US006856996B2
a2 United States Patent (10) Patent No.: US 6,856,996 B2
Chow et al. 45) Date of Patent: Feb. 15, 2005
(54) METHOD, SYSTEM, AND PROGRAM FOR 5,819,268 A 10/1998 Hackett
ACCESSING ROWS IN ONE OR MORE g%gg%gg i % }ggg giﬂ‘y ett 9111-
,930, en et al.
TABLES SATISFYING A SEARCH CRITERIA 5963936 A 10/1999 Cochrane et al.
A 10/1999 Sack
(75) Inventors: Jyh-Herng Chow, San Jose, CA (US); g:ggi}ﬁ% A 11?1999 Szfaﬁsn
Ting Yu Leung, San Jose, CA (US); _ _
Thanh Tan Pham, San Jose, CA (US) (List continued on next page.)
(73) Assignee: International Business Machines FOREIGN PATENT DOCUMENTS
Corporation, Armonk, NY (US) IP 63071741 4/1988
(*) Notice: Subject' to any disclaimer,: the term of this g ;ggg;gg éﬁggg
patent 15 extended or adjusted under 35 WO WO 0857279 12/1998
U.S.C. 154(b) by 454 days. WO WO 9927679 6/1999
(21) Appl. No.: 09/822,899 OTHER PUBLICATTONS
(22) Filed: Mar. 30, 2001 Terry et al, “Confinuous queries over append—only data-
: oy bases”, ACM 1992, pp. 321-330.%
(6) Prior Publication Data U.S. patent application Ser. No. 09/656,558, filed on Sep. 7,
US 2002/0143751 A1 Oct. 3, 2002 2000, entitled, “Method, System And Program For Imple-
. menting Scrollable Cursors In A Database”, invented by MA
(51) Imt. CL." ... GO6F 17/00; GO6F 17/30 Bernal, et al.
(52) US.CL .., 707/102; 707/101; 707/2; ‘ _
707/3 (List continued on next page.)
(58) Field of Searchovviviveii.. 707/101, 100, Pr_imary ExaminerAUyen e
707/102, 3, 2 (74) Attorney, Agent, or Firm—IDavid W. Victor; Konrad,
(56) References Cited Raynes & Victor LLP

U.S. PATENT DOCUMENTS

4,190,835 A 2/1980 Buynak
4,221,003 A 9/1980 Chang et al.
4,434 475 A 2/1984 McCaskill et al.
5,097,408 A 3/1992 Huber
5,241,648 A 8/1993 Cheng et al.
5,276,870 A 1/1994 Shan et al.
5,396,623 A 3/1995 McCall et al.
5,410,693 A 4/1995 Yu et al.
5,412,805 A 5/1995 Jordan, II et al.
5,446,858 A 8/1995 Copeland et al.
5,450,581 A 9/1995 Bergen et al.
5,546,576 A 8/1996 Cochrane et al.
5,579,515 A 11/1996 Hintz et al.
5,581,275 A 12/1996 Glei et al.
5,590,319 A 12/1996 Cohen et al.
5,724,575 A 3/1998 Hoover et al.
5,739,817 A 4/1998 Glei et al.
5,742,806 A 4/1998 Reiner et al.
5,758,357 A 5/1998 Barry et al.

10
/

(57) ABSTRACT

Provided 1s a method, system, and program for accessing
rows of data from a base table satisfying a search criteria. An
initial request to access rows 1n the base table 1s received,
including the search criteria specitying predicates for one or
more columns 1n the base table. A data structure 1s generated
to 1nclude information on qualifying base table rows that
satisfy the search criteria. Nofification 1s provided that the
qualifying base table rows are accessible before information
on all the qualifying base table rows 1s included 1n the data
structure. A request 1s then received for one qualifying base
table row. A determination 1s made as to whether the data
structure 1ncludes information on the requested qualifying
base table row. If so, the information 1n the data structure 1s
used to provide access to the requested qualifying base table
TOW.

45 Claims, 8 Drawing Sheets

BASE TABLE

_— 20

BASE TABLE POINTER
)

22

WORKFILE POINTER g

SOL ENGINE |

WORKFILE
RESULT SET

12""'*--...

/

24

US 6,856,996 B2
Page 2

U.S. PATENT DOCUMENTS

7/2000 Lohman et al.
4/2001 Eberhard et al.
5/2001 Lee et al.

6,092,062 A
6,212,514 Bl
6,223,420 Bl

6,523,040 B1 * 2/2003 Lo etal. ..cccoevvenennnn.n. 707/101
6,665,678 B2 * 12/2003 Ching Chen et al. 707/100
2002/0026524 Al * 2/2002 Dharapccccoeeeeeneneen. 709/236
2002/0029212 Al * 3/2002 Chen et al. 707/3

OTHER PUBLICAITONS

Preliminary Amendment submitted in application Ser. No.
09/915,869, filed on Jul. 26, 2001.

Preliminary Amendment submitted in application Ser. No.
09/915,866, filed on Jul. 26, 2001.

Preliminary Amendment submitted in application Ser. No.
09/915,868, filed on Jul. 26, 2001.

Preliminary Amendment submitted in application Ser. No.
09/915,783, filed on Jul. 26, 2001.

Preliminary Amendment submitted in application Ser. No.
09/915,867, filed on Jul. 26, 2001.

U.S. patent application Ser. No. 09/365,953, filed on Aug. 8,
1999, entitled, “Automatic Pruning For Log—Based Repli-
cation”, invented by IT Ieong and PL Shimer.

U.S. patent application Ser. No. 09/325,661, filed on Jun. 2,
1999, Prov filed Oct. 8, 1998, entitled, “Database Extender
For Storing, Querying, and Retrieving Structured Docu-
ments”, mvented by DT Chang; JH Chow; J Xu; and JM
Cheng.

U.S. patent application Ser. No. 09/324,499, filed on Jun. 2,
1999, Prov filed Oct. 8, 1998, entitled, “Method and Appa-
ratus For Indexing Structured Documents With Rich Data
Types”, mnvented by YC Fuh; JH Chow; J Xu; and M
Cheng.

U.S. patent application Ser. No. 09/324,827/, filed on Jun. 2,
1999, Prov filed Oct. 8, 1998, entitled, “Method and Appa-
ratus For Querying Structured Documents Using A Database
Extender”, mnvented by JH Chow; J Xu; and JM Cheng.
U.S. patent application Ser. No. 09/466,862, filed on Dec.
17, 1999, entitled, “Support For Summary Tables In A
Heterogeneous Database Environment”, mmvented by RIJ
Cochrane; JC Kleewein; TY Leung; MH Pirahesh; N. Sub-
ramanian; and S. Venkataraman.

IBM, Corp., “New Options for FETCH 1 SQL”, Technical
Disclosure Bulletin, vol. 36, No. 06A, Jun. 1993, pp.
559-560.

IBM, Corp., “Dynamic Ordering of Joined Rows using

Fields from MultipleTables”, Technical Disclosure Bulletin,
vol. 36, No. 11, Nov. 1993, pp. 363-366.

IBM, Corp., “Orderable, Updatable, Scrollabel Structured
Query Language Cursors”, Technical Disclosure Bulletin,
vol. 38, No. 07, Jul. 1995, pp. 393-394.

IBM, Corp., “Updateable Scrollable Cursors”, Technical
Disclosure Bulletin, vol. 36, No. 04, Apr. 1993, pp. 263-268.
IBM, Corp., “Technique to Allow DB2 Utilities and Com-
mands to Run While SQL Applications have a Table Space
Locked”, Technical Disclosure Bulletin, vol. 36, No. 09A,
Sep. 1993, pp. 499-502.

IBM, Corp., “Administration Guide: Performance” Version
6 from IBM DB2 Universal Database, Reference
SC09-2840-00, 1999, pp. 219-226.

