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ARTIFICIAL VISION METHOD AND
SYSTEM

TECHNICAL FIELD

The present invention relates to an artificial vision method
and system. The 1nvention may, for example, be used for
control 1n robotics systems.

BACKGROUND

Traditionally artificial vision systems have been either
discrete or continuous.

Discrete systems are characterized by a large number of
logical states (0 or 1), normally implemented by a computer,
which gives a rich structure. This allows for switching of the
system between many different states implementing differ-
ent models. However, a continuous transition between mod-
els 1s often difficult with such a structure, since the discrete
switching structure can not easily transfer knowledge about

system states and boundary conditions.

A continuous system 1mplements classical control strat-
cgies. This generally allows only a fairly limited complexity,
with a limited number of variables, since the systems
otherwise become very unwieldy.

SUMMARY

An object of the present invention 1s an artificial vision
method and system that has a rich structure and allows
confinuous transitions between different models.

This object 1s solved 1n accordance with the appended
claims.

BRIEF DESCRIPTION OF THE DRAWINGS

The 1nvention, together with further objects and advan-
tages thereof, may best be understood by making reference
to the following description taken together with the accom-
panying drawings, in which:

FIG. 1 1s a set of diagrams 1llustrating generation of an

image percept vector of a one-dimensional 1image containing
a dot;

FIG. 2 1s a set of diagrams 1llustrating generation of an
image percept vector of a one-dimensional 1mage containing
another dot;

FIG. 3 1s a set of diagrams 1llustrating generation of an
image percept vector of a one-dimensional image containing
still another dot;

FIG. 4 1s a set of diagrams 1llustrating generation of an
image percept vector of a one-dimensional image containing
two dots;

FIG. 5 1s a set of diagrams 1llustrating generation of an
image percept vector of a one-dimensional 1image containing
two different dots;

FIG. 6 1s a set of diagrams 1llustrating generation of an
image percept vector of a one-dimensional 1image containing
two closely spaced dots;

FIG. 7 1s a two-dimensional 1image containing two dots;

FIG. 8 1s a diagram 1llustrating a detector arrangement for

generation of an 1mage percept vector from the 1image 1n
FIG. 7;
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FIG. 9 1s a diagram 1llustrating the 1mage percept vector
generated by the detector arrangement 1n FIG. 8;

FIG. 10 1s a diagram of a circle that 1s shifted along a
horizontal line for training purposes;

FIG. 11 1s a diagram of a circle that 1s shifted along a
vertical line for training purposes;

FIG. 12 1s a diagram of a set of different size circles used
for training;

FIG. 13 1s a diagram 1illustrating a detector arrangement
for detecting line segments;

FIG. 14 1s an embodiment of an artificial vision system 1n
accordance with the present invention; and

FIG. 15 1s a flow chart 1llustrating an embodiment of the
method 1n accordance with the present invention.

DETAILED DESCRIPTION

An essential feature of the present invention 1s an 1mage
percept vector. This concept will now be described with
reference to FIGS. 1-9. First the concept will be described in
one dimension (FIGS. 1-6). Then the concept will be gen-
eralized to two or more dimensions (FIGS. 7-9).

FIG. 1 1s a set of diagrams 1llustrating generation of an
image percept vector of a one-dimensional 1mage containing
a dot. The upper part of FIG. 1 includes an 1mage along a
line segment from x=0 to x=10 with a single dot at x=7. Thus

this 1mage could simply be represented as “x=7", the loca-
tion of the dot.

Another way of representing the 1mage, called channel
representation, 1s suggested by the manner 1n which the dot
may actually be detected. To detect the dot some kind of
detector 1s used. In order to give any information on the
location of the dot, such a detector can not cover the entire
image. If this were the case, the detector would only indicate
that there 1s a dot 1n the 1mage, but not where it 1s located.
Thus, it 1s natural to use an array of detectors, each covering
only a part of the one-dimensional 1mage. Such an array 1s
illustrated by the curves in FIG. 1. Each curve represents the
transfer function of a local dot detector. In FIG. 1 a typical
dot detector has the transfer function:

i

casz(f(x—k) if £k — = -:_:x-*-_:k+§
3 2

Pr(x) = 2

L0

otherwise

With this choice the detectors will have their most sen-
sitive center portions at integer coordinate values x=K. This
1s of course not necessary. With other choices of scaling
factors and offsets in the argument of the raised cosine
function, the density and overlap of these detectors may be
varied. Furthermore, other choices of transfer functions,
such as gaussian transier functions are also possible.

