US006857063B2
a2 United States Patent (10) Patent No.: US 6,857,063 B2
Moyer 45) Date of Patent: Feb. 15, 2005
(54) DATA PROCESSOR AND METHOD OF FOREIGN PATENT DOCUMENTS
OPERATION EP 0221 577 A2 5/1987
(75) Inventor: William C. Moyer, Dripping Springs, WO WO 99131579 6/1999
TX (US) OTHER PUBLICATIONS
(73) Assignee: Freescale Semiconductor, Inc., Austin, Stallings, Willian, “Computer Organization and Architec-
TX (US) ture”, pp. 581-583, 5th edition, 1999.*
. _ b disclai h £ b PCT Written Opinion.
(%) Notice: Su ject 1o any disclaimet, the term ol this PCT/US01/50776 PCT Search Report mailed Aug. 14, 2002.
patent 1s extended or adjusted under 35 , , ,
U.S.C. 154(b) by 628 days European Patent Office, IBM Technical Disclosure Bulletin,
o ' Apr. 1983.
(21) Appl. No.: 09/779,886 * cited by examiner
(22) Filed: Feb. 9, 2001 Primary FExaminer—Henry W. H. Tsa1
(65) Prior Publication Data (74) Attorney, Agent, or Firm—Robert L. King; Susan C.
Hill
US 2002/0112149 Al Aug. 15, 2002
. (57) ABSTRACT
(51) Int. CL." ..., GO6k 9/34; GO6F 9/32
(52) US.ClL 712/236; 712/243 A data processor executes an instruction (JAVASW) to
(58) Field of Search 712/236, 237, 1mplement efficient interpreter functionality by combining
712/238, 240, 242, 243, 245, 232, 233, the tasks of table jumps and thread or task switching which
234, 220, 223, 230; 717/118, 148 1s controlled by a running value such as a counter or a timer.
Execution of the instruction always requires a change of
56 References Cited flow to be taken. In one form, the mstruction may cause a
(56) y

U.S. PATENT DOCUMENTS

hardware accelerator to be signaled to complete instruction
execution. Additionally, a memory table containing emula-

3571804 A * 3/1971 Hemdal et al. 712242 tion code correlated to specific byte codes may be com-
4755935 A * 7/1988 Davis et al. ..cceeeen...... 712/233 pressed for a large number of identified byte codes by the use
5,434,985 A 7/1995 Emma et al. of separate storage. Further, use of a same portion of the
5?6325028 A F 5/1997 Thusoo et al. 703/26 memory ‘[able may OCCUr in COI]I]GCtiOI] wf[h execu‘[ion Of
6,009,261 A~ = 12/1999 Scalzi et al.cccevenvns 7U3/26 different bytecodes. While discussed 1n the context of Java
gﬁg%ﬁgg i g/ gggg gﬂtesemer """"""""" ??g/ ;23 bytecodes, the instruction is applicable to any programming
6.148.437 A 11?2000 Shah et al. 7/17/4 language and processor architecture.
6,170,998 B1 * 1/2001 Yamamoto et al. 717/154
6,233,678 B1 * 5/2001 Balaccvvvvviniinan.n... 712/240 23 Claims, 7 Drawing Sheets

JAVASW JAVA INTERPRETER STTCH

91 ~1IF (SWCOUNT!<0)
93~ ELSE

95 ~— SWCOUNT-—

ASSEMBLER
SYNTAX: JAVASW RX

CONDITION CODE: INAFFECTED
INSTRUCTION FORMAT:

1% 3 12 11 1 9 8

OPERATION: JUMP TO BYTECODE EMULATION SEQUENCE:
92 ~— PC<-[((PC+2) & Oxffife000) | (R4<<5)}

94—~ PC<-{((PC+2) & Dxffife000) | (0x8))

DESCRIPTION: JUMP TO BYTECODE EMULATION SEQUENCE. THE LCW ORDER 13 BITS
OF THE VALUE QF PC+2 ARE FORCED TO ZERG, AND BASED ON THE STATE
OF THE SWCOUNT (IN REGISTER R12), EITHER A SCALED VALUE IN REGISTER
RX IS LOGICALLY "OR'ED", OR A CONSTANT VALUE 0xB OR'ED, AND
INSTRUCTION EXECUTION RESUMES AT THE NEW PC VALUE. THE SWCOUNT
RECISTER R12 IS DECREMENTED. NOTE THAT BECAUSE PC+2 IS USED AS THE
BASE VALUE, A JAVASW INSTRUCTION SHOULD NOT BE USED IN THE LAST
INSTRUCTION OF INSTRUCTION GROUP 255.

6 3 4 3 2 1 0

INSTRUCYION FIELDS:

oro0f(0jo|0f[0]0

ololoe 11100
90

JAVA INTERPRETER SWITCH SUPPORT IS PROVIDED BY THE JAVASW INSTRUCTION.
THIS INSTRUCTION CAUSES CONTROL FLOW TO BE DIRECTED INTO A TABLE OF
INSTRUCTION GROUPS. MOST GROUPS CONSISTS OF 16 INSTRUCTIONS AND
CORRESPOND TO A SINGLE JAVA BYTECODE.

US 6,857,063 B2

Sheet 1 of 7

Keb. 15, 2005

U.S. Patent

- GE =
Ao (> AN
57 <ng TYNY3LX3

TYNY3LX3

I IR 4
43 ¢E
aT
mw__w_nmmz AYONIA

g g
1 L

91
40SSI004d0D)

0L WALSAS
INISS300dd VIV(E w\\

zl
40SS3004d
Fas
0e 40SS3004d0D t
JOV 3 INI
40553308409
Ie Z€

US 6,857,063 B2

Sheet 2 of 7

Keb. 15, 2005

U.S. Patent

Ume ¥OIYd—-
9 404 3000 » — £ d3US
NOTLYINWI < |
EITINE) € B 9 43S
¥S QVIHYIAO0 -
NETERENEIL
} 404 3009
NOT LY W3 5 ddls
11N93X3 ¥ dald
PG QV3IHNIAO
NETERENERLIE
o w04 3000 [[F 43S
NOILYINWI -
N33 | |, e
PG QYIHYIAO
SETERE R
- | d3LS

—L¥V HOINd- | ¥ILIYIINI 0L N¥nL3Y
G LA 273INJ3X3 0L 3000
NOILV 1NA3
4L IIAHIINT OL N¥NLT
} 3LN93X3 0L 3009
G diLS NOILY I3

d3134dYIINT 01 NnL3y

b B I —

9 31n03X31 0L 3002
NOILVINA

d1138d43INI 01 Nunl3y

P 31NJ3X3 01 3002
NOILV 1NN

d1LJdd¥IINT 01 NN13y

I[[IIIII!'

v 41124X3 01 3009
NOLLY 1NN

dALI4dHIINT 0L Nyni3y

4 11N034X3 0L 3009
NOLLVINA3J

dILIAdYIINT OL NiNi3y

¥ dilS
4

I_.,WWI llllllllll
LETELD, i
431 I4dYIINI mﬁ%ﬂ?mﬁmgo

¢ dilS ¢ d3IS

¢4 118vl

| di1S 3000 NOILYTINNW3

v 400J31A8

3 J0001LA8

0 3A003LA8

05§
NVdI0ud YAVP

US 6,857,063 B2

Sheet 3 of 7

Keb. 15, 2005

140
[dAne] .
3000 NOILYINWI 40
NOILYOd T¥NIA [X0
90 MSYAVE + Qv3HEIAO ¢ dals
14%0 %
| PX0
0 _,_zssz R
£9X0 OILYINNI 10 | ASYAVP +
NOILYOd TWILINT SO S UV HAIAC
L 43S S1071S O 31NJ3X3 01 300D
NOILONYLSNT . (£X0)
9 TV zxo
MSYAVP + QVIHYIAO | R . (9¥0)
ixp F—-——"—"————— _ ~— B EESS
3009 NOLLVINE | & dilS X MSYAYI + QVIHYIAO | ¢ d31S ' (1x0)
D E:om_vm_. Wh 33403 ' 300531 A8
0X0 S VAV
OX(09
30003LA8 c9 I18vL 30003148 Nv&d0dd VAVS
VAY® 3000 NOILVINA3 VAVP 79 378v1 3000 NOILYINW3