Microsoft Corp., “Forward—only Cursors” [online], 2000,
pp. 1. [Retrieved on Jun. 24, 2000]. Retrieved from the
Internet at <URL: http://msdn.microsoft.com/library/psdk/
sql/8__con_ 07__10.htm>.

Microsoft Corp., “Types of Cursors” [online], 2000, pp. 1-3.
| Retrieved on Jun. 24, 2000]. Retrieved from the Internet at
<URL: http://msdn.microsoft.com/library/partbook/vb6/
typesofcursors.htm.>.

Microsoft Corp., “Controlling Cursor Behavior” [online],
2000, pp. 1. [Retrieved on Jun. 24, 2000]. Retrieved from the
Internet at <URL: http://msdn.microsoft.com/library/psdk/
sql/8__con_ 07__8.htm.>.

Microsoft Corp., “MDAC 2.5 SDK-ODBC Programmer’s
Reference Chapter 3: ODBC Architecture” [online |, 2000,
pp. 1-2. [Retrieved on Jun. 24, 2000] Retrieved from the

Internet at <URL:http://msdn.microsoft.com/library/psdk/
dasdk/odch6ghl.htm.>.

Microsoft Corp., “MDAC 2.5 SDK-ODBC Programmer’s
Reference Chapter 17: Programming Considerations™ [on-
line |, 2000, pp. 1-6. [Retrieved on Jun. 24, 2000] Retrieved

from the Internet at <URL:http://msdn.microsoft.com/li-
brary/psdk/dasdk/odch8goj.htm.>.

Microsoft Corp., “Dynamic Cursors” [online |, 2000, pp. 1.
|Retrieved on Jun. 24, 2000]. Retrieved from the Internet at
<URL.: http://msdn.microsoft.com/library/psdk/sql/8__
con_ 07 14.htm>.

Microsoft Corp., “Static Cursors” [online|, 2000, pp. 1.
|Retrieved on Jun. 24, 2000]. Retrieved from the Internet at
<URL: http://msdn.microsoft.com/library/psdk/sql/8 con

07 12.htm>.

Microsoft Corp., “Cursor Types” [online], 2000, pp. 1.
|Retrieved on Jun. 24, 2000]. Retrieved from the Internet at

<URL.: http://msdn.microsoft.com/library/psdk/sql/8__
con__07__0.htm>.

Microsolit Corp., “What the Heck 1s a Cursor, Anyway?”
lonline], 2000, pp. 1-3. [Retrieved on Jun. 24, 2000].
Retrieved from the Internet at <URL: http://msdn.microsoft.
com/library/partbook/vb6/whatheckiscursoranyway.htm.>.

Microsoft Corp., “Fetching and Scrolling” [online], 2000,
pp. 1-2. [Retrieved on Jun. 24, 2000]. Retrieved on the
Internet at <URL: http://msdn.microsoft.com/library/psdk/

sql/8__con_ 07__7.htm>.

Microsoft Corp., “Changing Rows with Positioned Opera-
tions” [online], 2000, pp. 1-2. [Retrieved Jun. 24, 2000].
Retrieved from the Internet at <URL: http://msdn.microsoft.
com/library/psdk/sql/8__con_ 07__22.htm>.

Microsoft Corp., “Cursors” [online |, 2000, pp. 1. [Retrieved
on Jun. 24, 2000]. Retrieved on the Internet at <URL.:

http://msdn.microsoft.com/library/psdk/sql/8__con__
0/7.htm>.

Microsoft Corp., “Cursor Locking” [online], 2000, pp. 1.
|Retrieved on Jun. 24, 2000]. Retrieved on the Internet at
<URL.: http://msdn.microsoft.com/library/psdk/sql/8__
con__07__18.htm>.

Microsoft Corp., “Scrollable Cursors” [online |, 2000, pp. 1.
|Retrieved on Jun. 24, 2000]. Retrieved on the Internet at
<URL.: http://msdn.microsoft.com/library/devprods/vs6/
vstudio/vsentpro/veconscrollablecursors.htm>.

Microsoft Corp., “Block Cursors, Scrollable Cursors, and
Backward Compatibility for ODBC 3.x Applications” [on-
line |, 2000, pp. 1-3. [Retrieved on Jun. 24, 2000]. Retrieved
from the Internet at <URL: http://msdn.microsoft.com/li-

brary/psdk/dasdk/odch8goj.htm>.

Microsoft Corp., “Using Block and Scrollable Cursors”
|online |, from ADABAS D ODBC Reference, no date listed,

pp. 1-5. [Retrieved on Jun. 24, 2000]. Retrieved from the
Internet at <URL: http://csl.mcm.edu/tutorial/doc/Adabas/
odbc/odbc41.htm>.

IBM Corporation. “Call Level Interface Guide and Refer-
ence” Version 7, IBM DB2 Universal Database, Reference
#S(C09-2950-00, 2000, pp. 111—864.

* cited by examiner

U.S. Patent Feb. 15, 2005 Sheet 1 of 8 US 6,856,996 B2

2
HAND HELD
COMPUTER
4
APPLICATION
6
DATABASE
PROGRAM 10

SUL ENGINE
12
WORKFILE
RESULT SET :
<L
DATABASE

FIG. 1

U.S. Patent Feb. 15, 2005 Sheet 2 of 8 US 6,856,996 B2

10
SQL ENGINE
BASE TABLE
— 20
I—— BASE TABLE POINTER WORKFILE
- RESULT SET
' I 12
WORKFILE POINTER

24

FIG. 2

U.S. Patent

102

104

106

108

110

112 RETURN CURSOR DECLARATION
COMPLETE TO APPLICATION PROGRAM.

Keb. 15, 2005 Sheet 3 of 3

100

RECEIVE DECLARE CURSOR STATEMENT
INCLUDING SELECT STATEMENT AND
WHERE CLAUSE ON BASE TABLE.

GENERATE WORKFILE RESULT SET; POSITION
WORKFILE POINTER BEFORE THE START OF
THE WORKFILE.

CREATE BASE TABLE POINTER

POSITIONED BEFORE THE FIRST
ROW IN BASE TABLE.

LOCATE FIRST ROW IN BASE TABLE
SATISFYING WHERE CLAUSE.

POSITION BASE TABLE
POINTER TO LOCATED ROW.

ADD ROW ID OF LOCATED ROW T0
WORKFILE; POSITION WORKFILE POINTER

TO FIRST ROW IN WORKFILE.

FIG. 3

US 6,856,996 B2

U.S. Patent Feb. 15, 2005 Sheet 4 of 8 US 6,856,996 B2

RECEIVE FETGH NEXT 150 154 156
REQUEST.

POSITION WORKFILE POINTER | | ACCESS THE BASE
LY. TO FIRST ROW IN WORKFILE TABLE ROW
RESULT SET ACCESS ROW 1D HAVING THE

IN FIRST ROW. ACCESSED ROW ID.

1S WORKFILE
POINTER BEFORE

START?

YES

NO RETURN ACCESSED ROW FROM BASE

160 TABLE TO APPLICATION PROGRAM:

1S
WORKFILE POINTER ™ NO 162
AT LAST ROW IN /
WORKFILE?

POSITION WORKFILE POINTER TO
- NEXT ROW OF WORKFILE AND
166 v E° ACCESS ROW 1D AT POINTER.

S LAST
ROW OF WORKFILE ™ YES 1/68

LAST RESULT SET
ROW? ,(POSITION WORKFILE POINTER TO)
0 AFTER END; RETURN NO DATA.

POSITION BASE TABLE POINTER
TO NEXT ROW IN BASE TABLE.

170

ACCESS BASE TABLE ROW
ADDRESSED BY BASE

TABLE POINTER. 172

176

174

DOES
POINTER POINT
TO LAST ROW
OF BASE
TABLE?

NQ

YES SET LAST ROW OF WORKFILE
T0 LAST RESULT SET ROW.

178
DOES
ACCESSED ROW

SATISFY WHERE
STATEMENT?