An essential and required feature of a detector arrange-
ment 1s that the application of a stimulus activates more than
one channel. For a description of point objects, this requires
that the transfer functions of the detectors partially overlap.
This implies that the single dot at x=7 1n FIG. 1 will activate
several detectors. In FIG. 1 the activated detectors have been
indicated by thicker solid curves. Only the detectors that
have non-zero transfer functions at the location of the dot
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will be activated and produce a non-zero output signal. This
has been indicated by the bar diagram under the array of
transfer functions 1n FIG. 1. For a dot at x=7, the detectors
at x=6, 7, 8 will be the only activated detectors. The detector
at x=7 will give an output signal p,=1, while the other two
detectors will give p,=p,=0.25. As indicated at the bottom of
FIG. 1, the image (the dot) may be represented as the image
percept vector:

x=[00000000.251.00.250 00}

where * denotes transpose. Typically most of the outputs or
vector elements will be zero, 1.¢. the vector 1s sparse. While
the output of a single channel (detector) would not uniquely
define a corresponding scalar value x, the set of outputs from
partially overlapping channels will (a method for converting
a vector to a scalar will be described below). The reason for
the extra two detectors (at x=—1 and x=11) at the ends of the
image 15 the required overlap of the transfer functions.
FIG. 2 1s a set of diagrams 1llustrating generation of an

image percept vector of a one-dimensional 1image containing
another dot. This figure 1llustrates that the number of acti-
vated detectors will depend on the location of the dot. In this
case the dot 1s located at x=6.5. Therefore only the detectors
at x=6 and x=7 will be activated. However, at least two
detectors will always be activated (due to the overlap)
irrespective of the location of the dot 1in the image.

FIG. 3 1s a set of diagrams 1llustrating generation of an
image percept vector of a one-dimensional 1image containing
still another dot. This figure illustrates that the dot may have
an arbitrary location (x=6.73 in the example) in the image
and still be detected and represented by an 1mage percept
vector X.

FIG. 4 1s a set of diagrams 1llustrating generation of an
image percept vector of a one-dimensional 1mage containing
two dots. In this case the image percept vector x will include
two detector sections with non-zero outputs corresponding
to the two dots. Note that the number of dimensions of the
percept vector 1s still the same as in FIGS. 1-3, although the
image now contains two dots.

FIG. 5 1s a set of diagrams 1llustrating generation of an
image percept vector of a one-dimensional 1image containing
two different dots. In this case the dots are closer to each
other, but they can still be 1dentified as two separate dots.

FIG. 6 1s a sct of diagrams 1llustrating generation of an
image percept vector of a one-dimensional 1mage containing
two closely spaced dots. In this case the detector at x=6 1s
activated by both dots, and it starts to become difficult to
separate the dots. This illustrates the fact that the detector
density must be determined by the desired resolution on the
Image.

Having described the concepts of channel representation
and 1mage percept vectors for the one-dimensional case, it 1s
now fime to generalize these concepts to more realistic
two-dimensional images.

FIG. 7 1s a two-dimensional 1mage containing two dots.
One 1s located at x=1, y=9 and the other at x=6.25, y=2.75.
As will be 1llustrated below, this two-dimensional 1image
may also be represented by an 1image percept vector.

FIG. 8 1s a diagram 1llustrating a detector arrangement for
generation of an 1mage percept vector from the 1mage 1n
FIG. 7. In this case there are two-dimensional detectors
having typical transfer functions:
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pu(x, y) = msz(;—r\/ =k +(y =17 )

k——_}.:_}'(+— Z——_ _£+—

where k and 1 are the integer center points of the detectors.
In FIG. 8 the coverage area of each detector in the two-
dimensional arrangement has been indicated by a circle. As
in the one-dimensional case, a dot will activate only nearby
detectors. The detectors activated by the dots at (1, 9) and
(6.25, 2.75) have been indicated by thick solid circles.