U.S. Patent

U.S. Patent Feb. 15, 2005

4 INSTRUCTION
SLOTS FOR

THE_"NOP"
BYTECODE

12 INSTRUCTION

SLOTS FOR
THE THREADSWITCH
ROUTINE

/6

ROUTINE WHEN NO
HARDWARE ACCELERATOR
PRESENT

Sheet 4 of 7 US 6,857,063 B2

EMULATION CODE
TABLE 72

16 INSTRUCTION
|

BYTECODE 2

BYTECODE 3

| BYTECODE 4

"1ADD" ROUTINE BYTECODE Ox60

_.—__—__—_

ROUTINE WHEN
HARDWARE ACCELERATOR
PRESENT

BYTECODE Oxfb

BYTECODE Oxfc

BYTECODE Oxfe

BYTECODE Oxff

F1G.6

U.S. Patent Feb. 15, 2005 Sheet 5 of 7 US 6,857,063 B2

JAVASW JAVA INTERPRETER SWITCH

OPERATION: JUMP TO BYTECODE EMULATION SEQUENCE:
91 ~TF (SWCOUNT!<0)

92 ~— PC<-[((PC+2) & Oxffffe000) | (R4<<5)];

93—~ ELSE
94 —~PC<-[((PC+2) & Oxffffe000) | (0x8)];
95—~ SWCOUNT-—;

ASSEMBLER

SYNTAX: JAVASW RX

DESCRIPTION: JUMP TO BYTECODE EMULATION SEQUENCE. THE LOW ORDER 13 BITS
OF THE VALUE OF PC+2 ARE FORCED TO ZERO, AND BASED ON THE STATE
OF THE SWCOUNT (IN REGISTER R12), EITHER A SCALED VALUE IN REGISTER
RX IS LOGICALLY "ORED", OR A CONSTANT VALUE 0x8 OR’ED, AND
INSTRUCTION EXECUTION RESUMES AT THE NEW PC VALUE. THE SWCOUNT
REGISTER R12 IS DECREMENTED. NOTE THAT BECAUSE PC+2 IS USED AS THE
BASE VALUE, A JAVASW INSTRUCTION SHOULD NOT BE USED IN THE LAST
INSTRUCTION OF INSTRUCTION GROUP 255.

CONDITION CODE: INAFFECTED
INSTRUCTION FORMAT:
10 9

INSTRUCTION FIELDS:

JAVA INTERPRETER SWITCH SUPPORT IS PROVIDED BY THE JAVASW INSTRUCTION.
| THLS INSTRUCTION CAUSES CONTROL FLOW TO BE DIRECTED INTO A TABLE OF
INSTRUCTION GROUPS. MOST GROUPS CONSISTS OF 16 INSTRUCTIONS AND
CORRESPOND TO A SINGLE JAVA BYTECODE.

F1G.7

AX

US 6,857,063 B2

201 | 60T
YILINNOD | I LINN 21907
V4904 SdiLSII3 L INHLINY

TIT £€T
e
01907 107135 | | AYLINDYID
- e $S34QQY LNINTYONI
S A Z2IT
5 90T SSINAAY ¥IINNOD el 02T
= AVHO0¥d MSYAVT SSRudav [,
cor YINIANOD ONY XNI HONYYE
i ot 4 el SSIyaay rer
o ASLINANT 10T | zor1 2+0d NOI1d30X3
= T041NOD X0 I>>¥Y o>y | E0T
v 91T INVISNOD TIgYL 40 30ISLN0 >
£ 30093LAB (TOHSIAHL IN10d AdINS —_—
= VAVI 43 QVIYHL HOLIMS GOl AMLINOYID
oot TOULINOD WOM4/01
= ,o7 | NOLLONYISNI
P
- 431ST9Y |
S
¥ . NOLLONAISNI ~ 977 . Zl ¥0SS300¥d
. 40 NOILYOd V
-

U.S. Patent Feb. 15, 2005 Sheet 7 of 7 US 6,857,063 B2

EMULATION CODE

TABLE 83 o7
16 INSTRUCTION

4 INSTRUCTION SLOTS BYTECODE 0
SLOTS FOR

THE "NOP" BYTECODE 1
BYTECODE

12 INSTRUCTION _ BYTECODE 3
o STLOTS FOR

HREADSWITCH
- _

"LIADD" ROUTINE | BYTECODE 0x60

16 INSTRUCTION
SLOTS BY TECODE Oxbf

1 INSTRUCTION SLOT| BYTECODE 0OxcO

88
1 INSTRUCTION SLOT] BYTECODE Oxcf

1 INSTRUCTION SLOT] BYTECODE Oxfe
I INSTRUCTION SLOT] BYTECODE Oxff

1G9

US 6,557,063 B2

1

DATA PROCESSOR AND METHOD OF
OPERATION

FIELD OF THE INVENTION

The present invention relates to data processing systems,
and more particularly, to systems having a software inter-
preter that implements execution of data processing instruc-
tions.

BACKGROUND OF THE INVENTION

The Java programming language 1s an object-oriented
high level programming language developed by Sun Micro-
systems Inc. and designed to be portable enough to be
executed on a wide range of computers ranging from small
personal computers up to supercomputers. Computer pro-
grams written in Java (and other languages) may be com-
piled into virtual machine instructions for execution by a
Java Virtual Machine (JVM). In general, the Java virtual
machine 1s an interpreter that decodes and executes the
virtual machine 1nstructions.

The wvirtual machine instructions for the Java wvirtual
machine are bytecodes, meaning they include one or more
bytes. The bytecodes are stored 1n a particular file format
called a “class file.” In addition to the bytecodes, the class
file includes a symbol table as well as other ancillary
information.

A computer program embodied as Java bytecodes 1n one
or more class files 1s platform independent. The computer
program may be executed, unmodified, on any computer that
1s able to run an implementation of the Java virtual machine.
The Java wvirtual machine 1s a software emulator of a
“oeneric” computer, which 1s a major factor i allowing
computer programs for the Java virtual machine to be
platform 1ndependent.

The Java virtual machine 1s commonly implemented as a
software 1nterpreter. Conventional interpreters decode and
execute the virtual machine instructions of an interpreted
program one 1nstruction at a time during execution.
Compilers, on the other hand, transform virtual machine
instructions into native machine instructions prior to execu-
fion so that decoding 1s not performed on virtual machine
instructions during execution. Because conventional inter-
preters repeatedly decode each instruction before it 1s
executed each time the 1nstruction 1s encountered, execution
of mterpreted programs 1s typically quite slower than com-
piled programs since the native machine instructions of
compiled programs can be executed on the native machine
or computer system directly.

As a software interpreter must be executing in order to
decode and execute an mterpreted program, the software
interpreter consumes resources (€.g., memory) that will no
longer be available to the interpreted program. This 1s 1n
contrast to compiled programs that execute as native
machine 1nstructions so they may be directly executed on the
target computer and therefore generally require fewer
resources than interpreted programs.

Accordingly, there 1s a need for new techniques for
increasing the execution speed of computer programs that
are being interpreted. Additionally, there 1s a need to provide
interpreters that are efficient 1n terms of the resources they
require.

Many embedded devices are becoming Java enabled due
to the platform independent and ubiquitous nature of the
Java language and development of Java Virtual Machine

10

15

20

25

30

35

40

45

50

55

60

65

2

implementations. Many low cost embedded systems desire
to implement the Java processing function as a JVM to avoid
the hardware overhead of a dedicated Java processor or a
hardware accelerator (for example, a separate co-processor).
A straightforward approach to implementing the JVM and
executing a Java program 1s through the use of a software
interpreter.

The iterpreter implements a software version of a pro-
cessor 1n the sense that 1t performs the standard functions of
instruction fetch, decode, and execute of the interpreted
instruction stream. The interpreter typically 1s implemented
as a program loop that iterates the fetch, decode, and execute
steps.