FIG. 4 &

NO

130

ADD ROW ID OF ACCESSED
ROW AT END OF WORKFILE.

US 6,856,996 B2

Sheet 5 of 8

Keb. 15, 2005

U.S. Patent

C4C

05¢

9 4

v I3 NI 941

yG7 13014 01 0%

JTIMHOM NI MO 15414 Ol
d3INIOd F11IHH0M NOILISOd

1S3N03Y | QY|4
HY [34 INTD3Y

900

YLYQ ON NY¥N13Y LYVIS
340439 01 41INI0d
F114940M NOILISOd

A
b0z

00¢

G I

7 I NI 961
907 130149 01 09

135 170S3
T114H0M NI MOY SNOIAFY
0L 43INIOd TT14H40M NOILISO

ON

(3 11IMHOM 10
MOY 15dId 40 L4V1S
340434 1V 41INIOd
mz_n_mw_o;

(¢

1S3N03
d014d HO134 303

U.S. Patent Feb. 15, 2005 Sheet 6 of 8 US 6,856,996 B2

RECEIVE FETCH 200
L AST REQUEST.

POSITION WORKFILE POINTER TO
LAST ROW IN WORKFILE 207
RESULT SET.

304 306

IS LAST
ROW OF WORKFILE YES RETURN SELECTED
LAST SET RESULT COLUMNS FROM LAST ROW.

ROW?

NO

POSITION BASE TABLE POINTER
TO NEXT ROW IN BASE TABLE 208

ACCESS BASE TABLE ROW
ADDRESSED BY BASE

TABLE POINTER. 310
312 314

DOES
POINTER POINT TO YES .| SET LAST ROW OF WORKFILE
LAST Bf?\vBVL%E BASE T0 LAST RESULT SET ROW.

316

DOES
ACCESSED ROW

SATISFY WHERE
STATEMENT?

NO

YES

ADD ROW |D OF ACCESSED
ROW TO END OF WORKFILE. 318

FIG. /

U.S. Patent Feb. 15, 2005 Sheet 7 of 8 US 6,856,996 B2

396

RECEIVE FETCH RELATIVE 350
POSITION WORKFILE
REQUEST. WITH FETCH OFFSET OF k. O TION WORKEILE

START; RETURN NO DATA.

304

S CURRENT YES

ROW + k < 07

NO
3 360 367
S CURRENT —_— —
ROW + k EQUAL TO ROW YES | POSITION WORKFILE POINTER TO| | GO TO BLOCK
NUMBER IN WORKFILE (CURRENT ROW + K)th ROW. 156 IN FIG. 4

RESULT SET?

NO

| NUMBER OF ROWS NEEDED
(N) = (CURRENT ROW + k - LAST |~_ 45

ROW IN WORKFILE).

366 368
S
YES ___/'POSITION WORKFILE POINTER T0
LA RN o QeI AFTER END; RETURN NO DATA,

NO 378
370 DOES
POSITION BASE TABLE POINTER SASE TABLE POINTER
10 NEXT ROWIN BAS: TASLE POINT T0 LAST ROW OF BASE >3
372 TABLE?
ACCESS BASE TABLE ROW 20
ADDRESSED BY TABLE POINTER \
371 SET LAST ROW OF WORKFILE
T0 LAST RESULT ROW.
ACCESSED ROW
NO
satisry WHERE 27— _DECREMENT N.
STATEMENT?
NO
\ e 384 @ (366,
ADD ROW ID OF ACCESSED YES

ROW AT END OF WORKFILE.

FG. 8

U.S. Patent Feb. 15, 2005 Sheet 8 of 8 US 6,856,996 B2

RECEIVE FETCH ABSOLUTE 400
REQUEST WITH FETCH OFFSET OF k.

402

404

SET CURRENT ROW TO
FIRST ROW IN WORKFILE,

GO 10 BLOGK 358 IN
FIG. 7.

YES

NO
406

SCAN FROM BASE TABLE POINTER TO END OF BASE
TABLE AND ADDING ROW IDS OF ANY QUALIFYING

ROWS TO END OF WORKFILE RESULT SET.

408

410

< = NUMBER OF NO POSITION WORKFILE POINTER TO
W%ORVIV(IS:IE_PI]? BEFORE START, RETURN NO DATA.

S K

117 YES

POSITION WORKFILE POINTER TO

kTH ROW PRECEDING LAST
ROW IN WORKFILE.

414

GO TO BLOCK
156 IN FIG. 4

FlG. 9

US 6,556,996 B2

1

METHOD, SYSTEM, AND PROGRAM FOR
ACCESSING ROWS IN ONE OR MORE
TABLES SATISFYING A SEARCH CRITERIA

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present mvention relates to a method, system, and
program for accessing rows 1n one or more tables satistying,
a search criteria.

2. Description of the Related Art

Prior art database programs include a feature referred to
as cursors. A cursor 1s a named control structure used by an
application program to point to a row of interest within some
set of rows and allow an application to retrieve, update or
delete rows 1n the set. A cursor points to rows from a
database table that satisfy a structured query language (SQL)
query against the table. The rows 1n the table that satisfy the

SQL query comprise a result set of data. The SQL query may
include an SQL SELECT statement and a WHERE clause to

qualily rows according to one or more predicates. An
application can then access data on a row-by-row basis from
the result set. The cursor SELECT statement may specily a
simple SQL query on a single table or an SQL join operation
performed on multiple tables.

A cursor 1s mnvoked with a DECLARE cursor command.
Upon receiving the declare cursor statement, the SQL engine
scans the entire base table and 1nserts a copy of all base table
rows satistying the query results 1n a result set. Only after all
the qualifying rows are materialized 1n the result set can
requests to fetch data from the result set be processed.
Following materialization of the result set, the application
program may then issue fetch commands to move the
current row position and fetch forward or backward by one
or more rows. The requested row m the FETCH 1s returned
directly from the materialized result table. The application
may also update or delete rows 1n the result set, which
updates or deletes are then applied to the base table

The above scrollable cursor and cursor database functions
are often used on large desktop or database server systems
that can generate a result set rather quickly. Moreover, any
delays 1n materializing the result table often do not affect the
performance of the desktop or server application program
requesting the result set.

Although materialization time 1s not an important perfor-
mance criteria for desktop and server database programs, the
fime to materialize a result set 1s a substantially important
factor for small computer devices, such as hand held
computers, €.g., palm top devices, personal digital assistance
(PDA), telephony devices, etc. A user of a hand held
computer may request a set of records from a database
within the hand held computer that satisfy a search criteria,
such as an address book or other personal records. Using
prior art scrollable cursor techniques, the hand held com-
puter would have to wait until the entire query against the
base table was evaluated and the result set materialized
before allowing the application program to access and
present the data. For palm devices with limited computing
capabilities and impatient users, such delays in making the
requested data available to the application may be unaccept-
able to the user.

Accordingly, there 1s a need in the art for improved
techniques for database searching to make queried records
available to an application program.

SUMMARY OF THE PREFERRED
EMBODIMENTS

Provided 1s a method, system, and program for accessing,
rows of data from a base table satistying a search criteria. An

10

15

20

25

30

35

40

45

50

55

60

65

2

initial request to access rows 1n the base table 1s received,
including the search criteria specifying predicates for one or
more columns 1n the base table. A data structure 1s generated
to 1nclude information on qualifying base table rows that
satisly the search criteria. Nofification 1s provided that the
qualifying base table rows are accessible before information
on all the qualifying base table rows 1s included 1n the data

structure. A request 1s then received for one qualifying base
table row. A determination 1s made as to whether the data
structure 1ncludes information on the requested qualifying
base table row. If so, the information 1n the data structure 1s
used to provide access to the requested qualifying base table
rOw.

Still further, the base table 1s scanned to locate a next
qualifying base table row after determining that the data
structure does not include information on the requested
qualifying base table row. The next qualifying base table
row 1s located and information on the located qualifying
base table row 1s added to the data structure.