FIG. 9 1s a bar diagram illustrating the 1mage percept
vector generated by the detector arrangement 1n FIG. 8. In
FIG. 9 the bars are distributed in a two-dimensional array
similar to the coordinate grid in FIG. 8. However, this array
may be rearranged imto a column vector, as 1n the one-
dimensional case, by starting with column 1 1n the array,

concatenating column 2 to the end of column 1, concatenat-
ing column 3 to the end of column 2, etc. Another way of
rearranging the array into a vector 1s to concatenate the rows
of the array instead and then transpose the obtained row
vector 1mto a column vector. In fact, how the array 1s
rearranged 1nto a vector 1s 1rrelevant, for the purposes of the
present invention, as long as all detector outputs are included
in the resulting 1image percept vector x and they maintain the
same position throughout all steps. The 1mage percept vector
components may simply be viewed as a collection of unor-
dered channels (channel representation). In a typical system
the image percept vector x has between 10” to 10* compo-
nents.

The concept of percept vector may also be generalized to
three-dimensional or four-dimensional (the fourth dimen-
sion representing time) images. The percept vector of such
an 1mage may still be formed by forming a column vector
from the detector output signals.

The above described 1mage percept vector x forms the
basis for a feature vector a, which 1s to be associated with a
response state of the system. The feature vector a may
include one or more of three different functions of the 1mage
percept vector, namely:

1. Linear components, which are formed by the image
percept vector

X2

XJ )

itself or selected components thereof.
2. Autocovariance products, which are formed by diagonal
clements of the covariance product matrix

(X1X] X1Xp -+ X1Xjy )

[ e e xoxy
xx' =

AJX] AgX2 o XJXy )

and are denoted xx* , .
3. Covariance products, which are formed by off-diagonal
elements of the covariance product matrix xx’, and are

denoted xx”__ . Experiments indicate that the covariance
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products are the most descriptive feature vector
components, since they describe coincidences between
events, but the other components should be kept 1n mind
for various special purposes, such as 1mproved
redundancy, low feature density, etc.

Thus, a feature vector may have the form:

%)

xxﬂ Hio

XX

\ cov [}

 AH

In certain cases 1t may be desirable to employ a logarith-
mic representation of the feature vector a. Furthermore, 1f
increased complexity 1s acceptable, 1t 1s also possible to
include multi-covariant products (products of three or more
percept vector components) in the feature vector.

In accordance with the present invention the feature
vector a 1s used to generate a response vector u 1n accor-

dance with the equation:

(U1 Yy {C11 Cr12 - C1H Y ap )
2% 21 €22 CoH tr
Uy = = . . . o l=Ca
UK ] NCKj Cg2 - Cgyg A4y }

where C 1s denoted a linkage matrix, which will be described
in further detail below. The response vector u may typically
represent a characteristic of an object of interest, for
example the horizontal or the vertical location of the center
of a circle 1n an 1mage, the diameter of a circle, the length
of a straight line segment, the orientation of a line segment,
ctc. Note that the dimensionality H of the feature vector a
may be (and typically is) different from the dimensionality
K of the response vector u. Thus, in general the linkage

matrix C 1s non-square.
The purpose of the linkage matrix C is to transform the

generally continuous but spread out feature vector a mto a
likewise continuous but concentrated response vector u. To
illustrate this statement, consider a circle of a certain diam-
eter. This circle will result 1n a certain percept vector x and
a corresponding feature vector a. The feature vector a will
typically have bursts of non-zero elements separated by
regions of zero elements. The linkage matrix C acts as a
“concentrator” that transforms the feature vector a into a
response vector u having a single burst of non-zero ele-
ments. If the diameter of the circle 1s changed slightly, the
corresponding feature vector a will be different, since the
bursts will be redistributed, while the response vector u will
only shift its single burst slightly. What 1s essential here 1s
the local continuity between variation of the output of a
particular active channel and the variation of the property
and/or the position of the object having the property sensed
by the channel. Continuous change of a response variable
locally will correspond to local, continuous changes within
a group of feature channels. A particular combination of
active feature channels and their values will correspond to a
particular, unique response state (response vector). The
major characteristic of this system 1s that it i1s locally
continuous at the same time as 1t allows global discontinuity.
The system 1s continuous and linear 1n its local mapping of
the feature vector over the linkage matrix. On the other hand,
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it 1s highly non-linear and discontinuous in 1ts global
mapping, in the sense that features come and go, and there
1s no requirement that feature channels are adjacent 1n some
space. As noted above, there 1s no requirement that the
channels are located next to each other in the percept vector,
as “they will find each other” with a properly optimized
linkage matrix (this procedure is described below). Thus, the
illustrations presented in this specification, with active chan-
nels next to each other, 1s only for visualization purposes, to
make the description more comprehensible. In fact, the
channels may be arranged at random, as long as the arrange-
ment 1s fixed over the entire process and every channel
reacts continuously to stimuli.