As Java instructions (bytecodes) are fetched, the inter-
preter maintains a virtual program counter (the Java PC),
and the decoding of each interpreted Java instruction is
performed by a large case statement (switch statement) with
clauses corresponding to each binary encoding of the byte-
code. Code within each clause performs the actual operation
defined by the bytecode.

There 1s overhead associated with processing each byte-
code since the bytecode must be fetched and decoded. The
overhead associated with the fetch and decode portions of
the sequence can be a large percentage of overall execution
time, since many Java instructions (bytecodes) perform
simple operations.

Since the Java environment supports the notion of mul-
tiple threads of execution, an additional function of the
interpreter loop 1s to maintain a counter that 1s used in
determining when a thread (or task) switch should occur.

In some 1implementations of a Java Virtual Machine, the
threadswitch determination 1s based on the number of Java
bytecodes executed. By keeping a counter value which 1s
modified each time the interpreter loop executes, and com-
paring 1t to a predetermined value, the interpreter 1mple-
ments the thread switch logic as well. Maintaining the
counter and determining when to threadswitch also creates
significant overhead. This overhead significantly limits the
operating efliciency of the software interpreter.

BRIEF DESCRIPTION OF THE DRAWINGS

[1lustrated 1n FIG. 1 in block diagram form is an illustra-
five data processing system;

[llustrated 1n FIG. 2 1s a known code sequence showing,
execution flow when a Java program 1s executed;

[llustrated 1 FIG. 3 1s a known diagram of interpreter
overhead associated with the Java program execution of

FIG. 2;

[llustrated 1n FIG. 4 1s a Java program and corresponding,
emulation code table when the program is executed 1n
accordance with the present invention;

[1lustrated in FIG. § 1s an example 1n accordance with the
present invention of Java program execution which requires
more emulation code than a group size permits;

[llustrated 1 FIG. 6 1s an exemplary emulation code table
showing one allocation of instruction slots in accordance
with the present invention;

[llustrated 1n FIG. 7 1s a Java interpreter instruction
explanation for switching instruction flow in a Java program
in accordance with the present invention;

[llustrated in FIG. 8 1n block diagram form 1s a portion of
the data processor of the system of FIG. 1 for implementing
program execution 1n accordance with the present invention;
and

[llustrated 1n FIG. 9 1s an exemplary emulation code table
showing another allocation of instruction slots in accordance
with the present mvention.

US 6,557,063 B2

3
DETAILED DESCRIPTION OF THE DRAWINGS

The present mvention 1s illustrated by way of example
and not by limitation 1n the accompanying figures, in which
like references indicate similar elements. In the following
description, numerous specific details are set forth such as
specific word or byte lengths, etc. to provide a thorough
understanding of the present invention. However, 1t will be
obvious to those skilled 1n the art that the present invention
may be practiced without such specific details. In other
instances, circuits have been shown in block diagram form
in order not to obscure the present invention 1n unnecessary
detail. For the most part, details concerning timing consid-
erations and the like have been omitted inasmuch as such
details are not necessary to obtain a complete understanding
of the present mvention and are within the skills of persons
of ordinary skill in the relevant art.

The term “bus” will be used to refer to a plurality of
signals or conductors that may be used to transfer one or
more various types of mformation, such as data, addresses,
control, or status. The terms “assert” and “negate” will be
used when referring to the rendering of a signal, status bit,
or similar apparatus 1nto its logically true or logically false
state, respectively. If the logically true state 1s a logic level
one, the logically false state will be a logic level zero. And
if the logically true state 1s logic level zero, the logically
false state will be a logic level one. In the following
description and diagrams, hexadecimal notation 1s used for
some values by pre-pending the value with ‘Ox’. Thus the
value Oxif corresponds to a decimal value 258.

FIG. 1 1s a block diagram that illustrates one embodiment
of a data processing system 10 and includes a processor 12,
a co-processor 14, a co-processor 16, a memory 18, other
modules 20 and external bus interface 22 which are all
bi-directionally connected by way of a bus 28. Alternate
embodiments of the present invention may have only one
co-processor 14, two co-processors 14 and 16 or even more
co-processors (not shown). External bus interface 22 is
bi-directionally coupled to external bus 26 by way of
integrated circuit terminals 35. Memory 24 1s
bi-directionally coupled to external bus 26. Processor 12
may optionally be coupled external to data processing
system 10 by way of integrated circuit terminals 31.
Co-processor 14 may optionally be coupled external to data
processing system 10 by way of integrated circuit terminals
32. Memory 18 may optionally be coupled external to data
processing system 10 by way of integrated circuit terminals
33. Other modules 20 may optionally be coupled external to
data processing system 10 by way of integrated circuit
terminals 34. Processor 12 i1s bi-directionally coupled to
both co-processor 14 and co-processor 16 by way of
co-processor mnterface 30. The specific operation of proces-
sor 12 within data processing system 10 will be referenced
below 1n the context of Java code execution.

Referring to FIGS. 2 and 3, an example will be given of
a conventional execution flow of instructions 1n a Java
program. An 1mportant performance issue in general with
known 1nterpreters 1s the fact that a significant amount of
fime 1s spent by the software 1n changing instruction flow
and executing the interpreter overhead routine between each
emulated Java bytecode. An 1llustration 1n FIG. 2 of mstruc-
fion execution steps will highlight this point. Note that every
identified step of steps one through seven 1n FIG. 2 requires
a change of flow in the software program. In the prior art,
one or more soltware routines such as interpreter overhead
54 must be repetitively jumped to and this creates additional
interpreter overhead. FIG. 3 shows the same software rou-

10

15

20

25

30

35

40

45

50

55

60

65

4

tine as FIG. 2 but more clearly shows the relationship
between the amount of time and software required to per-
form the interpreter overhead routine compared to the lesser
amount of time and software required to execute the emu-
lation code for various functions such as a, f and c¢. The
interpreter overhead software includes fetching, decoding
and dispatching a Java bytecode. Dispatching i1s the step
performed to jump to the emulation code corresponding to
an emulated Java bytecode. Note that the interpreter over-
head also 1includes software to perform a counter function in
order to determine when thread switching should occur.
Note that the interpreter overhead 54 software also includes
a virtual program counter for the Java Virtual Machine that
must be kept updated. Note that FIG. 2 and FIG. 3 show both
the Java program bytecodes and the emulation code table
that 1s required by the processor (e.g. processor 12 of FIG.
1) in order to actually execute the bytecodes required by the
Java program. Note that for each Java bytecode that 1s
executed by processor 12, the code that 1s required to
perform emulation of a Java bytecode requires two compo-
nents. The first component 1s code to actually execute the
function (a, f, c,), and the second component i1s a software
routine that returns execution of the emulation code to the
interpreter overhead 54 software. Referring to FIG. 3 note
that the interpreter overhead software, 1llustrated with a bold
line, may be a very significant portion of the software that
1s required to execute a Java bytecode. As a result, I am
herein teaching a system and method that efficiently reduces
the amount of software and time required to execute the
interpreter overhead portion of the emulation code. It should
be noted from FIG. 2 that the emulation code required to
execute each function (a, f, c,) can and typically does vary
significantly 1n size and 1s often a relatively small amount of
code. In contrast, the interpreter overhead 54 software 1s a
significant amount of code as compared to the emulation
code required to execute a particular Java bytecode.