Additionally, the information on the requested qualifying
base table row maintained in the data structure may com-
prise a unique row 1dentifier of the row 1n the base table. The
row 1denfifler 1n the data structure 1s used to access the
qualifying base table row identified by the row identidier.

In certain embodiments, the initial request to access data
in the base table comprises a request to 1nitialize a database
CUrSOf.

The described implementations provide a technique for
allowing application programs faster access to a result set of
qualifying base table rows satisfying a search criteria before
all qualifying base table rows have been located.

BRIEF DESCRIPTION OF THE DRAWINGS

Referring now to the drawings in which like reference
numbers represents corresponding parts throughout:

FIG. 1 illustrates a computing environment in which
preferred embodiments are implemented;

FIG. 2 1llustrates data structures used in 1mplementations
of the present 1nvention;

FIG. 3 1llustrates logic implemented 1n an SQL engine to
initialize a cursor 1n response to a DECLARE CURSOR
statement 1n accordance with implementations of the present
invention;

FIG. 4 illustrates logic implemented 1n the SQL engine to
process a FETCH NEXT request in accordance with imple-
mentations of the present invention;

FIG. 5 1llustrates logic implemented 1n the SQL engine to
process a FETCH PRIOR request 1n accordance with imple-
mentations of the present invention;

FIG. 6 illustrates logic implemented 1n the SQL engine to
process a FETCH FIRST request 1n accordance with imple-
mentations of the present invention;

FIG. 7 1llustrates logic implemented 1n the SQL engine to
process a FETCH LAST request in accordance with imple-
mentations of the present invention;

FIG. 8 illustrates logic implemented 1n the SQL engine to
process a FETCH RELATIVE request 1in accordance with
implementations of the present invention; and

FIG. 9 1llustrates logic implemented 1n the SQL engine to
process a FETCH ABSOLUTE request 1n accordance with
implementations of the present 1nvention;

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

In the following description, reference 1s made to the
accompanying drawings which form a part hereof, and

US 6,556,996 B2

3

which 1llustrate several embodiments of the present inven-
tion. It 1s understood that other embodiments may be utilized
and structural and operational changes may be made without
departing from the scope of the present invention.

FIG. 1 illustrates a computing environment in which
preferred embodiments are implemented. A hand held com-
puter 2, such as a personal digital assistance, telephony
device, smart phone or any other type of portable computing
device known 1n the art, includes an application program 4,

a database program 6, and a database 8 including one or
more database tables. The application program 4 would
provide SQL requests for data to an SQL engine 10 com-
ponent 1n the database program 6 that executes the query and
returns requested data to the application program 4. When
requesting data, the SQL engine 10 maintains a result table
workilile 12 discussed below for providing access to data in
the database 8 satisfying search criteria. All the program and
data components 4, 6, 8, 10, and 12 may be implemented and
executed 1n the memory and/or storage portion of the hand
held computer 2. The hand held computer 2 may include a
specialized operating system, such as PalmOS, Windows
CE, EPOC, QNX Neutrino, embedded Linux or any other
PDA type operating system known 1n the art.** The data-
base program 6 may comprise a database program especially
tailored to operate on hand held computing devices, such as
the International Business Machines Corporation (IBM)
DB2 Everyplace, or any other small footprint type relational
or other database known 1n the art. The DB2 Everyplace
database program 1s described in the publication “IBM DB2
Everyplace: Installation and User’s Guide, Version 77, IBM
document no. SC27-0764-00 (September 2000), which pub-
lication 1s incorporated herein by reference 1n its entirety.

The application program 4 may comprise any application
program that accesses or updates data from the database 8.
For mstance, 1n an organization, employees may use the
hand held computer 2 to gather or access data and then
transfer any gathered data to a organizational source server
using a synchronization program. The data synchronization
step 1s the mechanism by which data from databases are
downloaded to a mobile device, and mobile user updates are
uploaded.

FIG. 2 1illustrates data structures the SQL engine 10
utilizes to return data to the application program 4 in
response to a SQL FETCH query on a base table 20 1n the
database 8. When initializing a cursor through a DECLARE
and OPEN cursor statements, the application program 4
would expect the materialization of a result set including all
base table rows that satisty the query requirements before
issuing FETCH commands to retrieve data from the result
set. In the described implementations, the SQL engine 10
informs the application 4 that the result set 1s complete
before evaluating all base table rows and populating an
entire result set with qualifying base table rows. Instead, the
SQL engine 10 generates a workflle result set 12 that 1is
intended to only include the row IDs of base table 20 rows
satistying the cursor WHERE statement. Upon generating
the empty workfile result set 12, the SQL engine 10 returns
control to the application 4 to 1ssue fetch requests even
though the SQL engine 10 has not accessed all rows 1n the
base table.

In the described implementations, the SQL engine 10
maintains two cursors to manage a FETCH request, a base
table pointer 22 and a workfile pointer 24. Each row 1n the
base table 22 1s 1dentified according to a unique row iden-
tifier (ID) that is typically located in the first column of each
row. The result table workfile 12 includes the row ID of

those rows 1n the base table 22 that satisfied the query

10

15

20

25

30

35

40

45

50

55

60

65

4

specified by the application program 4. The SQL engine 10
uses the result table worktile 12 to determine how to respond
to FETCH requests from the application program 4 in order
to minimize the time to respond to fetch requests from the
application program 4.

The application program 4 begins a scrollable cursor
operation with a DECLARE cursor statement that provides
a cursor name and an SQL SELECT specifying columns to
return and a WHERE clause including one or more predi-
cates to qualify rows of the database table 60. In response to
FETCH requests on the cursor, the SQL engine 10 would
return the selected columns 1n the SELECT list from rows
that satisfy the WHERE statement. The following are the
notations used by the rules of the FETCH operations:

Before Start: The workfile pointer 22 1s positioned before
the start of the result table workiile.

After end: the workiile pointer 22 1s positioned after the
end of the workfile result table 12. The “after end” row
in the workfile result table 12 1s only known after the
entire base table 20 has been evaluated against the
WHERE statement. If the entire base table has not been
evaluated, then the after end of the result table 1s not
known.

[ast Result Row: the number of the last row 1n the result
table. Again, this value 1s only known 1f the entire base
table 20 has been evaluated, otherwise the value 1s not
available.

Fetch Offset: the value of the fetch offset to fetch forward
or backward form the current workiile pointer position
(FETCH RELATIVE) or from the start or end of the
result table (FETCH ABSOLUTE).

Below are the FETCH commands the application program

4 can 1ssue after the result set workfile 12 1s nitiated.

SOIL. FETCH NEXT: Return the next row 1n the result
table.

SQL__FETCH__PRIOR: Return the prior row 1n the result
table.

SQL_FETCH__ABSOLUTE: A fetch offset of k 1s
provided, and the cursor 1s moved to the kth row 1 the
result table if the fetch offset 1s positive or 0 or to k
rows from the bottom of the table if the fetch offset 1s
negative. The row at the adjusted cursor position 1s
returned.

SQL. FETCH RELATIVE: The fetch offset of k 1s

provided. This statement moves the cursor position to
the rowset 1n the result table k rows after the current
row 1f the fetch offset 1s positive to k rows before the
current row 1f the fetch offset 1s negative. The row at the
new cursor position 1s returned.

SQIL. FETCH_ FIRST: returns the first row 1n the result
set.

SQL_FETCH__LAST: Return the last complete row 1n

the result set.

