the plurality of redun-
dant processors are operating correctly;

a forwarding mechanism coupled to the comparison
mechanism, wherein 1f the plurality of store operations
arc 1dentical, the forwarding mechanism 1s configured
to,
combine the plurality of store operations into a com-

bined store operation, and to
forward the combined store operation to the system
memory; and

an error handling mechanism that 1s configured to indicate
an error condition if the plurality of store operations are
not 1dentical;

wherein the switch 1s additionally configured to,
receive a plurality of imnvalidation messages from the
plurality of redundant processors, wherein the plu-
rality of mvalidation messages indicate that a spe-
cific cache line should be invalidated in other pro-
Cessors 1n a computer system containing the plurality
of redundant processors,
combine the plurality of invalidation messages 1nto a
combined 1nvalidation message, and to
communicate the combined invalidation message to the
other processors 1n the computer system, but not to
the plurality of redundant processors.
17. The apparatus of claim 16, wherein the error handling
mechanism 1s configured to:

set an error flag in a data word for the combined store
operation; and to

forward the combined store operation to the system
memory.
18. The apparatus of claim 16, wherein the error handling
mechanism 1s configured to:

determine whether a majority of the plurality of store
operations are 1dentical;

10

15

20

25

30

35

12

wherein if the majority of the plurality of store operations
are 1dentical, the error handling mechanism 1s config-
ured to,
combine the majority into the combined store
operation, and to
forward the combined store operation to the system
memory; and

wherein 1f no majority exists, the error handling mecha-
nism 1s configured to,
set an error flag 1n a data word for the combined store
operation, and to
forward the combined store operation to the system
memory.

19. The apparatus of claam 16, wherein the switch 1s
additionally configured to:

receive a plurality of load operations from the plurality of
redundant processors;

compare the plurality of load operations to determine 1f
the plurality of load operations are identical, thereby
indicating that the plurality of redundant processors are
operating correctly;

if the plurality of load operations are not identical, to
mndicate an error condition; and

if the plurality of load operations are identical, to
combine the plurality of load operations into a com-
bined load operation;
send the combined load operation to the system
Memory;

receive a return data value from the system memory;
and to

broadcast the return data value to the plurality of
redundant processors.

	Front Page
	Drawings
	Specification
	Claims