Once the response vector has been obtained in channel
representation form, it may be desirable, especially for
technical systems, to obtain a scalar value representing the
response. This scalar value may, for example, be used to
specily the location of an object, to drive a motor or to
visualize system states on a screen.

The output from a single channel u, of a response vector
u, will not provide an unambiguous representation of the
corresponding scalar signal u, as there will be an ambiguity
in terms of the position of u with respect to the center of the
activated channel. This ambiguity may, however, be
resolved by the combination of adjacent channel responses
within the response vector u={u,}.

By using a sufficiently dense representation in terms of
channels, i1t 1s possible to employ the knowledge of a
particular distance between different channel contributions
(detectors). An example of a suitable algorithm will now be
gIvVen.

If the distance in phase between adjacent raised cosine
detectors 1s /3 or less, an approximate reconstruction of u
from the response vector u 1s possible.

As noted above, the response vector u will have a burst
with only a few non-zero values. A first approximation of u
may be obtained by the average:

K
Z;{'Mk
‘—(_kzl
K

> Uk

k=1

This average 1s a coarse measure of the location of the
burst. A refined estimate 0 of u may be obtained 1n accor-
dance with:

(=1+0

{

[ = floon(])

where floor 1s a function that sets its arcument to the nearest
integer that 1s less than or equal to the argument, and 0 1s a
correction defied by:

0=2-atan2(x,y)/n
where atan2 1s the four quadrant inverse tangent function

defined in the interval [ -, ] (as defined in MATLAB®, for
example), and x, y are defined by:
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(X =Uj — U HJ,-:O lfj}K

y=up —up uwy=0 1t j<l

From the above description it 1s clear that 1t 1s the relation
between two or more channels that allows a continuous
mapping between a channel representation and a conven-
tional scalar representation.

The linkage matrix C 1s determined by a training
procedure, which will now be described with reference to
FIG. 10.

FIG. 10 1s a diagram of a circle that i1s shifted along a
horizontal line. Each position of the circle results 1n a
different pair of feature vector a’ and response vector u’.
However, each pair should be linked by the same linkage
matrix C. This leads to the following set of equations:

(ol 2 .. Ny (4l 2 .. Ny
Uy i 441 (C11 Cy? - C1yg ) a, d a
| 2 N 1 2 N
HZ HZ HZ Ca1 Co9 i Copy ﬂz ﬂz ﬂz
U = =l T | “l=ca
1 2 N o I -0 1 2 N
k”K HK HK. ; LK/ K2 KH)H\'{IH {IH ﬂH)

where N denotes the number of shift positions or the length
of the training sequence and A 1s denoted a feature matrix.
These equations may be solved by conventional approxi-
mate methods (typically methods that minimize mean
squared errors) to determine the linkage matrix C (see [1]).
With respect to this minimization the continuity in each
channel 1s crucial, because this 1s what makes 1t possible to
perform an optimization. Once the linkage matrix C has
been determined, an arbitrary circle position along the
horizontal line may be detected from its feature vector a to
produce the corresponding response vector u.

FIG. 11 1s a diagram of a circle that 1s shifted along a

vertical line. These shifted circles may 1n a similar way be
used to find a linkage matrix C” linking a feature vector a to
a response vector v representing vertical position along a
vertical line. Note that the linkage matrix C” corresponding,
to vertical position 1s 1n general different from the previous
linkage matrix C (or rather C“ since it 1s associated with u)
corresponding to horizontal position.