Referring now to FIG. 4, there 1s 1llustrated one example
of a Java program 60 and its corresponding emulation code
table 62 that may be executed by processor 12 of FIG. 1 in
accordance with one embodiment of the present invention.
Note that 1n the program execution embodiment of the
invention illustrated i FIG. 4 each Java bytecode has a
corresponding group 1n the emulation code table 62. In a
generic sense, each group 1s correlated to a predetermined
opcode of a program, as the present invention 1s not limited
to use only with Java programs. Bytecode execution of
bytecodes a, I, ¢ . . . occurs by retrieval 1n emulation code
table 62 of code 1n the order of steps 1, 2 and 3 as 1llustrated.
In the particular embodiment of the invention illustrated in
FIG. 4, each code group 1n the emulation code table 62, as
defined by a Java bytecode hexadecimal value such as 0x0,
0x1, etc., contains sixteen of the processor 12 instructions.
The number sixteen was chosen as a value that provides
enough 1nstruction slots to emulate most Java bytecodes,
without causing excessive unused slots to be present. Some
Java bytecodes will take less than sixteen processor 12
mstructions to execute and some will take more. As a result,
it should be well understood that alternate embodiments of
the present mnvention may use any number of processor 12
instruction slots for each group. Also, the number of groups
may vary according to the number of bytecodes required by
the higher-level language. Note also that the interpreter
overhead software 1s no longer required as a separate routine
that must be jumped to by the emulation code. The inter-
preter overhead required by the prior art as shown in FIG. 2
has been replaced by a block of code used 1n each group that

1s labeled “Overhead plus JAVASW”. Note that the “Over-

US 6,557,063 B2

S

head plus JAVASW” block of code 1s now distributed
throughout the emulation code executed by processor 12.

Note that the software flow illustrated in FIG. 4 and the
emulation code table has fewer change of flow steps com-
pared to the prior art illustrated in FIG. 2. It should be
understood that a change of tflow 1s one form of a change of
control and that rather than implementing a jump
instruction, the operation that may be performed may be
another operation where a change of control 1s implemented,
such as transferring between user and supervisor modes. The
reduction 1n the change of flow steps provided by the present
invention saves a significant amount of software overhead.
It 1s important to note that the arrows illustrated 1n both FIG.
2 and FIG. 4 require additional software 1n order to carry
out. Note that although each Java bytecode has been allo-
cated sixteen instruction slots 1in the embodiment 1llustrated
in FIG. 4, some particular Java bytecodes will not require all
sixteen 1nstruction slots. On the other hand some Java
bytecodes require more than sixteen instruction slots 1n the
emulation code. This example will be discussed 1n FIG. 5.
Thus, FIG. 4 illustrates emulation code table 62 that can be
executed by processor 12 of FIG. 1. In the illustrated form,
code emulation table 62 has two hundred fifty-six equal
sized groups allocated for the emulation of each Java
bytecode as 1dentified by hexadecimal addresses 0xO
through OxFF. Thus the emulation code table 1llustrated in
FIG. 4 provides a much more contiguous flow when a Java
program 1s executed by processor 12. This more contiguous
flow reduces the amount of software overhead required for
the significant number of program flow changes required by
the prior art (see FIG. 2).

Referring now to FIG. §, FIG. § illustrates how the
present invention may be used for a Java bytecode which
requires more emulation code than the group size allows in
emulation code table 63. Illustrated in FIG. 5 1s an emulation
code table 63. For the illustration shown 1n FIG. 5§ assume
that the initial portion of the emulation code begins at
address 0x67 indicated by an arrow as step 1. Step 2
indicates that all sixteen instruction slots have been used and
yet the corresponding bytecode requires additional emula-
tion code. Thus, step 2 indicates that the emulation software
flow must move to a new and available block of code 1n
order to finish execution of the Java bytecode. In the
example 1llustrated 1in FIG. 5, step 2 illustrates a redirection
of program execution in the form of a jump of the emulation
code to a location past the end of the original emulation code
table 62 where a block of code may be located to complete
execution of the Java bytecode. This additional code may be
any size and 1s limited only by system resources. The
additional code may be stored anywhere 1n a system where
available resources exist to permit storage of the remaining
Java bytecode emulation code to be executed. Therefore it
should be understood that the selected jump address may be
within a predetermined range (0x0 through OxFF) of
addresses which 1s less than a total range of addresses within
the data processing system or the selected jump address may
be outside of the predetermined range of addresses for
storage anywhere available resources exist. Step 3 shows
that once the emulation code for that particular Java byte-
code has finished, the emulation code can jump back into
any of the groups within the two hundred fifty-six groups at
the location where the “Overhead plus JAVASW” software
begins. Thus, the extra software required at the end of the
emulation code table 63 to finish the Java bytecode emula-
tion does not need to 1nclude the “Overhead plus JAVASW”
software. This operational feature allows reuse of the “Over-
head plus JAVASW” software portion of at least one group

10

15

20

25

30

35

40

45

50

55

60

65

6

in the case where a Java bytecode cannot be emulated using
only one group 1n the emulation code table 63.

Referring to FIG. 6, selecting the number of instruction
slots allocated to each group i1s a significant issue. The
selection usually mvolves a tradeoll between the total size of

the emulation code table and the number of Java bytecodes
that overflow beyond the group size. Although the embodi-
ment illustrated in FIG. 6 uses sixteen instruction slots per
ogroup, alternate embodiments of the present invention may
optimize the group size to a different number of instruction
slots. Note that having a group size that 1s fixed greatly
simplifies the address calculation used to point to the emu-
lation code for each emulated bytecode. This may be a
significant amount of computation time for processor 12 for
cach instruction and can significantly impact the overall
performance of data processing system 10.

Still referring to FIG. 6, note that one or more hardware
accelerators may be used as part of data processing system
10 (see FIG. 1, co-processors 14, 16) in order to improve the
performance of data processing system 10. It should be well
understood that a co-processor 1s just one type of hardware
accelerator that may be used. Referring to FIG. 6, an IADD
(integer add) routine has been illustrated in two ways in
order to show how the emulation code table changes based
on the presence or absence of a hardware accelerator. The
integer add functionality 1s selected by way of example only.
On the left of the “IADD” Routine of FIG. 6 1s a software
routine 80 that may be executed by processor 12 when a
hardware accelerator 1s not present. The code 82 on the right
illustrates a routine which may be executed by processor 12
when a hardware accelerator (e.g. co-processor 14), is
present. Note that the hardware accelerator may be used to
perform a significant portion of the execution of the Java
bytecode. Comparing the left and right blocks of code 1n
FIG. 6, 1t 1s apparent to see that a significant number of load
and store instructions which previously had to be executed
by processor 12, are no longer required when a hardware
accelerator 1s used. As will be described 1n further detail 1n
connection with FIG. 8, a user determinable control signal 1s
provided 1 one form of the invention which permits a
system user to select either a first emulation table structure
of predetermined code size groupings or a second emulation
table structure of differing predetermined code size group-
ings. Note that the hardware accelerator and the processor
must have some type of interface or handshake mechanism
in order to communicate and coordinate execution of a Java
bytecode. Referring to FIG. 1, processor 12 and
co-processors 14, 16 communicate by way of co-processor
interface 30. Note that the communications between proces-
sor 12 and co-processors 14, 16 may be complicated by the
fact that thread switching may occur in the Java program.
During execution of a Java program at least a portion of the
software must periodically check to determine if it 1s nec-
essary to switch tasks and allow another task to have a
portion of the processor 12 execution time. This switching or
changing between software tasks in Java 1s called thread
switching. Referring to FIG. 1, processor 12 conditionally
signals to coprocessors 14, 16 whether a valid Java bytecode
1s to be executed or not, based upon whether or not thread
switching 1s to occur. This signaling 1s part of the execution
of the JAVASW 1nstruction, and 1s conditional upon the fact
that a thread switch 1s not being performed, since the
co-processor should not execute a Java bytecode unless
processor 12 1s also executing the bytecode, and when a
threadswitch 1s to be performed, the Java bytecode which
would normally have been executed remains unexecuted
until the current thread 1s restarted. Note that co-processor

US 6,557,063 B2

7

interface 30 may also include snooping or broadcast signals
to allow processor 12 and coprocessors 14, 16 to have
visibility into the software flow being performed by the
other. For specific information regarding one of any known
processor to co-processor interfaces that may be utilized
with the present invention, reference can be made to U.S.

Pat. No. 5,983,338 that 1s herein incorporated by reference.