FIG. 3 1llustrates logic implemented 1n the SQL engine 10
to process a DECLARE cursor request from the application
program 4 and return a notification that the DECLARE
request 1s completed and a result set has been materialized.
Control begins at block 100 with the SQL engine 10
receiving a DECLARE cursor statement from the applica-
tion 4. In response, the SQL engine 10 generates (at block
102) a workfile result set 12, also referred to as workfile 12,
and positions the workiile pointer 24 before the start of the
workfile 12. The SQL engine 10 further creates (at block
104) a base table pointer 22 positioned before the first row
in the base table 20. The first row 1n the base table that

US 6,556,996 B2

S

satisfies the WHERE predicates of the cursor is located (at
block 106). If there were no rows in the base table 22
satistying the cursor predicates, then a message of such an
event would be returned to the application 4 to display
information, such as “no data” on the hand held 2 display.
The base table pointer 22 1s positioned to the first located
row 1n the base table 20 satisfying the cursor declaration.

The row ID of the located base table 20 row 1s added (at
block 110) to the workfile 12 and the workfile pointer 24 is
moved to the first row 1n the workfile 12. The SQL engine
10 then returns (at block 112) a complete message to the
application 4, which leads the application 4 to conclude that
there 1s a result set materialized 1n memory notwithstanding
that only the first qualifying row 1s 1n the worktile 12, not the
entire result set exists.

FIG. 4 illustrates logic implemented in the SQL engine 10
to process a FETCH NEXT request from the application 4.
In response to receiving (at block 150) the FETCH NEXT
request, if (at block 152) the workfile pointer 24 1s before the
start of the workfile 12, then the SQL engine 10 moves (at
block 154) the workfile pointer 24 to the first row in the
workflle 12 and accesses the row ID 1n the first row. The
SQL engine 10 then accesses (at block 156) the base table
20 row at the accessed row ID and returns (at block 158) the
SELECT columns specified 1n the cursor from the accessed
row to the application 4. If (at block 152) the workfile
pointer 22 1s not before the start of the workfile 12 and if (at
block 160) the workfile pointer 22 is not at the last row in
the workfile 12, then the workfile pointer 22 is positioned (at
block 162) to the next row of the workfile 12 and the row ID
at the cursor 22 1s accessed. Control then proceeds to block
156 to access and return the base table row at the accessed
row ID.

If (at block 160) the workfile pointer 22 1s at the last row
in the workfile 12 and if (at block 166) the last row of the
workiile 12 1s the last result set row, then the SQL engine 10
positions (at block 168) the workfile pointer 22 to after the
end of the workfile 12 and does not return data. The last
result row set would be determined after evaluating the
entire base table 20 for qualifying rows. If (at block 166) the
last row of the workfile 1s not the last result set row, then the
SQL engine 10 positions (at block 170) the base table
pointer 22 to the next row 1n the base table 20 and accesses
(at block 172) the base table row addressed by the base table
pointer 22. If (at block 174) the cursor 22 points to the last
row of the base table 20, then the SQL engine 10 sets (at
block 176) the last row of the workfile as the last result set
row. From block 176 or if the last row of the base table 20
is not reached (at block 174), the SQL engine 10 determines
(at block 178) whether the accessed row satisfies the
WHERE statement. If not, then control proceeds back to
block 170; otherwise, if so, control proceeds to block 180 to
add the row ID of the accessed row to the end of the workdile
12. From block 180, control proceeds back to block 158 to

return the row from the base table having the row ID at the
end of the workfile 12.

FIG. 5 1llustrates logic implemented 1n the SQL engine to
handle a FETCH PRIOR request from the application 4. In
response to receiving (at block 200) the FETCH PRIOR
request, if (at block 202) the workfile pointer 24 1s before the
start or at the first row of the workfile 12, then the workfile
pointer 24 1s positioned (at block 204) to before the start of
the workfile 12, 1f the cursor 24 1s not already there, and no
data 1s returned. Otherwise, 1f the workiile pointer 24
follows the first row of the workfile 12, then the SQL engine
10 moves (at block 206) the workfile pointer 24 to the

previous row 1n the workiile result set 12 and proceeds to

10

15

20

25

30

35

40

45

50

55

60

65

6

block 156 1n FIG. 4 to access the base table 20 row having
the row ID at the current cursor 24 position in the workiile
12, and returns the SELECT columns of the accessed row.

FIG. 6 1llustrates logic implemented 1n the SQL engine 10
to handle a FETCH FIRST request from the application 4. In

response to receiving (at block 250) the FETCH FIRST
request, the SQL engine 10 positions (at block 252) the
workiile pointer 24 to the first row 1n the workfile 12 and
proceeds to block 156 1n FIG. 4 to access the base table 20
row having the row ID at the current cursor 24 position in
the workfile 12, and return the SELECT columns of the
accessed row.

FIG. 7 1llustrates logic implemented 1n the SQL engine 10
to handle a FETCH LAST request. In response to receiving
(at block 300) the FETCH LAST request, the SQL engine 10
positions (at block 302) the workfile cursor 24 to the last row
in the workfile 12. If (at block 304) the last row of the
workfile 12 1s the last result set row, which occurs after the
entire base table 20 has been evaluated, then the SQL engine
10 returns (at block 306) the selected columns from the last
row of the workfile 12. If (at block 304) the last row of the
workiile 12 1s not the last result set row, then the SQL engine
10 positions (at block 308) the base table cursor 22 to the
next row in the base table and accesses (at block 310) the
row addressed by the base table pointer 22. If the pointer 22
points to the last row of the base table 20, then the last row
of the workfile 12 is set (at block 314) to the last result set
row, 1.€., the last qualifying base table row of the result set.
From the no branch of block 312 or 314, if (at block 316) the
accessed row satisfies the WHERE statement, then the row
ID of the accessed row 1s added to the end of the workfile
12. At block 318, the row ID of the accessed base table 20
row 1s added to the end of the workiile 12. From block 318
or the no branch of block 316, control proceeds back to
block 304 to continue scrolling through the base table 10 to
materialize the entire result set in the workfile 12 because the
application 4 has requested to FETCH the last entry in the
result set.

FIG. 8 illustrates logic implemented in the SQL engine 10
to handle a FETCH RELATIVE request from the application
4 to fetch forward or backward the fetch offset, referred to
as k in FIG. 7. In response to receiving (at block 350) the
FETCH RELATIVE request (at block 350), if (at block 354)
the current result row 1n the workfile 12, 1.e., the row
addressed by the workiile pointer 24, plus k, the fetch offset,
1s less than zero, then the FETCH relative 1s to fetch
backward beyond the start end of the workfile 12 from the
current result row. In such case, the SQL engine 10 positions
(at block 356) the workfile pointer 24 before the start of the
workfile 12 and returns no data. If (at block 354) the current
row plus k 1s not less than zero and if (at block 358) the
current row plus k 1s equal to a existing row number 1n the
workiile result set 12, 1.e., the row ID for the requested row
is in the workfile 12, then the SQL engine 10 positions (at
block 360) the workfile pointer 24 to the current row plus kth
row and proceeds (at block 362) to block 156 in FIG. 4 to
return the corresponding row from the base table 20 using
the row ID.

If (at block 358) the current row plus k is not equal to an
existing row number 1n the workiile result set 12, 1.¢., the
row ID for the requested row 1s not 1n the workfile 12, then
the SQL engine 10 determines (at block 364) the number of
additional rows (N) needed in the workfile 12 to reach the
kth row from the result row addressed by the workiile
pointer 24, which equals the current row plus k minus the
last row 1n the workfile 12. If (at block 366) the last row of

the workfile 12 1s the last result set row, 1.e., the entire base

US 6,556,996 B2

7

table 20 was scanned for qualifying result set rows, then the
SQL engine 10 positions (at block 368) the workfile pointer
24 to after the end of the workifile 12 and returns no data.
Otherwise, if the last workfile 12 row 1s not the last result
row, then the base table pointer 22 1s moved (at block 370)
to the next row and the next row is accessed (at block 372).
[f (at block 374) the accessed row satisfies the query

condition, then the row ID of the accessed row form the base
table 20 is added (at block 376) to the end of the workfile 12.