The previous paragraphs demonstrated how linkage
matrices could be determined for finding circle positions
along either a horizontal or a vertical line. However, usually
it would be desirable to find the position of an object 1n a
xy-plane. In a first approximation this can be accomplished
by treating the horizontal and vertical directions as indepen-
dent of each other, and by assuming that the linkage matrix
for one coordinate direction 1s independent of the other
coordinate. Thus, the linkage matrix C* obtained from FIG.
10 1s assumed to be determined from training on horizontal
lines at many y-positions over the entire 1mage and conse-
quently valid for each horizontal line, while the linkage
matrix C” obtained from FIG. 11 1s assumed to be similarly
determined from training on vertical lines at many
X-positions over the entire 1mage and consequently valid for
cach vertical line. In practice, training data for estimation of
both matrices will be obtained during the same session,
where X and y are 1n some regular or arbitrary pattern made
to assume values within the areca of definition. With these

10

15

20

25

30

35

40

45

50

55

60

65

3

assumptions the position of a circle 1n the xy-plane may be
expressed (in channel representation) as:

u=C"a
v=C"a

This algorithm works remarkably well 1n spite of 1its
simplicity. The reason for this 1s that different sets of features
ogenerally are active 1n different regions or intervals of u and
V.

A more accurate algorithm 1s given by the following
coupled equations:

u=Cv®@a=C"a"
v=C'u®a=Ca"

where @ denotes the Kronecker product. For example:

{ V4 3

Vidp
Vidy

(via) vaay

Vol

&
o

[l

-
X

3

[l

1

 Vipd ) Va Gy

Vidi

Vidao

 Viady )

where L 1s the dimensionality of v. It 1s noted that 1n these
coupled equations the coupled feature vectors a” and a” are
of higher dimensionality than the uncoupled feature vector
a. This also leads to correspondingly larger linkage matrices
C” and C". These coupled equations may be solved by
conventional iterative methods. For example, they may be
expressed as:

uH=Cvii—-1)®a
{ v =C'u(i-1)®a

where 1ndex 1 1s an 1teration 1ndex. This iterated sequence
typically converges 1n a few iteration steps.
The training procedure 1s similar to the uncoupled case,

except that coupled feature matrices A and A” defined by:

(via' via® ... vYaN > (uia' uwia® ... u)aN>
vsal viat ... vya" wya'  usat ... uya
A* = AY =
1122 N _N 11 2 2 N _N
via via© ... vpa' uga uga© ... ugd

are used 1nstead of the uncoupled feature matrix A. Here the
superscripts refer to the respective training samples. It 1s
noted that u and v may have different dimensionalities K and
L, respectively.

From the description above 1t 1s clear that the coupled
model 1s more complex than the uncoupled model. However,
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it 1s also more accurate, since the added complexity gives a
richer model with larger linkage matrices.

For a circle another feature, namely the size of the circle
may be of interest. This feature may be extracted from the
same feature vector a as the location by using another

linkage matrix C". Thus, if the size (the radius or diameter)
of the circle 1s represented by the response vector w, one
obtains:

w=_"a

™

‘erent size circles that

FIG. 12 1s a diagram of a set of di
may be used for training purposes if the stmple uncoupled
model 1s used. This model will give satisfactory results as
long as the center of the circle to be detected 1s near the
training position. Combined with the previously described
uncoupled model for the circle position, it 1s now possible to

completely describe a circle having arbitrary position and
size by the set of equations:

Cu=C%q
dv=_C"a
kw:Cwa

This requires that the C matrices are trained over the
entire combined definition range of the scalars u, v and w

that correspond to response vectors u, v and w.

A more accurate model 1s a coupled model that considers

variations 1n both circle position and size. This model 1s
described by the equations:

[ V
u=C"

]@a = C*g"
W

7
4 v=C"’[ ]®a=C”a“
W

i

W:CW( ]@a: CVa”

V

.,

In these equations the vectors within parenthesis are
obtained by concatenating the indicated vectors. Thus, a
coupled feature vector such as a” may explicitly be written:

( via

Vadl

W

W i

 War d )

where L. and M denote the dimensionality of v and w,
respectively. This also implies that the C matrices are larger
than 1n the uncoupled case. As previously these coupled
equations may be solved by iterative methods.

The coupled feature matrices used for training are
obtained 1n a similar way. For example, the coupled feature

matrix A” may be expressed as:
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N N | 2.2 NNy
via via Vi 1@
1 1 2.2 N N
Vsl Via Vy
11 2 1 N N
e via-  via ... via
wia'l  wia* wy a’
Wlﬂl \/Vzﬂz M/'N{IN
2 2 2
kwiﬁfﬂl what ... wﬁ,mN)

The coupled model may be general to any number of

response vectors required to describe an object. The general
rule for forming coupled feature vectors 1s to concatenate all

response vectors except the one for which a coupled feature
vector 1s sought. The sought feature vector 1s then formed by
the outer or Kronecker product between the concatenated
vector and the uncoupled feature vector.