Note that emulation code table 72 of FIG. 6 includes two
hundred fifty-six addressable groups (0x0 through Oxff),
where each group 1s allocated to a corresponding Java
bytecode. It 1s desirable to locate the emulation code to
implement the Java thread switching in the emulation code
table. Due to the fixed number of instruction slots 1n each
oroup, there 1s no unallocated memory location in the
emulation code table 72 that 1s available to use for the thread
switching software. Thus, 1t 1s necessary to use unused
instruction slots within one or more groups to locate the
thread switching code. In one embodiment of the present
invention, the thread switching software routine 1s located 1n
the first group that corresponds to Java bytecode zero (0).
Since this group is allocated to the no-operation (NOP)
instruction that requires, by way of example, only four
mstruction slots, there are twelve unused instruction slots
remaining to store at least a portion of the software routine
for performing thread switching. Note that if the thread
switching routine does not fit within the allocated slots, a
jump may be made to a location past the end of emulation
code table 72 as was described in FIG. 5 for emulation code
table 63. Alternate embodiments of the present invention
may locate the software for performing thread switching in
other locations within emulation code table 72. Note that
using this first group 1n the emulation code table 72 to locate
the thread switching software allows the hardware for imple-
menting the JAVASW instruction (to be described further
herein) to be implemented in a more straightforward manner
using hardware in processor 12.

FIG. 7 illustrates further details of the “JAVASW” 1nstruc-
tion previously referenced in the emulation tables of FIGS.
4 and 5. In one embodiment of the present invention, the
JAVASW 1nstruction 1s an instruction that 1s executed by
processor 12 (see FIG. 1). For further clarity of the execution
of the JAVASW 1nstruction, a detailed portion of processor
12 from FIG. 1 1s further provided in FIG. 8. Illustrated 1n
FIG. 8 1s an instruction register 116. Instruction decode 104
has an 1nput for receiving a processor 12 instruction from
instruction register 116 by way of conductors 117 connected
to an output of instruction register 116, and an output
connected to an input of a control circuitry 105. Control
circuitry 105 also receives at an mput 118 a Java bytecode
to be executed. An output of control circuitry 105 1s con-
nected to a control input of a multiplexer (Mux) and com-
biner 106, to input/output terminals of registers 107 having,
a program counter 108 and other registers 109, to an
input/output a, terminal of an arithmetic logic unit (ALU)
110, and to an input/output terminal of an address select
logic 111 via conductors 130. Increment circuitry 112 has an
output connected to a first mput of address select logic 111
via conductors 120. A Jump Address 121 1s connected to a
seccond 1mput of address select logic 111. An Exception
Address 122 1s connected to a third input of address select
logic 111, and a Branch Address 123 1s connected to a fourth
mput of address select logic 111. An output of Mux and
combiner 106 1s connected to a fifth input of address select
logic 111 for providing a JAVASW Program Counter
Address 124. Conductors 133 are connected to an input of
increment circuitry 112, to an output of address select logic
111, and to an input/output terminal of program counter 108

10

15

20

25

30

35

40

45

50

55

60

65

3

for communication to and from control circuitry 105. Jump
Address 121, Exception Address 122 and Branch Address
123 are provided by control circuitry 105. The Mux and
combiner 106 has an input for receiving a Constant 0x8 100,
an input having a value equal to R4<<1 (a value 1n a register
R4 of registers 109 which is left-shifted by one) 101, an
input having a value equal to R4<<5 (a value in register R4
of registers 109 which is left-shifted by five) 102, an Entry
Point Outside of Table 103, and an mnput for receiving the
program counter value plus 2 (PC+2). Control circuitry 105
has an additional input for receiving a Switch Thread
Threshold value by way of one or more conductors 134.

Referring to FIG. 7, the operation of one embodiment of
the JAVASW 1nstruction 1s described 1n the form of ‘quasi-
C’ code. In one embodiment, the JAVASW 1nstruction
causes a jump to a bytecode emulation sequence. An equa-
tion 92 1llustrates the manner in which the address of this
bytecode emulation sequence 1s calculated. The portion of
equation 92 contained within brackets indicates the jump
address that is loaded into program counter 108 (PC) of
registers 107 during execution of the JAVASW 1nstruction.
This value 1s provided by Mux and combiner 106 in FIG. 8
to address select logic 111 by way of conductors 124. The
value “PC+2” of equation 92 is the program counter value
after program counter 108 has been incremented by incre-
ment circuitry 112. This incrementing occurs as a natural
step 1n the execution pipeline of processor 12, and thus is
convenient to use as a base address value. In other embodi-
ments of the present invention, a non-incremented program
counter value PC may be used instead. The incremented
program value 1s then logically ANDed with the value
Oxifite000. This Boolean operation has the effect of forcing
the low order thirteen bits of the value of (PC+2) to be forced
to zero. The resulting address points to the first istruction
slot of the first bytecode mstruction group 1n emulation code
table 72 (see FIG. 6). Note that in some embodiments of the
present 1nvention a logical AND may not be required.
Instead, the low order thirteen bits of the value PC+2 may
be truncated. If this pointer value 1s not truncated, it may be
logically ORed with the Java bytecode value stored 1in
Register R4 that 1s one of registers 109, shifted by an amount
corresponding to the group size. This described operation
clffectively indexes the new program counter address 1nto the
correct location within emulation table 72 so that the pro-
gram counter register now points to the beginning of the
correct mstruction group for the Java bytecode that 1s to be
emulated by processor 12. An alternate method of forming
the pointer value 1s to simply concatenate the high order
cighteen bits of PC+2 with the Java bytecode value stored in
Register R4 and then pad the result with 5 bits of zeros to
form a 32 bit address. Note that the jump address may be
formed 1n a wide variety of ways. However, regardless of the
various techniques or combinations used to form the jump
address, the result 1s always an address that points to the
beginning of the correct 1nstruction group within emulation
code table 72 (see FIG. 6) that corresponds to the current
Java bytecode. Note again that equation 92 1s used to
calculate the jump address 1if thread switching 1s not occur-
ring. Note that thread switching does not occur 1f a statement
91 1s true. Statement 91 1s measuring whether a switch count
(SWCOUNT) threshold (the point when a change of pro-
oram tasks should be implemented by the data processing
system) has been crossed in order to determine if a change
to another Java thread should occur. Therefore, statement 91
requires a comparison determination of a value, such as a
count value for example, with a predetermined value, the
switch count threshold value. If statement 91 1s true, there 1s

US 6,557,063 B2

9

a first result, and 1f statement 91 1s not true there 1s a second
result. However, 1f statement 91 1s not true, then an “else”
statement 93 results 1n an equation 94 being used to calculate
the jump address which 1s stored 1n program counter 108.
Note that the AND operation in equation 94 may be the same
AND operation as described above in connection with
equation 92. However, the OR operation of equation 94 is
used to mdex 1nto a portion of emulation code table 92 that
contains the thread switching software. Again, note that if a
truncation operation 1s used mstead of an AND operation in
equation 94, then the result of that truncation operation may
be concatenated or combined with the offset to the thread
switching software which 1s a constant 0x8. A statement 95
indicates that the JAVASW instruction then decrements the
switch count value (SWCOUNT). It should be readily
apparent that alternate embodiments of the invention may
use an up counter mstead of a down counter, or may keep
track of the thread switching 1n some other manner, such as
with a timer which allots a specific time before a switch 1s
encountered. Although the embodiment illustrated in FIG. 7
selects the jump addresses 1n a very specific manner, alter-
nate embodiments of the present imnvention may use other
equations to implement equations 92 and 94 and statement
93. Although the illustrated embodiment of the present
mvention described uses specific addresses specified by
equations 92 and 94 to jump to bytecode emulation
sequences, alternate embodiments of the present mmvention
may use equations 92 and 94 in modified form to jump to
other desired addresses. Although the embodiment of the
present invention illustrated 1n FIG. 7 describes a processor
12 1nstruction used to jump to a bytecode emulation
sequence, alternate embodiments of the present invention
may use an instruction of this type to jump to one of a
plurality of jump destination addresses for a variety of
different purposes. The present invention 1s thus not limited
to a jump to a Java bytecode emulation sequence, but is
applicable to other types of jumps. In addition, statements 91
and 93 may be any type of variable conditions that select one
of a plurality of possible jump destination addresses. It
should be further appreciated that statement 95 1s optional
and may not be used 1n some embodiments.