From block 376 or the no branch of block 374, a determi-
nation is made (at block 378) as to whether the base table
pointer 22 points to the last row of the base table 20. If so,
then the last row of the workfile 12 is set (at block 380) as
the last result set row. From block 380 or the no branch of
block 378, N is decremented (at block 382). If (at block 384)
N 1s zero, then control proceeds to block 360 to complete the
FETCH RELATIVE request because the workfile 12 has
been appended with enough new qualifying rows to satisty
the request. Otherwise, 1if N has not been decremented to be
zero, then control proceeds to block 366 to scan the base
table 20 further for more qualifying rows.

FIG. 9 illustrates logic implemented 1n the SQL engine 10
to process a FETCH ABSOLUTE with a fetch offset of k. In

response to receiving (at block 400) the FETCH ABSO-
LUTE request, if (at block 402) k is greater than zero, then
control proceeds to block 358 in FIG. 7, with the current row
used at block 358 et seq. set to the first row 1n the workiile
12. If k 1s less than zero, then the SQL engine 10 scans (at
block 406) the base table 20 from the base table pointer 22
to the end of the base table 20 and adds the row IDs of any
qualifying rows to the end of the workiile 12. Note that if k
1s zero, then the fetch 1s not a FETCH ABSOLUTE. After
scanning the base table 20 for the remaining qualifying
rows, the SQL engine 10 determines (at block 408) if k is
oreater than the number of rows 1n the workiile 12, which
includes the row IDs of all the rows 1n the result set, than the
workfile pointer 24 1s positioned (at block 410) before the
start of the workfile 12 and no data 1s returned. Otherwise,
the workfile pointer 24 is positioned (at block 412) to the k
row preceding the last row 1n the workiile 12 and control
proceeds (at block 414) to block 156 in FIG. 4 to return the
data 1n the base table 20 at the row ID 1nj the workiile 12 row
addressed by the workfile pointer 24.

The search criteria specified 1n the DECLARE CURSOR
statement may specily multiple rows 1n a join operation. In
such case, rows from multiple base tables would be evalu-
ated when executing the search criteria. When multiple
tables are 1nvolved in the search, the workfile 12 would
include the row ID of each row from the multiple base tables
involved 1n the search that satisfied the search criteria. If the
workiile 12 includes a pair of row IDs for a join operation,
then both of the rows from the tables involved in the join
operation would be sent to the requesting application 4.

With the above logic of FIGS. 4-9, the number of rows
that are evaluated in the base table 20 1s minimized until the
time such evaluations are necessary to provide further result
set rows needed to respond to FETCH requests. In fact, the
SQL engine 10 allows the application 4 to start fetching data
before all the rows are materialized 1n the result set. Instead,
the application 4 may start fetching rows after only one base
table 20 row 1s qualified as satisfying the cursor WHERE
statement. This minimizes the delay time 1n returning con-
trol to the application 4 requesting a scrollable cursor
because the application 4 does not have to wait until the base
table 20 1s evaluated and the entire result set 1s materialized.
Such delays 1n materializing the result set can be significant
for devices with limited computational capabilities, such as

10

15

20

25

30

35

40

45

50

55

60

65

3

hand held computers. Moreover, such delays have an etfect
on the desirability of the product because the hand held
computer user may be annoyed at excessive delays 1n using
their application programs 4 to retrieve and review infor-
mation.

The described implementations also conserve the memory
resources of the hand held computer 2, which are often
limited, by maintaining only the row ID of qualifying base

table rows 1n the workfile, as opposed to materializing the
actual rows of data in the result set as done 1n the art.

Following are some alternative implementations of the
present 1nvention.

The preferred embodiments may be implemented as a
method, apparatus or program using standard programming
and/or engineering techniques to produce software,
firmware, hardware, or any combination thereof The pro-
orams and code defining the functions of the preferred
embodiment can be delivered to a computer via a variety of
information bearing media, which include, but are not
limited to, computer-readable devices, firmware, program-

mable logic, memory devices (e.g., EEPROMs, ROMs,
PROMs, RAMs, SRAMs, etc.) “floppy disk,” CD-ROM, a
file server providing access to the programs via a network
transmission line, wireless transmission media, signals
propagating through space, radio waves, infrared signals,
ctc. Still further the code 1n which the preferred embodi-
ments are 1implemented may comprise hardware or elec-
tronic devices including logic to process data, such as
application specific integrated circuits (ASICs), field pro-
grammable gate arrays (FPGAs), etc. Of course, those
skilled 1n the art will recognize that many modifications may
be made to this configuration without departing from the
scope of the present invention.

The preferred logic of FIGS. 3-9 described specific
operations occurring 1n a particular order. In alternative
embodiments, certain of the logic operations may be per-
formed 1n a different order, modified or removed and still
implement preferred embodiments of the present invention.
Morever, steps may be added to the above described logic
and still conform to the preferred embodiments. Further,
operations described herein may occur sequentially or cer-
tain operations may be processed 1n parallel.

FIG. 2 described particular data structures used to gen-
crate a partial view of the result set that 1s built on an “as
neceded” basis. Additionally, different database program
structures may be utilized to perform operations described
herein as performed by a certain component. In other words,
the preferred embodiment cursors and workiile result set
may be implemented 1n different database program archi-
tectures.

The workfile result set was described as maintaining a
row 1D of a corresponding row 1n the base table satisfying
the cursor WHERE statement query. Additionally, the work-
file result set 12 may maintain additional information, such
as the actual row of data from the base table 12. With such
implementations, the SQL engine 10 can service FETCH
requests directly from the workfile 12 without having to
retrieve the row having the row ID from the base table 20.

In the described implementations, in response to the
DECLARE CURSOR statement, the SQL engine 10 would
ogenerate the workiile with a row ID of the first qualifying
row 1n the base table 20 before returning indication to the
application 4 that the cursor 1s open. Alternatively, the SQL
engine 10 may add the row ID of more than one row or
evaluate no base table 20 rows before notifying the appli-
cation 4 that the requested cursor 1s opened.

The described implementation of the result set as a
workiile may be used for any type of cursor, including

US 6,556,996 B2

9

non-scrollable cursors, scrollable cursors, static cursors,
dynamic cursors, etc.

In the described implementations, each FETCH request
was for a single row of data from the result set. Alternatively,
a rowset comprising multiple rows may be returned 1n
response to each FETCH request. In such rowset
implementations, the logic of FIGS. 3-9 would have to be
adjusted to account for the fact that multiple qualifying base
table rows are returned 1n response to each FETCH request.

The workfile was described as having particular configu-
ration columns and control blocks. Alternatively, the result
set may have a format different than that described herein.

The described implementations were embedded 1n a rela-
tional database program. Additionally, the above implemen-
tations may be implemented 1n non-relational database
programs, such as object oriented database programs.

The above described implementations were utilized 1 a
portable, hand held computing device. Additionally, the
above described cursor implementation may be imple-
mented 1n desktop or server based systems.

The above described implementations were described
with respect to providing access to data as part of a scrol-
lable cursor. However, the above described implementations
may be used to provide access to data in a base table when
there 1s no cursor or scrollable cursor mvolved.

The foregoing description of the preferred embodiments
of the invention has been presented for the purposes of
illustration and description. It 1s not intended to be exhaus-
five or to limit the invention to the precise form disclosed.
Many modifications and variations are possible 1n light of
the above teaching. It 1s intended that the scope of the
invention be limited not by this detailed description, but
rather by the claims appended hereto. The above
specification, examples and data provide a complete descrip-
tion of the manufacture and use of the composition of the
invention. Since many embodiments of the invention can be
made without departing from the spirit and scope of the
mmvention, the invention resides i1n the claims hereinafter
appended.

What 1s claimed 1s:

1. A method for accessing rows of data from a base table
satisfying a search criteria, comprising;

rece1ving an initial request to access rows 1n the base table
including the search criteria specifying predicates for
one or more columns 1n the base table;

generating a data structure to include information on
qualifying base table rows that satisfy the search cri-
teria 1n response to the initial request;

providing notification that the qualifying base table rows

are accessible before information on all the qualifying
base table rows 1s 1ncluded 1n the data structure;

receiving a second request for one qualifying base table
row alter the notification i1s provided;

determining whether the data structure includes informa-
tion on the requested qualifying base table row 1n the
base table; and

using the mmformation in the data structure to access the
requested qualifying base table row from the base table,
wherein the requested qualifying row 1s returned from
the base table to the second request.