A variation of this coupled model (in the multi-
dimensional case) is to refrain from concatenation of vectors
and 1nstead apply the Kronecker product operator several

times. Thus, 1n the three-dimensional case one obtains:

(u=C"w®®v®a=C"a"
v=C'u®@w®a=0C"a"

.

W= CYvRu®a=C"a"

A coupled feature vector such as a“ may explicit be
written as:

( wivia

W vad
Wivred
WaV)d
WaVad

WaVydl

Was V14

Was Vo d

 Warved )

The coupled model described above couples vectors on
the 1nput side. However, 1t 1s also possible to employ a
coupled model that uses coupled response vectors instead.
For two response vectors u and v this model may be ex
pressed by the equation:

u@ v=C""a
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where u(x)v denotes the Kronecker product of u and v:

f Hivy R

“Upva
vy,

( ULV ) V]

“UrVo

U@V =

 UEV ) UV

UgVvi

UgVva

UK V] )

and a 1s the corresponding feature vector. The linkage matrix
C*” 1s estimated by a training procedure as in the previously
described models. This training procedure results in the set
of equations:

(@)W @) ). ..

where N denotes the number of samples 1n the training set.
This response vector coupled model gives more localized
responses, as compared to the other models, which 1s an
advantage 1f the feature vectors for a particular problem are
not well localized.

Once the linkage matrix C*” has been determined from the
training procedure, 1t 1s possible to uncouple the coupled
response vector u(x)v to obtain estimates of the individual
vectors u and v. Such estimates may be obtained from the
following set of equations:

W@ v=ca

( L
i :fﬂzum k=1,.. .K
=1

K
b, :ﬂfZMkW I=1,... . L
\ k=1

where d 1s a scale factor due to the summation of compo-
nents scaled by the sum of the other response vector. In the
case discussed above, with raised cosine transfer functions
and a channel separation of /3, the sum of a fully activated
channel vector 1s always 1.5, and the scale factor then
becomes d=1/1.5. Furthermore, in these equations only the
products u,v, and not the individual factors u, and v, are
assumed to be known.

In three dimensions this model may be generalized to:

Cu®@v=0C"a

u@w=0"a

My

VW= " a

After training and determination of the linkage matrices,
estimates of the uncoupled response vectors u, v and w may
be obtained from the coupled response vectors. However,
since each coupled response vector determines two
uncoupled response vector estimates, there will now be two
estimates for each uncoupled response vector u, v and w.
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These two estates may be compared to each other, 1n order
to provide a more redundant and reliable estimate of the
response vector.

Another embodiment of this model reduces this redun-

dancy by coupling only exclusive pairs of response vectors.
In such a model response vectors u, v, w and t are coupled
in accordance with:

{u@v:CWﬁ

w®t=C"a

The solution of these equations gives single estimates of
cach response vector. Such a single non-redundant estimate

1s deemed suflicient for most cases. In the case of further
response vectors, additional coupled pairs may be 1ntro-
duced as required.

The above described model with coupled output vectors
may also be represented 1n outer product notation 1nstead of

Kronecker product notation. In this notation the model
becomes:

(u vy Ve e Uy )
T Urvy UzVp - Uy
uy! = = D"*a
UKV UKV ottt UKV )

where D*” denotes a three-dimensional matrix having the
same elements as C*”, but arranged 1n a three-dimensional
array 1nstead of a two-dimensional array. It 1s also noted that
uv’ contains exactly the same elements as u(x)v, but that the
elements are arranged as a two-dimensional array (matrix)
instead of a one dimensional array (vector). Thus, the two
notations are mathematically equivalent. The matrix D*” 1s
obtained by a training procedure that results 1n the set of
equations:

UV=_(v)'(wv")* . . . wv)Y")=D*“(a'a® ... a™)=D""A

Here UV represents a three-dimensional matrix rather than
the product of two matrices U and V.

Still another coupled model may be obtained by coupling
response vectors to linkage matrices. This model may be
seen as a variation of the just discussed model. This variation
consists of projecting the matrix uv on the vector v, such
that:

v’ v=ut|v|*

which gives u except for a scale factor |v|*, which may be
normalized.