Instruction format 90 illustrated 1n FIG. 7 may also be
referred to as an opcode. In the preferred form, instruction
format 90 1s held 1n instruction register 116, decoded by
instruction decode 104 circuitry of FIG. 8, and consequently
provided to control circuitry 105 1n order to execute the
JAVASW 1nstruction in processor 12.

Note that the jump operation that 1s performed during the
JAVASW 1nstruction always occurs. The jump 1s not
optional or conditional, but always occurs to one of a
plurality of jump destination addresses.

Note also that R4<<5 indicates that a predetermined
value, 1n this case the bytecode value, 1s left shifted by five
bits before it 1s loaded 1nto register R4. In the embodiment
of the present mvention 1llustrated in FIG. 7, each instruc-
tion 1s sixteen bits in length, thus occupying 2 bytes of
storage. Note that a left shift of five bits 1s equal to a
multiplication by 32 bytes, or sixteen 1nstructions. Referring
to FIG. 6, the reason the bytecode value 1s shifted by five,
or multiplied by thirty-two, 1s to allow the offset into
emulation code table 72 to index to the correct bytecode
instruction group within emulation code table 72. Thus, the
value R4<<5 1s used to move the jump destination address

pointer to the beginning of the correct group within emula-
tion code table 72.

It should be realized that alternate embodiments of the
present invention could include the implementation of the

10

15

20

25

30

35

40

45

50

55

60

65

10

JAVASW 1nstruction functionality using more than one
instruction. Note that 1n one embodiment of the present
invention the JAVASW 1nstruction combines the ability to
control a counter and to implement a table jump in a single
instruction. This 1s shown 1n FIG. 7 as statement 95 that 1s
performed 1n addition to one of equations 92 or 94. Note that
for the JAVASW 1nstruction a change of instruction flow 1is
always taken, which 1s not the case for a conditional branch

instruction. Note that the jump performed 1n response to the
JAVASW 1nstruction 1s to one of two addresses, both of

which are within a predetermined table (see emulation code
table 62 in FIG. 4). Additionally, in one embodiment of the
present mvention the JAVASW 1nstruction performs a table
jump operation where the destination of the table jump 1s a
function of both the Java bytecode value and a counter
value. In one embodiment of the present invention the
counter value may be the switch count value (SWCOUNT in
FIG. 7) used by the Java interpreter to determine when
thread switching should occur. In one embodiment, one of
registers 109 may be used as a counter. Alternate embodi-
ments may use a combination of hardware or software and
hardware 1n processor 12 to implement this switch counter
function. For one embodiment of the JAVASW i1nstruction,
the counter value conditionally causes the normal entry
point of the jump to be over-ridden with a predetermined
fixed entry point back into the emulation table (illustrated as
0x8 in FIGS. 7 and 8). Alternate embodiments may use
addresses other than 0x8. As illustrated in FIG. 7, the normal
table entry point corresponds to the address calculation of
the PC value determined by execution of equation 92, and
occurs when no thread switching 1s to occur. When thread
switching 1s to occur, the normal table entry point corre-
sponding to equation 92 1s not used. Instead, it 1s over-ridden
with the entry point defined by equation 94, as a thread-
switch should now be performed, and the emulation code for
the Java bytecode that would normally have been emulated

1s no longer entered.

The JAVASW instruction provides an instruction that
conditionally signals a hardware accelerator (e.g.
co-processors 14, 16) via a handshake signal (part of
co-processor Interface 30) when a non-over-ridden table
entry point 1s used. This handshake signal allows the hard-
ware accelerator to determine whether processor 12 1s
executing equation 92 in FIG. 7 (in which case the bytecode
1s to be emulated by processor 12 and the hardware
accelerator) or whether processor 12 is thread switching by
executing equation 94 in FIG. 7 (in which case the hardware
accelerator must not perform emulation of the current
bytecode).

Additionally, the JAVASW i1nstruction may provide a
dispatch mechanism that allows the normal table structure
shown 1n FIG. 6 to be over-ridden for a small set of bytecode
values. For example, for a commonly executed Java byte-
code that requires more than sixteen instruction slots, and
thus would overflow the allocated group size, hardware may
be provided which forces the JAVASW 1nstruction to jump
to a location which 1s outside of the emulation code table to
execute the code required by the Java bytecode. Note that
the only hardware required to implement such a dispatch
mechanism 1s a small amount of decode logic to decode a
selected set of Java bytecodes which would overflow their
allocated instruction slots, and the additional mput 103 to
Mux and combiner 106 1mn FIG. 8 described below along
with a corresponding control to allow the emulation code for
this selected Java bytecode to jump to a location outside of
the emulation code table. Note that this decode circuitry may
be implemented within control circuitry 105 of processor 12
as 1s described below 1n connection with FIG. 8.

US 6,557,063 B2

11

As noted earlier, FIG. 8 1llustrates but one embodiment of
the relevant portion of processor 12 of FIG. 1. To reiterate,
the mstructions used to emulate a Java bytecode are received
by 1nstruction decode circuitry 104 from instruction register
116. Instruction decode circuitry 104 decodes the emulation
instructions and provides the decoded result to control
circuitry 105. Control circuitry 105 provides control signals
to other elements within processor 12 in order to execute
these instructions. As indicated above, control circuitry 105
1s bi-directionally connected to registers 107, arithmetic
logic unit (ALU) 110 and address select logic 111 by way of
conductors 130. Control circuitry 105 provides control sig-
nals to Mux and combiner 106. Alternate embodiments of
the present imvention may use more, fewer, or different
mputs to Mux and combiner 106. The output of Mux and
combiner 106 1s a JAVASW program counter address 124
that 1s provided as an mput to address select logic 111.
Address select logic 111 also receives branch address 123,
exception address 122, and jump address 121 as inputs. In
addition, the output of address select logic 111 may be
incremented by increment circuitry 112 and then fed back in
as an 1nput to address select logic 111 by way of conductors
120. In the 1llustrated embodiment of the present invention,
increment circuitry 112 increments the address by two bytes,
which 1s equivalent to one instruction. Alternate embodi-
ments of the present invention may use 1ncrement circuitry
112 to increment the address by various amounts. The
address output by address select logic 111 1s provided to
program counter 108 and to control circuitry 105 by way of
conductors 133. Control circuitry 105 1s used to generate
jump address 121, exception address 122, and branch
address 123. Control circuitry 105 receives one or more
switch thread threshold signals by way of one or more
conductors 134. As described above, registers 107 are
bi-directionally connected to arithmetic logic unmit 110 by

way of conductors 130, 131, and 132.

In the illustrated form, the various inputs to Mux and
combiner 106 provide a significant amount of flexibility to
data processing system 10. Input 113 to Mux and combiner
106 provides the current PC+2 value from program counter
108 that 1s used to form various JAVASW program counter
address 124 values 1n combination with other inputs to Mux
and combiner 106. For example, the input 100 that provides
the constant Ox8 can be used in combination with mput 113
to force the JAVASW program counter address to point to
the thread switching software routine 76 that 1s located 1n the
first group of the emulation code table 72 1n FIG. 6. This new
program counter address will be used when the thread
switching software 1s required. Input 101 to Mux and
combiner 106 indicates that the contents of register R4 are
left shifted one digit location and that shift 1s equivalent to
multiplying by two. Input 101 i1s used to form the new
program counter address when a group 1n emulation code
table 72 contains a single instruction to store a jump address
past the end of the emulation code table 72 where the
emulation code to implement the corresponding bytecode 1s
located. This functionality will be further illustrated i the
description below of FIG. 9. Input 102 to Mux and combiner
106 indicates a left shift by five of the contents of register R4
which 1s equivalent to a multiply by 32. The left shifted
value R4<<5 1s used 1n combination with mput 113 to select
between groups 1n the emulation code table 72. Such a shift
1s an adjust that 1s performed to generate a new program
counter address when processor 12 1s finishing execution of
a previous Java bytecode and transferring to execution of a
next Java bytecode. Input 103 to Mux and combiner 106
allows the normal table structure to be overridden for a small

10

15

20

25

30

35

40

45

50

55

60

65

12

set of bytecode values. In other words, an address outside of
emulation code table 72 may be forced to a predetermined
value by way of the Entry Point Outside Of Table 103 signal
input to the Mux and combiner 106. Note that alternate
embodiments of the present invention may have other inputs
to Mux and combiner 106 which are used to create different
new program counter addresses based on the needs of data
processing system 10. Note that the iputs to Mux and
combiner 106 may be used to vary the group sizes within
emulation code table 72. Although the illustrated embodi-
ment has been shown with one standard group size, alternate
embodiments of the present invention may use a different
group size or a plurality of group sizes defined by the mputs
to Mux and combiner 106. This provides the user of data
processor system 10 with a significant amount of flexibility
in determining the length of code required to emulate

various bytecodes of a high level language such as Java.