2. The method of claim 1, further comprising;:

scanning the base table to locate a next qualifying base
table row after determining that the data structure does
not include information on the requested qualifying
base table row;

locating the next qualifying base table row; and

10

15

20

25

30

35

40

45

50

55

60

65

10

adding information on the located qualifying base table

row to the data structure.

3. The method of claim 1, wherein the information on the
requested qualifying base table row maintained 1n the data
structure comprises a unique row 1dentifier of the row 1n the
base table, wherein the row 1dentifier 1n the data structure 1s
used to access the qualifying base table row 1dentified by the
row 1dentifier.

4. The method of claim 2, wherein the data structure
maintains one row for each base table row for which
information i1s maintained, further comprising;

positioning a first pointer to point to a position 1n the data
structure including immformation on the last requested
qualifying base table row; and

positioning a second pointer to address a most recently
located qualifying base table row 1n the base table for
which information was added to the data structure,
wherein the data structure includes information on all
the qualifying base table rows after a last row 1n the
base table 1s evaluated with the search critera.

5. The method of claim 4, wherein the 1nitial request to
access data 1n the base table comprises a request to 1nitialize
a database cursor.

6. The method of claim 5, wherein the second request for
the qualifying base table row comprises a FETCH request
with an offset, wherein the requested qualifying base table
row 1s at the offset from the last requested qualifying base
table row, and wherein determining whether the data struc-
ture 1ncludes information on the requested qualifying base
table row comprises determining whether the data structure
includes one row at the offset from the row addressed by the
first pointer.

7. The method of claim 6, wherein the FETCH request 1s
capable of comprising one of a: FETCH NEXT request;
FETCH PRIOR request, FETCH LAST request; FETCH
FIRST request; FETCH RELAITVE request; or FETCH
ABSOLUTE request.

8. The method of claim 6, wherein the FETCH request
comprises a FETCH NEXT request to FETCH the next
qualifying base table row following the base table row
identified by the information in the data structure addressed
by the first pointer.

9. The method of claim 6, wherein the FETCH request
comprises a request for the qualifying base table row at the
oifset from the base table row 1dentified by the information
in the row 1n the data structure row addressed by the first
pointer, wherein after determining that the data structure
does not 1nclude iformation on the requested qualifying
base table row and if the offset number of rows from the row
in the data structure addressed by the pointer 1s more than
onc row beyond a last row 1n the data structure, further
performing;

locating multiple qualifying base table rows following the

second pointer;

adding information on the located multiple qualifying
base table rows to corresponding added rows 1n the data
structure; and

positioning the first pointer to the last row 1n the data
structure after row are added to the data structure to
include information on the multiple located base table
rows, wherein the last row 1n the data structure includes
information on the requested qualifying base table row.
10. The method of claim 9, wherein if the offset specifies
one qualifying base table row preceding the qualifying base
table row for which information 1s maintained in the row 1n
the data structure addressed by the first pointer, further
performing;

US 6,556,996 B2

11

positioning the first pointer to the row in the data structure

at the offset from the row addressed by the first pointer.

11. The method of claim 6, wherein the FETCH request

comprises a FETCH ABSOLUTE request to fetch one

qualifying base table row at the offset from a first or last
qualifying row 1n the base table, further comprising:

scanning the entire base table to locate further qualifying
base table rows if the FETCH ABSOLUTE request

specifles one base table row at the offset from the last
qualifying base table row;

adding information on all located qualifying base table
rows to rows 1n the data structure; and

positioning the first pointer to one row 1n the data struc-
ture preceding a last row in the data structure by the
specified oifset.
12. The method of claim 11, wherein the offset specifies
a row Irom the first qualifying base table row for which
information 1s not provided in the data structure, further
comprising:

locating one or more qualifying base table rows following,
the second pointer;

adding information on the located multiple qualifying
base table rows to corresponding added rows 1n the data
structure; and

positioning the first pointer to the row in the data structure
following the first row 1n the data structure by the
specified offset.

13. The method of claim 1, wherein the method for
accessing data 1s 1implemented 1n a hand held computing
device.

14. The method of claim 1, wherein the notification
indicates that a result set including all qualifying base table
rows 1s complete.

15. The method of claim 1, wherein the notification 1s
provided 1n response to adding information on a first quali-
fying base table row to the data structure.

16. A system for accessing rows of data from a base table
satistying a search criteria, comprising:

means for receiving an initial request to access rows 1n the
base table including the search criteria specilying
predicates for one or more columns in the base table;

means for generating a data structure to include informa-
tion on qualifying base table rows that satisfy the
search criteria from the base table;

means for providing notification that the qualifying base
table rows are accessible before information on all the
qualifying base table rows 1s included in the data
structure; and

means for recewving a second request for one qualifying
base table row after the notification 1s provided;

means for determining whether the data structure includes
information on the requested qualifying base table row
1n the base table; and

means for using the information in the data structure to
access the requested qualifying base table row from the
base table, wherein the requested qualifying row 1s
returned from the base table to the second request.
17. The system of claim 16, further comprising;:

means for scanning the base table to locate a next quali-
fying base table row after determining that the data
structure does not include information on the requested
qualifying base table rows;

means for locating the next qualifying base table row; and

means for adding mmformation on the located qualifying
base table row to the data structure.

10

15

20

25

30

35

40

45

50

55

60

65

12

18. The system of claim 16, wherein the information on
the requested qualifying base table row maintained 1n the
data structure comprises a unique row identifier of the row
In the base table, wherein the row identifier 1n the data
structure 1s used to access the qualifying base table row
identified by the row 1dentifier.

19. The system of claim 17, wherein the data structure
maintains one row for each base table row for which
information i1s maintained, further comprising;:

means for positioning a first pointer to point to a position
in the data structure imncluding information on the last
requested qualifying base table row; and

means for positioning a second pointer to address a most
recently located qualifying base table row in the base
table for which information was added to the data
structure, wherein the data structure includes informa-
tion on all the qualifying base table rows after a last row
in the base table 1s evaluated with the search criteria.

20. The system of claim 19, wherein the 1nitial request to
access data 1n the base table comprises a request to 1nitialize
a database cursor.

21. The system of claim 20, wherein the second request
for the qualifying base table row comprises a FETCH
request with an offset, wherein the requested qualifying base
table row 1s at the offset from the last requested qualifying
base table row, and wherein determining whether the data
structure 1ncludes information on the requested qualifying
base table row comprises determining whether the data
structure includes one row at the offset from the row
addressed by the first pointer.

22. The system of claim 21, wherein the FETCH request
1s capable of comprising one of a: FETCH NEXT request;
FETCH PRIOR request, FETCH LAST request; FETCH
FIRST request; FETCH RELAITVE request; or FETCH
ABSOLUTE request.

23. The system of claim 21, wherein the FETCH request
comprises a FETCH NEXT request to FETCH the next
qualifying base table row following the base table row
identified by the information in the data structure addressed
by the first pointer.

24. The system of claim 21, wherein the FETCH request
comprises a request for the qualifying base table row at the
oifset from the base table row 1dentified by the information
in the row 1n the data structure row addressed by the first
pointer, further comprising;:

means for locating multiple qualifying base table rows
following the second pointer after determining that the
data structure does not include information on the
requested qualifying base table row and 1if the offset
number of rows from the row 1n the data structure
addressed by the pointer 1s more than one row beyond

a last row 1n the data structure;

means for adding information on the located multiple
qualifying base table rows to corresponding added rows
in the data structure; and

means for positioning on the first pointer to the last row
in the data structure after rows are added to the data
structure to include information on the multiple located
base table rows, wherein the last row 1 the data
structure includes information on the requested quali-
fying base table row.