If the same projection 1s performed on the right hand side
(D“"a), one may define (in component notation) the pro-
jected matrix C*;

where S,,” are scale factors. After performing such projec-
tions this model may be expressed as (in two dimensions):
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Since the three-dimensional linkage matrix D" (on which
C* and C” are based) is the same as in the previously
discussed model, the same training procedure may be used.

Generalization to more than 2 response vectors 1s similar
to previously discussed models. For example, with three
response vectors one obtains:

Cu=C"a
d v==_C_C"a
kW=CW.{1

Here the coupled linkage matrices are defined by:

( L+ M
Ho o H W)
Ci —Skhz @iy
i=1 (h=1... H
. o h=1..K
Y Cth = Sin Bidn S / — 17
i=1 - N
K+L = 1 ... M
W W V)
Conh = Smhz Yilir
\ i=1

where the coupling vectors a, {3, v are defined as:

and

{dﬂ;ﬂw}} _ Duivw} {d;;i!wu}} _ Dv(wu} {dfﬂzﬂ} _ Dw(w}

define the three (three-dimensional) linkage matrices.
A linkage matrix typically has the following properties:

1. The elements of the linkage matrix are preferably non-
negative, as this gives a more sparse matrix and a more
stable system. Negative values are, however, allowed 1n
principle.

2. The elements of the linkage matrix are preferably limited
in magnitude, as this as well gives a more stable system.

3. The linkage matrix is sparse (has few non-zero elements).
This 1mplies that the system may be handled by proce-
dures that are optimized for solving sparse systems of
equations (see [ 2]) for values between two limits (see [3]),
for example O and 1.

4. An even sparser linkage matrix providing more efficient
computation, essentially without affecting performance,
may be obtained by discarding matrix elements below a
predefined threshold (for example 0.01 if the elements are
allowed to vary between 0 and 1). The same method may
also be applied to feature matrix A.

In the description above the present invention has been

described with reference to a specific type of object, namely
a circle. However the same principles may be applied to
other types of objects as well. For example, FIG. 13 1s a
diagram 1llustrating a detector arrangement for detecting line
segments ([4] describes line detection in general). An essen-
tial aspect of a line segment 1s its orientation. The detectors
in FIG. 13 will detect both position and orientation.
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Such a detector may have a composite transfer function
described by:

Piim(X, ¥, ) = CGSE(%\/(J‘: — k) +(y =17 )CGSZ(Qf’ + m;_r)

Thus, there are four detector types (corresponding to m=0,
1, 2, 3), each detector type having a specific preferred
orientation. In order to detect an arbiter orientation of a line
secgment, these four detector types have to be distributed
over the detection region, for example as 1n FIG. 13. The
distribution may be systematic, as 1n FIG. 13, or random.
Typical these detectors are less densely arranged than the
previously discussed position detectors, due to the fact that
the expected object, a line, will activate several detectors. As
previously the outputs from the detectors are arranged 1n a
percept vector, from which a feature vector 1s formed. A
trained linkage matrix 1s used to obtain a response vector
representing the line orientation in channel representation
form. If desired this response vector may be converted into
a scalar orientation value.

Other characteristics for a line segment are its position
and length. These properties may be detected from the same
feature vector as the orientation by using different trained
linkage matrices. As previously 1t 1s possible to use both a
coupled and an uncoupled model. Training of the linkage
matrices 1s performed by using different line segments
having different known positions, lengths and orientations.

Other objects, such as triangles, squares, arcs, ellipses etc
may be detected 1n similar ways.

Another essenftial feature of the method in accordance
with the present invention 1s that a response vector may be
used as a percept vector for detection of higher level
characteristics. Thus, 1t 1s possible to detect a composite
object by combining response vectors from its parts mto a
new percept vector, form a new feature vector representing
the composite object and form new response vectors repre-
senting the composite object with new ftrained linkage
matrices.