Referring now to FIG. 9, FIG. 9 1illustrates a dispatch
mechanism that allows an emulation code table to be com-
pressed for a large group of bytecode values. As was
discussed earlier 1n reference to FIG. 5§, for some bytecode
values, the corresponding emulation code may require more
instruction slots than the group size provides. The overhead
assoclated with step 2 and 3 in FIG. 5 may possibly be
simplified 1f the emulation code remains 1n a contiguous
sequence. Noting that for the Java bytecode encodings, a
large percentage of bytecodes 1n the range OxcO to Oxif
requlre more 1nstruction slots than are provided with a group
size of sixteen slots, an alternate emulation code table 83 in
FIG. 9 may be desirable. Accordingly, FIG. 9 shows emu-
lation code table 83 as a storage device which contains two
hundred and fifty-six entries (one group per bytecode) in
which the first one hundred and ninety-two entries (34 of the
entries) have a group size of sixteen instruction slots,
(entries corresponding to bytecodes 0x0 through Oxbf), and
the final sixty-four entries (¥ of the entries) have a group
size of one instruction slot. By structuring the table in this
manner, entries for bytecodes 0x0 through 0xbt are utilized
as previously described with reference to FIGS. § and 6,
while entries for bytecodes OxcO through Oxil contain a jump
instruction to the actual emulation code for the correspond-
ing bytecode. This structure allows the table to be com-
pressed 1n size, and the emulation code for these more
complex bytecodes can remain contiguous, rather than being
divided into an 1nitial portion and a final portion as was done
in FIG. 5. This dispatch mechanism simplifies the code and
reduces the overhead by removing the need for performing
steps 2 and 3 1 FIG. 5. Instead, an alternate step 2 1is
introduced which jumps directly to the entire emulation
routine for a Java bytecode in the range 0xcO through Oxif.
Referring back to FIG. 8, this table compression 1s accom-
plished by utilizing mput 101 to Mux and combiner 106 1n
conjunction with PC+2 input 113, and control circuitry 1085.
By scaling R4<<1, proper indexing into the bottom sixty-
four entries of the table 83 1s accomplished. The value PC+2
corresponding to input 113 of Mux and combiner 106 is
modified to point to the beginning entry 88 of FIG. 9 by
control circuitry 105 1n response to decoding a bytecode 1n
the range of OxcO through Oxff on input 118 to control
circuitry 105. This modified value i1s then combined with
R4<1 to select the proper table entry point in Mux and
combiner 106. Control circuitry 105 may further implement
a user determinable control signal through the use of the
Java btyecode received at mput 1118. The control signal
selects either a first emulation table structure of predeter-
mined group sizes or a second emulation table structure of
predetermined group sizes and provides a user flexibility as

US 6,557,063 B2

13

to whether to operate with a storage device organized such
as FIG. § or a storage device organized such as FIG. 9.

While the embodiment illustrated i FIG. 9 shows a
particular selection of bytecodes 0xc0 through Oxif as byte-
codes to have compressed table entries, alternate bytecode
groups may be selected, or a different number of bytecodes
may be selected for compressed table entries 1n accordance
with the present invention.

By now 1t should be apparent that there has been provided
a data processing instruction that combines and minimizes
various aspects of the overhead associated with an inter-
preter loop. The 1nstruction, 1n one form, may be stored on
a storage medium either within an integrated circuit chip or
independent and separate from an integrated circuit chip.
The hardware support for the 1nstruction allows optimization
of memory used to 1mplement the interpreter function. As a
result, overhead 1n the form of execution time, amount of
hardware resources required and amount of interpreter soft-
ware required has been significantly reduced. The present
invention combines controlling a counter and 1implementing
a table jump wherein a change of flow 1s always taken. The
JAVASW 1nstruction implements the destination of a table
jump as a function of both a bytecode value and a counter
value, the counter value conditionally causing the normally
calculated entry point 1n the table to be overridden with a
predetermined fixed entry point. The JAVASW 1nstruction
also conditionally signals a hardware accelerator via a
handshake signal when a thread switch is not being imple-
mented. In the 1llustrated embodiment, a dispatch mecha-
nism 1s provided which allows a normal memory structure to
be overridden for a small set of bytecode values. There 1s
also provided a dispatch mechanism that allows a memory
table to be compressed for a large group of bytecode values.
Additionally, the memory table may be configured to sup-
port multiple group sizes (e.g. 2, 8, 16 bytes, etc.) corre-
sponding to simple and complex bytecodes. In such a
bifurcation, the opcode (bytecode) is decoded and the code
1s selectively separated based on group size.

In the foregoing specification, the invention has been
described with reference to specific embodiments. However,
one of ordinary skill in the art appreciates that various
modifications and changes can be made without departing
from the scope of the present 1nvention as set forth in the
claims below. Accordingly, the specification and figures are
to be regarded 1n an illustrative rather than a restrictive
sense, and all such modifications are intended to be included
within the scope of present invention. Skilled artisans appre-
ciate that elements 1n the figures are 1llustrated for stmplicity
and clarity and have not necessarily been drawn to scale. For
example, the dimensions of some of the elements in the
figures may be exaggerated relative to other elements to help
improve the understanding of the embodiments of the
present mvention.

Benefits, other advantages, and solutions to problems
have been described above with regard to specific embodi-
ments. However, the benefits, advantages, solutions to
problems, and any element(s) that may cause any benefit,
advantage, or solution to occur or become more pronounced
are not to be construed as a critical, required, or essential
feature or element of any or all the claims. As used herein,
the terms “comprises”, “comprising” or any other variation
thereof, are i1ntended to cover a non-exclusive inclusion,
such that a process, method, article, or apparatus that com-
prises a list of elements does not include only those elements
but may include other elements not expressly listed or

inherent to such process, method, article, or apparatus.

10

15

20

25

30

35

40

45

50

55

60

65

14

What 1s claimed 1s:
1. A method of program execution 1n a data processing
system comprising:
means for fetching a first instruction located at a first
address; and

means for executing the first mstruction with the data
processing system, the method comprising:

executing the first instruction;

selecting a jump address based upon a value by providing,
a second address for the jump address if a comparison
of the value with a predetermined value has a first
result, and providing a third address for the jump
address if the comparison of the value with the prede-
termined value has a second result, wherein neither the
second address nor the third address 1s contiguous to
the first address; and

always implementing a change of control in the program
execution 1n response to executing the first instruction
by redirecting program execution to the jump address.
2. The method of claim 1 wherein the first result 1s a
comparison determination that the value 1s greater than the
predetermined value and the second result 1s a comparison
determination that the value 1s less than or equal to the
predetermined value.
3. The method of claim 1 further comprising:

implementing the value that 1s compared with the prede-
termined value as a count value stored 1n a counter.
4. The method of claim 3 wherein implementing the value
that 1s compared with the predetermined value as a count
value 1n a counter further comprises:

using the count value to track when a change of program
tasks should be implemented by the data processing
system.

5. The method of claim 1 further comprising;:

generating the jump address by maintaining a program
counter having an address value which gets incre-
mented during program execution and truncating a
predetermined number of low order bits of the address
value and combining a resultant with an offset to create
the jump address.

6. The method of claim 1 further comprising:

selecting the second address and the third address to be
within a predetermined range of addresses that 1s less
than a total range of addresses within the data process-
Ing system.