25. The system of claim 24, further comprising;:

means for positioning the first pointer to the row in the
data structure at the offset from the row addressed by
the first pointer 1f the offset specifies one qualifying
base table row preceding the qualifying base table row

US 6,556,996 B2

13

for which 1nformation 1s maintained 1n the row data
structure addressed by the first pointer.

26. The system of claim 21, wherein the FETCH request
comprises a FETCH ABSOLUTE request to fetch one
qualifying base table row at the offset from a first or last
qualifying row 1n the base table, further comprising:

means for scanning the entire base table to locate further
qualifying base table rows if the FETCH ABSOLUTE

request specifles one base table row at the offset from
the last qualifying base table rows;

means for adding information on all located qualifying
base table rows to rows 1n the data structure; and

means for positioning the first pointer to one row 1in the
data structure preceding a last row 1n the data structure
by the specified offset.

27. The system of claim 26, wherein the offset specifies a
row from the first row qualifying base table row for which
information 1s not provided in the data structure, further
comprising:

means for locating one or more qualifying base table rows
following the second pointer;

means for adding information on the located multiple
qualifying base table rows to corresponding added rows
in the data structure; and

means for positioning the first pointer to the row 1n the
data structure following the first row 1n the data struc-
ture by the specified oifset.

28. The system of claim 16, wherein the method for
accessing data 1s 1implemented 1n a hand held computing
device.

29. The system of claim 16, wherein the notification
indicates that a result set including all qualifying base table
rows 1s complete.

30. The system of claim 16, wherein the notification 1s
provided 1n response to adding information on a first quali-
fying base table row the data structure.

31. Aprogram for accessing rows of data from a base table
satisfying a search criteria, wherein the program i1s com-
prised of code implemented 1in a computer readable medium
that 1s capable of causing a processor to perform:

receiving an initial request to access rows 1n the base table
including the search criteria specifying predicates for
one or more columns 1n the base table;

generating a data structure to include information on
qualifying base table rows that satisfy the search cri-
teria 1n response to the initial request;

providing notification that the qualifying base table rows
are accessible before mformation on all the qualitying,
base table rows 1s 1ncluded 1n the data structure; and

receiving a second request for one qualifying base table
row after the notification 1s provided;

determining whether the data structure includes informa-
tion on the requested qualifying base table row 1n the
base table; and

using the mmformation in the data structure to access the
requested qualifying base table row from the base table,
wherein the requested qualifying row 1s returned from
the base table to the second request.
32. The program of claim 31, wherein the program code
1s further capable of causing the processor to perform:

scanning the base table to locate a next qualifying base
table row after determining that the data structure does
not include information on the requested qualifying
base table row;

locating the next qualifying base table row; and

10

15

20

25

30

35

40

45

50

55

60

65

14

adding information on the located qualifying base table

row to the data structure.

33. The program of claim 31, wherein the information on
the requested qualifying base table row maintained 1n the
data structure comprises a unique row identifier of the row
in the base table, wherein the row 1dentifier in the data
structure 1s used to access the qualifying base table row
identified by the row 1dentifier.

34. The program of claim 33, wherein the data structure
maintains one row for each base table row for which
information 1s maintained, and wherein the program code 1s
further capable of causing the processor to perform:

positioning a first pointer to point to a position 1n the data
structure including imformation on the last requested
qualifying base table row; and

positioning a second pointer to address a most recently
located qualifying base table row 1n the base table for
which information was added to the data structure,
wherein the data structure includes information on all
the qualifying base table rows after a last row 1n the
base table 1s evaluated with the search criteria.

35. The program of claim 34, wherein the 1nitial request
to access data in the base table comprises a request to
initialize a database tumor.

36. The program of claim 35, wherein the second request
for the qualifying base table row comprises a FETCH
request with an offset, wherein the requested qualifying base
table row 1s at the offset from the last requested qualifying
base table row, and wherein determining whether the data
structure 1ncludes information on the requested qualifying
base table row comprises determining whether the data
structure 1ncludes one row at the offset from the row
addressed by the first pointer.

37. The program of claim 36, wherein the FETCH request
1s capable of comprising one of a: FETCH NEXT request;
FETCH PRIOR request;, FETCH LAST request; FETCH
FIRST request; FETCH RELAITVE request; or FETCH
ABSOLUTE request.

38. The program of claim 36, wherein the FETCH request
comprises a FETCH NEXT request to FETCH the next
qualifying base table row following the base table row
identified by the information in the data structure addressed
by the first pointer.

39. The program of claim 36, wherein the FETCH request
comprises a request for the qualifying base table row at the
oifset from the base table row 1dentified by the information
in the row 1n the data structure row addressed by the first
pointer, wherein after determining that the data structure
does not include information on the requested qualifying
base table row and if the offset number of rows from the row
in the data structure addressed by the pointer i1s more than
one row beyond a last row 1n the data structure, and wherein
the program code 1s further capable of causing the processor
to perform:

locating multiple qualifying base table rows following the
second pointer;

adding information on the located multiple qualifying
base table rows to corresponding added rows in the data
structure; and

positioning the first pointer to the last row i1n the data
structure after row are added to the data structure to
include mnformation on the multiple located base table
rows, wherein the last row 1n the data structure includes
information on the requested qualifying base table row.

40. The program of claim 39, wherein if the offset
speciflies one qualifying base table row preceding the quali-

US 6,556,996 B2

15

fying base table row for which information 1s maintained 1n
the row 1n the data structure addressed by the first pointer,
and wherein the program code 1s further capable of causing
the processor to perform:

positioning the first pointer to the row in the data structure

at the offset from the row addressed by the first pointer.

41. The program of claim 36, wherein the FETCH request
comprises a FETCH ABSOLUTE request to fetch one
qualifying base table row at the offset from a first or last
qualifying row 1n the base table, and wherein the program
code 1s further capable of causing the processor to perform:

scanning the entire base table to locate further qualitying
base table rows 1f the FETCH ABSOLUTE request
specifles one base table row at the offset from the last
qualifying base table rows;

adding information on all located qualifying base table
rows to rows 1n the data structure; and

positioning the first pointer to one row in the data struc-

ture preceding a last row in the data structure by the
speciiied offset.

42. The program of claim 41, wherein the offset specifies

a row from the first row qualifying base table row for which

16

information 1s not provided in the data structure, and
wherein the program code 1s further capable of causing the
processor to perform:

locating one or more qualifying base table rows following,
the second pointer;

adding information on the located multiple qualifying
base table rows to corresponding added rows 1n the data
structure; and

positioning the first pointer to the row 1n the data structure

following the first row 1n the data structure by the
specified offset.

43. The program of claim 31, wherein the method for

accessing data 1s implemented 1 a hand held computing

15 device.

44. The article of manufacture of claim 31, wherein the

notification indicates that a result set including all qualifying
base table rows 1s complete.
45. The article of manufacture of claim 31, wherein the

»g hotification 1s provided 1n response to adding information on

a first qualifying base table row to the data structure.

¥ ¥ # ¥ ¥

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 6,856,996 B2 Page 1 of 1
APPLICATION NO. : 09/822899

DATED : February 15, 2005

INVENTOR(S) . Jyh-Herng Chow, Ting Yu Leung and Thanh Tan Pham

It is certified that error appears in the above-identified patent and that said Letters Patent Is
hereby corrected as shown below:

Column 10
Line 59, delete “after row’” and insert --after rows--

Column 12
Line 57, delete “on’ after “positioning”

Column 13
Line 1, msert --1n the-- after “row” and before “data”™

Column 14

Line 25, delete “tumor’ and 1nsert --cursor--
Line 60, delete “row’ and insert --rows--

Signed and Sealed this

Twenty-sixth Day of December, 2006

JON W. DUDAS
Director of the United States Patent and Trademark Office

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