FIG. 14 1s an embodiment of an artificial vision system 1n
accordance with the present invention. An external world
scene 10, real or simulated, 1s recorded by a geometric
mapper 12, such as a camera, a video camera or any other
means that produces one or several 1mages to be analyzed.
A receptor to channel mapper 14 including an array of
detectors produces a percept vector for each image. A
computational structure 16, typically including a micropro-
cessor or a micro/signal processor combination, transforms
cach percept vector 1nto a corresponding feature vector and
generates response vectors describing an object by using
corresponding trained linkage matrices. Computational
structure 16 1s also connected to a training sequencer 18,
During a training phase this training sequencer generates
changes, either systematic or pseudo random, 1n the external
world. For example, the position and/or size of an object that
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the system 1is intended to track i1s changed (the size of the
object 1n a two-dimensional 1mage may, for example, rep-
resent the distance to the object). Training sequencer 18
provides each position with coordinate values and each size
with a size value. These coordinate and size values are
transformed to channel representation i1n a response to
channel mapper 20. Similarly, the obtained sequence of
response vectors 1s recorded 1n computational structure 16
and associated with corresponding detected feature vectors.
When the training sequence i1s complete, a control signal
from training sequencer 18 informs computational structure
16 that the training sequence has been completed. Compu-
tational structure 16 then finds the linkage matrices to be
used 1n the future for detecting the same type of object.

FIG. 15 1s a flow chart illustrating an embodiment of the
method in accordance with the present invention. After
training the linkage matrices in step S1, step S2 gets an
image to analyze. Step S3 generates the percept vector from
the 1mage. Step S4 transforms this percept vector nto a set
of coupled feature vectors. Step S5 generates a correspond-
ing set of response vectors. Step S6 uses these response
vectors for further processing. This further processing may
include forming new feature vectors for higher level pro-
cessing or converting response vectors to scalars for con-
trolling the real word system represented by the image.
Finally the method gets the net image and repeats the
Process.

It will be understood by those skilled in the art that
vartous modifications and changes may be made to the
present mvention without departure from the scope thereof,
which 1s defined by the appended claims.
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What 1s claimed 1s:

1. An artificial vision method, characterized by:

generating an 1image percept vector;

transforming said 1mage percept vector into a feature
vector; and

generating a response array by multiplying said feature
vector by a trained linkage matrix modeling a precept-
response system.

2. The method of claim 1, characterized by said feature

vector including the covariance products of said image
precept vector.

3. The method of claim 2, characterized by said feature
vector including the auto-covariance products of said 1image
precept vector.

4. The method of claim 3, characterized by said feature
vector including the components of said 1mage precept
veclor.

S. The method of claim 1, characterized in that the
clements of said linkage matrix are non-negative.
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6. The method of claim §, characterized 1n that the
clements of said linkage matrix are restricted to values
between zero and a predetermined positive value.

7. The method of claim 1, characterized by forming a
coupled feature vector by coupling said feature vector to a
response array, represented by a vector, using a Kronecker
product before performing said matrix multiplication.

8. The method of claim 1, characterized by forming a
coupled feature vector by coupling said feature vector to
several response arrays, represented by vectors, using
repeated Kronecker products before performing said matrix
multiplication.

9. The method of claim 1, characterized by said response
array being a coupled response vector formed by two
response vectors coupled to each other by, a Kronecker
product.

10. The method of claim 1, characterized by said response

array being a coupled response vector formed by two
response vectors coupled to each other by, an outer product.

11. The method of claim 1, characterized by said linkage

matrix being a coupled linkage matrix formed by weighing
a set of uncoupled linkage matrices with the elements of
another response vector.

12. The method of claim 1, characterized by converting,
cach response vector 1nto a corresponding scalar response
signal.

13. The method of claim 1, characterized by discarding
linkage matrix elements below a performed threshold.

14. The method of claim 1, characterized by said precept
vector being sparse, each non-zero precept vector element
g1ving a continuos representation limited in definition range
with respect to some variable property of an object 1 an
Image.

15. The method of claim 1, characterized by said precept
vector being sparse, each non-zero precept vector element
g1ving a continuos representation, limited 1n spatial range, of

the position an object 1n an 1mage.
16. An artificial vision system characterized by:

means (12, 14) for generating an image percept vector;

means (16) for transforming said image percept vector
mto a feature vector; and

means (16) for generating, a response array by multiply-
ing said feature vector by a trained linkage matrix
modeling a percept-response system.

17. The system of claim 16, characterized by means (18,

20) for training said linkage matrix.
18. A precept-response system for sensing and control,
characterized by:

means (12, 14) for generating a precept vector;

means (16) for transforming said precept vector into a
feature vector; and

means (16) for generating a response array by multiplying
said feature vector by a trained linkage matrix model-
ing said precept-response system.
19. The system of claim 18, characterized by means 18, 20
for training said linkage matrix.
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