7. The method of claim 1 further comprising:

selecting the second address to be within a predetermined
range of addresses that 1s less than a total range of
addresses within the data processing system.

8. The method of claim 1 further comprising;:

providing a storage device having a predetermined range
of addresses for storing processing instructions to be
executed by the means for executing, the processing
instructions arranged 1n groups, each group correlated
to a predetermined opcode of a program.

9. The method of claim 8 wherein the opcode 1s a Java

bytecode.
10. The method of claim 8 further comprising;:

structuring the storage device 1n sections of a predeter-
mined number of instruction slots, a predetermined
amount of each of the sections dedicated to storage of
the 1nstructions.

11. The method of claim 8 further comprising:

directing execution of the processing instructions from
one of the sections of the storage device to an address
outside of the predetermined range of addresses and

US 6,557,063 B2

15

subsequently redirecting program execution back to a
predetermined portion of another one of the sections of
the storage device.

12. The method of claim 1 further comprising:

implementing the value that 1s compared with the prede-
termined value as a timed value provided by a timer, the
timed value restricting execution of each program task

implemented by the data processing system to a pre-
determined amount of time.
13. A method of program execution 1n a data processing
system comprising:
means for fetching a first instruction located at a first
address; and

means for executing the first mstruction with the data
processing system, the method comprising:

executing the first instruction;

selecting a jump address based upon a value by providing
a second address for the jump address 1f a comparison
of the value with a predetermined value has a first
result, and providing a third address for the jump
address 1f the comparison of the value with the prede-
termined value has a second result, wherein neither the

second address nor the third address 1s contiguous to
the first address;

always implementing a change of control in the program
execution 1n response to executing the first instruction
by redirecting program execution to the jump address;
and

providing a storage device having a plurality of process-
ing 1nstructions to be executed by the means for
executing, at least one of the plurality of processing
Instructions causing a hardware accelerator to perform
a processing function.

14. The method of claim 13 wherein the change of control
in the program execution 1s signaled via a handshake signal
from the means for executing the first instruction to the
hardware accelerator.

15. The method of claim 13 wherein the change of control
in the program execution 1s conditional based upon either
the first result of the comparison or the second result of the
comparison occurring.

16. The method of claim 1 further comprising:

providing a storage device having a predetermined range
of addresses for storing processing instructions
arranged 1n groups, at least two of the groups having
differing numbers of processing instructions and thus
differing sizes.
17. A method of program execution 1n a data processing
system comprising;
means for fetching a first instruction located at a first
address; and

means for executing the first mstruction with the data
processing system, the method comprising:

executing the first instruction;

selecting a jump address based upon a value by providing,
a second address for the jump address 1f a comparison
of the value with a predetermined value has a first
result, and providing a third address for the jump
address 1f the comparison of the value with the prede-
termined value has a second result, wherein neither the

second address nor the third address 1s contiguous to
the first address;

always implementing a change of control in the program
execution 1n response to executing the first instruction
by redirecting program execution to the jump address;
and

10

15

20

25

30

35

40

45

50

55

60

65

16

providing a storage device having a predetermined range
of addresses for storing the plurality of processing
Instructions arranged 1n groups, at least one of the
groups containing a single instruction which causes a
change of flow to a separate memory resource in the
data processing system for permitting the storage
device to be compressed 1n size, the separate memory
resource containing processing suctions correlated to a
predetermined opcode of a program.

18. A data processing system comprising:
a memory for storing a plurality of program instructions;

a processor coupled to the memory via a data bus for
fetching the plurality of program instructions from the
memory and selectively executing the plurality of pro-
gram 1nstructions; and

a storage device for storing a plurality of processing
instructions to be executed by the processor, the plu-
rality of processing instructions arranged in groups
wherein each group 1s correlated to a predetermined
one of the plurality of program instructions;

the processor executing a predetermined processing
instruction at a predetermined address and selecting a
jump address based upon a value by providing a first
address for the jump address if a comparison of the
value with a predetermined value has a first result, and
by providing a second address for the jump address if
the comparison of the value with the predetermined
value has a second result, wherein neither the first
address nor the second addresses address 1s contiguous
to the predetermined address, execution of the prede-
termined processing instruction always implementing a
change of control in program execution.

19. A data processing system comprising:

a memory for storing a plurality of program instructions;

a processor coupled to the memory via a data bus for
fetching the plurality of program instructions from the
memory and selectively executing the plurality of pro-
gram 1nstructions; and

a storage device for storing a plurality of processing
instructions to be executed by the processor, the plu-
rality of processing instructions arranged in groups
wherein each group 1s correlated to a predetermined
one of the plurality of program instructions;

the processor executing a predetermined processing
instruction at a predetermined address and selecting a
jump address based upon a value by providing a first
address for the jump address if a comparison of the
value with a predetermined value has a first result, and
by providing a second address for the jump address if
the comparison of the value with the predetermined
value has a second result, wherein neither the first
address nor the second addresses 1s of the predeter-
mined processing instruction always implementing a
change of control 1in program execution, wherein the
value 1s one of a count value or a timer value, the value
controlling when a thread switch between program
threads 1s required.

20. A data processing system comprising:

a memory for storing a plurality of program instructions:

an 1nstruction register coupled to the memory via a data
bus for receiving the program instructions;

an 1nstruction decoder coupled to the instruction register
for decoding the program instructions into speciiic
opcode values;

a control circuit coupled to the instruction decoder for
providing control signals 1n response to the specific

US 6,557,063 B2

17

opcode values, the control circuit using a user deter-
minable control signal that selects instruction group
S17¢;

address generation circuitry coupled to the control circuit

for recerving the control signals and creating the jump
address;

registers coupled to the address generation circuitry for
storing operands 1n response to the control circuit;

an arithmetic logic unit coupled to the address generation
circuitry and the control circuit, the arithmetic logic
unit processing the operands stored by the registers;

a storage device for storing a plurality of processing
instructions to be executed by the arithmetic logic unit,
the plurality of processing instructions arranged 1n
groups wherein each group 1s correlated to a predeter-

mined one of the plurality of program instructions; and

the arithmetic logic unit executing a predetermined pro-
cessing 1nstruction at a predetermined address and
selecting a jump address based upon a value by pro-
viding a first address for the jump address 1f a com-
parison of the value with a predetermined value has a
first result, and by providing a second address for the
jump address if the comparison of the value with the
predetermined value has a second result, wherein nei-
ther the first address nor the second address 1s contigu-
ous to the predetermined address, execution of the

10

15

20

25

138

predetermined processing instruction always imple-
menting a change if control 1n program execution.
21. The data processing system of claim 20 wherein the
user determinable control signal selects either a first struc-
ture of predetermined group sizes or a second structure of
predetermined group sizes.
22. The data processing system of claim 20 wherein the
address generation circuitry further comprises:

a multiplexer and combiner circuit coupled to the control
circuit, the multiplexer and combiner circuit receiving
at least one 1input signal that modifies the jump address.

23. A software processing instruction stored on a storage

medium which, when executed by a data processor results 1n
creation of a jump address, the jump address being based
upon a value and 1s provided as one of either a first address
or a second address, the first address being selected 1if a
comparison of the value with a predetermined value has a
first result, the second address being selected 1f the com-
parison of the value with the predetermined value has a
second result, neither of the second and first addresses being
configuous to an address assignment of the software pro-
cessing 1nstruction, the software processing instruction
always causing a change of control in program execution by
redirecting program execution in the data processing system
to the jump address.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 6,857,063 B2 Page 1 of 1
APPLICATION NO. : 09/779886

DATED : February 15, 2005

INVENTOR(S) : William C. Moyer

It is certified that error appears in the above-identified patent and that said Letters Patent Is
hereby corrected as shown below:

In Column 16, Line 29, Claim No. 18:
Change “the second addresses address™ to --the second address--

In Column 16, Line 52, Claim No. 19:
Change “the second addresses 1s,” to --the second address is contiguous to the
predetermined address, execution--

Signed and Sealed this

Twentieth Day of May, 2008

W D)k

JON W. DUDAS
Director of the United States Patent and Trademark Office

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

